
RELAXATION METHODS FOR MINIMUM COST ORDINARY AND
GENERALIZED NETWORK FLOW PROBLEMS

DIMITRI P. BERTSEKAS and PAUL TSENG
Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received May 1985; revision received September 1986; accepted June 1987)

We propose a new class of algorithms for linear cost network flow problems with and without gains. These algorithms
are based on iterative improvement of a dual cost and operate in a manner that is reminiscent of coordinate ascent and
Gauss-Seidel relaxation methods. We compare our coded implementations of these methods with mature state-of-the-
art primal simplex and primal-dual codes, and find them to be several times faster on standard benchmark problems,
and faster by an order of magnitude on large, randomly generated problems. Our experiments indicate that the speedup

factor increases with problem dimension.

where Kij, lij and Cij are given scalars. We refer to the
scalar Kij as the gain of arc (i,j). Our main focus is in
the ordinary network case in which Kij = 1 for all
(i, j) E ~ We will also treat in parallel the gain
network case, where Kij can differ from unity. We
assume throughout that there exists at least one feasi-
ble solution to (MCF). For simplicity, we also assume
that at most one arc connects any pair of nodes, so
that the arc (i, j) has unambiguous meaning. This
restriction can be easily removed, and indeed, our
computer codes allow for multiple arcs between nodes.
Finally, we assume for simplicity that Kij > 0 for all
(i,j) E ~ Our algorithm can be extended for the case
where Kij ~ 0 for some (i, j) E ~ but the correspon-
ding algorithmic description becomes complicated.

We formulate a dual problem to (MCF). We asso-
ciate a Lagrange multiplier Pi (referred to as the price
of node i) with the ith conservation of flow constraint
(1). Denoting by land P the vectors with elementsk,
(i,j) E os¥' and Pi, i E f, respectively, we can write the
corresponding Lagrangian function,

L(J, p) = L aijh
(i.j)e

I n this paper, we are concerned with solving algo-
rithmically both the classical linear minimum cost

flow problem (also known as the transshipment prob-
lem) and its generalized version, which involves a
network with gains. This problem, together with its
various special cases (assignment, transportation,
shortest-path, max-flow), arises very often in practice.
It is probably the most frequently solved problem in
optimization, and is discussed in numerous texts on
linear and network programming (see, for example,
Ford and Fulkerson 1962; Minieka 1978; Kennington
and Helgason 1980; Papadimitriou and Steiglitz 1982;
and Rockafellar 1984). In this introductory section,
we formulate the problem and its dual, and provide a
conceptual overview of the methods for its solution.

Consider a directed graph with set of nodes .If" and
set of arcs ~ Each arc (i, j) has associated with it a
scalar aij referred to as the cost of (i, j). We denote by
h theflow of the arc (i, j) and consider the following

problem.

Problem MCF

Minimize L a;j£
(;J)E.!¥'

~ Jim)
(i,m)eJl"

(1)

(3)(2)

subject to

L KmJmi -L hm = 0,
m m

(m.i)~ (i,m)E.#

for all i E AI" (conservation of flow)

4j :5: £ :5: Cij,

for all (i,j) E ~ (capacity constraint)

+ L pi(L KmJmi-

Subject classification: 484 optimization of single commodity network flows, 643 algorithms for linear network optimization.

Operations Research 0030-364X/88/3601-0093 $01.25
Vol. 36, No. I, January-February 1988 93 @ 1988 Operations Research Society of America

iEA' \ m
(m,I)Ej

= L (aij + Kijpj -Pi)h.
(i,j)Ej

The dual problem is

maximize q(p)

subject to no constraints on p,

94 / BERTSEKAS AND TSENG

with the dual functional q given by

q(p) = min L(J; p)
liJ<f~clj

= L qi)Pi -Kijpj),
(iJ)E.!o'

(4)

where

q;AP; -K;jpJ = min {(a;j + K;jpj -p;)kl
/~f~cJj

- { (a;j -t;j)C;j ift;j ~ a;j
-(a;j -t;j)/;j if t;j ~ a;j (5)

tij = P; -K;jpj, for all (i, j) E ~ (6)

Figure 1 shows the function q;j(p; -K;jpj). This is a
classical duality framework, treated extensively in
Rockafellar (1970, 1984).

The vector t having elements t;j, (i,j) E.r#' given by
(6) is called the tension vector that corresponds to p.
Since the dual functional depends on the price vector
p only through the corresponding tension vector t, we
will often make no distinction between p and t in the
following discussion.

For any price vector p, we say that an arc (i, j) is

as the deficit of node i. It represents the difference of
total flow exported and total flow imported by the
node.

The optimality conditions in connection with
(MCF) and its dual, given by (3), (4), state that U; p)
is a primal and dual optimal solution pair if and only
if

h=!;j for all inactive arcs (i,j) (II)

4j ~h ~ Cij for all balanced arcs (i,j) (12)

h = Cij for all active arcs (i,j) (13)

di = 0 for all nodes i. (14)

Conditions (II H 13) are the complementary slackness
conditions.

The approach of the present paper is based on
iterative ascent of the dual functional. The price vector
p is updated while simultaneously maintaining a flow
vector / satisfying complementary slackness with p.
The algorithms we propose terminate when/satisfies
primal feasibility (deficit of each node equals zero).
The main feature of1he algorithms that distinguishes
them from classical primal-dual methods is that the
choice of ascent directions is very simple. At a given
price vector p, a node i with nonzero deficit is chosen,
and an ascent is attempted along the coordinate Pi. If
such an ascent-is not possible and we cannot effect a
reduction of the total absolute deficit Lm I dm I through
flow augmentation, we choose an adjacent node of i,
say ii, and attempt an ascent along the sum of the
coordinate vectors corresponding to i and i.. If such
an ascent is not possible, and flow augmentation is
not possible either, we choose an adjacent node of
either i or i. and continue the process. In practice,

.if Iii < aii

balanced if Iii = aii

mactlve (7)

(8)

(9)if t;j > a;joactive

For any flow vector f, we will refer to the scalar

di = L hm -L KmJmi for all i E.AI"
m m

(i,m)Ed (m,l)Ed
(10)

Primal cost
for arc (i,j)

Dual cost
for arc (i,j)

Figure 1. Primal and dual costs for arc (i,j).

95Minimum Cost Ordinary and Generalized Network Flow Problems /

general convex programming problems with separable
cost and linear constraints. Bertsekas (1986) and Bert-
sekas and Eckstein give a massively parallelizable re-
laxation algorithm for the linear cost problem (MCF)
that has a strong conceptual relation with the one
given in this paper. Goldberg and Tarjan (1986) give
a related parallel max-flow algorithm (see also Ahuja
and Orlin 1986; Goldberg and Tarjan 1987; and Bert-
sekas and Eckstein).

1. Characterization of Dual Ascent Directions

We first consider the ordinary network case. Each
ascent direction used by the algorithm is associated
with a connected strict subset S of A'; and has the form
v = (vijl (i,j) E .w-1, where

ifiEt S,jE S
ifiES,jEtS
otherwise.

Vij = 10

Changing any tension vector t in the direction v of
(15) corresponds to decreasing the prices of all nodes
in S by an equal amount while leaving the prices of
all other nodes unchanged. From (5), we see that the
directional derivative at t of the dual cost in the
direction v is C(v, t) where

C(v, t) = L lim qij(t;j + aVij) -q;)t;j)
(i,;)e.s." a--O+ a

= L e;j(v;j, t;j)
(iJ)e.s."

most of the ascent directions are single coordinate
directions, leading to the interpretation of the algo-
rithms as coordinate ascent or relaxation methods.
This characteristic is an important one, and is a key
factor in the algorithms' efficiency. We have found
through experiment that, for ordinary networks, the
ascent directions used by our algorithms lead to com-
parable improvement per iteration as the direction of
maximal rate of ascent (which is the one used by the
classical primal-dual method (Bertsekas and Tseng
1983), but can be computed with considerably less
overhead).

In the next section we characterize the ascent
directions used in the algorithms. In Section 2 we
describe our relaxation methods, and in Section 3
we prove their convergence using the novel notion of
E-complementary slackness. This notion is also im-
portant in other contexts (see Bertsekas 1986, 1988;
Bertsekas, Hosein and Tseng 1987; and Bertsekas and
Eckstein 1987). Sections 4 through 6 are devoted to
computational comparisons of our experimental re-
laxation codes with mature state-of-the-art codes
based on the primal simplex and primal-dual meth-
ods. A clear conclusion is that relaxation outperforms
by an overwhelming margin the primal-dual method.
Comparisons with primal simplex show that on stan-
dard benchmark problems relaxation is much faster
(by as much as four times) than primal simplex. For
large, randomly generated problems,' the factor of
superiority increases to an order of magnitude, indi-
cating a superior average computational complexity
for the relaxation method, and even larger speedup
for larger problems.

The algorithm of this paper for the ordinary network
case was first given in Bertsekas (1985) where the
conceptual similarity to relaxation methods was also
pointed out. The present paper considers in addition
gain networks, emphasizes the dual ascent viewpoint
and provides computational results. Bertsekas (1981)
considers a special case for the assignment problem.
Bertsekas and Tseng in an early version of the present
paper, and Tseng (1986), present additional compu-
tational results and analysis. Bertsekas, Hosein and
Tseng, and Bertsekas and El Baz (1987), consider the
relaxation algorithm for strictly convex arc cost prob-
lems. In this case the algorithm is equivalent to the
classical coordinate ascent method for unconstrained
maximization, but there are some noteworthy conver-
gence aspects of the algorithm, including convergence
in a distributed, totally asynchronous computational
environment. Tseng and Bertsekas (1987a,b) extend
the relaxation algorithms of this paper and apply them
to the general linear programming problem and to

and

eij(Vij, tiJ

={.

-Vi)ij if(i,j) is inactive or if(i,j)
is balanced and Vij ~ 0

-VijCij if(i,j) is active orif(i,j)
is balanced and Vij ~ O.

Note that C(v, t) is the difference of outflow and
inflow across S when the flows of inactive and active
arcs are set at their lower and upper bounds, respec-
tively, while the flow of each balanced arc incident to
S is set to its lower or upper bound depending on
whether the arc is going out of S or coming into S,
respectively. We have the following proposition.

Proposition 1 (for ordinary networks). For every non-
empty strict subset S of AI" and every tension vector t,

w(t + 'YV) = w(t) + 'YC(v, i), for all 'Yt[O, 0),

96 / BERTSEKAS AND TSENG

where w(.) is the dual cost as afunction oft,

w(t) = L qjj(tjj).
(jJ)

(19)

S by an amount proportional to Ui while keeping the
prices of all other nodes unchanged. From (5), (16)
and (17) we see that the directional derivative of the
dual cost at t along a vector v is again given by

C(v, t) = L eij{Vij, tij). (23)
(iJ)E.!¥'

We state the corresponding result as a proposition,
but omit the proof since it is entirely analogous to
that of Proposition 1.

Here v is given by (15), and c5 is given by

c5 = inflltim -aim liE S, m ~ S, (i, m): active},

{ami -tmi liE S, m ~ S, (m, i): inactive}}. (20)

(We use the convention c5 = +00 if the set over which
the infimum in (20) is taken is empty.)

Proposition 2 (for gain networks). For every vector v
defined by (21), (22), and every tension vector t,

w(t + 'Yv) = w(t) + 'YC(v, t),

I Uim> 0, (i, m): active},

Umi < 0, (m, i): inaCtiVe}~

Proof. We saw in Equation 16 that the rate of change
of the dual cost w at t along v is C(v, t). Since w is
piecewise linear, the actual change of w along the
direction v is linear in the stepsize 'Y up to the
point where l' becomes large enough so that the pair
[w(t + 'Yv), t + 'Yv] meets a new face of the graph of
w. This value of 'Y is the one for which a new arc
incident to S becomes balanced, and it equals the
scalar lJ of (20).

In the same manner, we can compute, for a gain
network, directional derivatives for dual directions
used by the algorithm. For purposes of future refer-
ence, we note here that the gain of a directed cycle Y
with one direction arbitrarily chosen as positive is
defined as

for all 'Y E [0, «5), (24)

where w{.) is the dual cost function given by (19), and
«5 is given by

«5 = inf{{~~ r
V,m

f~
Urn;

2. Relaxation Methods

In this section we provide an algorithm that imple-
ments the idea of dual ascent. The main difference
from the classical primal-dual method is that, instead
of trying to find the direction of maximal rate of
ascent through a labeling process, we stop at the first
possible direction of ascent-frequently the direction
associated with just the starting node.

Typical Relaxation Iteration for an
Ordinary Network

At the beginning of each iteration we have a pair
(/, t) satisfying complementary slackness. The itera-
tion determines a new pair (/, t) that satisfy comple-
mentary slackness by means of the following process.

Step 1. Choose a node s with ds> O. (The iteration
can also be started from a node s with ds < O-the
steps are similar.) If no such node can be found,
terminate the algorithm. Else give the label "0" to s,
set S = 0, and go to Step 2. Nodes in S are said to be
scanned.K;jUj ifi~S,jES

-U; ifiES,j~S
K;juj- U; ifiE S,jE S
0 otherwise.

(22)V;j= Step 2. Choose a labeled but unscanned node k,
(k ~ S), set S = S u {kl, and go to Step 3.

Changing any tension vector t in the direction v
corresponds to decreasing the price of each node i in

Step 3. Scan the label of node k as follows: Give the
label "k" to all unlabeled nodes m such that (m, k) is

where Y+ and Y- are the portions of the cycle oriented
along the positive and negative directions, respec-
tively.

Given any connected subset of nodes S, and a set
of arcs T forming a spanning tree for S, let I Uj liE SI
be a set of positive numbers such that

Ui-KjjUj=O, forall(i,j)E T. (21)

(Such a set of numbers is unique modulo multiplica-
tion with a positive scalar and can be obtained by
assigning a positive number Us to an arbitrary node
s E S, and determining the numbers Uj of the remain-
ing nodes i E S from (21).) Each dual ascent direction
used by the algorithm is associated with a pair (S, T)
as just defined and is given by u = Iujj I (i, j) E st'1,
where

Minimum Cost Ordinary and Generalized Network Flow Problems / 97

balanced andfmk < Cmk, and to all unlabeled m such
that (k, m) is balanced and lkm <fkm. If v is the vector
corresponding to S as in (15) and

(26)C(v, t) > 0,

go to Step 5. Else if for any of the nodes m labeled
from k we have dm < 0, go to Step 4. Else go to
Step 2.

Step 4 (Flow Augmentation). A directed path P has.
been found that begins at the starting node s and ends
at the node m with dm < 0 identified in Step 3. We
construct the path by tracing labels backwards starting
from m; it consists of balanced arcs such that we
have [kif </kIf for all (k, n) E P+ and/kIf < CkIf for all
(k, n) E P- where

p+ = {(k, n) E PI (k, n) is oriented in the
direction from s to m I (27)

P- = (k, n) E PI (k, n) is oriented in the
direction from m to s). (28)

Let

E = min{d., -dm, ifkn -lk,,1 (k, n) E P+I,

{Ckn -fknl(k, n) E P-II. (29)

Decrease by t the flows of all arcs (k, n) E P+, increase
by t the flows of all arcs (k, n) E P-, and go to the
next iteration.

Step 5 (Price Adjustment). Let

15 = min{{tkm -akmlk E S, m ~ S, (k, m): active},

{amk -tmk I k E S, m ~ S, (m, k): inactive}l, (30)

where S is the set of scanned nodes constructed in
Step 2. Setfkm

:= lkm,

for all balanced arcs (k, m) with k E S,

mEL,m~S
fInk := Cmk,

for all balanced arcs (m, k) with k E S,

The relaxation iteration terminates either with a
flow augmentation (via Step 4) or with a dual cost
improvement (via Step 5). In order for the procedure
to be well defined, however, we must show that when-
ever we return to Step 2 from Step 3 there is still some
labeled node that is unscanned. Indeed, when all node
labels are scanned (i.e., the set S coincides with the
labeled set), there is no balanced arc (m, k) such that
m ~ S, k E S andfmk < Cmk, or a balanced arc (k, m)
such that k E S, m ~ S andfkm > lkm. It follows from
definition (16), (17) (see also Equation 31), that

C(v, t) = L dk.
kES

Under the circumstances just described, all nodes in
S have a nonnegative deficit and at least one node in
S (the starting node s) has a strictly positive deficit.
Therefore C(v, t) > 0 and it follows that the procedure
switches from Step 3 to Step 5 rather than switch back
to Step 2.

If aij, lij, and Cij are integers for all (i, j) E oW and
the starting t is an integer, then" as given by (30) will
also be a positive integer, and the dual cost is increased
by an integer amount each time Step 5 is executed.
Each time a flow augmentation takes place via
Step 4, the dual cost remains unchanged. If the starting

lis an integer, all successivef's will be integers, so the
amount of flow augmentation E in Step 4 will be a
positive integer. Therefore there can be only a finite
number of flow augmentations between successive
reductions of the dual cost. It follows that the algo-
rithm will finitely terminate at an integer optimal pair
U; t) if the starting pair U; t) is an integer. If the
problem data are not integers, it is necessary to intro-
duce modifications in the algorithm in order to guar-
antee termination in a finite number of iterations to
an E-optimal solution-see Section 3.

It can be seen that the relaxation iteration involves
an amount of computation per node scanned that is
comparable to the usual primal-dual method (Ford
and Fulkerson 1962). The only additional computa-
tion involves maintaining the quantity C(v, t), but,
with a little thought, we can see that this quantity can
be computed incrementally in Step 3 rather than
recomputed each time the set S is enlarged in Step 2.
As a result, this additional computation is insignifi-
cant. To compute C(v, t) incrementally in the context
of the algorithm, it is helpful to use the identity

C(v, t) = L di -L U;j -/;j)
iES (i.j): balanced

iES,j-tS

(C;j -hi). (31)L
(i,j): balanced

iES,jES

mEL,m~S,

where L is the set of labeled nodes. Set

{ tkm + ~ if k ~ S, m E S
tkm:= tkm -~ if k E S, m ~ S

tkm otherwise.

Go to the next iteration.

98 / BERTSEKAS AND TSENG

We note that a similar iteration can be constructed
starting from a node with negative deficit. Here the
set S consists of nodes with a nonpositive deficit, and
in Step 5 the prices of the nodes in S are increased
rather than decreased. We leave the details, which are
straightforward, to the reader. Computational experi-
ence suggests that termination is typically accelerated
when ascent iterations are initiated from nodes with
negative as well as positive deficit.

ent values of C(v, f). Similarly, as for ordinary net-
works, the relaxation iteration starts from a node with
positive deficit and gradually builds a set of nodes S
until either a flow augmentation occurs that reduces
the deficit of the starting node, or the ascent condition
C(v, t) > 0 is obtained. The main complication is that
when a new node is added to the set S, the correspond-
ing tree T is modified until either an augmentation
occurs or the last two terms in (33) become zero (Steps
2a and 2b in the following algorithm). In the process
of reducing the last two terms in (33) to zero, we see
that the corresponding value of ~iES Ui increases
monotonically, which is important for proving ter-
mination in a finite number of operations. Finally,
because the tree corresponding to each successive sub-
set S is constructed so that the last two terms in (33)
become zero, it again follows (see Equation 31) that
the algorithm will always find either a flow augmen-
tation or an ascent direction v with C(v, t) > O.

At the beginning of each iteration we have a pair
(f, t) satisfying complementary slackness. The itera-
tion determines a new pair (f, t) satisfying comple-
mentary slackness by means of the following process.

Step 1. Choose a node s with ds ~ O. We assume in
the following steps that ds > O. The case in which
ds < 0 is entirely similar. If no such node can be found,
terminate the algorithm. Else set S = Is}, T = Ie},
and go to Step 2.

Typical Relaxation Iteration for a Gain Network

The relaxation iteration for gain networks is more
complex because the starting node deficit may be
reduced not just by augmenting flow along a path (see
Step 4 earlier), but also by augmenting flow along a
cycle of non unity gain (Step 4b in the following algo-
rithm). Furthermore, in order to identify the existence
of such a cycle, it is necessary to occasionally restruc-
ture the tree of labels (Steps 2a and 2b in the following
algorithm). These devices are also used in the classical
primal-dual algorithm for gain networks-see Jewell
(1962).

The main idea of the iteration can be motivated by
considering the generalized version of (31). Consider
a pair (S, 7) where S is a connected subset of nodes
and T is a spanning tree for S. Let {Uj liE S} be a set
of positive numberS such that

Uj -Kjjuj = 0, for all (i, j) E T, (32)

and let v be the corresponding vector given by (22).
Let U; t) be any pair satisfying complementary slack-
ness. Then a straightfoiward calculation using the
definitions (10) and (21)-(23) shows that

C(v, t) = L ujdj -L (k -4j)Ui
iES (i.j): balanced

iES.j~S

-L (Cij -k)Kijuj
(i,;): balanced

i~S.jES

L
(i,;): balanced

iES.jES
u>Ku, 'J'

L
(i,n: balanced

iES.jES

u,<Kjjuj

Step 2 (Tree Restructuring). Construct the unique
vector U satisfying

Us = 1, Ui -KijUj = 0,

for all (i,j) E T, Ui = 0, Vi ~ S.

Choose a balanced arc (i, j) such that i E S, j E S,
(i,j) ~ T, and either

(a) Ui -KijUj > 0, k > /;j

(k -l;j)(u; -K;juj) or

(b) U; -K;juj < 0, £ < C;j.

If such an arc cannot be found, go to Step 3. Else go
to Step 2a or to Step 2b depending on whether case
(a) or (b) holds.

(Cij -k)(Kijuj -Ui). (33)

This equation generalizes (31) since for an ordinary
network we have K;j = 1 for all (i, j), so from (32) we
can take U; = 1 for all i E S, and (33) reduces to (31).
Note here that, in contrast with ordinary networks,
different spanning trees of the node subset S can be
associated with different vectors U and v having differ-

Step 2a. Let Y be the cycle fonned by T and the arc
(i, j) identified in Step 2. The cycle Y is connected
with s by a path P consisting of arcs belonging to T
(see Figure 2). Let w be the node that is common to
P and Y. (Note that P may be empty, in which case
s = w.) Let Yjw be the set of arcs of Yon the undirected

Minimum Cost Ordinary and Generalized Network Flow Problems / 99

Yiwpath from j to w that does not contain node i (see
Figure 2). There are two possibilities:

(I) We have lkm <Am < Ckm for aD (k, m) E ~W. Then
flow can be pushed around the cycle Y in the
direction opposite to that of the arc (i, j) (Y is a
flow generating cycle)-go to Step 4b; or

(2) There exists (k, m) E ~w such that fkm = lkm or
fkm = Ckm. Then let (k, m) be the closest such arc

to (i, j), remove (k, m) from T, add (i, j) to T,
and go to Step 2. 'lJw

Figure 2. Cycle Y fornled by tree T and arc(i, j)
identified in Step 2.Step 2b. Same as Step 2a except that in place of ~w

we use Yiw-the portion of Y from i to w along the
direction opposite to the arc (i, j).

else set
Step 3. If v is the vector corresponding to u, S, and T
as in (22) and Uiq := -K ' lj:= I -q,

ijUjC(v, t) > 0, (34)

go to Step 5. Otherwise, choose nodes i E S, m ~ S
such that either (a) (i, m) is a balanced arc with
hm > /;m, or (b) (m, i) is a balanced arc withfmj < Cmj.
If dm < 0, go to Step 4a. Else, add to S node m, and
add to Tarc (i, m) or arc (m, i) depending on whether
(a) or (b) above holds. Go to Step 2.

Uk:= Uk/q, for all nodes k on Y;wexcept for w,

y+: Set of arcs of Y oriented in the direction of
(i,j),

Y-: The complement of Y+ relative to Y.

Let

E(= min(((fkn -lkn)uk I (k, n) E P+I,

(Ckn -!kn)Uk I (k, n) E P-II,

E2 = min(((fkn -lkn)uk I (k, n) E Y-i

I(Ckn -!kn)Uk I (k, n) E rll,

Step 4a (Flow Augmentation Involving a Simple
Path). A directed path P has been found that begins
at the starting node s and ends at the node m with
dm < 0, identified in Step 3. Let p+ and P- be given
by (27), (28). Let

t = min(d., -umdm, (.fkn -lkn)uk I (k, n) E P+I,

(Ckn -fkn)Ukl(k, n) E P-II. (35)

Decrease by t/Uk the flows of all arcs (k, n) E P+,
increase by t/Uk the flows of all arcs (k, n) E P-, and
go to the next iteration.

E = min{EI, QE2, ds\.

Decrease by E/Uk the flow of all arcs (k, n) E P+,
increase by E/Uk the flow of all arcs (k, n) E P-,
decrease by E/(qUk) the flow of all arcs (k, n) E Y-,
increase by E/(qUk) the flow of all arcs (k, n) E Y+,
and go to the next iteration.

Step 5 (Price Adjustment). If v is the vector corre-
sponding to u, S, and T as in (22), let

Vim> 0, (i, m): active},

Vmi < 0, (m, i): inactive} (36)

Step 4b (Flow Augmentation Involving a Cycle).
From Step 2a or 2b, an arc (i, j) and a cycle Y
connected to s by a simple path P are identified (Fig-
ure 2). Let p+ and P- be defined as in (27), (28).

If case (a) holds in Step 2, then set

KjjUj - Iq := -, q = -q,
Uj

Uk := uJq, for all nodes k on ~w except for w,

y+: Set of arcs of Y oriented in the direction op-
posite to (i,j),

Y-: The complement of Y+ relative to Y;

100 / BERTSEKAS AND TSENG

C(v, t) > 0 fails, then there must exist nodes i and m
with the property described in Step 3. It follows that
the relaxation iteration is well defined and will ter-
minate via Step 4a, 4b, or 5 in a finite number of
arithmetic operations.

Set
fmk := lkm,

for all balanced arcs (k, m) with k E S,

m $ S, or k E S, m E Sand Vkm > 0

3. Convergence Analysis and Algorithmic
Variations

fmk := Ckm,

for all balanced arcs (m, k) with k E S,

m ~ S, or k E S, m E Sand Vmk < 0.'

4j := 4j -OVjj, for any (i, j) E oW.

Go to the next iteration.
The description of the iteration is quite complex,

and thus we have avoided introducing features and
data structures that would improve efficiency of im-
plementation at the expense of further complicating
the description. For example, the tree T and the vector
U in Step 2 can be maintained and updated efficiently
by means of a labeling scheme. Furthermore, the value
of C(v, t) can be efficiently updated using a labeling
scheme and (33).

The iteration can terminate in two ways; either via
a flow augmentation (Steps 4a and 4b), in which case
the total absolute deficit is reduced, or else via a price
adjustment (Step 5), in which case (by Proposition 2)
the dual functional is increased. In order to guarantee
that the iteration will terminate, however, it is neces-
sary to show that we will not have indefinite cycling
within Step 2 and that Step 3 can be properly carried
out. What is happening in Step 2 is that the tree T
corresponding to the set S is successively restructured
so that all balanced arcs (i, j) ~ T with i E S, j E S
and either (a) Uj -Kjjuj > 0, £ > /;j, or (b) Uj -
Kjjuj < 0, £ < Cjj, are eliminated (in which case the
last two terms in (33) will be zeto). Each time we enter
Step 2a or 2b, either (1) an augmentation occurs (in
which case Step 2 is exited), or (2) the offending
arc (i, j) satisfying (a) or (b) enters the tree while
another arc exits it, and the vector U is suitably up-
dated in Step 2. It is clear that in the latter case,
no scalar Uk, k E S will be decreased, while at least
one scalar Uk will be strictly increased (Uj in case (a),
or Uj in case (b». Therefore the sum ~keS Uk will be
strictly increased each time we return from Step 2a or
2b to Step 2. In view of the fact that Us remains fixed
at unity, this implies that a tree cannot be reencoun-
tered within Step 2 and shows that, within a finite
number of operations, we will exit Step 2 in order to
either perform an augmentation in Step 4b, or
to check the condition C(v, t) > 0 in Step 3. In the
latter case, the two terms in (33) will be zero. With
this in mind, we see, using (33), that if the condition

The relaxation algorithm, consisting of successive it-
erations of the type described in the previous section,
is not guaranteed to generate an optimal dual solution
when applied to a gain network or to an ordinary
network with irrational data. There are two potential
difficulties:

(a) Only a finite number of dual ascent steps take
place because all iterations after a finite number
end up with a flow augmentation.

(b) When an infinite number of dual ascent steps are
performed, the generated sequence of dual func-
tion values converges short of the optimal.

We can bypass difficulty (a) in the case of an ordi-
nary network with irrational problem data by scan-
ning nodes in Step 3 in a first labeled-fIrst scanned
mode (breadth-first). Tseng gives a proof of this fact
and also gives an example showing that this device is
inadequate for gain networks. The alternative is to
employ an arc discrimination device in selecting the
balanced arc (i, j) in Step 2 and the nodes i and m in
Step 3, whereby arcs with flow strictly between the
upper and the lower bound are given priority over
other arcs (see Johnson 1966; Minieka; and Rockafel-
lar 1984, pp. 36 and 66). With this device one can
show (see Tseng) that an infinite number of successive
augmentations cannot occur. In the subsequent dis-
cussion of convergence we will assume that this device
is employed.

Difficulty (b) can occur, as Tseng shows in an
example. It can be bypassed by employing an idea
from the E-subgradient method (Bertsekas and Mitter
1971, 1973). For any positive number E and any
tension vector t, define each arc (i, j) to be

E-inactive if tij < aij -E (37)

E-balanced if aij -E ~ tij ~ aij + E (38)

E-active if aij + E < tij. (39)

We will show that if in the relaxation iteration the
usual notions of active, inactive, and balanced arcs are
replaced by the corresponding notions (37), (38) and
(39) just defined, the algorithm will terminate in a
finite number of iterations with a solution that is within

101Minimum Cost Ordinary and Generalized Network Flow Problems /

a positive number, we see that the cost improvement
associated with a price adjustment (Step 5) is bounded
below by a positive number. It follows that the algo-
rithm cannot generate an infinite number of price
adjustment steps and therefore must terminate in a
finite number of iterations with a solution that is
within E ~(i,j)(Cjj -/;j) of being optimal. This solution
is really an optimal solution for a perturbed problem
where each arc cost coefficient ajj has been changed
by an amount not exceeding E. Since we are dealing
with linear programs, it can be seen, after some
thought, that, if E is sufficiently small, then every
solution of the perturbed primal problem is also a
solution of the original primal problem. Therefore,jor
sufficiently small E, the modified algorithm based on
the definitions (37)-(39) terminates in afinite number
oj iterations with an optimal primal solution. How-

ever, the required size of E cannot be easily estimated
a priori.

t L(ij) (Cij -!;j) of being optimal. Furthermore, the
final primal solution will be optimal if t is chosen
sufficiently small.

We say that a pair U; t) satisfies t-complementary
slackness if (II)-(14) hold, but with the usual defini-
tions of active, inactive and balanced arcs replaced by
those of (37)-(39). Suppose that we have such a pair
which also satisfies primal and dual feasibility. Since
f is primal feasible, we see by multiplying (I) with Pi
and adding over i that L(i,j) tij;j = 0, so the primal
cost associated withfsatisfies (see (4) and (5» .

L aijj;j = L (aij -tiJj;j
(i,j) (i,j)

~ L (aij -tij)Cij
(i,J)

tij>ati

+ L (aij -tij)!;j = q(p).
(i,J)

t,,<aii

Line Search

The stepsize 0 of (30) or (36) corresponds to the first
break point of the (piecewise linear) dual functional
along the ascent direction. It is possible to use instead
an optimal stepsize that maximizes the dual functional
along the ascent direction. Such a stepsize can be
calculated quite efficiently by testing the sign of the
directional derivative of the dual cost at successive
breakpoints along the ascent direction. Computational
experimentation has shown that this type of line
search is beneficial; we implemented the technique in
the relaxation codes described in Section 5.

Since f and t satisfy E-complementary slackness, we
also have

L aij£ = L (aij -tij)£
(i,j) (i,j)

= L (aij -tij)Cij + L (aij -tij)/ij
(i,n (i,j)

'ij>aij+' "j<aij-'

+ L (aij -tij)£
(i,j)

laij-',jIC,

~ L (aij -tij)Cij
(i,j)

lij>aij

+ L (aij -tij)/;j + E L (Cij -/;j)
(i,j) (i,n

lij<aij

= w(t) + E L (Cij -i;J.
(i,j)

Combining the last two relations, we see that the
primal cost corresponding to f and the dual cost
corresponding to t are within E L(i,j) (Cij -£) of each
other. Since these two costs bracket the optimal cost,
it follows that bothfand t are within E L<i,n (Cij -i;J
of being primal and dual optimal, respectively.

Suppose next that we execute the relaxation itera-
tion and replace the definitions (12)-(14) for active,
inactive and balanced arcs by the corresponding "E"
notions of (37)-(39). Then we can see that the stepsize
15 of (20) or (25) is bounded below by EL, where L is a
positive lower bound for l/maxll Vij I I (i, j) E .w} as
v ranges over the finite number of vectors v that can
arise in the algorithm. Since the rate of dual cost
increase along these vectors is also bounded below by

Single Node Iterations

The case in which the relaxation iteration scans
a single node (the starting node s having positive
deficit ds), finds the corresponding directon Us to be
an ascent direction, i.e.,

C(us, t) = ds -L Um -Ism)
(s,m): balanced

-L (Cms -fms)Kms > 0, (40)
(m,s): balanced

reduces the price Ps (perhaps repeatedly via the line
search mentioned earlier), and terminates is particu-
larly important for the conceptual understanding of
the algorithm. Then only the price of node s is
changed, and the absolute value of the deficit of s is
decreased at the expense of possibly increasing the
absolute value of the deficit of its neighboring nodes.
This situation is reminiscent of relaxation methods in
which a change of a single variable is effected with the

102 / BERTSEKAS AND TSENG

We havepurpose of satisfying a single constraint at the expense
of violating others.

Alternately, we may view a single node iteration as
a coordinate ascent iteration, whereby we choose a
single (the sth) coordinate direction and perform a
line search along this direction. Figure 3 shows the
form of the dual function along the direction of the
coordinate Ps for a node with ds > O.

The left slope at Ps is -C(vs, t), while the right slope
is

L
(s,m)Eg

(s,m): inactive

IsmCsm -

-C(vs, t) ~ -ds ~ -C(Vs, t), (41)

so -ds is a subgradient of the dual functional at Ps in
the sth coordinate direction. A single node iteration
will be possible if and only if the left slope is negative,
or equivalently, C(vs, t) > O. This condition will
always be true if we are not at a comer, and hence
equality holds throughout in (41). However, if the
dual cost is nondifferentiable at Ps, it may happen
(Figure 3) that

-C(vs, t) ~ -ds < 0 ~ -C(vs, t),

L
(m,s)EX

(m,s):inactive
or balanced

Kmslms. in which case the single node iteration fails to make
progress, and we must resort to scanning more than
one node.

Kmscms +

CASES WHERE A SINGLE NODE ITERATION IS POSSIBLE

CASE WHERE A SINGLE NODE ITERATION IS NOT POSSIBLE

Figure 3. Illustration of the dual functional and its directional derivatives along the price coordinate Ps. Break
points correspond to values of Ps where one or more arcs incident to node s are balanced.

Price level

(c) (d)(b)

Figure 4. Illustration of an iteration involving a single node s with four adjacent arcs (1, s), (3, s),
(s, 2), (s, 4) with feasible arc flow ranges [1, 20J, [0, 20J, [0, 10J, [0, 30J, respectively. (a) Form of the
dual functional along Ps for given values of PI, P2, P3, and P4. The break points correspond to the levels
of Ps for which the corresponding arcs become balanced. (b) Illustration of a price drop of Ps from a
value higher than all break points to the break point at which arc (s, 4) becomes balanced. (c) Price
drop of Ps to the break point at which arc (3, s) becomes balanced. When this is done, arc (s, 4) changes
from balanced to inactive and its flow is reduced from 30 to 0 to maintain complementary slackness.
(d) Ps is now at the break point P3 -a3s that maximizes the dual cost. Any further price drop makes
arc (3, s) active, increases its flow from 0 to 20, and changes the sign of the deficit ds from positive
(+10) to negative (-10).

Figures 4 and 5 illustrate a single node iteration for
the cases in which ds > 0 and ds < 0, respectively.

vector v, i.e.,

w(t + 'YV) = w(t), for all 'Y E [0, fI),

where w, v, and lJ are given by (15), (19), (20). We
refer to such incremental changes in t as degenerate
ascent iterations. If the ascent condition C(v, t) > 0
(see Equation 26) is replaced by C(v, t) ~ 0, then we
obtain an algorithm that produces at each iteration
either a flow augmentation, or a strict dual cost im-
provement, or a degenerate ascent step. This algorithm
has the same convergence properties as the one

Degenerate Ascent Iterations

Consider the case of an ordinary network. If, for a
given t, we can find a connected subset S of AI" such
that the corresponding vector (u, v) satisfies

C(v, t) = 0,

then from Proposition 1 we see that the dual cost
remains constant as we start moving along the

104 / BERTSEKAS AND TSENG

Price Level

(b) (c) (d)

Figure S. illustration of a price rise involving the single node s for the example in Figure 4. Here the initial price
Ps lies between the two leftmost break points corresponding to the arcs (I, s) and (s, 2). Initially, arcs
(1, s), (s, 2), and (s, 4) are inactive, and arc (3, s) is active.

without degenerate steps under the following condi-
tion (see Bertsekas 1985):

problems. We have no clear explanation for this phe-
nomenon, but feel it is probably due to the fact that
degenerate ascent iterations help bring the prices of
positive and negative deficit nodes "close" to each
other more quickly. A computational complexity
analysis, not given here, indicates that this factor
is important in the speed of convergence of the
algorithm.

Condition C. For each degenerate ascent iteration, the
starting node s has positive deficit ds, and at the end
of the iteration all nodes in the scanned set Shave
nonnegative deficit.

This condition holds when the set S consists of just
the starting node s. Thus if we modify the ascent
iteration so that a price adjustment at Step 5 is made
not only when C(v, t) > 0, but also when ds > 0, S =
Is} and C(vs, t) = 0 the algorithm maintains its
termination properties. We implemented this modifi-
cation in the relaxation codes (see Section 5); it can
have an important beneficial effect for special classes
of problems such as assignment, and transportation

4. Basis for Computational Experimentation

Historically, computational experimentation has been
the primary method for comparative evaluation of
network flow algorithms. During the 1960s it was
generally believed that primal-dual methods held an
advantage over simplex methods. However, during

Minimum Cost Ordinary and Generalized Network Flow Problems / 105

sion 4.1), language (FORTRAN IV), compiler (standard
FORTRAN of the VMS system version 3.7 in the
OPTIMIZE mode), timing routine, and system
conditions (empty system at night). RELAX-II and
RELAXT -II were also compiled under VMS
version 4.1; they ran about 15%-20% faster than
when compiled under VMS version 3.7. We ob-
tained the CPO times using the system routines
LIB$INIT _TIMER and LIB$SHOW _TIMER. These
times do not include problem input and output, but
include algorithm initialization and testing for prob-
lem infeasibility. The VAX 11/750 is a relatively small
machine on which problems of large size can produce
an excessive number of page faults, thereby severely
distorting the amount of computation time necessary.
However, the size of problems used in our experiments
and the system configuration were such that page
faults never significantly affected the reported times.

The methods tested include parameters that must
be set by the user. A single default set of parameters
was chosen for each method and was kept unchanged
throughout the experimentation. For RNET, these
parameters are in the range suggested by its authors,
with the parameter FRQ set at 7.0.

the 1970s, major improvements in implementation
(Srinivasan and Thompson 1973; Glover et at. 1974;
Glover, Karney and Klingman 1974; Bradley, Brown
and Graves 1977; Johnson; Grigoriadis 1978; and
Kennington and Helgason) using sophisticated data
structures propelled simplex algorithms to a position
of prominence for solving general minimum cost flow
problems. The situation is less clear for special classes
of problems, such as assignment, where some com-
putational comparisons (Hatch 1975; McGinnis 1983)
suggest that primal-dual methods perform at least as
well as simplex methods. Primal-dual methods are
also generally better suited for sensitivity analysis and
reoptimization.

Analytical results that substantively aid the compar-
ison of different methods are in scarce supply. An
interesting observation was made by Zadeh (1979),
who showed that, for problems with nonnegative arc
costs, primal-dual, dual simplex, primal simplex (with
"big-M" starting method and most negative pivot
rule), and the parametric method implement an essen-
tially identical process-a sequence of augmentations
along shortest paths between a supersource and a
supersink node. The essential similarity between par-
ametric and primal-dual methods actually extends to
general linear programs with positive cost coefficients,
as shown by Gallager (1983). This finding is significant
in view of recent average complexity results for the
parametric method (Haimovich 1983). The "big-M"
method is known to be more effective for network
problems than the Phase I-Phase II method (Mulvey
1978a). However, there are pivot rules that are empir-
ically more effective than the most negative rule, and
much research has been directed to this area (Gavish,
Schweitzer and Shlifer 1977; Mulvey 1978a, b). Zadeh
concludes that the "big M" method with empirically
best pivot rule should be a better method than primal-
dual for general minimum cost flow problems with
nonnegative arc costs. This conclusion agrees with
empirical observations of others (e.g., Glover, Karney
and Klingman) as well as with our own (see
Section 6).

We have compared our two relaxation codes,
RELAX-II and RELAXT-II, with two state-of-the-art
codes: KILTER (a primal-dual code due to Aashtiani
and Magnanti 1976) and RNET (a primal simplex
code due to Grigoriadis and Hsu 1980). The next
section gives a description of each of these codes. We
now describe our experimental approach.

Test Conditions

All methods were tested under identical conditions:
same computer (a VAX 11/750 which ran VMS ver-

Efficiency of Implementation

RNET is a mature primal simplex code developed at
Rutgers University. Indirect comparisons reported in
Grigoriadis and in Bertsekas and Tseng suggest that
RNET is faster on standard NETGEN benchmark
problems given by Klingman, Napier and Stutz (1974)
(see Table I) than PNET (by the same authors) and
GNET (Bradley, Brown and Graves), both of which
are sophisticated simplex codes that represented an
advance in the state of the art at the time they were
introduced. Kennington and Helgason have compared
RNET with their own primal simplex code NETFLO
on the first 35 NETGEN benchmark problems and
conclude (p. 255) that "RNET ...produced the short-
est times that we have seen on these 35 test problems."
Our own experiments generally support these findings
and suggest that for general minimum-cost flow prob-
lems RNET is at least as fast and probably faster than
any other noncommercial simplex code for which
computation times on benchmark problems are avail-
able to us (Klingman, Napier and Stutz; Aashtiani
and Magnanti; Bradley, Brown and Graves; Kenning-
ton and Helgason; McGinnis). See also the experi-
ments in Glover and Klingman (1982) that find the
commercial code ARCNET slightly superior to
RNET.

KILTER is an implementation of the primal-dual
method that uses a sophisticated labeling scheme

106 / BERTSEKAS AND TSENG

described by Aashtiani and Magnanti. The version we
tested is the fastest of nine versions tested by those
researchers, who call it KIL TER9. On the basis of
their limited computational results and indirect com-
parisons, KILTER outperforms by a wide margin
several earlier primal-dual codes, and is comparable
to the simplex code of Klingman, Napier and Stutz.
KILTER is also generally faster than the faster primal-
dual codes that we have been able to implement (see
Bertsekas and Tseng). However, an extensive com-
putational study by Dembo and Mulvey (1976) shows
that KILTER is outperformed on assignment prob-
lems under identical test conditions by LPNET (a
primal simplex code due to Mulvey). Our own exper-
iments also show that KILTER is consistently outper-
formed by RNET, and agree with the generally held
opinion that the most efficient primal-dual codes are
slower than primal simplex codes on general mini-
mum cost flow problems.

The preceding discussion was intended to show that
the implementations of both RNET and KILTER
seem very efficient. Therefore it appears valid to con-
sider these codes as representative of the best that has
been achieved through the enormous collective efforts
of many people over many years with the primal
simplex and primal-dual methods.

5. Code Descriptions

The relaxation codes RELAX-II and RELAXT-II
solve the following problem.

Minimize L aijh
(i,j)e

subject to

L !mi-
(m,i)E.st'

L hm = hi, for all i E .AI"
(i,m)E.sw'

0 ~ k ~ Cij, for all (i, j) E ~

same start node, and the next arc with the same end
node. For internal calculations, we use an additional
array of length equal to half the number of arcs. This
array could be eliminated at the expense of a modest
increase in computation time. The total storage of
RELAX-II for arc length arrays is 7.5 IN I and 7 1.;11' I
for node length arrays. RELAXT -II is similar to RE-
LAX-II but employs two additional arc length arrays
that store the set of all balanced arcs. This code,
written with assistance from Jon Eckstein, is generally
faster than RELAX-II but requires 9.5 IN I + 9 1.;11' I
total storage. This storage requirement compares un-
favorably with that of primal simplex codes which can
be implemented with four arc-length arrays.

RELAX-II and RELAXT -II implement, with minor
variations, the relaxation algorithm of Section 2. Line
search and degenerate ascent steps are implemented
as discussed in Section 3. The codes assume no prior
knowledge about the structure of the problem or the
nature of the solution. Initial prices are set to zero and
initial arc flows are set to zero or the upper bound
depending on whether the arc cost is nonnegative or
negative, respectively. There is a preprocessing phase
(included in the CPU time reported) in which arc
capacities are reduced to as small a value as possible
without changing optimal solutions of the problem.
Thus for transportation problems we set the capacity
of each arc at the minimum of the supply and demand
at the head and tail nodes of the arc. We found
experimentally that this tactic can markedly improve
performance, particularly for transportation prob-
lems. We do not fully understand the nature of this
phenomenon, but it is apparently related to the fact
that tight arc capacities ten~ to make the shape of the
isocost surfaces of the dual functional more "round."
Generally speaking, tight arc capacity bounds increase
the frequency of single node iterations. This behavior
is in sharp contrast with that of primal simplex, which
benefits from loose arc capacity bounds (potentially
fewer extreme points to search over).

Finally, we note that RELAX-II and RELAXT-II,
finalized in September 1986, are much more efficient
than earlier versions (Bertsekas 1985; Bertsekas and
Tseng; and Tseng), particularly for sparse and unca-
pacitated problems. In this connection, we note that
Grigoriadis (1986) undertook a computational com-
parison of RELAX and RNET, using a memory-
limited machine. However, the code he used was
obtained by modifying, in ways unknown to us, a
prerelease version of RELAX. That version was con-
siderably less efficient than the code actually tested by
Bertsekas (1985) and Tseng, let alone the second
generation version tested in this paper.

This form has become standard in network codes as
it does not require storage and use of the array of
lower bounds Il;j}. Instead, the smaller size array Ihi}
is stored and used. Problem MCF in our introductory
section can be reduced to the form just described by
making the transformation of variables £ := £ -l;j.
The method we employed to represent the problem is
the linked list structure suggested by Aashtiani and
Magnanti and used in their KILTER code (see also
Magnanti 1976). Briefly, while solving the problem
we store for each arc its start and end node, capacity,
reduced cost (aij -lij), flow £, the next arc with the

Minimum Cost Ordinary and Generalized Network Flow Problems / 107

Table I
Standard Benchmark Problems 1-40 of Klingman, Napier and Stutz, Obtained Using NETGENa

Transportation
1300
1500
2000
2200
2900
3150
4500
5155
6075
6300

200
200
200
200
200
300
300
300
300
300

2
3
4
5
6
7
8
9

10

8.81
9.04
9.22

10.45
16.48
25.08
35.55
46.30
43.12
47.80

3.15
3.72
4.42
4.98
7.18
9.43

12.60
15.31
18.99
16.44

2.07/1.75
2.12/1.76
1.92/1.61
2.52/2,,12
2.97/2.43
4.37/3.66
5.46/4.53
5.39/4.46
6.38/5.29
4.12/3.50

1.47/1.22
1.61/1.31
1.80/1.50
2.38/1.98
2.53/2.05
3.57/3.00
3.83/3.17
4.30/3.57
5.15/4.30
3.78/3.07

Total (Problems 1-10)

Assignment

Total (Problems 11-15)

Uncapacitated and Lightly Capacitated Problems
16 400 1306
17 400 2443
18 400 1306
19 400 2443
20 400 1416
21 400 2836
22 400 1416
23 400 2836
24 400 1382
25 400 2676
26 400 1382
27 400 2676

13.57
16.89
13.05
17.21
11.88
19.06
12.14
19.65
13.07
26.17
11.31
18.88

2.76
3.42
2.56
3.61
3.00
4.48
2.86
4.58
2.63
5.84
2.48
3.62

2.79/2.40

2.67/2.29

2.56/2.20

2.73/2.32

2.85/2.40

3.80/3.23

2.56/2.18

4.91/4.24

1.27/1.07

2.01/1.68

1.79/1.57

2.15/1.84

2.60/2.57
2.80/2.42
2.74/2.39
2.83/2.41
2.66/2.29
3.77/3.23
2.82/2.44
3.83/3.33
1.47/1.27
2.13/1.87
1.60/1.41
1.97/1.75

Total (Problems 16-27)

Uncapacitated and Lightly Capacitated Problems
28 1000 2900
29 1000 3400
30 1000 4400
31 1000 4800
32 1500 4342
33 1500 4385
34 1500 5107
35 1500 5730

5.67/5.02
5.13/4.43
7.18/6.26
7.14/6.30
8.25/7.29
8.94/7.43
8.88/7.81
10.52/9.26

29.77
32.36
42.21
39.11
69.28
63.59
72.51
67.49

8.60
12.01
11.12
10.45
18.04
17.29
20.50
17.81

4.90/4.10
5.57/4.76
7.31/6.47
5.76/4.95
8.20/7.07

10.39/8.96
9.49/8.11
10.95/9.74

Total (Problems 28-35)

Large Uncapacitated Problems
37 5000
38 3000
39 5000
40 3000

23000
35000
15000
23000

681.94
607.89
558.60
369.40

281.87
274.46
151.00
174.74

87.05/73.64
68.25/57.84
89.83/75.17
50.42/42.73

74.67/66.66

55.84/47.33

66.23/58.74

35.91/30.56

Total (Problems 37-40)
.All times are in seconds on a VAX 11/750. All codes were compiled by FORTRAN in OPTIMIZE mode under VMS versions 3.7

and 4.1, as indicated. All codes ran on the same machine, under identical conditions.

108 / BERTSEKAS AND TSENG

superiority of RELAX-II and RELAXT -II over the
other codes for assignment and transportation prob-
lems. We corroborated this finding on a large number
of additional assignment and transportation problems
of widely varying size. For small, lightly capacitated
and uncapacitated problems, RELAX-II and RE-
LAXT -II outperform the other codes, and the margin
of superiority increases for the large problems 37-40.

6. Computational Results

We have organized our computational results into six
tables. All the problems shown were generated using
the widely used, publicly available NETGEN program
(Klingman, Napier and Stutz). We used the random
number seed 13502460 (the same number used
by those authors). The tables provide all additional
information needed to replicate these problems. In
addition, the doctoral thesis of Tseng includes com-
putational experience with gain networks. His results
are preliminary and show that relaxation is roughly
competitive with a state-of-the-art primal simplex
code of Currin (1983) (tests done under identical
conditions on the same machine). More experimen-
tation is required to corroborate these results.

Table II (Transportation Problems). These results are
in general agreement with those of Table I. Note that,
for dense problems, RELAXT -II is substantially faster
than RELAX-II, owing to the scheme for storing and
using the set of balanced arcs.

Table III (Transportation Problems-Large Cost
Range). The problems in this table are identical to
those in Table II except that the cost range is from I
to 10,000 instead of 1 to 100. It can be seen that
RELAX-II and RELAXT -II still substantially outper-
form RNET, but the factor of superiority is less than
in the case of the smaller cost range of Table II.

Table I (Standard NETGEN Benchmarks). This table
shows the results for the 40 problems described in
detail by Klingman, Napier and Stutz, and generated
by the NETGEN program. Problem 36 was not solved
because for some unexplained reason our NETGEN
code produced an infeasible problem for the data given
in that reference. The results show the substantial

Table II
Transportation Problems a

Total (Problems 1-10)

100
100
100
100
100

300
300
300
300
300

6,000
8,000

10,000
12,000
15,000

1-100
1-100
1-100
1-100
1-100

Total (Problems 11-20)

.Times are given in seconds on VAX 11/750. All problems were obtained using NETGEN with total supply 200,000 and 0% high
cost arcs. RELAX-II and RELAXT-II were compiled under VMS 4.1; RNET was compiled under VMS 3.7.

Minimum Cost Ordinary and Generalized Network Flow Problems / 109

Table III
Transportation ProblemsQ

1-104
1-104
1-104
1-104
1-104

300
300
300
300
300

6,000
8,000

10,000
12,000
15,000

a Times are given in seconds on VAX 11/750. All problems were obtained using NETGEN with total supply 200,000 and 0% high

cost arcs. RELAX-II and RELAXT -II were compiled under VMS 4.1; RNET was compiled under VMS 3.7.

Table IV (Heavily Capacitated Transshipment Prob-
lems). Our experience with problems of this type with
positive arc costs is similar .to that for transportation
problems.

Table V (Transshipment Problems with Both Positive
and Negative Arc Costs). The problems in this table
are identical to those of Table IV except that the cost
range is from -50 to 50 instead of I to 100. When
there are both positive and negative arc costs, the
performance of RNET (in contrast with RELAX-II
and RELAXT-II) depends on how flow is initialized.
If all arc flows are initially set to zero,1he performance
of RNET degrades substantially (see Bertsekas and
Tseng). A more efficient scheme is to set the flow of
negative cost arcs to the upper bound and the flow of
all other arcs to zero. We followed this policy in the
runs shown in Table V. The table shows that the factor
of superiority of RELAX-II and RELAXT-II over
RNET increases somewhat relative to the results of
Table IV.

RELAX-II and RELAXT-II is that their speedup
factor over RNET apparently increases with the
size of the problem. We can see this by comparing
the results for the small problems 1-35 of Table I
with the results for the larger problems 37-40 of that
table, and with the problems of Tables II through V.
The comparison shows an improvement in speedup
factor that is not spectacular, but is noticeable and
consistent. Table VI shows that for even larger prob-
lem~ the speedup factor increases further with problem
dimension, and reaches or exceeds an order of
magnitude (Figure 6). This is particularly true for
assignment problems where, even for relatively
small problems, the speedup factor is of the order
of 20 or more.

We note that we experienced some difficulty in
generating the transportation problems of this table
with NETGEN. Many of the problems generated were
infeasible because some node supplies and demands
were coming out zero or negative. We resolved this
problem by adding the same number (usually 10) to
all source supplies and all sink demands, as noted in
Table VI. Note that the transportation problems of
the table are divided into groups, and that each group

Table VI (Large Assignment and Transportation
Problems). An important and intriguing property of

/ BERTSEKAS AND TSENG110

-
.Times are given in seconds on VAX 11/750. All problems were obtained using NETGEN with total supply 200,000, 100% of

sources and sinks being transhipment nodes, 0% high cost arcs, and 100% of arcs capacitated. Each node is either a source or a sink.
RELAX-II and RELAXT -II were compiled under VMS 4.1; RNET was compiled under VMS 3.7.

Table V
Capacitated Transhipment Problems with Both Negative and Positive Arc CostsQ---

Problem No. No. of Sources No. of Sinks No. of Arcs Cost Range Capacity Range RELAX-II RELAXT-II RNET
-

I 200 200 7,000 -50-50 100-500 11.02 11.44 55.50
2 400 400 7,000 -50-50 100-500 17.99 12.88 92.11
3 600 600 7,000 -50-50 100-500 17.10 16.38 109.35
4 800 800 7,000 -50-50 100-500 27.82 24.62 124.42
5 1,000 1,000 7,000 -50-50 100-500 38.02 31.48 123.87---

100-1,000
100-1,000
100-1,000
100-1,000
100-1,000

200
200
200
200
200

6,000
8,000

10,000
12,000
15,000

-50-50
-50-50
-50-50
-50-50
-50-50

6
7

200
200
200
200
200

9
10

5.83
7.99
9.79
10.28
13.73

49.15
67.74
81.95
89.71
94.58

Total (Problems 1-10)
-50-50
-50-50
-50-50
-50-50
-50-50

100-500
100-500
100-500
100-500
100-500

6 , ()()()
8, ()()()

10,000
12,000
15, ()()()

-50-50
-50-50
-50-50
-50-50
-50-50

100-1,000
100-1,000
100-1,000
100-1,000
100-1,000

100
100
100
100
100

300
300
300
300
300

10.09
12.40
12.71
16.72
30.78

Total (Problems 11-20) -
GSame problems as in Table IV except that the cost range is [-50,50]. RELAX-II and RELAXT-II were compiled under VMS 4.1;

RNET was compiled under VMS 3.7.

Minimum Cost Ordinary and Generalized Network Flow Problems /

Table VI
Large Assignment and Transportation Pr~blemsa

Problem Type
and No. No. of Sources No. of Sinks No. of Arcs Cost Range Total Supply RELAX-II RELAXT-II RNET

Assignment
1
2
3
4
5

1,000
1,500
2,000
1,000
1,500

1,000
1,500
2,000
1,000
1,500

8,000
12,000
16,000
8,000

12,000

1-10
1-10
1-10
1-1,000
1-1,000

1,000
1,500
2,000
1,000
1,500

4.68
7.23

12.65
9.91

17.82

4.60
7.03
9.95

10.68
14.58

79.11
199.44
313.64
118.60
227.57

Transportation
6
7-
8+
9+

10+

1,000
1,500
2,000
2,500
3,000

1,000
1,500
2,000
2,500
3,000

8,000
12,000
16,000
20,000
24,000

1-10
1-10
1-10
1-10
1-10

100,000
153,000
220,000
275,000
330,000

129.95
300.79
531.14
790.57

1,246.45
Transportation

II
12.
13+
14+
15+

Transportation
16+
17+
18+
19+
20+

1,000
1,500
2,000
2,500
3,000

1,000
1,500
2,000
2,500
3,000

8,000
12,000
16,000
20,000
24,000

1-1,000
1-1,000
1-1,000
1-1,000
1-1,000

100,000
153,000
220,000
275,000
330,000

32.60
53.84

101.97
107.93
133.85

31.99
54.32
71.85
96.71

102.93

152.17
394.12
694.32

1,030.35
1,533.50

500
750

1,000
1,250
1,500

500
750

1,000
1,250
1,500

10,000
15,000
20,000
25,000
30,000

1-100
1-100
1-100
1-1001-100

15,000
22,500
30,000
37,500
45,000

16.44
28.30
51.01
71.61
68.09

11.43
18.12
31.31
38.96
41.03

84.04
176.55
306.97
476.57
727.38

Q Times are given in seconds on VAX 11/750. All problems were obtained using NETGEN, as described in the text. RELAX-II and

RELAXT-II were compiled under VMS 4.1; RNET was compiled under VMS 3.7. Problems marked with (*) were obtained by
NETGEN, and then, to make the problem feasible, an increment of 2 was added to the supply of each source node, and the demand
of each sink node. Problems marked with (+) were similarly obtained, but the increment was 10.

has the same average degree per node (8 for Problems
6-15, and 20 for Problems 16-20).

To corroborate the results of Table VI, we changed
the random seed number of ~TGEN, and solved
additional problems using some of the problem data
of the table. The results were qualitatively similar to
those of Table VI. We also solved a set of transship-
ment problems of increasing size generated by our
random problem generator, called RANET. Figure 7
gives the comparison between RELAX-II, RELAXT-
II and RNET. More experimentation and/or analysis
is needed to establish conclusively the computational
complexity implications of these experiments.

it (by changing a few arc capacities and/or node
supplies). To solve the modified problem using the
relaxation method, we use as starting node prices the
prices obtained from the earlier solution, and change
the arc flows that violate the new capacity constraints
to their new capacity bounds. Typically, this starting
solution is close to optimal, and solution of the mod-
ified problem is extremely fast. By contrast, to solve
the modified problem using primal simplex, one must
provide a starting basis. The basis obtained from the
earlier solution will typically not be a basis for the
modified problem. As a result, a new starting basis
must be constructed, and there are no simple ways to
choose this basis to be nearly optimal.

The main disadvantage of relaxation methods rela-
tive to primal simplex is that they require more com-
puter memory. However, technological trends are
such that this disadvantage should become less signif-
icant in the future. Note also that an alternative im-
plementation of RELAXT -II, currently in the final
stages of development, has resulted in reduction of
the storage needed for arc length arrays by one-third,
without sacrificing speed of execution.

7. Conclusions

Relaxation methods adapt nonlinear programming
ideas to solve linear network flow problems. They are
much faster than classical methods on both standard
benchmark problems and a broad range of randomly
generated problems. They are also better suited than
primal simplex for post-optimization analysis. For
example, suppose we solve a problem and then modify

31.43
60.86

127.73
144.66
221.81

27.83
56.20
99.69

115.65
167.49

112 / BERTSEKAS AND TSENG

RELAXT -

15

Speedup 13

over 11
RNET. 9 .

Problems 7.
11-15 in
Table VI 5~

3 .

1

"";,.~//;

~ ,

2 3 4 5
D: Normalized problem

size

6
2 3 4 5

D: Normalized problem
size

6

2 3 4 5
0: Normalized problem

size

6

Figure 6. Speedup factor of RELAX-II and RELAXT -II over RNET for the transportation problems of
Table VI. The normalized dimension D gives the number of nodes N and arcs A as follows:

N = 1000*D, A = 4000*D, for Problems 6-15
N = 500*D, A = 5000*D, for Problems 16-20.

of charge from the authors on an IBM-PC or Mac-
Intosh diskette.

Acknowledgment

This work was supported by the National Science
Foundation under grant NSF-ECS-8217668. Thanks
are due to Tom Magnanti, who supplied us with the
primal-dual code KILTER, and who, together with
John Mulvey and Bob Gallager, clarified several ques-
tions for us. Thanks are also due to the referees for
their constructive comments, and to Alphatech, Inc.,
for its support.

The authors are with the Laboratory for Informa-
tion and Decision Systems (LIDS) and the Operations
Research Center, Massachusetts Institute of Techno 1-
ogy. This article is based largely on their unpublished
report which was written under the auspices of LIDS
(see Bertsekas and Tseng 1983).

Our computational results provide some indication
that relaxati<?n has a superior average computational
complexity over primal simplex. Additional experi-
mentation with large problems and/or analysis is
needed to provide conclusive corroboration of these
results.

The relaxation approach applies to a broad range of
problems beyond the class considered in this paper
(see Bertsekas, Hosein and Tseng; Tseng; and Tseng
and Bertsekas 1987a,b), including general linear pro-
gramming problems. It also lends itself well to mas-
sively parallel computation (see Bertsekas 1986, 1988;
Bertsekas, Hosein and Tseng; Bertsekas and EI Baz;
Bertsekas and Eckstein; Tseng and Bertsekas; Gold-
berg and Tarjan 1986, 1987; Ahuja and Orlin; and
Bertsekas and Tsitsiklis 1988).

The relaxation codes RELAX-II and RELAXT-II,
together with other support programs, are in the public
domain with no restrictions, and can be obtained free

13Minimum Cost Ordinary and Generalized Network Flow Problems /

1 2 3 4 5 6 7 8 9 10 11 12 13

D NonT1atized PrOOiem Size

Figure 7. Speedup factor of RELAX-II and RE-
LAXT -II over RNET in lightly capacitated
transhipment problems generated by our
own random problem generator RANET.
Each node is a transhipment node, and it is
either a source or a sink. The normalized
problem size D gives the number of nodes
and arcs as follows:

N= 200*D, A = 3000*D.

The node supplies and demands were drawn
from the interval [-1000, 1000] according
to a uniform distribution. The arc costs
were drawn from the interval [1, 100]
according to a uniform distribution. The
arc capacities were drawn from the interval
[500, 3000] according to a uniform distri-
bution.

BERTSEKAS, D. P., AND D. EL BAZ. 1987. Distributed
Asynchronous Relaxation Methods for Convex Net-
work Flow Problems. SIAM J. Control Optim. 25,
74-85.

BERTSEKAS, D. P., AND S. K. MITfER. 1971. Steepest
Descent for Optimization Problems with Non-
differentiable Cost Functionals, pp. 374-351. In Pro-
ceedings of the Fifth Annual Princeton Conference
on Information Science Systems, Princeton, N.J.

BERTSEKAS, D. P., AND S. K. MITfER. 1973. A Descent
Numerical Method for Optimization Problems with
Non-differentiable Cost Functionals. SIAM J. Con-
troll 1, 637-652.

BERTSEKAS, D. P., AND P. TSENG. 1983. Relaxation Meth-
ods for Minimum Cost Network Flow Problems.
MIT Labomtory for Information and Decision Sci-
ences Report LIDS-P-1339 (October).

BERTSEKAS, D. P., AND J. N. TSITSIKLIS. 1988. Parallel
and Distributed Algorithms. Prentice-Hall, Engle-
wood Giffs, N.J.

BERTSEKAS, D. P., P. HOSEIN AND P. TSENG. 1987. Re-
laxation Methods for Network Flow Problems with
Convex Arc Costs. SIAM J. Control Optim. 25,
1219-1243.

BRADLEY, G. H., G. G. BROWN AND G. W. GRAVES.
1977. Design and Implementation of Large Scale
Tmnshipment Algorithms. Mgmt. Sci. 24, 1-34.

CuRRIN, D. C. 1983. A Comparative Evaluation of Al-
gorithms for Generalized Network Problems.
NRIMS Technical Report TWISK 289, Pretoria,
South Africa.

DEMBO, R. S., ANDJ. M. MULVEY. 1976. On the Analysis
and Comparison of Mathematical Programming Al-
gorithms and Software. Harvard Business School
Report 76-19.

FORD, L. R., JR., AND D. R. FULKERSON. 1962. Flows in
Networks. Princeton University Press, Princeton,
N.J.

GALLAGER, R. G. 1983. Parametric Optimization and
the Primal-Dual Method. MIT Labomtory for Infor-
mation and Decision Systems Report (June).

GA VISH, B., P. ScHWEITZER AND E. SHLIFER. 1977. The
Zero Pivot Phenomenon in Transportation Prob-
lems and Its Computational Implications. Math.
Program. 12, 226-240.

GWVER, F., AND D. KLINGMAN. 1982. Recent Develop-
ments in Computer Implementation Technology for
Network Flow Algorithms. INFOR 20, 433-452.

GWVER, F., D. KARNEY AND D. KLINGMAN. 1974. Im-
plementation and Computational Comparisons of
Primal, Dual and Primal-Dual Computer Codes for
Minimum Cost Network Flow Problems. Networks
4, 191-212.

GWVER, F., D. KARNEY, D. KLINGMAN ANDA. NAPIER.
1974. A Computation Study on Start Procedures,
Basis Change Criteria and Solution Algorithms for
Tmnsportation Problems. Mgmt. Sci. 20,793-819.

References

AASHTIANI, H. A., AND T. L. MAGNANTI. 1976. Imple-
menting Primal-Dual Network Flow Algorithm.
MIT Operations Research Center Report 055-76

(June).
AlUlA, R. K., AND J. B. ORLIN. 1986. A Fast and Simple

Algorithm for the Maximum Flow Problem. MIT

Working Paper (November).
BERTSEKAS, D. P. 1981. A New Algorithm for the Assign-

mentProblem. Math. Program. 21,152-171.
BERTSEKAS, D. P. 1985. A Unified Framework for Min-

imum Cost Network Flow Problems. Math. Pro-
gram. 32, 125-145.

BERTSEKAS, D. P. 1986. Distributed Relaxation Methods
for Linear Network Flow Problems, pp. 2101-2106.
In Proceedings of the 25th IEEE Conference on
Decision and Control, Athens, Greece (December).

BERTSEKAS, D. P. 1988. The Auction Algorithm: A Dis-
tributed Relaxation Method for the Assignment
Problem. To appear in Ann. Opns. Res.

BERTSEKAS, D. P., AND J. ECKSTEIN. 1987. Distributed
Asynchronous Relaxation Methods for Linear Net-
work Flow Problems. Proc. IFAC-87, Munich Ger-
many (July). Pergamon Press, Oxford.

114 / BERTSEKAS AND TSENG

McGINNIS, L. F. 1983. Implementation and Testing of a
Primal-Dual Algorithm for the Assignment Prob-
lem. Opns. Res. 31, 277-291.

MINIEKA, E. 1978. Optimization Algorithms for Networks
and Graphs. Marcel Dekker, New York.

MULVEY, J. M. 1978a. Pivot Strategies for Primal-
Simplex Network Codes. J. Assoc. Comput. Mach.
25, 266-270.

MULVEY, J. M. 1978b. Testing of a Large-Scale Net-
work Optimization Program. Math. Program. 15,
291-314.

ORTEGA, J. M., AND W. C. RHEINBOLDT. 1970. Iterative
Solution of Nonlinear Equations in Several
Variables. Academic Press, New York.

PAPADIMITRIOU, C. H., AND K. STEIGLITZ. 1982. Com-
binatorial Optimization: Algorithms and Complex-
ity. Prentice Hall, Englewood Cliffs, N.J.

ROCKAFELLAR, R. T. 1970. Convex Analysis. Princeton
University Press, Princeton, N.J.

ROCKAFELLAR, R. T. 1984. Network Flows and Mono-
tropic Optimization. John Wiley & Sons, NewYork. .

SRINIVASAN, Y., AND G. L. THOMPSON. 1973. Benefit-
Cost Analysis of Coding Techniques for the Primal
Transportation Algorithm. J. Assoc. Comput. Mach.

20,194-213.
TSENG, P. 1986. Relaxation Methods for Monotropic

Programs. Ph.D. thesis, Massachusetts Institute of

Technology (May).
TSENG, P., AND D. P. BERTSEKAS. 1987a. Relaxation

Methods for Problems with Strictly Convex Separa-
ble Costs and Linear Constraints. Math. Program.
38,303-321.

TSENG, P., AND D. P. BERTSEKAS. 1987b. Relaxation
Methods for Linear Programs. Math. Opns. Res. 12,
569-596.

ZADEH, N. 1979. Near-Equivalence of Network Flow
Algorithms. Technical Report 26, Department
of Operations Research, Stanford University
(December).

GoLDBERG, A. Y., AND R. E. TARJAN. 1986. A New
Approach to the Maximum How Problem, pp. 136-
146. In Proceedings of the 18th ACM STOC.

GoLDBERG, A. Y., AND R. E. TARJAN. 1987. Solving
Minimum Cost How Problems by Successive Ap-
proximation. In Proceedings of the 19th ACM STOC

(May).
GRIGORIADIS, M. D. 1978. Algorithms for the Minimum

Cost Single and Multicommodity Network How
Problems. Notes for Summer School in Combina-
torial Optimization SOGEST A, Urbino, Italy (July).

GRIGORIADIS, M. D. 1986. An Efficient Implementation
of the Network Simplex Method. Math. Program.
Studies 26.

GRIGORIADIS, M. D., AND T. Hsu. 1980. The Rutgers
Minimum Cost Network How Subroutines (RNET
documentation). Department of Computer Science,
Rutgers University (November).

HAIMOVICH, M. 1983. The Simplex Algorithm is Yery
Good!-On the Expected Number of Pivot Steps
and Related Properties of Random Linear Programs.
Columbia University Report (April).

HATCH, R. S. 1975. Bench Marks Comparing Transpor-
tation Codes Based on Primal Simplex and Primal-
Dual Algorithms. Opns. Res. 23, 1167-1172.

JEWELL, W. S. 1962. Optimal How Through Networks
with Gains. Opns. Res. 10,476-499.

JOHNSON, E. 1966. Networks and Basic Solutions. Opns.
Res. 14,619-623.

KENNINGTON, J., AND R. HELGASON. 1980. Algorithms
for Network Programming. John Wiley & Sons, New
York.

KLINGMAN, D., A. NAPIER AND J. STUTZ. 1974. NET-
GEN-A Program for Generating Large Scale
(Un)capacitated Assignment, Transportation and
Minimum Cost How Network Problems. Mgmt. Sci.
20, 814-822.

MAGNANTI, T. 1976. Optimization for Sparse Systems.
In Sparse Matrix Computations, pp. 147-176, J. R.
Bunch and D. J. Rose (eds.). Academic Press, New
York.

