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Abstract

We consider optimization problems with inequality and abstract set constraints, and we
derive sensitivity properties of Lagrange multipliers under very weak conditions. In particular,
we do not assume uniqueness of a Lagrange multiplier or continuity of the perturbation function.
We show that the Lagrange multiplier of minimum norm defines the optimal rate of improvement
of the cost per unit constraint violation.
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Introduction

1. INTRODUCTION

We consider the constrained optimization problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(P)

where X is a nonempty subset of �n, and f : �n → � and gj : �n → � are smooth (continuously

differentiable) functions.

In our notation, all vectors are viewed as column vectors, and a prime denotes transposition,

so x′y denotes the inner product of the vectors x and y. We will use throughout the standard

Euclidean norm ‖x‖ = (x′x)1/2. The gradient vector of a smooth function h : �n �→ � at a vector

x is denoted by ∇h(x). The positive part of the constraint function gj(x) is denoted by

g+
j (x) = max

{
0, gj(x)

}
,

and we write

g(x) =
(
g1(x), . . . , gr(x)

)
, g+(x) =

(
g+
1 (x), . . . , g+

r (x)
)
.

The tangent cone of X at a vector x ∈ X is denoted by TX(x). It is the set of vectors y such

that either y = 0 or there exists a sequence {xk} ⊂ X such that xk 	= x for all k and

xk → x,
xk − x

‖xk − x‖ → y

‖y‖ .

An equivalent definition often found in the literature (e.g., Bazaraa, Sherali, and Shetty [BSS93],

Rockafellar and Wets [RoW98]) is that TX(x) is the set of vectors y such that that there exists

a sequence {xk} ⊂ X with xk → x, and a positive sequence {αk} such that αk → 0 and

(xk − x)/αk → y. Note that TX(x) is a closed cone, but it need not be convex (it is convex if X

is convex, or more generally, if X is regular at x in the terminology of nonsmooth optimization;

see [BNO03] or [RoW78]). For any cone N , we denote by N∗ its polar cone (N∗ = {z | z′y ≤
0, ∀ y ∈ N}). This paper is related to research on optimality conditions of the Fritz John type

and associated subjects, described in the papers by Bertsekas and Ozdaglar [BeO02], Bertsekas,

Ozdaglar, and Tseng [BOT04], and the book [BNO03]. We generally use the terminology of these

works.

A Lagrange multiplier associated with a local minimum x∗ is a vector µ = (µ1, . . . , µr) such

that ⎛
⎝∇f(x∗) +

r∑
j=1

µj∇gj(x∗)

⎞
⎠

′

d ≥ 0, ∀ d ∈ TX(x∗), (1.1)

2



Introduction

µj ≥ 0, ∀ j = 1, . . . , r, µj = 0, ∀ j /∈ A(x∗), (1.2)

where A(x∗) =
{
j | gj(x∗) = 0

}
is the index set of inequality constraints that are active at x∗.

The set of Lagrange multipliers corresponding to x∗ is a (possibly empty) closed and convex set.

Conditions for existence of at least one Lagrange multiplier are given in many sources, including

the books [BSS93], [Ber99], and [BNO03], and the survey [Roc93].

We will show the following sensitivity result. The proof is given in the next section.

Proposition 1.1: Let x∗ be a local minimum of problem (P), assume that the set of

Lagrange multipliers is nonempty, and let µ∗ be the vector of minimum norm on this set.

Then for every sequence {xk} ⊂ X of infeasible vectors such that xk → x∗, we have

f(x∗) − f(xk) ≤ ‖µ∗‖‖g+(xk)‖ + o
(
‖xk − x∗‖

)
. (1.3)

Furthermore, if µ∗ 	= 0 and TX(x∗) is convex, the preceding inequality is sharp in the sense

that there exists a sequence of infeasible vectors {xk} ⊂ X such that xk → x∗ and

lim
k→∞

f(x∗) − f(xk)
‖g+(xk)‖ = ‖µ∗‖. (1.4)

For this sequence, we have

lim
k→∞

g+
j (xk)

‖g+(xk)‖ =
µ∗

j

‖µ∗‖ , j = 1, . . . , r. (1.5)

A sensitivity result of this type was first given by Bertsekas, Ozdaglar, and Tseng [BOT04],

for the case of a convex, possibly nondifferentiable problem. In that paper, X was assumed

convex, and the functions f and gj were assumed convex over X (rather than smooth). Using

the definition of the dual function [q(µ) = infx∈X

{
f(x) + µ′g(x)

}
], it can be seen that

q∗ − f(x) = q(µ∗) − f(x) ≤ f(x) + µ∗′g(x) − f(x) = µ∗′g(x) ≤ ‖µ∗‖ ‖g+(x)‖, ∀ x ∈ X,

where q∗ is the dual optimal value (assumed finite), and µ∗ is the dual optimal solution of

minimum norm (assuming a dual optimal solution exists). The inequality was shown to be sharp,

assuming that µ∗ 	= 0, in the sense that there exists a sequence of infeasible vectors {xk} ⊂ X

such that

lim
k→∞

q∗ − f(xk)
‖g+(xk)‖ = ‖µ∗‖.

This result is consistent with Prop. 1.1. However, the line of analysis of the present paper is

different, and in fact simpler, because it relies on the machinery of differentiable calculus rather
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than convex analysis (there is a connection with convex analysis, but it is embodied in Lemma

2.1, given in the next section).

Note that Prop. 1.1 establishes the optimal rate of cost improvement with respect to infea-

sible constraint perturbations, under much weaker assumptions than earlier results for nonconvex

problems. For example, classical sensitivity results, include second order sufficiency assumptions

guaranteeing that the Lagrange multiplier is unique and that the perturbation function

p(u) = inf
x∈X, g(x)≤u

f(x)

is differentiable (see e.g., [Ber99]). More recent analyses (see, e.g., Bonnans and Shapiro [BoS00],

Section 5.2) also require considerably stronger conditions that ours.

Note also that under our weak assumptions, a sensitivity analysis based on the directional

derivative of the perturbation function p is not appropriate. The reason is that our assumptions do

not preclude the possibility that p has discontinuous directional derivative at u = 0, as illustrated

by the following example, first discussed in [BOT04].

Example 1.1:

Consider the two-dimensional problem,

minimize −x2

subject to x ∈ X = {x | x2
2 ≤ x1}, g1(x) = x1 ≤ 0, g2(x) = x2 ≤ 0,

we have

p(u) =

⎧⎨
⎩

−u2 if u2
2 ≤ u1,

−√
u1 if u1 ≤ u2

2, u1 ≥ 0, u2 ≥ 0,

∞ otherwise.

It can be verified that x∗ = 0 is the global minimum (in fact the unique feasible solution) and that

the set of Lagrange multipliers is

{µ ≥ 0 | µ2 = 1}.

Consistently with the preceding proposition, for the sequence xk = (1/k2, 1/k), we have

lim
k→∞

f(x∗) − f(xk)

‖g+(xk)‖ = ‖µ∗‖ = 1.

However, µ∗ = (0, 1), is not a direction of steepest descent, since starting at u = 0 and going along

the direction (0, 1), p(u) is equal to 0, so

p′(0; µ∗) = 0.

In fact p has no direction of steepest descent at u = 0, because p′(0; ·) is not continuous or even

lower semicontinuous. However, one may achieve the optimal improvement rate of ‖µ∗‖ by using

constraint perturbations that lie on the curved boundary of X.
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Feasible Region

X

x*=0

x2

x1

Figure 1.1. Constraints of Example 1.2. We have

TX(x∗) = X =
{

x | (x1 + x2)(x1 − x2) = 0
}

.

The set X consists of the two lines shown, but the feasible region is the lower portion where

x2 ≤ 0.

Finally, let us illustrate with an example how our sensitivity result fails when the convexity

assumption on TX(x∗) is violated. In this connection, it is worth noting that nonconvexity

of TX(x∗) implies that X is not regular at x∗ (in the terminology of nonsmooth analysis - see

[BNO03] and [RoW78]), and this is a major source of exceptional behavior in relation to Lagrange

multipliers (see [BNO03], Chapter 5).

Example 1.2:

In this 2-dimensional example, there are two linear constraints

g1(x) = x1 + x2 ≤ 0, g2(x) = −x1 + x2 ≤ 0,

and the set X is the (nonconvex) cone

X =
{
x | (x1 + x2)(x1 − x2) = 0

}

(see Fig. 1.1). Let the cost function be

f(x1, x2) = x2
1 + (x2 − 1)2.

Then the vector x∗ = (0, 0) is a local minimum, and we have TX(x∗) = X, so TX(x∗) is not convex.

A Lagrange multiplier is a nonnegative vector (µ∗
1, µ

∗
2) such that

(
∇f(x∗) + µ∗

1∇g1(x
∗) + µ∗

2∇g2(x
∗)

)′
d ≥ 0, ∀ d ∈ TX(x∗),
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from which, since TX(x∗) contains the vectors (1, 0), (−1, 0), (0, 1), and (0,−1), we obtain

∇f(x∗) + µ∗
1∇g1(x

∗) + µ∗
2∇g2(x

∗) = 0,

or (
0

−2

)
+ µ∗

1

(
1

1

)
+ µ∗

2

(−1

1

)
= 0.

Thus the unique Lagrange multiplier vector is µ∗ = (1, 1). There are two types of sequences

{xk} ⊂ X (and mixtures of these two) that are infeasible and converge to x∗: those that approach

x∗ along the boundary of the constraint x1 + x2 ≤ 0 [these have the form (−ξk, ξk), where ξk > 0

and ξk → 0], and those that approach x∗ along the boundary of the constraint −x1 + x2 ≤ 0

[these have the form (ξk, ξk), where ξk > 0 and ξk → 0]. For any of these sequences, we have

f(xk) = (ξk)2 + (ξk − 1)2 and ‖g+(xk)‖ = 2ξk, so

lim
k→∞

f(x∗) − f(xk)

‖g+(xk)‖ = lim
k→∞

1 − (ξk)2 − (ξk − 1)2

2ξk
= 1 <

√
2 = ‖µ∗‖.

Thus ‖µ∗‖ is strictly larger than the optimal rate of cost improvement, and the conclusion of Prop.

1.1 fails.

2. PROOF

Let {xk} ⊂ X be a sequence of infeasible vectors such that xk → x∗. We will show the bound

(1.3). The sequence
{
(xk − x∗)/‖xk − x∗‖

}
is bounded and each of its limit points belongs to

TX(x∗). Without loss of generality, we assume that
{
(xk − x∗)/‖xk − x∗‖

}
converges to a vector

d ∈ TX(x∗). Then for the minimum norm Lagrange multiplier µ∗, we have
⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠

′

d ≥ 0. (2.1)

Denote

ξk =
xk − x∗

‖xk − x∗‖ − d.

We have⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠

′

(xk − x∗) =

⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠

′

(d + ξk) ‖xk − x∗‖,

so using Eq. (2.1) and the fact ξk → 0, we have
⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠

′

(xk − x∗) ≥ o
(
‖xk − x∗‖

)
. (2.2)

6



Proof

Using Eq. (2.2), a Taylor expansion, and the fact µ∗′g(x∗) = 0, we have

f(xk) + µ∗′g(xk) = f(x∗) + µ∗′g(x∗) +

⎛
⎝∇f(x∗) +

r∑
j=1

µ∗
j∇gj(x∗)

⎞
⎠

′

(xk − x∗) + o
(
‖xk − x∗‖

)

≥ f(x∗) + o
(
‖xk − x∗‖

)
.

We thus obtain, using the fact µ ≥ 0,

f(x∗) − f(xk) ≤ µ∗′g(xk) + o
(
‖xk − x∗‖

)
≤ µ∗′g+(xk) + o

(
‖xk − x∗‖

)
,

and using the Cauchy-Schwarz inequality,

f(x∗) − f(xk) ≤ ‖µ∗‖ ‖g+(xk)‖ + o
(
‖xk − x∗‖

)
,

which is the desired bound (1.3).

For the proof that the bound is sharp, we will need the following lemma first given in

Bertsekas and Ozdaglar [BeO02] (see also [BNO03], Lemma 5.3.1).

Lemma 2.1: Let N be a closed convex cone in �n, and let a0, . . . , ar be given vectors in

�n. Suppose that the set

M =

⎧⎨
⎩µ ≥ 0

∣∣∣ −

⎛
⎝a0 +

r∑
j=1

µjaj

⎞
⎠ ∈ N

⎫⎬
⎭

is nonempty, and let µ∗ be the vector of minimum norm in M . Then, there exists a sequence

{dk} ⊂ N∗ such that

a′
0d

k → −‖µ∗‖2, (a′
jd

k)+ → µ∗
j , j = 1, . . . , r. (2.3)

For simplicity, we assume that all the constraints are active at x∗. Inactive inequality

constraints can be neglected since the subsequent analysis focuses in a small neighborhood of

x∗, within which these constraints remain inactive. We will use Lemma 2.1 with the following

identifications:

N = TX(x∗)∗, a0 = ∇f(x∗), aj = ∇gj(x∗), j = 1, . . . , r,

M = set of Lagrange multipliers,

µ∗ = Lagrange multiplier of minimum norm.
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Since TX(x∗) is closed and is assumed convex, we have N∗ = TX(x∗), so Lemma 2.1 yields a

sequence {dk} ⊂ TX(x∗) such that

∇f(x∗)′dk → −‖µ∗‖2, ∇gj(x∗)′dk → µ∗
j , j = 1, . . . , r.

Since dk ∈ TX(x∗), for each k we can select a sequence {xk,t} ⊂ X such that xk,t 	= x∗ for all t

and

lim
t→∞

xk,t = x∗, lim
t→∞

xk,t − x∗

‖xk,t − x∗‖ = dk. (2.4)

Denote

ξk,t =
xk,t − x∗

‖xk,t − x∗‖ − dk.

For each k, we select tk sufficiently large so that

lim
k→∞

ξk,tk = 0, lim
k→∞

xk,tk = x∗,

and we denote

xk = xk,tk , ξk = ξk,tk .

Thus, we have

xk → x∗, ξk =
xk − x∗

‖xk − x∗‖ − dk → 0.

Using a first order expansion for the cost function f , we have for each k and t,

f(xk) − f(x∗) = ∇f(x∗)′(xk − x∗) + o(‖xk − x∗‖)

= ∇f(x∗)′ (dk + ξk) ‖xk − x∗‖ + o(‖xk − x∗‖)

= ‖xk − x∗‖
(
∇f(x∗)′dk + ∇f(x∗)′ξk +

o(‖xk − x∗‖)
‖xk − x∗‖

)
,

and, since ξk → 0 and ∇f(x∗)′dk → −‖µ∗‖2,

f(xk) − f(x∗) = −‖xk − x∗‖ · ‖µ∗‖2 + o(‖xk − x∗‖). (2.5)

Similarly, using also the fact gj(x∗) = 0, we have for each k and t,

gj(xk) = ‖xk − x∗‖µ∗
j + o(‖xk − x∗‖), j = 1, . . . , r,

from which we also have

g+
j (xk) = ‖xk − x∗‖µ∗

j + o(‖xk − x∗‖), j = 1, . . . , r. (2.6)

We thus obtain

‖g+(xk)‖ = ‖xk − x∗‖ · ‖µ∗‖ + o(‖xk − x∗‖), (2.7)
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which, since ‖µ∗‖ 	= 0, also shows that ‖g+(xk)‖ 	= 0 for all sufficiently large k. Without loss of

generality, we assume that

‖g+(xk)‖ 	= 0, k = 0, 1, . . . (2.8)

By multiplying Eq. (2.7) with ‖µ∗‖, we see that

‖µ∗‖ · ‖g+(xk)‖ = ‖xk − x∗‖‖µ∗‖2 + o(‖xk − x∗‖). (2.9)

Combining Eqs. (2.5) and (2.9), we obtain

f(x∗) − f(xk) = ‖µ∗‖ · ‖g+(xk)‖ + o(‖xk − x∗‖),

which together with Eqs. (2.7) and (2.8), shows that

f(x∗) − f(xk)
‖g+(xk)‖ = ‖µ∗‖ +

o(‖xk − x∗‖)
‖xk − x∗‖ · ‖µ∗‖ + o(‖xk − x∗‖) .

Taking the limit as k → ∞ and using the fact ‖µ∗‖ 	= 0, we obtain

lim
k→∞

f(x∗) − f(xk)
‖g+(xk)‖ = ‖µ∗‖.

Finally, from Eqs. (2.6) and (2.7), we see that

g+
j (xk)

‖g+(xk)‖ =
µ∗

j

‖µ∗‖ +
o(‖xk − x∗‖)
‖xk − x∗‖ , j = 1, . . . , r,

from which Eq. (1.5) follows. Q.E.D.

3. REFERENCES

[BSS93] Bazaraa, M. S., Sherali, H. D., and Shetty, C. M., 1993. Nonlinear Programming Theory

and Algorithms, (2nd Ed.), Wiley, N. Y.
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