
April 2005 Report LIDS 2646

Rollout Algorithms for Constrained

Dynamic Programming1

by

Dimitri P. Bertsekas2

Abstract

The rollout algorithm is a suboptimal control method for deterministic and stochastic problems that can

be solved by dynamic programming. In this short note, we derive an extension of the rollout algorithm that

applies to constrained deterministic dynamic programming problems, and relies on a suboptimal policy, called

base heuristic. Under suitable assumptions, we show that if the base heuristic produces a feasible solution,

the rollout algorithm also produces a feasible solution, whose cost is no worse than the cost corresponding

to the base heuristic.

1 Supported by NSF Grant ECS-0218328.
2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.

1



Introduction

1. INTRODUCTION

We consider a deterministic optimal control problem involving the system

xk+1 = fk(xk, uk), k = 0, . . . , N − 1,

where xk and uk are the state and control at time k, respectively, taking values in some sets, which may

depend on k, and fk is some function. The initial state is given and is denoted by x0. Each control uk must

be chosen from a finite constraint set Uk(xk) that depends on the current state xk. A sequence of the form

T = (x0, u0, x1, u1, . . . , uN−1, xN ),

where

xk+1 = fk(xk, uk), uk ∈ Uk(xk), k = 0, 1, . . . , N − 1,

is referred to as a trajectory . In our terminology, a trajectory is complete in the sense that it starts at the

given initial state x0, and ends at some state xN after N stages. We will also refer to partial trajectories,

which are subsets of complete trajectories, involving fewer than N stages and consisting of stage-contiguous

states and controls.

The cost of the trajectory T = (x0, u0, x1, u1, . . . , uN−1, xN ) is

V (T ) = gN (xN ) +

N−1∑
k=0

gk(xk, uk), (1.1)

where gk, k = 0, 1, . . . , N , are given functions. The problem is to find a trajectory T that minimizes V (T )

subject to the constraint

T ∈ C, (1.2)

where C is a given set of trajectories.

An optimal solution of this problem can be found by an extension of the dynamic programming al-

gorithm (DP for short), but the associated computation can be overwhelming. It is much greater that the

computation for the corresponding unconstrained problem where the constraint T ∈ C is absent. This is

true even in the special case where C is specified in terms of a finite number of constraint functions that are

time-additive, i.e., T ∈ C if

gmN (xN ) +

N−1∑
k=0

gmk (xk, uk) ≤ bm, m = 1, . . . ,M, (1.3)

where gmk , k = 0, 1, . . . , N , and bm, m = 1, . . . ,M , are given functions and scalars, respectively. The literature

contains several proposals for suboptimal solution of the problem for the case where the constraints are of

2



Introduction

the form (1.3). Most of these proposals are cast in the context of the constrained and multiobjective shortest

path problems; see e.g., Jaffe [Jaf84], Martins [Mar84], Guerriero and Musmanno [GuM01], and Stewart and

White [StW91], who also survey earlier work.

In this paper, we propose a suboptimal approach, which may be viewed as an extension of the rollout

algorithm, a method that has been used with considerable success for general unconstrained DP problems

(including stochastic and minimax); see Tesauro and Galperin [TeG96], Bertsekas and Tsitsiklis [Ber96],

Bertsekas, Tsitsiklis, and Wu [BTW97], Bertsekas [Ber97], Christodouleas [Chr97], Bertsekas and Castanon

[BeC99], Secomandi [Sec00], [Sec01], [Sec03], Ferris and Voelker [FeV02], [FeV04], McGovern, Moss, and

Barto [MMB02], Savagaonkar, Givan, and Chong [SGC02], Bertsimas and Popescu [BeP03], Guerriero and

Mancini [GuM03], Tu and Pattipati [TuP03], Wu, Chong, and Givan [WCG03], Chang, Givan, and Chong

[CGC04], Meloni, Pacciarelli, and Pranzo [MPP04], Tu, Pham, Luo, Pattipati, and Willett [TPL04], and

Yan, Diaconis, Rusmevichientong, and Van Roy [YDR05]. These works discuss a broad variety of applications

and case studies, and generally report positive computational experience.

We note that it is possible to reformulate the constrained problem of this paper into a format that is

suitable for application of the rollout algorithm for discrete deterministic problems, given in [BTW97] and

[Ber01]. In particular, we may redefine the state at stage k to be the partial trajectory

yk = (x0, u0, x1, . . . , uk−1, xk),

which evolves according to

yk+1 =
(
yk, uk, fk(xk, uk)

)
.

The problem then becomes to find a control sequence that minimizes a suitable terminal cost function F (yN )

subject to the constraint yN ∈ C. This is a format to which the rollout approach of [BTW97] applies, and

yields algorithms and results that are quite similar to the ones obtained in this paper. However, this line

of development, while conceptually valuable, is complicated and unintuitive. It also does not lend itself to

discussion and development of variants of the main algorithm, so in this paper, we have chosen a more direct

extension of the rollout approach that is specially adapted to constrained problems.

The rollout algorithm has some additional special properties when applied to discrete unconstrained

deterministic problems, as discussed in Bertsekas, Tsitsiklis, and Wu [BTW97]; see also the author’s textbook

[Ber01], which provides an extensive discussion. The rollout algorithm makes use of a suboptimal algorithm,

called base heuristic. If the base heuristic is a DP policy, i.e., it generates state/control sequences via

feedback functions µk, k = 0, 1, . . . , N − 1, so that at any state xk, it applies the control µk(xk), then the

rollout algorithm can be viewed as a policy improvement step of the policy iteration method. Based on

generic results for policy iteration, it then follows that the rollout algorithm’s cost is no worse than the one

of the base heuristic. This cost improvement property has been extended in [BTW97] to base heuristics that

3



Introduction

are not DP policies, but rather satisfy an assumption called sequential improvement , which will be discussed

shortly within the constrained context of this paper.

Our extension of the rollout algorithm to discrete deterministic problems with the constraints (1.2),

also uses a base heuristic, which has the property that given any state xk at stage k, it produces a partial

trajectory

H(xk) = (xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

that starts at xk and satisfies

xi+1 = fi(xi, ui), ui ∈ Ui(xi), i = k, . . . , N − 1.

The cost corresponding to the partial trajectory H(xk) is denoted by J̃(xk):

J̃(xk) = gN (xN ) +
N−1∑
i=k

gi(xi, ui).

Thus, given a partial trajectory that starts at the initial state x0 and ends at a state xk, the base

heuristic can be used to complete this trajectory by concatenating it with the partial trajectory H(xk).

The trajectory thus obtained is not guaranteed to be feasible (i.e., it may not belong to C), but we assume

throughout that the state/control trajectory generated by the base heuristic starting from the given initial

state x0 is feasible, i.e.,

H(x0) ∈ C.

Finding a base heuristic with this property may not be easy, but we do not address this question in this

paper. It appears, however, that for many problems of interest, there are natural base heuristics that satisfy

this feasibility requirement; this is true in particular when C is specified by Eq. (1.3) with only one constraint

function (M = 1), in which case a feasible base heuristic can be obtained (if at all possible) by ordinary

(unconstrained) DP, using as cost function either the constraint function or an appropriate weighted sum of

the cost and constraint functions.

The rollout algorithm that we propose for constrained DP problems is not much more complicated

or computationally demanding than the one for unconstrained DP problems (as long as checking feasibility

of a trajectory T , i.e., T ∈ C, is not computationally demanding). We will show under an appropriate

extension of the notion of sequential improvement, that the rollout algorithm produces a feasible solution,

whose cost is no worse than the cost corresponding to the base heuristic. We note, however, that it does not

appear possible to relate our rollout algorithm to concepts of policy iteration, and in fact we are not aware

of an analog of the policy iteration method for constrained DP problems, even when the constraint set C

is specified by inequality constraints with constraint functions that are additive over time, as in Eq. (1.3).

Also, our rollout algorithm makes essential use of the deterministic character of the problem, and does not

admit a straightforward extension to stochastic or minimax problems.

4



The Rollout Algorithm

In the next section, we introduce our algorithm, and in Section 3 we establish its cost improvement

properties. In Section 4, we discuss some variants and extensions of the algorithm.

2. THE ROLLOUT ALGORITHM

The rollout algorithm proposed in this paper starts at stage 0 and sequentially proceeds to the last stage.

At stage k, it maintains a partial trajectory

Tk = (x0, u0, x1, . . . , uk−1, xk) (2.1)

that starts at the given initial state x0, and is such that

xi+1 = fi(xi, ui), ui ∈ Ui(xi), i = 0, 1, . . . , k − 1,

where x0 = x0. The algorithm starts with the partial trajectory T0 that consists of just the initial state x0.

For each k = 0, 1, . . . , N − 1, and given the current partial trajectory Tk, it forms for each control

uk ∈ Uk(xk), a (complete) trajectory T ck (uk) by concatenating:

(1) The current partial trajectory Tk.

(2) The control uk and the next state xk+1 = fk(xk, uk).

(3) The partial trajectory H(xk+1) generated by the base heuristic starting from xk+1.

Then, it forms the subset Uk(xk) of controls uk for which T ck (uk) is feasible, i.e., T ck (uk) ∈ C. The algorithm

then selects from Uk(xk) a control uk that minimizes over uk ∈ Uk(xk)†

gk(xk, uk) + J̃
(
fk(xk, uk)

)
.

It then forms the partial trajectory Tk+1 by adding (uk, xk+1) to Tk, where

xk+1 = fk(xk, uk).

For a more compact definition of the rollout algorithm, let us use the union symbol ∪ to denote the

concatenation of two or more partial trajectories. With this notation, we have

T ck (uk) = Tk ∪ (uk) ∪H
(
fk(xk, uk)

)
, (2.2)

† This is the only point in the paper where we use finiteness of Uk(xk) for all xk, and by extension

finiteness of Uk(xk). It guarantees that the minimum over Uk(xk) is well-defined. We may replace the

finiteness assumption with the assumption that the minimum of gk(xk, uk)+ J̃
(
fk(xk, uk)

)
over uk ∈ Uk(xk)

is attained by some uk.

5



The Rollout Algorithm

...

...

x0 x1 x2 xk

xk+1 xN-1 xN

...

...

...

xk-1

...

uk-1u1u0

uk
uk+1 uN-1Tk

Stage k

R(xk+1)

Tk(uk)c

H

Figure 2.1. Illustration of the rollout algorithm. At stage k, and given the current partial

trajectory Tk that starts at x0 and ends at xk, it considers all possible next states xk+1 =

fk(xk, uk), uk ∈ Uk(xk), and runs the base heuristic starting at xk+1. It then finds a control

uk ∈ Uk(xk) such that the corresponding trajectory

T c
k (uk) = Tk ∪ (uk) ∪H(xk+1),

where

xk+1 = fk(xk, uk),

is feasible and has minimum cost, and extends Tk by adding to it (uk, xk+1).

Uk(xk) =
{
uk | uk ∈ Uk(xk), T ck (uk) ∈ C

}
. (2.3)

The rollout algorithm selects at stage k

uk ∈ arg min
uk∈Uk(xk)

[
gk(xk, uk) + J̃

(
fk(xk, uk)

)]
, (2.4)

and extends the current partial trajectory by setting

Tk+1 = Tk ∪ (uk, xk+1), (2.5)

where

xk+1 = fk(xk, uk). (2.6)

Figure 2.1 provides an illustration of the algorithm.

It is worth noting the similarity of this rollout algorithm with the unconstrained version given in

[BTW97] and [Ber01]: the constraint set C enters only in Eq. (2.3), and if Uk(xk) is replaced by Uk(xk) in

Eq. (2.4), one obtains the rollout algorithm for unconstrained DP problems.

6



The Rollout Algorithm

Note that it is possible that there is no control uk ∈ Uk(xk) that satisfies the constraint T ck (uk) ∈ C

[i.e., the set Uk(xk) is empty], in which case the algorithm breaks down. We will show, however, that this

cannot happen under some conditions that we now introduce.

Definition 2.1: The base heuristic is called sequentially consistent if whenever it generates a partial

trajectory

(xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

starting from state xk, it also generates the partial trajectory

(xk+1, uk+1, xk+2, uk+2, . . . , uN−1, xN ),

starting from state xk+1.

Thus, a base heuristic is sequentially consistent if, when started at intermediate states of a partial

trajectory that it generates, it produces the same subsequent controls and states. If we denote by µk(xk)

the control applied by the base heuristic when at state xk, then the sequence of control functions π =

{µ0, µ1, . . . , µN−1} can be viewed as a policy. The cost-to-go of this policy starting at state xk, call it

Jπk (xk), and the cost J̃(xk) produced by the base heuristic starting from xk need not be equal. However,

they are equal when the heuristic is sequentially consistent, i.e.,

Jπk (xk) = J̃(xk), ∀ xk, k,

because in this case, π generates the same partial trajectory as the base heuristic, when starting from the

same state. It follows that, for a sequentially consistent base heuristic, we have

gk
(
xk, µk(xk)

)
+ J̃

(
fk
(
xk, µk(xk)

)
= J̃(xk), ∀ xk, k. (2.7)

Note that base heuristics that are of the “greedy” type tend to be sequentially consistent, as explained in

[Ber01], Section 6.4. The next definition provides an extension of the notion of sequential consistency.

7



The Rollout Algorithm

Definition 2.2: The base heuristic is called sequentially improving if for every xk, the partial

trajectory

H(xk) = (xk, uk, xk+1, uk+1, . . . , uN−1, xN ),

has the following properties:

(1)

gk(xk, uk) + J̃(xk+1) ≤ J̃(xk). (2.8)

(2) If for some partial trajectory of the form (x0, u0, x1, . . . , uk−1) we have

(x0, u0, x1, . . . , xk−1, uk−1) ∪H(xk) ∈ C, where xk = fk−1(xk−1, uk−1),

then

(x0, u0, x1, . . . , uk−1, xk, uk) ∪H(xk+1) ∈ C, where xk+1 = fk(xk, uk).

Note that if the base heuristic is sequentially consistent, it is also sequentially improving [cf. Eqs. (2.7)

and (2.8)]. For another case where the base heuristic is sequentially improving, let the constraint set C

consist of all trajectories T = (x0, u0, x1, u1, . . . , uN−1, xN ) such that

gmN (xN ) +

N−1∑
k=0

gmk (xk, uk) ≤ bm, m = 1, . . . ,M,

[cf. Eq. (1.3)]. Let C̃m(xk) be the value of the mth constraint function corresponding to the partial trajectory

H(xk) = (xk, uk, xk+1, uk+1, . . . , uN−1, xN ), generated by the base heuristic starting from xk, i.e.,

C̃m(xk) = gmN (xN ) +

N−1∑
i=k

gmi (xi, ui), m = 1, . . . ,M.

Then, it can be seen that the base heuristic is sequentially improving if in addition to Eq. (2.8), the partial

trajectory H(xk) satisfies

gmk (xk, uk) + C̃m(xk+1) ≤ C̃m(xk), m = 1, . . . ,M. (2.9)

The reason is that if a trajectory of the form

(x0, u0, x1, . . . , uk−1, xk) ∪H(xk)

8



Main Results

belongs to C, then we have

k−1∑
i=0

gmi (xi, ui) + C̃m(xk) ≤ bm, m = 1, . . . ,M,

and from Eq. (2.9), it follows that

k−1∑
i=0

gmi (xi, ui) + gmk (xk, uk) + C̃m(xk+1) ≤ bm, m = 1, . . . ,M.

This implies that the trajectory

(x0, u0, x1, . . . , uk−1, xk, uk, xk+1) ∪H(xk+1)

belongs to C, thereby verifying property (2) of the definition of sequential improvement.

3. MAIN RESULTS

The essence of our main result is contained in the following proposition. To state compactly the result,

consider the partial trajectory

Tk = (x0, u0, x1, . . . , uk−1, xk)

maintained by the rollout algorithm after k stages, the set of trajectories{
T ck (uk) | uk ∈ Uk(xk)

}
that are feasible [cf. Eqs. (2.2) and (2.3)], and the trajectory T

c
k within this set that corresponds to the

control uk chosen by the rollout algorithm, i.e.,

T
c
k = T ck (uk) = Tk ∪ (uk) ∪H(xk+1), (3.1)

where

xk+1 = fk(xk, uk).

Proposition 3.1: Assume that the base heuristic is sequentially improving. Then for each k, the

set Uk(xk) is nonempty, and

V
(
H(x0)

)
≥ V (T

c
0) ≥ V (T

c
1) ≥ · · · ≥ V (T

c
N−1) ≥ V (T

c
N ),

where the trajectories T
c
k are given by Eq. (3.1) for all k.

9



Main Results

Proof: Let the trajectory generated by the base heuristic starting from x0 have the form

H(x0) = (x0, u′0, x
′
1, u
′
1, . . . , u

′
N−1, x

′
N ),

and note that since H(x0) ∈ C by assumption, we have u′0 ∈ U0(x0). Thus, the set U0(x0) is nonempty.

Also, we have

V
(
H(x0)

)
= J̃(x0) ≥ g0(x0, u′0) + J̃

(
f0(x0, u′0)

)
,

where the inequality follows by the sequential improvement assumption [cf. Eq. (2.8)]. Since

u0 ∈ arg min
u0∈U0(x0)

[
g0(x0, u0) + J̃

(
f0(x0, u0)

)]
,

it follows by combining the preceding two relations and the definition of T
c
0 [cf. Eq. (3.1)] that

V
(
H(x0)

)
≥ g0(x0, u0) + J̃(x1) = V (T

c
0),

while T
c
0 is feasible by the definition of U0(x0).

The preceding argument can be repeated for the next stage, by replacing x0 with x1, and H(x0) with

T
c
0. In particular, let T

c
0 have the form

T
c
0 = (x0, u0, x1, u′1, x

′
1, u
′
2, . . . , u

′
N−1, x

′
N ).

Since T
c
0 is feasible as noted earlier, we have u′1 ∈ U1(x1), so that U1(x1) is nonempty. Also, we have

V
(
T
c
0

)
= g0(x0, u0) + J̃(x1) ≥ g0(x0, u0) + g1(x1, u′1) + J̃

(
f1(x1, u′1)

)
,

where the inequality follows by the sequential improvement assumption. Since

u1 ∈ arg min
u1∈U1(x1)

[
g1(x1, u1) + J̃

(
f1(x1, u1)

)]
,

it follows by combining the preceding two relations and the definition of T
c
1 that

V (T
c
0) ≥ g0(x0, u0) + g1(x1, u1) + J̃(x2) = V (T

c
1),

while T
c
1 is feasible by the definition of U1(x1).

Similarly, the argument can be successively repeated for every k, to verify that Uk(xk) is nonempty

and that V (T
c
k−1) ≥ V (T

c
k) for all k. Q.E.D.

Proposition 3.1 implies that the rollout algorithm generates at each stage k a feasible trajectory that is

no worse than its predecessor in terms of cost. Since the starting trajectory is H(x0) and the final trajectory

is

T
c
N = (x0, u0, x1, . . . , uN−1, xN ),

10



Variants and Extensions of the Rollout Algorithm

we have the following.

Proposition 3.2: If the base heuristic is sequentially improving, then the rollout algorithm pro-

duces a trajectory (x0, u0, x1, . . . , uN−1, xN ) that is feasible and has cost that is no larger than the

cost of the trajectory generated by the base heuristic starting from x0.

4. VARIANTS AND EXTENSIONS OF THE ROLLOUT ALGORITHM

We will now discuss some variations and extensions of the rollout algorithm of Section 2.

Rollout Without the Sequential Improvement Assumption

Let us consider the case where the sequential improvement assumption is not satisfied. Then, even if the

base heuristic generates a feasible trajectory starting from the initial state x0, it may happen that given

the partial trajectory Tk, the set of controls Uk(xk) that corresponds to feasible trajectories T ck (uk) [cf. Eq.

(2.3)] is empty, in which case the rollout algorithm cannot extend the trajectory Tk further. To bypass this

difficulty, we propose a modification of the algorithm, called fortified rollout algorithm, which is an extension

of an algorithm given in [BTW97] for the case of an unconstrained DP problem (see also [Ber01], Section

6.4).

The fortified rollout algorithm, in addition to the partial trajectory

Tk = (x0, u0, x1, . . . , uk−1, xk),

maintains a (complete) trajectory T , which is feasible and agrees with Tk up to state xk, i.e., T has the form

T = (x0, u0, x1, . . . , uk−1, xk, uk, xk+1, . . . , uN−1, xN ),

for some uk, xk+1, . . . , uN−1, xN such that xi+1 = fi(ui, xi) for i = k, . . . , N − 1, with xk = xk. Initially, T0

consists of the initial state x0, and T is the trajectory H(x0), generated by the base heuristic starting from

x0. At stage k, the algorithm forms the subset Ũk(xk) of controls uk ∈ Uk(xk) such that T ck (uk) ∈ C and

k−1∑
i=0

gi(xi, ui) + gk(xk, uk) + J̃
(
fk(xk, uk)

)
≤ V (T ).

11



Variants and Extensions of the Rollout Algorithm

There are two cases to consider:

(1) The set Ũk(xk) is nonempty. Then, the algorithm selects from Ũk(xk) a control uk that minimizes over

uk ∈ Ũk(xk)

gk(xk, uk) + J̃
(
fk(xk, uk)

)
.

It then forms the partial trajectory

Tk+1 = Tk ∪ (uk, xk+1),

where xk+1 = fk(xk, uk), and replaces T with the trajectory

Tk ∪ (uk) ∪H(xk+1).

(2) The set Ũk(xk) is empty. Then, the algorithm forms the partial trajectory Tk+1 by concatenating Tk

by the control/state pair (uk, xk+1) subsequent to xk in T , and leaves T unchanged.

It can be seen with a little thought that the fortified rollout algorithm will follow the initial trajectory

T , the one generated by the base heuristic starting from x0, up to the point where it will discover a new

feasible trajectory with smaller cost to replace T . Similarly, the new trajectory T may be subsequently

replaced by another feasible trajectory with smaller cost, etc. Note that if the base heuristic is sequentially

improving, the fortified rollout algorithm generates the same trajectory as the (nonfortified) rollout algorithm

given earlier. However, it can be verified, by modifying the proof of Props. 3.1 and 3.2, that even when the

base heuristic is not sequentially improving, the fortified rollout algorithm will generate a trajectory that is

feasible and has cost that is no worse than the cost of the trajectory generated by the base heuristic starting

from x0.

Extension for Time-Additive Constraints

In our formulation, we have assumed that the partial trajectories R
(
fk(xk, uk)

)
generated by the base

heuristic [cf. Eq. (2.2)] do not depend on the preceding states and controls

x0, u0, . . . , uk−1, xk, uk.

On the other hand such dependence may be desirable to enhance the possibility that the trajectories

T ck (uk) = (x0, u0, . . . , uk−1, xk) ∪ (uk) ∪H(xk+1)

satisfy the constraint T ck (uk) ∈ C.

12



Variants and Extensions of the Rollout Algorithm

For example, consider the case where C is specified by the time-additive constraints

gmN (xN ) +

N−1∑
k=0

gmk (xk, uk) ≤ bm, m = 1, . . . ,M, (4.1)

[cf. Eq. (1.3)], representing restrictions on M resources. Then, it is natural for the base heuristic to take

into account the amounts of resources already expended. One way to do this is by augmenting the state xk

to include the quantities

ymk =

k−1∑
i=0

gmi (xi, ui), m = 1, . . . ,M, k = 1, . . . , N − 2,

ym0 = 0, ymN = gmN
(
fN−1(xN−1, uN−1)

)
+

N−1∑
i=0

gmi (xi, ui).

In other words, we may reformulate the state of the system to be (xk, y1k, . . . , y
M
k ), and to evolve according

to the new system equation

xk+1 = fk(xk, uk), k = 0, . . . , N − 1,

ymk+1 = ymk + gmk (xk, uk), m = 1, . . . ,M, k = 0, . . . , N − 2,

ym0 = 0, ymN = ymN−1 + gmN
(
fN−1(xN−1, uN−1)

)
+ gmN−1(xN−1, uN−1).

The time-additive constraints (4.1) are then reformulated as ymN ≤ bm, m = 1, . . . ,M . The rollout algorithm

of Section 2, when used in conjunction with this reformulated problem, allows for base heuristics whose

generated trajectories depend not only on xk but also on y1k, . . . , y
M
k , and brings the analysis of Section 3 to

bear.

Tree-Based Rollout Algorithm

It is possible to improve the performance of the rollout algorithm at the expense of maintaining more than

one partial trajectory. In particular, instead of the partial trajectory Tk of Eq. (2.1), we can maintain a tree

of partial trajectories that start at x0. These trajectories need not be of equal length, i.e., they need not

have the same number of stages. At each step of the algorithm, we select a single partial trajectory from

this tree. Let this partial trajectory have k stages and denote it by Tk. If xk is the terminal state of Tk, we

extend Tk by possibly more than one state subsequent to xk, similar to the rollout algorithm of Section 2.

This is done as follows: given xk, form the sets T ck (uk) and Uk(xk) of Eqs. (2.2) and (2.3), and select

a subset Ûk(xk) of controls uk ∈ Uk(xk) for which the quantity

gk(xk, uk) + J̃
(
fk(xk, uk)

)
(4.2)

13



References

is “small” according to some threshold criterion. The subset of controls uk ∈ Ûk(xk) and the corresponding

states xk+1 = fk(xk, uk) are then added to the tree of trajectories mantained by the rollout algorithm. The

algorithm terminates when all the trajectories of the tree it maintains are complete. Thus, the end result of

the algorithm is a tree of (complete) trajectories that are feasible and start at the given initial state x0. A

trajectory from this tree that has minimum cost is then selected.

Note that as long as the set Ûk(xk) contains a control that minimizes the expression (4.2) over Uk(xk),

the cost improvement property of Section 3 still holds. However, the tree-based algorithm may have im-

proved performance, essentially because it examines more alternative trajectories. Note also that there is

considerable freedom for selecting the subset Ûk(xk), the size of which determines the computational cost

of the algorithm.

We finally mention a drawback of the tree-based algorithm: it is suitable for off-line computation,

but it cannot be applied in an on-line context, where the rollout control selection is made after the current

state becomes known as the system evolves in real-time. By contrast, the rollout algorithm of Section 2 is

well-suited for on-line applications.

5. REFERENCES

[BeC99] Bertsekas, D. P., and Castanon, D. A., 1999. “Rollout Algorithms for Stochastic Scheduling Prob-

lems,” Heuristics, Vol. 5, pp. 89-108.

[BeP03] Bertsimas, D., and Popescu, I., 2003. “Revenue Management in a Dynamic Network Environ-

ment,”Transportation Science, Vol. 37, pp. 257-277.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Scientific, Bel-

mont, MA.

[Ber97] Bertsekas, D. P., 1997. “Differential Training of Rollout Policies,” Proc. of the 35th Allerton Con-

ference on Communication, Control, and Computing, Allerton Park, Ill.

[Ber01] Bertsekas, D. P., 2001. Dynamic Programming and Optimal Control, 2nd Edition, Athena Scientific,

Belmont, MA.

[CGC04] Chang, H. S., Givan, R. L., and Chong, E. K. P., 2004. “Parallel Rollout for Online Solution of

Partially Observable Markov Decision Processes,” Discrete Event Dynamic Systems, Vol. 14, pp. 309-341.

[Chr97] Christodouleas, J. D., 1997. “Solution Methods for Multiprocessor Network Scheduling Problems

with Application to Railroad Operations,” Ph.D. Thesis, Operations Research Center, Massachusetts Insti-

14



References

tute of Technology.

[FeV02] Ferris, M. C., and Voelker, M. M., 2002. “Neuro-Dynamic Programming for Radiation Treatment

Planning,” Numerical Analysis Group Research Report NA-02/06, Oxford University Computing Laboratory,

Oxford University.

[FeV04] Ferris, M. C., and Voelker, M. M., 2004. “Fractionation in Radiation Treatment Planning,” Mathe-

matical Programming B, Vol. 102, pp. 387-413.

[GuM01] Guerriero, F., and Musmanno, R., 2001. “Label Correcting Methods to Solve Multicriteria Shortest

Path Problems,” J. Optimization Theory Appl., Vol. 111, pp. 589-613.

[GuM03] Guerriero, F., and Mancini, M., 2003. “A Cooperative Parallel Rollout Algorithm for the Sequential

Ordering Problem,” Parallel Computing, Vol. 29, pp. 663-677.

[Jaf84] Jaffe, J. M., 1984. “Algorithms for Finding Paths with Multiple Constraints,” Networks, Vol. 14, pp.

95-116.

[MMB02] McGovern, A., Moss, E., and Barto, A., 2002. “Building a Basic Building Block Scheduler Using

Reinforcement Learning and Rollouts,” Machine Learning, Vol. 49, pp. 141-160.

[Mar84] Martins, E. Q. V., 1984. “On a Multicriteria Shortest Path Problem,” European J. of Operational

Research, Vol. 16, pp. 236-245.

[MPP04] Meloni, C., Pacciarelli, D., and Pranzo, M., 2004. “A Rollout Metaheuristic for Job Shop Scheduling

Problems,” Annals of Operations Research, Vol. 131, pp. 215-235.

[SGC02] Savagaonkar, U., Givan, R., and Chong, E. K. P., 2002. “Sampling Techniques for Zero-Sum,

Discounted Markov Games,” in Proc. 40th Allerton Conference on Communication, Control and Computing,

Monticello, Ill.

[Sec00] Secomandi, N., 2000. “Comparing Neuro-Dynamic Programming Algorithms for the Vehicle Routing

Problem with Stochastic Demands,” Computers and Operations Research, Vol. 27, pp. 1201-1225.

[Sec01] Secomandi, N., 2001. “A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands,”

Operations Research, Vol. 49, pp. 796-802.

[Sec03] Secomandi, N., 2003. “Analysis of a Rollout Approach to Sequencing Problems with Stochastic

Routing Applications,” J. of Heuristics, Vol. 9, pp. 321-352.

[StW91] Stewart, B. S., and White, C. C., 1991. “Multiobjective A∗,” J. ACM, Vol. 38, pp. 775-814.

[TPL04] Tu, F., Pham, D., Luo, J., Pattipati, K. R., and Willett, P., 2004. “Decision Feedback with Rollout

for Multiuser Detection in Synchronous CDMA,” IEE Proceedings-Communications, Vol. 151,pp. 383-386.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using Monte Carlo Search,”

presented at the 1996 Neural Information Processing Systems Conference, Denver, CO; also in M. Mozer et

15



References

al. (eds.), Advances in Neural Information Processing Systems 9, MIT Press (1997).

[TuP03] Tu, F., and Pattipati, K. R., 2003. “Rollout Strategies for Sequential Fault Diagnosis,” IEEE Trans.

on Systems, Man and Cybernetics, Part A, pp. 86-99.

[WCG03] Wu, G., Chong, E. K. P., and Givan, R. L., 2003. “Congestion Control Using Policy Rollout,”

Proc. 2nd IEEE CDC, Maui, Hawaii, pp. 4825-4830.

[YDR05] Yan, X., Diaconis, P., Rusmevichientong, P., and Van Roy, B., 2005. “Solitaire: Man Versus

Machine,” Advances in Neural Information Processing Systems, Vol. 17, to appear.

16


