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TECHNICAL NOTE 

On the Convergence Properties of Second-Order 
Multiplier Methods 1 

D. P. BERTSEKAS 2 

Communicated by O. L. Mangasarian 

Abstract. The purpose of this note is to provide some estimates 
relating to Newton-type methods of multipliers. These estimates can 
be used to infer that convergence in such methods can be achieved for 
an arbitrary choice of the initial multiplier vector by selecting the 
penalty parameter sufficiently large. 
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I.  Problem Formulation and Main Result  

Consider the problem 

minimize f (x) ,  subject to h(x)  = O, 

where 

f : R " - ~ R ,  h:R"-->R"*, h = ( h l ,  h2 . . . . .  hm)'. 

Let x* be a local minimizer and assume the following. 

(1) 

Assumption  1.1. The functions f and h are twice continuously 
differentiable with Lipschitz continuous Hessians in a neighborhood of x*. 
The n x m  matrix Vh(x*) having as columns the gradients Vhi(x*), i = 
1 . . . . .  m, has full rank, and hence there exists a unique Lagrange multi- 
plier vector 

y ,  -= ( y l ,  . . . . .  y m , ) ,  
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satisfying 

V f(x*)+ Vh(x *)y* = O. 

Furthermore, there holds 

z'[VZf(x*)+ ~ yi*V2hi(x*)Jz>O forall  z ¢ 0  with Vh(x*)'z=O. 
i=1 

In the above relations and in the sequel, all vectors are considered to 
be column vectors. A prime denotes transposition. The usual Euclidean 
norm in R n is denoted [. [. All derivatives of various functions are with 
respect to the argument x. 

We shall restrict ourselves to the case of equality constraints. A 
straightforward extension of our analysis to inequality constraints can be 
obtained in the manner described in Refs. 1-2. 

For any scalar c, consider the augmented Lagrangian function 

Lc(x, y)= f(x)+ y'h(x)+ ½c[h(x)[ 2. (2) 

We will obtain a result relating to second-order multiplier methods of the 
form 

¢ - 1  - 1  t - 1  yg+l=yk+(NkBk Nk) [h(Xk)--NkBk VLck(Xk, Yk)], (3) 

where Y0 is given, {Ck} is a penalty parameter sequence with 

Ck+I ~ Ck ~ O, 

Xk satisfies 

]VLck (Xk, Yk)] ~ min{'),k/Ck, 6k ]h (xk)[}, (4) 

{yk}, {6k} are bounded sequences with 

0-< ~'k, O-----Sk, 

and Nk, Bk are defined by 

Nk = Vh (xk), Bk = VZLck(Xk, Yk)* (5) 

The Newton-type iteration (3) appears in Tapia (Ref. 3) for Ck = 0 and 
in Tapia (Ref. 4) and Han (Ref. 5) for Ck ¢ 0. When 

Ck ~ C, ~lk ~- (~k ~ O, 

then (3) reduces to Newton's method applied to maximization of the dual 
functional 

q~(y) = min L¢(x, y), 
x 
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where minimization with respect to x is understood to be local and c is 
su/fciently large (see, e.g., Ref. t and the references quoted therein). As is 
welt known, in the latter case, when yo is sufficiently close to y* and c is 
sufficiently large, the method converges to y* with a convergence rate 
which is at least quadratic. However,  the requirements that y0 be close to 
y*, c be constant, and 

VLck (xk, Yk) = 0 

for all k represent severe restrictions from the practical point of view. One 
would like to guarantee convergence even when a good initial choice y0 is 
unknown, while, for computational efficiency reasons, it is desirable to 
allow for inexact minimization and variability of the penalty parameter  c. 
The analysis of this paper is motivated by these concerns. 

The main result of the paper is Proposition 1.1 below. It provides 
some estimates which can be used in the analysis of first-order and second- 
order  multiplier methods. It shows, in particular, that one can compensate 
for a poor  initial estimate Y0 by choosing the penalty parameter  sufficiently 
large. The proposition, except for the estimate (8), appeared in 1973 in 
Bertsekas (Ref. 6, also see Ref. 2) and in Polyak and Tretyakov (Ref. 7). 
The special case of the estimate (8) where 

y = S = 0  

was given in the author's survey paper (Ref. 1, Proposition 6). The proof in 
that paper is not readily generalizable. The line of argument given here is 
based on an interesting relation of multiplier methods with Newton-type 
Lagrangian methods (Lemma 2.1). 

Proposition 1.1. Let  Assumption 1.1 hold, and let Y C R "  be a 
given bounded set, and 7, 8 be given scalars with 

0---~,, 0 ~ 8 .  

Then there exist nonnegative scalars c*. M, /~ / (depending  on Y, % 8,/ ,  h, 
and x*) such that: 

(a) For  every 

c>c*,  y~ Y, 

and every vector 

a ~ R n with [a i ~ y/c, 

there exists a unique vector denoted x~(y, c) within some open sphere 
centered at x* that satisfies 

VL~[x~(y, c), y] -- a, 
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and is such that Vh[xa(y, c)] has full rank and VZLc[x~(y, c),  Y] is positive 
definite. 

(b) For every 

and every vector 

c>c*, y~ Y, 

a~R" with lal~/c 
for which the vector xa(y, c) defined in (a) above satisfies 

l a l -  61h[x~(Y, c)][, 

we have 

Ix~ (y, c ) -x*]  ~ M(26 + 1)ty -y*I /c ,  (6) 

lye(y, c ) -  y*l ~ M(28 + 1)ly - y*l/c, (7) 

133a (y, c ) -  Y*I-< A~(26 + 1 ) 2 l y  - y*12/c 2, (8) 

where y~(y, c), )~(y, c) are defined by 

Ya(Y, c )=  y +ch[xa(y, c)], (9) 

33a (y, c )=  y +{Vh[xa(y, c)]'[V2Lc[xa(y, c), y]]-lVh [xa(y, c)]}-l{h[x,~(y, c)] 

-Vh[xa(y, c)]'[V2Lc[xa(y, c),y]]-~VLc[xa(y, c), y]}. (10) 

The proof of Proposition 1.1 is given in the next section. The pro- 
position is not in itself a convergence or rate-of-convergence result for any 
specific algorithm. Rather, it may be viewed as an aid for stating and 
analyzing algorithms of the multiplier type similarly as in Refs. 1, 2, 6, and 
7. 

2. Proof of Proposition 1.1 

As mentioned in the previous section, all the statements of Pro- 
position 1.1 have been established earlier, with the exception of the esti- 
mate (8). We use these statements in the proof of (8). 

For a given triple 

(x, y, c)~R" x R "  xR, 

consider the system of equations in (2, 33) 

Vh(x)' ) ~ - y ] = - L  h(x) J" 
(11) 
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Note that a system of this type is solved at each iteration of Newton's 
method applied to the system of necessary conditions 

VL~(x, y) = 0, h (x )=  0. 

Notation. For a triple (x, y, c) for which the matrix on the left-hand 
side of (11) is invertible, we denote by £(x, y,c),  ~(x, y, c) the unique 
solution of (11) in (£, 19) and say that £(x, y, x), 19(x, y, c) are well defined. 

Note that, if for a triple (x, y, c) the matrices 

V2Lc(x, y) and Vh(x)'[V2Lc(x, y)]- lVh(x) 

are invertible, then the vectors 2(x, y, c), ~(x, y, c) are well defined and in 
fact they are given by (Refs. 3-4) 

)~(x, y, c ) =  y + [Vh(x)'[V2Lc(x, y)j-lVh(x)]-l[h(x) 

-Vh(x)'[V2Lc(x, y)]-lVLc (x, y)], (12) 

£(x, y, c ) =  x -[~72L~ (x, y)]-lVLc[x, ~(x, y, c)]. (13) 

Our proof of Proposition t.1 rests on the following lemma, the 
straightforward proof of which may be found in Bertsekas (Ref. 8). 

Lemma 2.1. For a triple (x, y, c), the vectors £(x, y, c), )~(x, y, c) are 
well defined iff the vectors 

£[x,y+ch(x),O], ~[x,y+ch(x),O] 

are well defined. Furthermore,  there holds 

£(x, y, c)= £[x, y + ch(x), 0], (14) 

fi(x, y, c)= ~[x, y + ch(x ), 0]. (15) 

We now show (8). We have, for 

y~ Y, c>c*,  

and a ~ R n for which 

lal---< min{~//c, ~lh[xa(y, c)]I} , 

that V2Lc[x,~(y , c), y] is positive definite and Vh[x~(y, c)] has full rank. 
Hence, 

X[x~(y, C), y, Cl, y[xo(y, C), y, C] 

are well defined; and, from (9), (10), (12), and Lemma 2.1, we obtain 

ya(y, c) = ~[Xa(y, C), y, C] = )3[x~(y, C), y~(y, C), 0]. (16) 
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In addition, 

;[x~(y, c), y~(y, c), 0], :[xo(y, c), yo(y, c), 0] 

are well defined. 
Take now c* sufficiently high to ensure [see (6), (7)] that xa(y, c), 

y,(y,  c) lie within a sufficiently small sphere centered at (x*, y*) within 
which quadratic convergence of Newton's method for the system of equa- 
tions 

VL0(x, y) = 0, h (x) = 0 

holds. Then, there is constant K such that, for all 

and a with 

c > c * ,  y ~  Y, 

lal~ min{y/c, 8lh [xa(y, c)]]}, 

there holds 

^ - x  [ +[y[xa(y, c), Ya(Y, c), 0]-y*12) a/2 (Ix[xo(y, c), ya(y, c), o] . 2  , 

-< K{lx~(y, C)--X*I2+lya(y, C)-- y*12}. 

From (6), (7), (16), and (17), we obtain 

I~ (Y, c ) -  Y*I--< 2KM2( 2~ + 1)21Y - y*I2/c2; 

and, by setting 

= 2 K M  2, 

(17) 

(8) is proved. [] 
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