
Chapter 5 Solutions

5.1

The Prim-Dijkstra Algorithm Arbitrarily select node e as the initiaJ frag­
ment. Arcs are added in the following order: (d,e), (b,d), (b,c) {tie with (a,b)
is broken arbitrarily}, (a, b), (a, J).

Kruskal's Algorithm Start with each node as a fragment. Arcs are added
in the following order: (a,f), (b,d), (a,b) {tie with (b,c) is broken arbitrarily},
(b,c), (d,e).

The weight of the MST in both cases is 15.

5.2
The Bellman-Ford Algorithm By convention, D~h) =0, for aJI h. Initially
DP) = dli , for all i :# 1. For each successive h ?: 1 we compute D~h+l) =
minj[Djh) + dji), for all i :f 1. The results are summarized in the following
table.

D~ D2 D3 D~ D~ Shortest path arcst• • t t t

1 0 0 0 0 0
2 4 4 4 4 4 (1,2)
3 5 5 5 5 5 (1,3)
4 00 7 7 7 7 (2,4)
5 00 14 13 12 12 (6,5)
6 00 14 10 10 10 (4,6)
7 00 00 16 12 12 (6,7)

tThe arcs on the shortest path tree are computed after running the Bellman­
Ford aJgorithm. For each i:f 1 we include in the shortest path tree one arc U,i)
that minimizes Bellman's equation.

Dijkstra's Algorithm Refer to the algorithm description in the text. Ini­
tially: D1 = 0; D; = du for i :f 1; P = {l}. The state after each iteration is

Next assume A=l and Cl=O.

On the arrival of an idle slot in the downstream direction,
1) Place the frame in the idle slot, setting the busy bit;
2) If there is a waiting frame in the supplementary queue, put it in the vinu::ti queue,

place C2 in counter 1 and set C2 to 0;
3) If there is no waiting frame, set A=O.

On the arrival of a request bit in the upstream direction, increment C2.

Next assume A=O.

On the arrival of an idle slot in the downstream direction, decrement C2.
On the arrival of a request bit in the upstream direction, increment C2.
On the arrival of a frame to be transmitted, put it in the vinual queue, place C2 in
counter 1 and set C2 to O.

shown in the table below. P is not shown but can be inferred from i. Only the
Dj's which are updated at each step are shown.

Iteration i Dl D2 D3 D4 Ds Ds D7 Arc added
initial 0 4 5 00 00 00 00

1 2 5 7 14 00 00 (1,2)
2 3 7 14 14 00 (1,3)
3 4 13 10 00 (2,4)
4 6 12 12 (4,6)
5 5 12 (6,5)
6 7 (6,7)

5.3
Let Pij be the probability that link (i, j) fails during the lifetime of a virtual
circuit. Let PA: be the probability that a path k = (A, i, ... ,j, B) remains intact.
Since links fail independently we have:

We want to find the path k for which PA: is maximized. Equivalently, we can
find the path k for which -In PA: is minimized.

Since the arc weights Pij are small, 1 - Pij is close to 1 and we may use the
approximation In z ::::: z - 1. This gives:

-In PA: ::::: PAi + ... + PjB

Therefore, the most reliable path from A to B is the shortest path using the
weights given in the figure. Applying Dijkstra's algorithm gives the shortest
path tree. We proceed as in problem 5.2.

Iteration DA DB Dc DD DE DF DG Arc added
initial 0 00 0.01 00 0.03 00 00

1 C 00 0.06 0.02 00 00 (A,C)
2 E 00 0.04 0.06 00 (C,E)
3 D 0.1 0.05 0.06 (E,D)
4 F 0.1 0.06 (D,F)
5 G 0.09 (D,G)
6 B (G,B)

The most reliable path from A to B is (A,C,E,D,G,B). The probability
that this path remains intact is

PACEDGB =(0.99)(0.99)(0.98)(0.98)(0.97) =0.913

5.4
Let the weights for arcs AB, BC, and CA be 1, 2, and 2, respectively. Then an
MST is {AB,BC} whereas the shortest path tree rooted at Cis {CA,CB}.

5.5
a) We consider the following network with an initial routing similar to example
1 in 5.2.5. A routing can be completely specified by indicating the link at which

FLOW ON EACH LINK
SHOWN NEXT TO THE LINK

the traffic changes from clockwise to counterclockwise. This link always carries
zero traffic in both directions. For example, the routing in the above diagram
would be called (2,3). With this as the initial routing, the subsequent routings
would be: (4,5), (1,6), (5,6), (1,6)....

b) We proceed as in a) but add 1 to each length.
With an initial routing of (2,3), subsequent routings are: (3,4), (2,3)

Notice that the oscillations have been damped as compared to part a), and a
reasonable routing is always maintained.

With an initial routing of (1,2), subsequent routings are: (4,5), (1,2)....
There are still undesirable oscillations, but the situation is not quite as bad as
in a).

With an initial routing of (1,6), subsequent routings are: (5,6), (1,6).... For
this initial condition, the constant bias factor has had no effect on the oscillatory
behavior.

By symmetry, the remaining three cases are equivalent to the above.

c) Notice that regardless of the choice of Q, node 3 reverses its routing at each
iteration. Therefore, the best that can be hoped for is oscillation between the
two reasonable routings (2,3) and (3,4). In order to reduce oscillations with a

routing of (1,6), node 5 must continue to route counterclockwise. This requires
that:

50' > 0'+4 + (=> Q' > 1+ (/4

In order to reduce oscillations with a routing of (1,2), node 4 must continue to
route counterclockwise. This requires that:

40' + 1 > 20' + 5 + 2f => Q' > 2 + f

By symmetry, the remaining routings result is the same conditions. Therefore,
for values of Q' > 2+(the routing of all nodes except node 3 eventually remains
constant.

d) For this particular example, the averaging changes the link lengths, but
has no effect on the routing decisions. The resulting routings are the same as
in part a).

5.6
(a) Let D i be the shortest distance from node i to node 1 corresponding to
lengths dij . We claim that

Given the definition of Dp, it will suffice to show that

Di S Di,

Indeed consider any node if!. UkNk U {I}, and let Pi be a shortest path from i
to 1 corresponding to lengths dij. We have Dm= dmn + Dn for all arcs (m, n)
of Pi, so by the definition of the sets Nk, we must have dmn S dmn for all arcs
(m, n) of Pi. Therefore, the length of Pi with respect to arc lengths d ij is no
more than its length with respect to arc lengths dij , implying that Di S Di.
Thus we have Di :5 Vi for all i li. UkNk U {I} and D; :5 D? for all i.

Now consider the Bellman-Ford method corresponding to arc lengths dij and
starting from two different initial conditions. The first set of initial conditions is
the standard D? =00 for i f:. 1 and Dr =0, and the corresponding iterates are
denoted Df. The second set of initial conditions is D? as given in the problem
statement and the corresponding iterates are denoted Df. Since

o A ODi :'S: D i S D i , Vi,

we can show by using induction and the equations

Dh+l = min[d" + b~]
I j I} }'

D h+ l - . [d Dh]i - m:m ii + i'
}

that
h • h •Di :::; Di :::; Di , \;/ t, h.

Since Df =D j for h 2 N - 1, it follows that Df = Di for h 2 N - 1, proving
the desired result.
(b) As stated in the hint, when the length of a link (i, i) on the current shortest
path tree increases, the head node i of the link should send an estimated distance
Di = 00 to all nodes m such that (m, i) is a link. These nodes should send
Dm =00 to their upstream neighbors if i is their best neighbor, that is, if link
(m, i) lies on the shortest path tree, etc. Before any of the nodes k that sent
D k =00 to its upstream neighbors recalculates its estimated shortest distance,
it should wait for a sufficient amount of time to receive from its downstream
neighbors n any updated distances Dn = 00 that may have resulted from the
transmission of D i = 00.

5.7
Using the hint, we begin by showing that hi > hi; for all i =f:. 1. Proof by
contradiction. Suppose that there exists some i =f:. 1 for which hi :::; hi•. From

the Bellman-Ford algorithm we have D~h-l) ~ D~h). We define hl = 0 for

completeness. Therefore, DJ~·-l) 2 D~~i;). However, if this held with equality

it would contradict the definition of hi, as the largest h such that DJ~) =f:. Dj~-l).

Therefore, Dj~·-l) > D~~i')' Using this strict inequality in the definition of ii,
d hi) - d h.- l

) + d·· gives d h
.) > d hi.) + d·· From the Bellman-Ford1 -}; J,l' 1 J. J.S·

algorithm, we know that D~hil+l) :::; Di» + di;i' Using this in the previous

expression gives D~h,) > D~hi.+l) which contradicts the definition of hi as the

largest h such that D~h) =f:. D~h-l). Therefore, the supposition that hi :::; hi; is
incorrect. This proves the claim.

The subgraph mentioned in the problem contains N - 1 arcs. To show that
it is a spanning tree, we must show that it connects every node to node i. To
see this label each node i with hi. Since the Bellman-Ford algorithm converges
in at most N - 1 iterations, we have 0 < hi :::; N - 1 for all i ::f 1. Furthermore,
h l = 0 and hi > hi. for all i =f:. 1. Each node i =f:. 1 is connected to a neighbor
with a smaller label. We can trace a path in the subgraph from every node to
node 1, therefore the subgraph must be a spanning tree.

Since the path lengths D~h.) along the subgraph satisfy Bellman's equtation,
the spanning tree is a shortest path spanning tree rooted at node 1.

5.8
Bellman's equation is

Xi = m,in{xj+dj;}, i=2, ... ,N
J

Xl = 0

in the unknown vector x. One solution is the set of shortest distances di from
node 1 to each node i. Consider the subgraph G of all arcs (j, i) which are such
that Di =Dj + dji.

Claim: Every cycle of zero length not containing node 1 belongs to G.
Proof: If (i1, i2), (i 2 , i3),"" (ik, it) is such a zero length cycle, we have

0 < Di 1 + dili2 - Di2

0 < Di2 + di2i3 - Di3

0 < Di" + di"i l - Dil ·

The sum of the right sides is 0, so the right side of each inequality is zero
implying that the cycle belongs to G. This proves the claim.

Let C be the set of nodes that participate in a cycle of zero length not
containing node 1. Let C be the set of nodes i that either belong to C or for
which there is a node j E C and a directed path from j to i in the graph G.
Note that 1 ¢ C. For any 6 ~ 0 let

Xi = Di - 6
Xi = Di

Vi E C
Vi ¢ C.

It is easily verified by substitution that the vector x defined above is a solution
to Bellman's equation.

5.9
Define Sl = {I} and for k = 1,2, ... define

S _ {all nodes i such that either i E Sic_lor all}
Ic - arcs (j, i) have their head node j in SIc-l

Claim: After some index k, Sic equals the entire set of nodes N.
Proof: Let Sic = N - Sic and suppose that Sic is non empty. Take any node

i E Sic- Then by the connectivity assumption, i will have at least one incoming
arc with its head node in Sic. Either all arcs (j, i) have their head node j in
SJe, in which case i E SIc+1 or else there is a node i1 E Sic for which (it, i) is an

arc. In the former case we see that SH1 will be larger than S/;o In the latter
case we repeat the process with i replaced by il. Eventually, we will obtain a
node that belongs to SH1 since otherwise a node in 5/; would be reencountered
thereby closing a directed cycle not containing node 1. This proves that 5H1
is larger than 5/;. Therefore, S/; will be enlarged if it does not equal .N and for
k sufficiently large will equal N. This proves the claim.

Now if m/; is the number of nodes in S/;, renumber the nodes in Sl - So
as 2,3, ... , m1, then the nodes in S2 - Sl as m1 + 1, ... , m2 etc. With this
numbering each arc (i,j) with j ::f: 1 is such that i E S/;1 and j E 5k2 - 5/;1 for
some k1 < k2 . The requirement of the problem is satisfied.

If the nodes are renumbered as indicated above, Bellman's equation can be
written as

D i = ~n{Dj+dji}, i=2, ... ,N
1<'

D 1 = 0

and can be solved by successive substitution, Le., first solve for D2 , then for D3,
etc. This requires at most O(N2) operations.

5.10
(a) Refer to the algorithm statement in the text. Let B be the lower bound on
the arc lengths. Then in step 1, each node i f/. P with

D i < min{DJo} + B
- jfP

can be added to P. To see why this is correct, recall that, at the start of each
iteration, D i for i f/. P is the shortest distance from 1 to i for which all nodes
on the path except i lie in P. The inductive argument which proved Dijkstra's
algorithm required that each node added to P must have a shortest path for
which all but the final node lie in P. This must be true for each node i which
meets the above condition, since any path which included another node not in
P would have a length of at least Di .

(b) Assume that the shortest paths from node 1 to all other nodes have
been found and have lengths D;, j =f:. 1. If link (i, k) increases in length, paths
which do not traverse link k are not affected by this change. Therefore, we can
initialize Dijkstra's algorithm as

P _ {j such that a shortest path from 1 to j}
- does not traverse arc (i, k)

Dj = D;
Dj minlEP[DI + dlj]

and continue with the ordinary algorithm.

for allj E P
for alij f/. P

5.11

(a) We have D l = 0 throughout the algorithm because initially D l = 0, and by
the rules of the algorithm, D1 cannot change.

We prove property (1) by induction on the iteration count. Indeed, initially
(1) holds, since node 1 is the only node j with D j < 00. Suppose that (1) holds
at the start of some iteration at which a node i is removed from V. If i = 1,
which happens only at the first iteration, then at the end of the iteration we
have Dj =ajl for all inward neighbors j of 1, and Dj = 00 for all other j '# 1,
so Dj has the required property. If j '" 1, then Dj < 00 (which is true for all
nodes of V by the rules of the algorithm), and (by the induction hypothesis)
Dj is the length of some walk Pj starting at j, ending at 1, without going twice
through 1. When Di changes as a result of the iteration, Di is set to dij + Dj ,
which is the length of the walk P; consisting of Pj preceded by arc (i,j). Since
i '" 1, Pi does not go twice through 1. This completes the induction proof of
property (1).

To prove property (2), note that for any j, each time j is removed from
V, the condition Di ::; dij + Dj is satisfied for all (i,j) E A by the rules of
the algorithm. Up to the next entrance of j into V, Dj stays constant, while
the labels Di for all i with (i,j) E A cannot increase, thereby preserving the
condition Di ::; dij + D j . .

(b) We first introduce the sets

I = {i IDi < 00 upon termination},

7 ={i Id j =00 upon termination},

and we show that we have Dj E 7 if and only if there is no walk to 1 from j.
Indeed, if i E I, then, since i ¢ V upon termination, it follows from condition
(2) of part (a) that j E I for all (j, i) EA. Therefore, if j E 7, there is no walk
from node j to any node of I (and in particular, node 1). Conversely, if there
is nO'walk from j to 1, it follows from condition (1) of part (a) that we cannot
have D j < 00 upon termination, so j E 7.

We show now that for all j E I, we have dj = min(j,i)E..ddji + D;} upon
termination. Indeed, conditions (1) and (2) of part (a) imply that upon termi­
nation we have, for all i E I,

't/ j such that (j, i) E A

while D i is the length of some walk Pi from i to 1. Fix a node m E I. By
adding this condition over the arcs (j, i) of any walk P from m to 1, we see that
the length of P is no less than Dm. Hence Pm is a shortest walk from m to
1. Furthermore, the equality Dj = dji + Di must hold for all arcs (j, i) on the
shortest walks Pm, mE I, implying that Dj = minU,i)E.A{dji + D;}.
(c) If the algorithm never terminates, some Dj must decrease strictly an infinite
number of times, generating a corresponding sequence of distinct walks Pj as

per condition (1) of part (b). Each of these walks can be decomposed into a
path from j to 1 plus a collection of cycles. Since the number of paths from j to
1 is finite, and the length of the walk Pj is monotonically decreasing, it follows
that Pj eventually must involve a cycle with negative length. By replicating
this cycle a sufficiently large number of times, one can obtain walks from i to 1
with arbitrarily small length.
(d) Clear from the statement of Dijkstra's algorithm.

5.12
(a) We first note that the properties of part (a) of Problem 5.11. If upon
termination we have D t = 00, then the extra test dij +Dj +Uj < d t for entering
V is always passed, so the algorithm generates the same label sequences as
the (many destinations) shortest path algorithm of Problem 5.11. Therefore,
part(b) of Problem 5.11 applies and shows that there is no path from t to 1.

Let Dj be the final value of Dj obtained upon termination and suppose
that D t < 00. Assume, to arrive at a contradiction, that there is a path Pt =
(t, j Ie, j Ie -1 , ... ,h, it, t) that has length L t with L t < D t . For m = 1, ... , k, let
Ljm be the length of the path Pm = Urn, irn-l, ... ,h, ib t).

Let us focus on the node ik following t on the path Pt. We claim that
L jk < Djl<. Indeed, if this were not so, then jJ: must have been removed at
some iteration from V with Djl< satisfying D jk ~ Ljk. If D t is the estimate of t
at the start of that iteration, we would then have

implying that the shortest distance estimate of t would be reduced at that
iteration from D t to dtjk + D jk , which is less than the final estimate D t - a
contradiction.

Next we focus on the node jk-l following jJ: and t on the path Pt. We use
a similar (though not identical) argument to show that Ljl<_l < Djk_l. Indeed,
if this were not so, then ik-l must have been removed at some iteration from
V with Djl<_l satisfying Djk_l ~ Ljk_l. If Djl< and D t are the shortest distance
estimates of jJ: and t at the start of that iteration, we would tben have

and since Ljl< + Ujk ::; L, < D t ::; D t , we would also have

From the above two equations, it follows that the shortest distance estimate of
jk would be reduced at that iteration from D jk to dtjl< + Djl<' which is less than
the final label Djk - a contradiction.

Proceeding similarly, we obtain Lim < Dim for all m = 1, ... , k, and in
particular dill = LiJ < DiJ. Since

and Dt is monotonically nonincreasing throughout the algorithm, we see that
at the first iteration, il will enter V with the label aiJ 1, which cannot be less
than the final estimate DiJ. This is a contradiction; the proof of part (b) is
complete.
(b) The proof is identical to the proof of Problem 5.1l(c).

5.13

Suppose that the sequence number field is finite with maximum equal to ;.\1.
The exceptional circumstances referred to in the problem statement arise when the
sequence number for updates of some node i becomes M within the memory of some
other node, say i, due to a memory or communication error. Then the next time
node i fioods a new update into the network, it will receive M from node j through
the feedback mechanism described at the end of section 5.3.2. The question now is
how node i can convince node i to reduce its stored sequence number so that it can
listen to a new update from node i.

The remedy is for node i, once it detects an error of the type described above,
to issue a special "reset" packet which is fiooded through the network. A node
receiving a reset packet originated at node s' sets its stored sequence number for
node i to zero, and sends the reset packet to all its neighbors except the one from
which the reset packet was received. In this way all nodes connected with node
i will reset their sequence numbers to zero and the wraparound condition will be
corrected.

There are two issues here: first how to avoid indefinite. circulation of reset pack­
ets, and second how to guarantee that reset packets will not interfere with regular
update packets or other reset packets from the same node. A clean way to ensure
this (even if the links can reverse the order of reception of packets) is to add an age
field to a reset packet which makes it "live" for exactly A seconds. The age limit
A should be larger than the known upper bound for the time required for the reset
packet to reach all nodes, so that the reset packet will live long enough to reset the
sequence numbers of all nodes to zero. To avoid confusion node i should not issue
any other update or reset packet for A seconds after issuing a reset packet. Finally,
unlimited circulation of a reset packet, and confusion with other packets from node
i, are avoided by requiring a node j :f:. i not to accept a reset packet or any update
packet issued by node i if node j has received a reset packet from node i which is
still "live." This is so because update packets from node i issued before the reset
packet was issued cannot arrive at another node after the reset packet 's age has
expired under the assumption that an update packet reaches all nodes in time less
than A. ~ote that this protocol could be used to operate fiooding with a relatively
small sequence number field. On the other hand, knowing an upper bound on the
time required for an update packet to reach all nodes is a strong assumption, and
one would like to minimize reliance on it.

5.14

A node is considered adjacent to the directed links for which it is the head node.
Each node i decides upon a value associated with each of its adjacent links. We
wish to find an algorithm which will reliably broadcast these values to each network
node. To accomplish this we augment the SPTA as follows.

In addition to the m~in and port topology tables, let each node i keep similarly
organized main and port information ta&les (1' and I} respectively) which contain
entries for each directed link. The communication rules for these tables are the same
as for the topology tables. When an entry for a non-adjacent link (m, n) changes
in one of node i's port information tables, it updates the corresponding entry in its
main table by setting

F(m, n) = Jl(m}(m, n),

where L(m) is the label for node m which was assiRlled by the main topology table
update algorithm. When the labels L(m) are updated due to a topology change.
each entry in r for a non adjacent link must be updated in this manner.

The value of Ii(m, n) can be easily proven to be correct at each node i by using
the fact that L(m) at node i is the first hop on a shortest hop path from i to m.
\Ne first show that it is correct for nodes i which are 1 hop from m, then 2 hops etc.

5.15

(a) The algorithm can fail in the network shown below.

Link B Link A

The table below shows a sequence of link status changes and message exchanges
which lead the algorithm to fail. These events have been divided into numbered
sections for reference purposes. The notation "(i - i, I !)" is used to indicate that
node i sends a message to node j indicating that link I is down. The entries
in the topology column give the perceived status of link A at nodes 1 through
4 respectively. All links are initially up. We are only interested how the nodes
determine the status of link A; messages concerning link B are not shown.

ITopology I
1 Link A fails.

(2-1, Al) sent and received.
(2-3, A!) send and received. dddd

2 Link B fails.
(1-3, Al) sent and received.
(3-1, A!) sent. dddd

3 Link A is repaired.
(2-1, AT) sent and received. uudu

4 (3-1, Al) from #2 is received.
(1-3, AT) sent and received. duuu

5 Link A fails.
(1-2, Al) sent and received.
(2-1, Al) sent and received. ddud

rn Description

After #5, the algorithm terminates with node 3 having an incorrect status for
link A.

(b) We use the same scenario as in part (a) up to #4. The extra messages sent,
due to the "'including" rule, have no effect on the topology up to this point. The
table below shows a scenario illustrating failure of the algorithm.

Description

4 (1-3, AT) sent and received.
I Topology I

I I (1-2, AT) sent and received.

I II (3-1, AI) from #2 is received. duuu
5 I (3-1, AT) sent and received. i,

(1-2, AI) sent and received.
,

i
(1-3, AI) sent and received. uudu

6 (2-1, AT) sent and received first.
(3-1, AI) sent and received second.
(1-3, AT) sent and received.
(1-2, AT) sent and received. duuu

7 I Same as #5. uudu

Nodes 1 and 3 can oscillate indefinitely concerning their opinion of link A's
status, and the algorithm never terminates. Although node 2 has the correct infor­
mation, unfortunate message timing can stop it from helping the situation. This
failure mode is at least as serious as that in part (a).

5.16

The ARPANET and the other algorithms which use sequence numbers are not
affected. The sequence numbers can be used to sort out the correct message order.
However, SPTA is clearly affected by a change in message order. For example,
suppose that a link goes down and then up. If the adjacent nodes reverse the order
of the two messages, the algorithm will fail to arrive at the correct topology.

5.11

(a) In the algorithm that follows, each node has two possible states, "connected"
or "'not connected". In addition, each node marks each of its neighbors with one
of the following: "unknown", "not in tree", "incoming", or "outgoing". There are
two kinds of messages used: "attach" and "ack". The following are the procedures
executed at each node i.

Initially at each node i
state = "not connected"
mark(j) = "unknown" for each neighbor j

Start (Node 1 only)
state = "connected"
send "attach" to each neighbor

Receive "attach" from j
if state = "not connected"

then state = "connected"
mark(j) = "outgoing"
if node i has neighbors other than ;"

then send "attach" to each neighbor except ;"
else send "ack" to j

end
else mark(j) = "not in tree"

if mark(k) =F "unknown" for each neighbor k
then send "ack" to the neighbor k such that mark(k) = "outgoing" t

end

Receive "ack" from j
mark(j) = "incoming"
if mark(k) =F "unknown" for each neighbor k

then send "ack" to the neighbor k such that mark(k) = "outgoing"t
end

tNode 1 just terminates the algorithm; it has no "outgoing" neighbor

The above algorithm sends one "attach" and one "ack" message on each span­
ning tree link, and sends two "attach" messages (one in each direction) on each link
not in the tree. Therefore, it sends a total of 2A messages.

(b) We use the spanning tree constructed in part (a) to simplify counting the
nodes. Each node marks its "incoming" neighbors with either "heard from" or
"not heard from". There are two messages used: "count nodes", and a messages
containing a single number j : 0 < j < N. The following is the procedure for each
node i.

Initialization
mark(j) = "not heard from" for all "incoming" neighbors
children = 0

Start (node 1 only)
send "count nodes" to all "incoming" neighbors

Receive "count nodes" from "outgoing" neighbor j
if there are any "incoming" neighbors

then send "count nodes" on all incoming links
else send "1" to i

end

Receive n from "incoming" neighbor j
children = children + n

mark(j) = "heard from"
if mark(k) = "heard from" for all "incoming" neighbors k

then send (children + 1) to the "outgoing" neighbort
end

·~ode 1 has no outgoing neighbor. When it reaches this step, N = children ~ 1.

(c) The worst case for both algorithms is a linear network. Messages must prop­
agate from node 1 to the end of the tree and then back again. This gives an upper
bound of 2(N - l)T for both algorithms.

5.18

In the algorithm, for j ~ P, D; is the minimum 1 hop distance from j to a
member of P, and a; is the member of P for which this minimum is obtained.

To show that this implements the Prim-Dijkstra algorithm, we must show that
the graph defined by G = (P, T) is a fragment of an MST, and that this fragment
is enlarged at each iteration by the addition of a minimum weight outgoing arc.
Then, by Proposition 1 in section 2.2, G will eventually be an MST.

Assume that P contains k nodes, that a; is the closest member of P to j, and
that D; = W;Gi for j f!t P. Then step 1 chooses the minimum weight outgoing arc,
and step 2 reestablishes the above assumptions about a; and D; for the new set P.
The hypothesis is clearly true for k = 1 and by induction is true for all k.

Each iteration of steps 1 and 2 requires a number of operations proportional
to the number of nodes i : i f!t P. The algorithm terminates in N - 1 iterations.
Therefore, O(N2) operations are required.

5.19

Choose nl' nl' n2 as shown below

no is 3-connected with every other
node

n1 is 2-connected with every other
node

n2 is 1-connected with every other
node

The network is not 4 - connected as shown below. (Removal of nodes no. nl' and n2 leaves
node n3 disconnected from the others.) The maximum k for which the network is k ­
connected is k = 3.

5.20

Modification of Kleitrnan's algorithm:

1st Step:

Choose a ncxie no and let leo be the maximum number k for which no is k - connected to all
other nodes. Set k' =leo. If leo =1 tenninate, else delete no and its adjacent arcs.

(m+l)st Step:

Choose a node 11m and let lcm be the maximum number k for which 11m is k - connected to
all other nodes. Set k' := min{k', lcm + m}. If lcm $ 1 terminate, else delete 11m and its
adjacent arcs and go to the (m + 2)nd step.

Claim: At termination the desired maximum number is k'.

Proof: The network cannot be kit - connected with k" > k' because the construction of k'
is such that Kleitman's test of k" - connectedness for the sequence of nodes no. nl, ... ,
would fail. Also the algorithm will eventually terminate, and we will have lcm $ k' - m for
every m. It follows that Kleitman's test of k' - connectivity is passed

Application of the modified algorithm to the graph of Problem 5.19 works as
follows:

no

k
O

= 3, k'= 3

k2 = 2, k'= 3

k., = 2, k' =3

ks = 1, k'=3

5.21

The sequence of generated spanning trees is shown below:

Initial MST

After 2 iterations

After 4 iterations

5.22

After 1 iteration

After 3 iterations

(a) Suppose every i to j walk contains an arc with weight greater or equal to aij. Consider
an MST and the (unique) walk from i to j on the MST. If this walk does not consist of just
arc (i,j), then replace an arc of this walk with weight greater or equal to aij with arc (i,j),
thereby obtaining an MST.

Conversely suppose to obtain a contradiction, that (ij) belongs to an MST and that there
exists a walk W from i to j with all arcs having weight smaller than aij. We remove (ij)
from the MST obtaining two subtrees Ti and TLcontaining i andj, respectively. The walk
W must contain an arc that connects a node of Ti to a node of Tj. Adding that arc to the
two subtrees Ti and Tj creates a spanning tree with smaller weight than that of the original,
which is a contradiction.

(b) Walks from i to j that use nodes I through k+1 are of two types: 1) walks that use only

nodes 1 through k or 2) walks that go from i to k+1 using nodes 1 through k and then from
k+1 to j using nodes 1 through k. The minimum critical weight of walks of type 1) is xil,
while the critical weight over walks of type 2) is max{Xi(k+l)k,x(k+l)jk}. The
characterization of xijk given in the exercise follows.

5.23

(a) Let T* be the given tree that spans the given subset of nodes and has minimal total
weight W*. Let T be a minimum weight spanning tree of I(G) and let W be its total weight.
Finally, let R be a minimum weight tour of I(G) and let Y be its total weight

By deleting any arc ofR we obtain a spanning tree R' ofl(G), which must have weight no
more than the weight Y of R (since arc weights are nonnegative), and no less than the
weight W ofT [since T is a minimum weight spanning tree ofI(G)]. Therefore

We will also show that

Y~2W*

so that from (1) and (2), the desired result

W~2W*

follows.

(1)

(2)

By selecting an arbitrary node r of T* as root we can view T* as a tree rooted at r. Consider
a depth-f'Irst traversal ofT* as illustrated in the following figure.

Traversal Order: 3,2,1,5,4,6,9,8, 7, 14, 11, 12, 13,10,3

This traversal corresponds to a tour R' ofl(G). Each arc (ij) of the tour has length which

is less than or equal to the length of the unique path of1'* that connects i and j. The lengths
of all these paths add up to 2W*, as can be seen from the figure. Therefore, the length Y'
of the tour is no more than 2W*. Since Y is the weight of the minimum weight tour, we
have Y $ Y', so it follows that Y $ 2W*.

(b) Consider the following grpah G with the weights shown next to the arcs, and let
{1,2,3} be the subset of nodes that must be spanned by T*.

The graph leG) is shown below together with the corresponding arc weights.

We have T * = {(1,4), (2,4), (3,4)} with total weight W* 7' 3. On the other hand T =
{(1,2), (2,3)} and W = 4, so that

W* <W<2W*

(c) Construct the minimum spanning tree T of leG). For each arc (ij) of T, consider a
shortest path of G that starts at i and ends at j. Consider the subgraph G' of G that consists
of the arcs of all the shortest paths corresponding to all the arcs of T. The sum of the
weights of the arcs of G' is no more than the total weight W of T (it could be less because
some arc of G' may be contained in more than one shortest path). Clearly G' is connected.
Delete as many arcs as necessary to make it a tree. This tree, call it T, spans the required
nodes and has total weight that is less or equal to W and therefore also less or equal to
2W*. Thus, the broadcasting algorithm that uses T' comes within a factor of 2 of being
optimal.

5.24

See the hint.

5.25

If Xi is the flow carried by link i (i = 1,2,3), the corresponding path lengths are C/(Cc

"i)2. At an optimum xl and x3 must be equal since if, for example, xl > x3 we will have that
the length of x I is larger than the length of path 1 is larger than that of path 3 which
contradicts the shortest path optimality condition.

Let x be the common value of Xl and x3 at the optimum. Then x2 =r - 2x and the solution
of the problem follows the lines of the example of Section 5.5. We argue that, because~
> C, the only two possibilities are:

1) x2 = °and x = r/2, which will occur for

C/(C - r/2)2 S 1/C2

2) x2 > 0, and x = (r - x2){l >°in which case x2 and x are detennined using the condition

5.26

(a) We have at x*

Therefore x* satisfies the shortest path condition and is optimal.

5.27

a) If the cost function is D(x) where x is the path flow vector, the first derivatives become

aIXx) =L aqj(x) .

ax ("") axp 1,) P

A shortest path for a given OD pair is a path with minimal frrst derivative over all paths of
the OD pair. The frrst derivatives of the reduced cost l)I'(x), i.e. the cost function obtained
after the flows of the shortest paths are expressed in terms of the flows of the nonshortest
paths in the cost function D(x), are given by

dri(X) dD(x) dD(x)
= ---ax dX dX

P P Pw

for all pEPw

where Pw is the path from Pw that is shortest (has smallest dD/dX-rJ. The second derivatives
are

"(Prf(x) = a2D(x) + a
2
D(x) _2 a

2
D(x)

(a~/ (a~)2 (a~)2 a~a~w

The iteration for nonshortest paths becomes

The optimality condition is the same as in Section 5.5 (cf. eq. (5.59».

b) In the special case where

IXx) =~ D..(f 00' F..)£.J IJ IJ IJ
(~j)

we have for a path p of priority class k

2iJ D..
+ I J)

2@F..)
IJ

iJ2n..
+ 2Pk _ 1)

aF ..aF..
IJ IJ

aD;:x) ~ aDij aqj
--= £.J(p-+-)

dxp (i,j) on path pk iJF .. iJFij
1)

iD(x) ~ 2 iDij
--2- = £.J (Pk -
(dx

p
) (i,j) m path p (iJF ..)2

IJ

and from here everything is the same as in part a).

5.28

The key in this problem is to calculate the 1st derivatives of the cost with respect to the
portion xtof R broadcast on anyone spanning tree t E T. We have:

aD = ~ D:.,
':I .£.J IJ
oXt (i,j) on t

as well as the constraint ktET Xl = R. By the same argument used in Section 5.5, this leads
to the following necessary and sufficient optimality condition (in addition to the ones of
Section 5.5 for ordinary paths)

Xt* > 0 => t is shortest in that it has minimum ;ij)Et Dij' over all trees in T.

(This means that at an optimum only the trees with minimum ~ij)e t Dij' can cany a portion
of R. Those that do must, of course, have equal L(i.j)Et Dij' .) Given these facts, the gradient
projection method generalizes easily. The iteration for flows on trees is the same as that for
paths with the derivative L(i,j)Et Dij' for a tree t used in place of the 1st derivative length of a
path flow. Similarly the case of multiple root nodes is a straightforward extension. The
optimality conditions and gradient projection iterations for different roots are decoupled.

5.29

The length of a path is

aD
-= ~ (D.. + C.•_. J D..).

~ 1J ww J1
(i.j) on p

The optimality condition is

Xp* > 0 => P is shortest over all paths of the same OD pair with respect to length
oflink (ij) = Di/ + cww' Di-

The extension of the gradient projection method is straightforward using the expression for
path lengths given above.

5.30

For simplicity we drop the subscripts. Let Q(F) =a + bF + 0.5 cF2 be the quadratic
function where a, b, c are its unknown coefficients. Denote D(F) = F/(e - F). The
derivatives are

D'(F) = C/(C - F)2, D"(F) = 2C/(C - F)3

and

Q'(F) = b + cF, Q"(F) = c.

We determine a, b, c via the condition that D and its derivatives should equal Q and its
corresponding derivatives at F = pC. This leads to the equations

c = 2/(1 -p)3C2

b + peC = 1/0 - p)2C

a + pbC + 0.5 p2cC212 = p/(l - p),

which can be easily solved to give the values of a, b, c. D(F) is then replaced by the
function

D(F)

which equals D(F) for F S pC and equals Q(F) otherwise.

The last assertion of the problem follows from the fact that the necessary condition for the
F··* to minimizeIJ

LD..(F..)
(
..) IJ IJ
I,J

(i.e. the shortest path condition of Section 5.5) is also a sufficient condition for minimizing

~ D..(F..).£..J IJ IJ
(i,j)

when Fij S Pijqj for all (i,j).

5.31

(a) For every x and y we have (by Taylor's theorem)

1

JV'f(x + ty)'ydt = f(x + y) - f(x)

o

so by applying this formula for y = <Xl\x we obtain

1

f(x + <Xl\x) = f(x) + Vf(x)'(aAx) + f [Vf(x + taAx) - Vf(x)]'(a~x)dt
o

1

S f(x) + aVf(x)'~x + aJIVf(x + taAx) - Vf(x)II~1 dt
o

a
2
L 2

S f(x) + aVf(x)'~x + -2-18x1 (1)

which is the desired relation.

(b) Minimizing both sides of (1) over ae [0, 1] we obtain

2

min f(x + ~x) ~ f(x) + min {aVf(x)'Llx + a
2

L lilxl
2

} (2)
ae[O,I] ae[O,I]

Since Vf(x)'Llx < 0 the minimum on the right is attained for some a' > O. The
unconstrained minimum is attained at the scalar a* for which the derivative Vf(x)'ilx +
a*L ILlxF is zero or

Vf(x)'Llx
a* =-

L lilxl
2

If a* 2= 1 or Vf(x)'ilx + L lilxj2 < 0 the minimum on the right side of (2) is attained
for a'=I, and we obtain

. L 2 Vf(x) 'Llx
nun f(x + aLlx) :5 f(x) + Vf(x)'Llx + -2 ILlxl :5 Vf(x) + 2 (3)

ae[O,I]

where the last inequality follows from the relation Vf(x)'LlX + L lilxF < 0,

If a* < 1 then the minimum over [0, 1] is attained for a ' = a* and substitution in (2)
yields

. ti() ti() 1Vf(x)'Llx1
2

IVf(x)'LlXI
2

L ILlxl
2

mm x + ailx:5 x - +-------
ae[O,I] L ILlxl2 L 2 1Llxl4 2

IVf(x),Ll ,2 lV'fi(x),Llxl2= f(x) - x:5 f(x) ~_

2L lilxl
2

2LR
2

c) If {xk } has a limit point x*, then since (f(xk)} is monotonically decreasing, we must
have f(xk)~f(x*) which implies 8k~. Therefore Vf(xk)'ilx40, and the result follows as
stated in the hint

5.32

(a) Applying the necessary condition for the projection problem with x = xk we obtain

k _k k _k k 2
s Vf(x r(x - x):::;; - Ix - x I

Using the conclusion of part b) of Problem 5.31 we obtain

(1)

k Ie... k It
min f(x + S~x) :::; f(x) + 0

ae[O.I]

where

k _k k
~x = x - x

and where, [using also (1)],

otherwise

Therefore if {xk} has a limit point x* we must have f(xk)~f(x*) and~. Therefore

-k
{x }~ x* ,

and by taking limit in the condition

k k _k _k
[x - sVf(x) - x]' (x - x) :::; 0

for all xe X we obtain Vf(x*)'(x - x*) ~ 0 for all xe X.

(b) Using (1) and part a) of Problem 5.31 we obtain (for ex=!)

f(l+I) Sf(xk
) + Vf(xk)'~xk + L I~kr

2
k2

:::; fCl) _ I~ I + L l~kl2
S 2

k ! L k2=f(x) - Cs- - '2) I~x I

If s < 2/L then the cost is reduced by at least a positive constant multiple of l~kl2 at the kth
iteration. The result follows similarly as for part a).

5.33

Consider the change of variables y =T-lx or x =Ty. Then the problem can be written in
terms of the y variables as

min f(Ty)
subject to Ty ~ 0

or equivalently, because T is diagonal with positive diagonal elements,

min h(y)
subject to y ~ 0

The second iteration in the problem is the gradient projection iteration for the second
problem above. We have

ah(y) =.jb; af(x)

ay. 1 aXi1

Substituting this expression in the second iteration and multiplying throughout by --Jbi we
obtain the first iteration of the problem. So the diagonally scaled version of the gradient
projection iteration is the same as the ordinary version applied to a problem involving the
diagonally scaled variables Yi'

5.34

(a) Since an arrival comes every't time units, the system starts empty, and each arrival
stays for H time units, we see that just after time H-'t there will be a total of HI't arrivals.
The first departure occurs at time H and at the same time an arrival occurs, which maintains
the total number Nl(t) + N2(t) in the system at the level H!'t. Similarly, this number is
maintained for all t

(b) We first calculate Nl* and N2*. The optimality condition is that the partial cost
derivatives with respect to N1 and N2 are equal, so we have

By combining this equation with the constraint

(1)

we obtain

N* - "12 H
1-

11
+

12
t'

Define for all t

N(t) = N1(t) + N2(t), (2)

* 12N l(t) =--N(t),
1 1+12

* 11N 2(t) =--N(t),
1 1+12

and note that for t > H we have

The relation

is equivalent to

1INJ(t) S "(2(N(t)-NJ(t»

or
12 *N 1(t) S N(t) = N 1(t),

1 1+12

where the last equation follows by using Eq. (3). Thus, we have

and similarly

*12N2(t) S 11Nl(t)~ N 2(t) S N 2(t).

(3)

(4)

(5)

(6)

(7)

We will now prove by induction that all k = 0,1,..., and all t E [kT,(k+I)T), we
have

We claim that these relations are true for k = O. Indeed we have

*N 1(0) = N 1(0) = N 2(0) = 0,

(8)

(9)

so by the rules of the algorithm, all YCs arriving in the interval [O,T] will be assigned to
link 1. Since the number of these YCs is at most Tit, we have

* T
N1(t)~N1(0)+t'

By using Eq. (1), we see that

T 11+12 T *
t=-;Y;-H N1 '

so Eq. (10) yields

*N 1(t)-N1(0) 11+11 T
----::....-----=-- <---

* - 1 H'N 1 2

(10)

thus verifying Eq. (8) for k=O. Eq. (9) holds for k=O since N2*(t) = O.

We will now show that Eqs. (8) and (9) hold for the typical k, assuming they hold
for all preceding k.

We assume without loss of generality that 'Yl N 1(kT) ~ ')'2N2(kT) or equivalently
by Eq. (6),

N1(kT) ~ N1 *(kT). (11)

Then by the rules of the algorithm, all ves arriving in the interval [kT, (k+ I)T) will be
assigned to link 1. Since the number of these VC's is at most TIt, we have

(12)

By using Eq. (1), we see that

T = 11+11 T N*1
't 12 H '

so Eq. (12) yields

*N 1(t)-N 1(kT) 11+~ T
-~-=---- <---

* - 1 H'N 1 2

proving Eq. (8) for the typical k.

In view of Eq. (11), we also have

as well as

N 2(t) ~ N 2(kT), 'V t E [kT,(k+ l)T).

(13)

(15)

(14)

Therefore we have
* ...N2(T) - N2 (kT) ~ N2(t)-N2(kT), 'V t E [kT,(k+l)T)

and Eq. (9) holds in view of the induction hypothesis. Thus the induction proof of Eqs.
(8) and (9) is complete.

From Eqs. (8) and (9), since Nl *(t) = Nl *, N2*(t) = N2* for t > H, we have for
allt>H

...
N 1(t)-N 1 1 1 +12T
---=--~< -... - 1 H'

N 1 2
...

N2(t) - N 2 < 1 1 + 12 T
N; - 11 H'

Since Nl(t) - Nl* =N2 =N2(t), from Eq, (14) we obtain

or equivalently

...
NT N 2(t) 1 1+12 T---"'----'''-- < -... - 1 H'N 2 1

Combining this relation with Eq. (15), we obtain

and we similarly prove the remaining relation

5.35

To make the protocol workable it is essential to number sequentially the exploratory
packets. (This is needed, for example, in order to avoid confusion between transmitter and
receiver regarding two distinct VC setup requests. There are also other reasons for this as
will be seen shortly.) There should be a separate sequence number for each origin ­
destination (00) pair, and it will be assumed that the sequence number field is so large that
wraparound never occurs in the absence of memory or transmission errors.

Indefinite circulation can be avoided if each node relays a received exploratory packet only
to neghbor nodes not yet visited by the packet (i.e., the nodes that are not stamped on the

packet). This rule guarantees that the exploratory packet will travel on all possible routes
from origin to destination that contain no loops. Thus the destination will receive one copy
of the exploratory packet for each distinct route that was up (roughly) at the time the
exploratory packet was being flooded through the network. This gives the greatest choice
of routes to the receiver, but creates a problem with excessive number of packets being
communicated.

To limit circulation of exploratory packets a number of schemes is possible provided each
node stores the largest sequence number received for every OD pair. One possibility is to
flood the exploratory packet to all neighbors (except the one from which the packet was
received) only once - the first time the packet is received. Another possibility is to check the
number of nodes the exploratory packet has visited and to relay the packet only if either it
has a larger sequence number than the number of the packet latest flooded for the same OD
pair, or if it has visited fewer nodes than the previous packet with the same sequence
number. This last scheme guarantees that an exploratory packet will be received via a route
with minimal number of nodes.

There is a problem if the receiver's response to a VC request never reaches the transmitter
because of link or node failures along the chosen route. This can be handled by the
transmitter using a time out, and transmitting a new exploratory packet for the same VC
carrying, however, a new sequence number. Note that the transmitter should have ultimate
responsibility for accepting or rejecting a VC connection, and the receiver is passive in this
regard.

Finally if a node can crash, and not remember the sequence numbers last used, a scheme
such as the one of Section 5.3.2 can be used.

5.36

(a) For small values of rw the first derivative length of a path is almost equal to D'(O) times
the number of links of the path. Therefore a path that does not have minimum number of
links cannot be shortest and therefore cannot carry flow at the optimum.

(b) Consider the single OD pair network shown below:

r

Each link has cost function D(F) = F + O.5F2. Then, by applying the shortest path
condition, it is seen that for r $ 1 the optimal routing is to send all flow on the one-link
path, but for r > 1 the optimal routing is to send (l + 2r)/3 on the one-link path and (r - 1)/3
on the two-link path.

5.37

The origin of each OD pair w sends a message carrying the value of rw along the shortest
path for the current iteration. Each link (i,j) accumulates the shortest path link flow

F..
IJ

and sends it together with FijI D\j and D"ij to all origins. All origins can then calculate the
stepsize cx* of (5.69) and change the path flows Xp according to the iteration

x := x +a*(x - x),p p p p

where

Xp =rw if p is the shortest path and xp =0 otherwise.

5.38

(a) The average round trip delays on paths 1 and 2 corresponding to x are TI(x) and T2(x).
These are used to estimate the average number of unacknowledged packets on paths 1 and
2 according to

The actual average number on the two paths are

Therefore if the routing method used equalizes the ratios

N.
1

-
N.

1

the relation of part (a) must hold.

(b) We assume with no loss of generality

Xl + X2 =X 1 + X 2 =r

Therefore, by the hypothesis of part (b), we must have

=>
- -

T1(X) > T} (x) and T2(x) < T2(x).

From the relation of part (a) we have

- - --
X 1 X 2 Tl (X) T2 (x) X 2
-=--->-
Xl Xz T

l
(X) T2(x) Xz

Therefore xl> Xl and, since xl + Xz = Xl + Xz ' we must have x 2 < Xz .

(c) Tlle vectors X, ~ , and xlie on the same line of the 2-dimensional pl~e, and ~ lies between
X and x. We now argue that a c,gnvex function that has a lower value at x than at X must also
have a lower value at xthan at X

5.39

See the references cited.

5.40

(a) Let Dt be the correct shortest distince to 1 from each node i.

Claim 1: Eventually, Di = Dt for all nodes i.

Proof: Assume that Di = Di* for all nodes i that have a k hop shortest path to node 1.
Consider a node j that has a k+1 hop shortest path to node 1 of the form (j,i,...,I). This
node will receive Di* + dij from i and therefore will have Dj =Dj*. The assumption is
clearly true for k = 0, and by induction it is true for all k

Claim 2: A fmite time after claim 1 is satisfied, node 1 receives an ACK from each of its
neighbors.

Proof: When claim 1 is satisfied, the set of arcs connecting each node i * 1 with its
predecessor forms a directed shortest path spanning tree rooted at node 1. (For a proof of
this, see the discussion in the text following Bellman's equation.) Consider a leaf node j on
the tree. Each of its neighbors must send an ACK in response to its last distance
measurement. Therefore, j sends an ACK to its predecessor. By induction on the depth of
the tree, node 1 eventually receives an ACK from each neighbor for which it is the
predecessor. Node 1 clearly receives ACK's from its other neighbors as well.

(b) The main advantage of this algorithm over the one in Section 5.2.4 is that node 1 is
notified of termination, and hence knows when its estimates are correct The main
disadvantage is that this algorithm requires a specific initial condition at each node, making
it difficult to restart when a distance measurement or link status changes.

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

