
cE&L -- -- !I3
ELSEVIER Parallel Computing 22 (1996) 39-56

PARALLEL
COMPUTING

Finite termination of asynchronous iterative algorithms

S.A. Savari I, D.P. Bertsekas ‘,*
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,

MA 02139, USA

Received 11 May 1994; revised 5 February 1995, 13 July 1995; accepted 30 September 1995

Abstract

We consider n-processor distributed systems where the ith processor executes asyn-
chronously the iteration xi =fr(x). It is natural to terminate the iteration of the ith
processor when some local condition, such as xi -f;(x): ‘small’, holds. However, local
termination conditions of this type may not lead to global termination because of the
asynchronous character of the algorithm. In this paper, we propose several approaches to
modify the original algorithm and/or supplement it with an interprocessor communication
protocol so that this difficulty does not arise. Some of the resulting procedures can be recast
as termination detection schemes for arbitrary finite, distributed computations.

Keywords: Linear algebra; Asynchronous iterative methods; Termination detection; Dis-
tributed memory multiprocessor; Message-passing system

1. Introduction

Convergent asynchronous iterative algorithms are interesting because they offer
a greater flexibility of implementation and a faster convergence than their syn-
chronous counterparts. Asynchronous iterations have received a lot of attention
(see [ll and [2]), but the issue of termination has been virtually overlooked. There
is an extensive literature on the termination detection of asynchronous algorithms

* Communicating author. Email: bertseka@lids.mit.edu
’ Supported by an AT & T Bell Laboratories GRPW Fellowship.
’ Supported by NSF under Grant 9300494-DMI, and the AR0 under Grant DAAL03-92-G-0309.

0167-8191/96/$15.00 0 1996 Elsevier Science B.V. All rights reserved

SSDI 0167.8191(95)00059-3

40 S.A. Sauari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56

that are executed for a finite number of steps (see e.g. [l] and [3-101). However, in
general, there is no bound on the number of iterations performed by asynchronous
iterative algorithms. This termination problem was first recognized and formmated
in [ll] and ([2], Q9>, and the solution proposed to this implementation difficulty is
to modify the asynchronous iterative algorithm so that it terminates in finite time
and then to use one of the many available protocols for termination detection. The
modification to the underlying algorithm suggested in [2] is guaranteed to termi-
nate for many, but not all, classes of convergent asynchronous iterations. In this
paper, we will specify an alternate modification that will lead to termination for a
larger set of asynchronous iterative algorithms at the expense of increased commu-
nication overhead. We are also going to consider an alternate approach to the
issue of termination in which the finite termination of the algorithm and termina-
tion detection in finite time are addressed jointly.

To be more precise, we will investigate the following problem. Let X,, . . . , X,
be given sets, and let X= n;=iX, be their Cartesian product. Any x EX can be
represented as x = (xi,. . . , x,), where xi EX! for each i. For i E {l,. . . , n), let
f, : X ++ Xi be a given function and define f : X ++ X by f(x) =
(fl(X>, f2(x), . . . , f,(x)) f or every x EX. Ideally, we would like to find some
x * EX for which x * =f(x *>; such an x * is called a fixed point of the function f.
Toward this end, we will consider distributed asynchronous versions of the itera-
tion

x:=f(x).

We assume that we are given a message-passing system with n processors, each
having its own local memory and communicating with the other processors over a
reliable communication network. By reliable communication, we mean that infor-
mation sent over the network will eventually be received without errors at its
destination. Each processor can communicate ‘directly’ with a subset of the other
processors called its neighbors. For each pair (i, j) of neighboring processors, we
assume that there is a communication capability by means of which processors i
and j can send information to each other; this capability may be established
through a direct communication link between the two processors or via a multi-hop
path in the communication network. For convenience, we assume that neighboring
processors are connected by a communication link. If fi(x> depends on xj and
j Z i, we require processors i and j to be neighbors; in this situation, we say that
processor i is a dependent neighbor of processor j and that processor j is an
essential neighbor of processor i. Furthermore, any processor j can be reached
from any other processor i through a sequence of neighbors; if this were not the
case, the iteration x := f(x) could be decomposed into two or more smaller and
independent iterations.

Let f be an integer ‘time’ variable used to index the sequence of physical times
at which the events of interest of this system occur. Note that t may have little
relation with ‘real time’. At time t, each processor i stores a vector x’(t) =
(x;(t), . . .) x$t>), where for all j # i, x;(t) =xj(TJ(t)) for some 0 5 T,!(t) 2 t; this
model captures the situation in which the processors do not necessarily have access

S.A. Savari, D.P. Bertsekas /Parallel Computing 22 (1996) 39-56 41

to the most recent value of the components of x. To simplify notation, we also
write

xi(t) =x;(t), iE {l,...,n}

and we view the vector x(t) defined by

x(t) = (xl(qY.,x&>)

as the ‘nominal’ iterate of the algorithm at time t. Assume that the iteration is
initialized with a vector x(O). The ith processor updates x,(t) at a set of times T’,
so that

f,(x’(t)), t E T’
Xi(t + 1) :=

Xi(f>~ te T’
(1)

We assume that the sets T’ are infinite and that whenever processor i revises xi, it
eventually sends the new value to all of its dependent neighbors.

In general, a convergent asynchronous iterative algorithm does not necessarily
produce a fixed point in a finite number of steps. A practical implementation of an
asynchronous iterative algorithm must terminate after a finite number of itera-
tions. For this reason, we usually have to be satisfied with finding some x E X
which is in the neighborhood of a fixed point of f. To be more precise, there is a
local termination set S, CX associated with each processor i, and we would like to
obtain a vector x belonging to the global termination set S = n y= iSj after a finite
number of iterations at each processor.

For the procedures of Section 2 (distributed termination), we will assume the
following regarding the asynchronous algorithm:

Assumption 1. In order to determine if a given x = (xi,. . . , x,> E S,, processor i
needs only xi and the set of xi for which j is an essential neighbor of i.

Assumption 2. For each execution of the algorithm such that the sets of times T’
are infinite and lim f +,T,!(t) = to for all i and j, there exists t such that x’(t) E Si
for all t 2 i.

Assumption 2 relates to the total asynchronism assumptions of (111, 46.1). Chapter
6 of this reference describes several algorithms for which Assumption 2 is satisfied.

For the procedures of Section 3 (supervised termination), we make Assumption
1 and the following assumption in place of Assumption 2:

Assumption 3. There exists i for which (x,(t,), x,(t,>, . . . , x;(t,)) ES whenever
t,,...,t,>t.

Assumption 3 is implied from Assumption 2 if there is some U c S such that
U = llF==,Q, U, cX, for all i, and x(t) E U for all sufficiently large t. However,
Assumption 3 holds for certain iterative algorithms that do not satisfy Assumption
2 when the convergence of the iteration is sensitive to the choice of the sets T’ and

42 S.A. Sauari, D.P. Bertsekas /Parallel Computing 22 (I 996) 39-56

the amount of communication delay between the processors. Assumptions 1-3 are
valid for many iterative asynchronous algorithms and corresponding local termina-
tion sets Si (see e.g. [1,2,12], and [131).

To demonstrate that the issue of finite termination is not trivial, we consider a
‘natural’ approach to the problem. We implement the following modification to
the asynchronous algorithm. Processor i performs the iteration xi =f,(x’(t)) at
time t E T’ if x’(t) does not belong to the local termination set Si; if the
component xi obtained is different from the stored component x;(t), then proces-
sor i sends xi to its dependent neighbors and saves xi as xi(l + 1). If a message xi
from processor j arrives at processor i, the message is stored as XI!. For conve-
nience, suppose that the messages sent from any processor to any other processor
are received in the order in which they are transmitted; this assumption, called
FIFO (for first in, first out), can be enforced via an appropriate data link control
scheme (see [ll, P1.3.2). Unfortunately, even if we know that the original asyn-
chronous iteration satisfies x(t) E S for all sufficiently large t, we cannot always
conclude that the modified procedure will terminate. This is illustrated by the
following example.

Example. Suppose that each xi is a real number, it = 2, and for i E 11, 21,
Sj = {x E 8’: I fi(x) -xi I <E), for some 0 <E < 1. Let the iteration f be defined
by

fi(X) = f$, fdx) = ;

The original asynchronous iteration converges to x * = (0, 0) from any initial vector
x(O). Therefore, for all sufficiently large t, x(r) belongs to the global termination
set. Let us consider the behavior of the modified algorithm when x(O) = (2, 1.5~).
Because the local termination condition at processor 2 holds at time 0, processor 2
never iterates. Since x(0) E S,, processor 1 executes the non-convergent iteration
x1 := 1.5~~ infinitely often; consequently, termination will not occur.

Hence, the local termination rules do not necessarily ensure the global termination
of the computation in the absence of further communication between the proces-
sors.

We will consider a variety of algorithms that comprehensively address the issue
of termination. There are essentially three aspects to the problem of finite
termination of a convergent distributed asynchronous iterative algorithm with a
vector that is a member of S. These are
(1) finite termination of the algorithm,
(2) termination detection in finite time, and
(3) construction of x E S.
The procedures we will specify can be categorized into two broad approaches
called distributed termination and supewised termination. Protocols with dis-
tributed termination decompose the three issues and algorithms using supervised
termination address them jointly.

S.A. Sauari, D.P. Bertsekas /Parallel Computing 22 (1996) 39-56 43

Another important difference between the two approaches relates to whether or
not they interfere with the execution of the original asynchronous algorithm. In the
distributed approach, the original iteration is modified so that the update xi :=fi(X)
is executed at processor i only when xi @ Si. Once there are no more updates to
be done, a solution x E S is constructed by a separate protocol.

By contrast, in the supervised approach, the algorithm is left intact. Instead, a
supervisory process is used that takes snapshots of the system, collects a potential
solution uector i consisting of a component Xi from each processor i, checks
whether f E S, and if so, terminates the computation. The snapshots and the
construction of the potential solution vector X are transparent to the original
algorithm.

The supervised approach can be implemented in a number of different ways. In
Section 3, we describe three possibilities (and several subvariations), which differ
in the degree of centralization of the supervisory process. In the most centralized
version, the test X E S is conducted at a single special processor who collects the
components ii from the other processors using essentially a polling scheme. This
special processor is distinct from the n processors executing the iteration. In the
other versions, the test X E S is distributed among all the processors, who individu-
ally test the corresponding condition j E Si and ‘vote’ on whether termination is
warranted. The results of the vote are collected by a special processor who acts to
terminate the computation if all votes are positive and to restart the testing process
otherwise. In the second processing scenario, the special processor does not
participate in the iteration, while in the last processing situation, the special
processor is involved in the iteration. We conclude Section 3 by using the
supervised approach to derive protocols for the termination detection of finite,
distributed computations. These termination detection schemes rely upon snap-
shots of the number of messages sent and received at each of the processors.

2. Distributed termination

Distributed termination was introduced in [ll] and also in [2] as a viable
approach to the termination problem for a special class of asynchronous iterations.
The procedure considered in [2] to modify the asynchronous iterative algorithm so
that it terminates in finite time is identical to the ‘natural’ approach specified in
the introduction, except that processor i broadcasts xi to all of the other
processors whenever xi #x$1. For the case considered in [2], x is an element of a
Euclidean space and for each i, the local termination sets S, are

si = (x: II f,(x) -xi II < e}.
For any subset I of the set of processors and any vector 0 E 8’ = ((~9~)~ t, : tii E Xi
for all i E I), let f’~“<x) be defined by

P(x) =
i

8i, iEI
f,(x), i@I’

44 S.A. Sacsari, D. P. Berisekas / Parallel Computing 22 (1996) 39-56

It is established in [2] that for the special case of the problem considered there, if
the original iteration x :=f(x) satisfies an ‘independent convergence property’ in
which any asynchronous version of the iteration x =f’~‘(x> converges for any
choice of I and 0 E 8’, then the modified procedure specified above is guaranteed
to terminate in finite time. Some families of functions that satisfy the independent
convergence property, such as the class of weighted supremum norm contractions,
are identified in [2]. In the approach of [2], termination is detected by using a
standard protocol. However, to guarantee that the ultimately obtained vector x
belongs to the global termination set S, the FIFO assumption on the link
transmissions is needed.

Under Assumptions 1 and 2, we will propose a procedure to modify the
underlying algorithm so that it terminates in finite time and is compatible with the
set of known termination detection protocols (see e.g. [ll and [3-lo].) To follow
the terminology frequently used in the literature on termination detection proto-
cols, a processor is said to be idle if it satisfies its local termination condition;
otherwise it is called active. We presuppose that an idle processor cannot transmit
messages and that it remains idle until a message from another processor is
received. The algorithm has terminated by time t if all processors are idle at time f
and there is no message in transit along any communication link at time t. The
modifications to the algorithm specified below are similar to the ones considered
in the introduction; to avoid the situations in which the earlier modifications result
in no termination, we assume that in addition to sending messages containing the
current value of xi, processor i is able to send a different kind of packet called a
request message and store an on-off request r!ariable, R’, which is initially off. The
asynchronous algorithm is modified in the following way. When processor i
updates xi via the iteration xi =f,(x’>, i sends the new value of xi to its
dependent neighbors if x, #xf, sets xj to the updated value of xi, and sets R’ to
off; if the current xi does not belong to S,, processor i sends a request message to
all processors j # i. If processor i receives a request message, it sets R’ to on, and
if it receives xj from processor j, it stores the updated value as xi. Processor i
iterates at time t E T’ if x’(t) is not a member of Si or if R’ is on at time t.
Processor i is idle when its current x1 belongs to Sj and its current R’ is off;
otherwise it is active. Hence, as desired, idle processors do not iterate. If processor
i is idle and receives xi from processor j, it updates xi and remains idle if and only
if the new xi belongs to Si. Termination has occurred when all processors are idle
and there are no messages or request messages in transit.

We have the following result.

Proposition 1. Under the preceding assumptions, the modified algorithm terminates.
Furthermore, if the communication links that carry x, are FIFO and t is the time at
which termination occurs, then x(t) E S.

Proof. To arrive at a contradiction, suppose that the modified algorithm does not
terminate. Then there is a non-empty subset I of processors that iterate infinitely
often. Hence, there is some processor j E I for which xi is not a member of S,

S.A. Savari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56 45

infinitely often; if this were not the case, there would be no request messages sent
after some time and so all processors eventually become idle and the modified
algorithm terminates. Since .xj does not belong to S, infinitely often, processor j
sends a request message to every other processor infinitely often. Consequently, all
of the processors iterate infinitely often. By our assumptions on the original
asynchronous algorithm, this implies that x’(t) E S, for all i and all r sufficiently
large. This contradicts our earlier conclusion that xi does not belong to Sj
infinitely often. Hence, the modified algorithm terminates at some time t *. If the
communication channels that carry xi are FIFO, then at time t *, the value of xi
stored by all of the dependent neighbors of processor i will be equal to xf(t *).
Since the definition of termination indicates that x’(t *) E S; for all i, the modified
algorithm terminates with x(t *) E S. q

It seems plausible that the modified algorithm will terminate under the weaker
condition that iterating processors send request messages only to their essential
neighbors. The following example demonstrates that this hypothesis can be false.

Example. Suppose that each xi is a scalar and n = 3. Let the iteration f be
defined by

fdx> =xlx2~ f2tX) =x2x3~ f3(x) = (I- +39

where 0 < E < 1. This asynchronous algorithm will converge to x ’ = (0, 0, 0) from
any initial vector x(0). For i E 11, 2, 31, let Si = (X E 8’ : I f((x> -xi I < E). Let us
consider the behavior of the modified algorithm when x(0) = (1, 2, 1) and iterating
processors send request messages only to their essential neighbors. Processor 3 is
initially idle and it will not iterate unless it receives a request message from
processor 2. Processor 2 also initially satisfies its local termination condition; it will
iterate after it receives a request message from processor 1. Note that if processor
2 receives a request message while ~5 = 1, x2 will not change upon the resulting
iteration and hence will not send a request message to processor 3. As a
consequence, processor 3 always remains idle, and processor 2 iterates from time
to time, but it never changes x2. What happens to processor l? Since x,(O) = 1,
processor 1 is initially active, and it executes the nonconvergent iteration X, := 2x,
infinitely often. Hence, in order for an implementation of this algorithm to
terminate, it is necessary for processor 1 to send processor 3 a request message.

The approach of this section requires a broadcast mechanism for the request
messages. In 1141, various broadcasting protocols such as flooding and the shortest
path topology algorithm are studied in detail. Unfortunately, each processor may
initiate a large number of request messages and therefore the broadcasts cause a
potentially excessive communication overhead for the computing system. We
propose the following solution to this practical difficulty. The implementation is
similar to the one discussed so far. Now all requests are numbered. Each processor

46 S.A. Sauari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56

i stores the highest request number ni it has received or generated, where the initial
ni are arbitrary integers. If processor i iterates and finds that the updated vector xi
is not a member of Si, it increments n’ by one, numbers the request with the new
d, and sends the request to its neighbors. If processor j receives a request
numbered n, it discards the request if II Q nj; otherwise, it sets ni := n, sets R’ to
on and relays the request (with the number n unchanged) to its neighbors. The
results of the proposition will still hold for the new implementation. This is
because the iteration of processor i infinitely many times implies that n’ and the
request numbers of the neighbors of processor i will increase to infinity. In fact,
each processor must iterate infinitely often since any processor can be reached
from processor i through a sequence of neighbors; this is enough to establish that
the proposition remains valid.

Finally, we address the issue of constructing x E S. We note that if the
communication links do not necessarily satisfy the FIFO assumption, then for each
i, there is no guarantee that the values of ni stored by processor i and its
dependent neighbors will be consistent upon termination; as a consequence, it is
possible that the algorithm will terminate with a vector x which is not a member of
the global termination set. Hence, we assume that the communication links are
FIFO. When termination is detected using, for example, one of the standard
termination detection protocols, we require a special processor called the coordi-
nator to send a termination message to each processor via a pre-determined
spanning tree. Upon receiving a termination message, each processor sends its
parent a packet containing its value and its identity number. These packets are
propagated through the tree to the coordinator, which can use the spanning tree to
find out how many packets to expect.

Since all the communication links constituting the spanning tree are FIFO, we
can use a different procedure in which the coordinator does not need to know the
number of processors. In this procedure, each processor sends its parent all the
packets it has received and then sends its own packet as soon as it has sent the
packets from its children in the tree. The remaining practical issues are the
selection of a coordinator and the construction of a spanning tree of the proces-
sors, if they are not already provided. Choosing a coordinator is equivalent to the
problem of identifying the leader in an asynchronous network, which is discussed
in [15]. The algorithm in ([l], $8.1, Example 1.3) can be easily generalized to find a
procedure to produce a spanning tree when the coordinator is known.

3. Supervised termination

The approach of the last section has some important shortcomings. In general,
we need the FIFO assumption to guarantee that we will terminate with some
vector x belonging to the global termination set S; in many applications, this
assumption is inconvenient. Recall that in the modified version of the algorithm,
processor i iterates at only those times t E T’ for which either x’(t) does not

S.A. Sauari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56 41

satisfy processor i’s local termination condition or processor i’s on-off request
variable is on. Hence, because there are fewer iterations, the modified version of
the asynchronous iterative algorithm seems likely to take longer than the original
version to enter S; moreover, we can not produce a vector x belonging to S until
after the modified algorithm terminates and termination is detected. Perhaps the
most serious flaw in the approach is the need for Assumption 2, which presupposes
that any asynchronous execution of the algorithm is guaranteed to enter the global
termination set in finite time. There are convergent asynchronous iterative algo-
rithms called partially asynchronous iterative algorithms (see [2]) which are known
to converge under certain bounds on the amount of asynchronism in the comput-
ing system. It is conceivable that for one of these algorithms, the original version of
the algorithm enters the global termination set while the modified version does not
because processors iterate less often in the modified version, and consequently
send their values to their dependent neighbors less frequently. By replacing
Assumption 2 with Assumption 3, we avoid this problem. Furthermore, the
approach we will consider in this section does not suffer from any of the drawbacks
listed above.

The idea in the new approach is that processors execute the (original) algorithm
until they receive notification to terminate. From time to time, a snapshot will be
taken of the system in the form of a potential solution vector, and the resulting
information will be processed by a supervisor or a coordinator, which can subse-
quently determine if the system is ready to terminate the computation. Unlike the
well-known snapshot algorithm of [8] (see e.g. [ll), we do not impose a FIFO
assumption on communication between any two processors. Instead, we require
Assumption 3.

We will consider algorithms under the following three processing situations:
(1) There is a supervisor which communicates directly with all of the processors

and is able to determine if a given vector x E X is in the global termination set.
(2) There is a coordinator which communicates directly with all of the processors,

but this coordinator is unable to determine on its own whether some vector x
is a member of S.

(3) One of the processors involved in the iteration assumes the role of coordinator,
but the processor is not aware of the entire network topology.

Obviously, for a system with a large number of processors, these assumptions vary
from least viable to most practicable. We discuss protocols for all three scenarios
because the guidelines we develop for the second and third processing situations
build on the ideas in the procedures for the previous one. In every case, we assume
that each processor involved in the computation carries out its computations and
its communications with its neighboring processors independently of the termina-
tion protocol, until it receives an order to terminate. In particular, none of the
protocols we will subsequently discuss affect the execution of the underlying
algorithm until the processors obtain a termination directive.

We will conclude this section by converting some of the supervised termination
procedures into termination detection protocols for arbitrary finite, distributed
computations.

48 S.A. Sauari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56

3.1. First processing situation

We consider four protocols for the first processing situation. We first give a
broad overview of the way all of the procedures work, and then we describe the
remaining operations specific to each algorithm. In every procedure, each proces-
sor i participating in the iteration uses local information to ascertain if the system
is involved in a snapshot and also to determine the single instance during a
snapshot at which processor i sends its current value of xi, denoted Ii, to the
supervisor. The supervisor collects these potential solution values and stores them
in a potential solution uector X = (Z,, . . . , X,). When the vector is complete, the
supervisor verifies if X is a member of the global termination set. If this is the case,
the supervisor sends a termination order to each processor and finishes with X as
the solution to the problem. Otherwise, the supervisor discards the potential
solution vector and performs some other tasks to prepare the system for the next
snapshot. Note that the assumption of the existence of a 7 for which
(x,(t,>, x,0,), . . . , x,(t,>) E S whenever t,, . . . , t, 2 i implies that each protocol
will eventually terminate.

The procedures are presented in the order of increasing complexity. The idea is
that as the protocols become more intricate, the supervisor is expected to test
fewer potential solution vectors before terminating with a solution. This suggests
that the more complicated protocols have a larger termination delay; however, in
the case of a large system, the validation of a potential solution vector may require
considerable computational resources and the penalty of an increase in termina-
tion delay may be more than offset by the need for fewer potential solution vector
verifications.

For the first protocol, each processor i maintains a binary flag bj, initially set to
zero, which indicates if the processor may initiate a snapshot. Whenever bi = 0 and
processor i satisfies its local termination condition, i changes bi to one. Further-
more, processor i immediately sends the supervisor its current value Xi =x:. We
assume that if the supervisor processes a potential solution vector and decides that
termination is inappropriate, it subsequently sends each processor a special mes-
sage called a repeat signal. Upon receiving a repeat signal, processor i resets bi to
zero.

The second protocol is very similar to the first one. The only difference is that
the second protocol introduces a delay between the time bi is changed from zero
to one and the time that processor i sends the supervisor its value Xi = xf. We now
assume that each processor i sends the supervisor an initiation message upon
changing bi from zero to one. Furthermore, the supervisor maintains an initiation
buffer, initially empty, that contains at most n initiation messages. When the
supervisor has received an initiation message from each processor, i.e. its initiation
buffer is full, it empties the buffer and sends a special message called a query
message to each processor. Upon receiving a query message, processor i sends the
supervisor a message containing Xi =x: as soon as xi E Si and discards the query
message. We suspect that the second protocol often requires fewer potential
solution vector validations than the first protocol because the transmission of

S.A. SaLlari, D.P. Bertsekas /Parallel Computing 22 (1996) 39-56 49

initiation and query messages introduces a delay that acts like a synchronizer, so
that the vector X seen by the supervisor is closer to being consistent with the
vectors xi stored by the processors during some interval of time.

The last two procedures are very similar and employ slightly different features
from the second protocol. The third and fourth protocols are differentiated from
the second by the rules specifying when processor i should change 6, from one to
zero and when the supervisor should send each processor a query message. The
repeat signals employed by the first two procedures are not needed for the third
and fourth protocols. Instead, in addition to sending messages containing its value
and initiation messages, each processor can also send the supervisor special
cancellation messages notifying that its termination condition is no longer satisfied.
More specifically, whenever processor i has b, = 1 and x’ @ Si, it sends a cancella-
tion message to the supervisor and sets b; = 0. Rather than keeping an initiation
buffer, the supervisor maintains a binary flag W, which indicates if it is waiting for
the reply to a query, and for each i, it keeps a counter ci, which records the
difference between the number of initiation and cancellation messages it has
received from processor i. Initially, W is set to zero, and bi = ci = 0 for all i. When
the supervisor receives an initiation message from processor i, it increments c, by
one. When a cancellation message from processor i arrives at the supervisor, the
supervisor decrements ci by one. Note that ci is not necessarily a binary variable
unless the links that carry initiation and cancellation messages are FIFO; however,
the assumption that there is some t for which x’(t) ES, for all t 2 1 and all i
implies that there is some t * such that for all i, c, = 1 at all times greater than t *.
For the third (fourth) protocol, whenever W = 0 and ci 2 l(c, = 1) for all i, the
supervisor sends a query to each processor and sets W = 1. The supervisor changes
W back to zero whenever it processes a potential solution vector and decides not
to terminate. Intuitively, the third and fourth procedures require fewer potential
solution vector verifications than the second because query messages are sent
when it’s more likely that all of the processors simultaneously satisfy their local
termination condition. The fourth procedure results in a larger termination delay
than the third procedure, but will probably involve few potential solution tests
before time t *.

3.2. Second processing situation

The second processing situation differs from the first one in a few ways. The
supervisor of the first scenario is replaced by a coordinator which can communi-
cate directly with each processor, but is unable to determine on its own if a given
vector x EX satisfies the global termination condition. Therefore, to compensate
for this impediment, we presuppose that the processors in the second processing
situation are more powerful than their counterparts in the first scenario. In
addition to the computation, storage, and interprocessor communication capability
needed to execute the underlying algorithm, the processors also have the means to
take and test a snapshot of the system. Each processor i has the responsibility to
determine if the potential solution vector associated with a snapshot satisfies i’s

50 S.A. Sauari, D.P. Bertsekas /Parallel Computing 22 (1996) 39-N

local termination condition and provide the coordinator with this information. The
role of the coordinator is to collect the results of a snapshot from the processors,
determine and inform the processors if termination is appropriate or inappropri-
ate, and store the solution vector. Except for the first protocol we will consider, the
coordinator also has the function of gathering additional information from the
processors for the purpose of requesting snapshots. In the first protocol, a
processor initiates a snapshot solely on the basis of local information.

Each of the protocols discussed for the first processing situation can be
modified to work for the second computing scenario. The adaptations of the
second, third and fourth protocols of the last subsection maintain the flags bi
introduced earlier; the modification of the first protocol does not. For the
procedures which store b,, processor i continues to use the same rules and
mechanisms as before to update bi and to notify the coordinator about the changes
in the flag. The coordinator uses the same expedients introduced in the last
subsection to decide when to send each processor a query message. In the first
processing situation, a query message to a processor was a request for the
processor to transmit its value as soon as it satisfies its local termination condition;
now, a query message to a processor is a request for the processor to initiate a
snapshot if it is not currently engaged in one.

Furthermore, for each protocol, we assume that each processor i can store a
binary flag qi, which is zero when processor i can initiate a snapshot of the system,
and a potential solution vector I’ consisting of its own potential solution value Xi
and the potential solution values of its essential neighbors; there is no need for the
coordinator to store a potential solution vector before the algorithm has termi-
nated. Initially, for each processor i, qi = 0, Xi = xi(O), and the rest of the potential
solution vector is empty. For the first protocol, processor i initiates a snapshot
when qi = 0 and xi E Si. For the other three protocols, processor i initiates a
snapshot whenever it receives a query message from the coordinator while qi = 0.
For all of the procedures, the execution of a snapshot is identical, except for some
minor variations. If processor i initiates a snapshot, it sets qi = 1, saves Xi =x: as
its own potential solution value as soon as xi E Si and sends a special message
called a test message containing the new value of ii to each of its dependent
neighbors. If processor i receives a test message containing Xj while qi = 0, it sets
qi = 1, discards the current value of Xi, stores Xi in its potential solution vector,
saves Zi =xi as soon as xi E Si and sends a test message containing the new value
of Ei to each of its dependent neighbors. If processor i receives a test message
containing Zj while qi = 1, it stores Xi in its potential solution vector. For the last
three protocols, if processor i is not an initiator of the current snapshot, a query
message subsequently reaches the processor and is ignored if qi = 1 upon arrival.
When Xi is complete, processor i checks if Xi satisfies the local termination
condition, empties the potential solution vector except for Xi, and sends the
coordinator a special message called a token; if the local termination condition is
satisfied, processor i transmits a white token to the coordinator and otherwise
sends a black token. The coordinator maintains a token buffer containing at most
n tokens; initially, the token buffer is empty. When the coordinator’s token buffer

S.A. Sauari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56 51

is full, the coordinator checks if all the tokens are white. If they are, the
coordinator sends a termination order to each processor and awaits the solution
value from each processor; otherwise, it empties the buffer, transmits a repeat
signal to each processor, and for the third and fourth protocols, sets W back to
zero. When a processor obtains a termination order, it terminates with its potential
solution value as its final value and sends a copy of Z, to the coordinator. When
processor i receives a repeat signal, it sets qi to zero and, as we indicated earlier,
for the second protocol it also sets bj to zero. We note that the value of ii stored
in the potential solution vectors of processor i and its essential neighbors are
consistent. Furthermore, we recall that by Assumption 3, there is some t for which
(x,(t,>,..., x,(t,>) E S for all t,, . . . , t, 2 t. Hence, the protocol terminates in finite
time with a vector i belonging to the global termination set.

We suspect that again there is an increase of synchronism going from the first
protocol to the fourth one because the delays introduced by the query generation
in the more complex procedures are likely to result in a decrease in the difference
between the time processor i sets qi to one and the time i sends test messages to
its dependent neighbors. Consequently, as the procedures become increasingly
complicated, they probably have fewer snapshots and a larger termination delay.

3.3. Third processing situation

For the third processing situation, one of the processors participating in the
iteration, say processor j, undertakes the role of coordinator. We presuppose that
information passes between the coordinator and every other processor by means of
a spanning tree rooted at processor j; a synopsis of our approach to selecting a
coordinator and constructing a spanning tree is provided at the end of Section 2.
Furthermore, the processors are more powerful than their analogues in the second
processing situation. In particular, they are now required to store and send their
parents or children in the spanning tree the type of packets that their counterparts
in the second processing scenario transmit to or receive from the coordinator,
respectively. For the protocols we consider, we assume that each non-leaf proces-
sor maintains a token buffer, which is initially empty, and whose size is given by
the number of children it has in the spanning tree.

We adapt the first two protocols specified for the second processing situation to
the third computing scenario. For both protocols, we assume that each processor i
maintains the flag qi and the potential solution vector Xi and uses the rules
itemized in the last subsection to initialize these expedients, change qi from zero
to one, and update Xi. The snapshots differ in two ways from their parallels for the
second processing situation. First, only the coordinator is able to initiate a
snapshot. The other change is an adjustment in the way the coordinator obtains
the results of a snapshot from and sends messages to the processors. Upon storing
a complete potential solution vector, each processor checks if that vector satisfies
the local termination condition; if it does, the processor becomes white and
otherwise it turns black. Each leaf processor that has tested its potential solution
vector sends its parent a token of its color. Except for the coordinator, each

52 S.A. Sauari, D.P. Bertsekas /Parallel Computing 22 (1996) 39-56

non-leaf processor that has tested its potential solution vector and has a full token
buffer sends its parent a white token if it is white and the token buffer contains no
black tokens, and it sends a black token otherwise. Upon sending a token,
processor i empties its potential solution vector except for Xi, discards the tokens
in its token buffer, and loses its color. Since the coordinator is the only processor
to ever initiate a snapshot, processor i #j can view the snapshot to be over, and
hence, reset qi to zero, upon sending its parent a token. When the coordinator has
tested its potential solution vector and has a complete token buffer, it broadcasts a
termination order if it is white and possesses no black tokens; otherwise, it empties
its potential solution vector. As before, we assume that there will eventually be a
snapshot of the system belonging to the global termination set, and hence, both of
the protocols terminate in finite time. Once the processors receive the termination
directive, the procedure specified at the end of the section on distributed termina-
tion is used to construct the solution vector. We give the remaining details specific
to each protocol below.

For the first procedure, the coordinator employs only local information in
deciding whether or not to initiate a snapshot; a snapshot is initiated when qj = 0
and ~j E Sj. The coordinator changes qj back to zero every time it processes a
snapshot and determines that termination is inappropriate.

For the second protocol, aside from keeping the flag qi and a token buffer,
processor i also maintains a binary flag bi and an initiation buffer, initially empty,
which is the same size as its token buffer. If i # j, b, is zero when processor i is
able to send its parent an initiation message; b, is set to zero when there is no
snapshot in progress. When xi E Si, a leaf processor i sends its parent an
initiation message and sets b, = 1. When xi E Si and its initiation buffer is full, a
non-leaf processor i #j sends its parent an initiation message, sets bi = 1, and
empties the initiation buffer. When xj E Sj and its initiation buffer is full, the
coordinator sets qi = bj = 1, initiates a snapshot, and empties its initiation buffer.
When the coordinator has tested its potential solution vector and has a complete
token buffer, it broadcasts a termination order if it is white and holds no black
tokens; otherwise, it sets bj = 0, empties its potential solution vector, and sends its
children a repeat signal. Upon receiving a repeat signal, processor i sets bi = 0 and
propagates the signal to its children, if it has any. Using the same reasoning we
applied to the first two computing scenarios, we again surmise that the additional
complexity of the second protocol relative to the first results in a decrease in the
number of snapshots and an increase in the termination delay.

3.4. Application to a termination detection scheme

For a finite, distributed computation, each processor is in either an actiue state
or an idle state at any time. An active processor can send primary messages, i.e.
messages pertaining to the underlying computation, to its dependent neighbors,
and it may become idle at any time. An idle processor cannot send primary
messages and it may remain idle or turn active upon receiving a primary message.
The computation has terminated if all processors are idle and there are no primary

S.A. Sauari, D.P. Bertsekas /Parallel Computing 22 (19961 39-56 53

messages in transit. We assume that the computation eventually terminates and we
consider the problem of detecting termination. This is a well-known problem,
which has been studied in many sources, e.g. [l] and [3-lo].

A simple way to gather information about the number of undelivered primary
messages in the system is to have each of the processors from time to time send the
supervisor a secondary message, i.e. a report on the number of primary messages it
has recently sent and received. The supervisor can then detect termination when
the counts of the received and sent messages are equal, and in addition, all
processors are idle. Termination detection protocols based on message counting
were first considered in [9] and [lo]. We present and establish the validity of a class
of termination detection schemes that use snapshots to account for the primary
messages that have passed through the system. A snapshot is a time interval during
which every processor participating in the computation sends the supervisor exactly
one secondary message and which ends when the supervisor has received and
processed each of these secondary messages. Our schemes and presentation are
similar to those in ([9], pp. 95-97). In particular, the supervisor in our protocols
plays the same role as the central process in [9]. The procedures in 43.1-03.3
provide specific (and new) implementations of these termination detection schemes.

In every scheme, each processor i participating in the computation updates Pi,
the number of primary messages it has sent, and ZL, the number of primary
messages it has received, between consecutive snapshots. Initially, Pi =L%?~ = 0, and
the appropriate variable is incremented when a primary message is sent or
received. Each processor uses local information to find out if the system is involved
in a snapshot and to select the single moment during a snapshot at which it sends
the supervisor a secondary message consisting of its current counts and resets ~2’~
and ~82’~ to zero. For example, since all processors must be idle in order for
termination to occur, we require that a processor be idle at the instant it sends the
supervisor a secondary message, The supervisor maintains 9 and S?‘, which
estimate the cumulative number of primary messages that have been sent and
received in the system, respectively. Initially, Y=s? = 0, and when a set of
message counts from processor i arrives at the supervisor, 5@ and S? are increased
by Pi and Si, respectively. At the end of a snapshot, the supervisor decides that
the computation has terminated if Sp is equal to s?‘, and if Si is equal to zero for
all processors i. Otherwise, the supervisor performs some other tasks to prepare
the system for the next snapshot, which will take place within a finite time. We will
establish that for this class of schemes, the supervisor will detect termination
within a finite time after it occurs and that it will never incorrectly conclude that
the computation has terminated. Then we will provide the final details characteriz-
ing the individual protocols.

We have the following result.

Proposition 2. If the underlying computation terminates at time t * , then within a
finite time after t *, the supervisor’s record of the cumulative number of primary
messages sent will be equal to its record of the cumulative number of primary

54 S.A. Sauari, D.P. Bertsekas/Parallel Computing 22 (1996) 39-56

messages received, and there will subsequently be a snapshot during which all
processors will report that they haue not received any new primary messages.

Proof. For all i, as processor i sends or receives a primary message, it simultane-
ously tallies the message in Pi or $Yi, respectively, and transmits these message
counts at the next instant it sends the supervisor a secondary message. The time
between the transmission and reception of a secondary message, and the time
between the transmission of successive secondary messages from the same proces-
sor are assumed to be finite. By the end of the second snapshot to be completed
after t *, the supervisor knows of every primary message that was sent and
subsequently received during the computation, and hence, 9 and 59 must be
equal. Furthermore, since the computation has terminated by the end of the first
snapshot that finishes after t *, in the following snapshot, each processor will be
idle and report that it has received no new messages. 0

We next establish that the supervisor never incorrectly decides that the compu-
tation has terminated.

Proposition 3. If at the end of a snapshot, the supervisor finds that Si = 0 for all
processors i and that 9=&S?, then it can conclude that the underlying computation
has terminated.

Proof. For this snapshot, let ti denote the instant at which processor i sends the
supervisor a secondary message. We will show that for all j, processor j will never
receive a primary message after tj. Since processor j is idle at time tj, this will
prove the proposition. A primary message is called a bad message if it arrives at its
destination, say processor j, after time tj. We will demonstrate that there cannot
be any bad messages in the system. To arrive at a contradiction, suppose there are
bad messages in the system and let m be the bad message with the earliest time of
reception, say t,. Assume that m was sent at time t, by processor i to processor j.
There are two cases to consider.
(1) Suppose t, > ti. Then processor i must have received a bad message prior to

t, <t,. This contradicts the assumption that m is the bad message with the
earliest time of reception.

(2) Suppose t, < ti. Let 7, represent the earliest of the times t,. Then either m is
in transit at time S,, or t, E [Ye, ti]. We will show that either scenario is
impossible.
First, we need to introduce some additional notation. For any time t, let
Yk(t> and Sk(t) represent the cumulative number of primary messages that
have been sent and received, respectively, by processor k by time t, let ACk,‘)(t)
symbolize the number of primary messages from processor k to processor I
that are in transit at time t. Clearly,

yk(t) =?‘(I) + xACk.‘)(t).
(k,l)

(2)

S.A. Saoari, D.P. Bertsekas /Parallel Computing 22 (1996) 39-56 55

Since ~8’~ = 0, processor k did not receive any primary messages in the interval
[Ye, rkl. Hence,

A?=Qe(t,) =~‘(9J.
1 I

We also have that

(3)

9= pk(tk) 1 p”(9,), by monotonicity of .P’“(.)

=&‘Z’(Tr,) + ;aik3’,(y,); by (2). (4)
1 (k.1)

Since -‘7=9’, it follows from (3) and (4) that there are no primary messages in
transit at time 9, and that for all k, processor k did not send any messages in
the interval [Ye, tk].

0

To conclude this section, we will explain how to convert the protocols in Section
3.1 to termination detection protocols. Aside from the alterations in the snapshot
described above, there are two additional modifications needed. The first is that
we need to replace the condition ‘processor i satisfies (doesn’t satisfy) its local
termination condition’ with ‘processor i is idle (active)‘. The other change is that
instead of sending the supervisor a message containing Xi, processor i transmits a
secondary message consisting of its current message counts. As in Section 3.1, the
more complicated protocols are likely to generate larger termination delays in
exchange for fewer snapshots. The protocols in Section 3.3 can also be recast into
this framework. We omit the details.

4. Conclusions

The problem of obtaining iteratively a vector satisfying a global termination
condition using local criteria at the processors of an asynchronous distributed
system is surprisingly delicate. We gave two general approaches and several
algorithms that use additional interprocessor communications to ensure that a
vector with the desired property is constructed at one of the processors. An
analytical comparison of these algorithms in terms of communication efficiency
and termination delay appears to be difficult. For many common architectures
such as star networks and broadcast rings, the implementation of these procedures
is very simple. In the distributed approach, the termination protocol affects the
communication delays of the iterative algorithm, possibly also affecting its conver-
gence properties. Generally, for the supervised approach, it would seem that the
communication requirements increase as the termination protocol becomes more
distributed. However, the computation requirements, including memory, to check
the various termination conditions increase as the termination protocol becomes

56 S.A. Sacari, D.P. Bertsekas / Parallel Computing 22 (1996) 39-56

more centralized. The supervised approach can also be used to create protocols foi
the termination detection of arbitrary finite, distributed computations.

References

[I] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods
(Prentice-Hall, NJ, 1989).

[Z] D.P. Bertsekas and J.N. Tsitsiklis, Some aspects of parallel and distributed algorithms - a survey,
Automatica 27 (1) (1991) 3-21.

[3] E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing computations, Inform.
Process. Lett. 11 (1980) l-4.

[4] N. Francez, Distributed termination, ACM Trans. Programming Languages Syst. 2 (1) (Jan. 1980)
42-55.

[5] N. Francez and M. Rodeh, Achieving distributed termination without freezing, IEEE Trans.
Software Eng. SE-8 (May 1982) 287-292.

[6] E.W. Dijkstra, W.H.J. Feijen and A.J.M. van Gasteren, Derivation of a termination algorithm for

distributed computations, Inform. Process. Lett. 16 (1983) 217-219.
[7] R.W. Topor, Termination detection for distributed computations, Inform. Process. Lett. 18 (19841

33-36.

181 K.M. Chandy and L. Lamport, Distributed snapshots: determining global states of distributed
systems, ACM Trans. Comput. Syst. 3 (1985) 63-75.

191 D. Kumar, A class of termination detection algorithms for distributed computations, Proc. Fifth
Con5 Foundations Software Technol. & Theoret. Comput. Sci., New Delhi, India (Dec. 16-18, 1985)
Lecture Notes in Computer Science, 206 (Berlin, Germany, Springer-Verlag) 73-100.

[lo] D. Kumar, Development of a class of distributed termination detection algorithms, IEEE Trans.
Knowledge and Data Eng. 4 (2) (Apr. 1992).

[ll] D.P. Bertsekas and J.N. Tsitsiklis, Convergence rate and termination of asynchronous iterative

algorithms, Proc. 1989 Int. Conf: on Supercomputing, Irakleion, Crete (1989) 461-470.
[12] D. Chazan and W.L. Miranker. Chaotic relaxation, Lin. Algebra and Appl. 2 (1969) 199-222.
(131 G.M. Baudet, Asynchronous iterative methods for multiprocessors, J. ACM 15 (1978) 226-244.
[141 D.P. Bertsekas and R.G. Gallager, Data Networks (Prentice-Hall, NJ, 1987).
[15] R.G. Gallager, P.A. Humblet and P.M. Spira, A distributed algorithm for minimum-weight

spanning trees, ACM Trans. Programming Languages Syst. 5 (1) (Jan. 1983) 66-77.

