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Abstract- Tbis paper is cOllcemed with the problem of estimating the state
of a linear dynamic system using noise-corrupted observations, wben input
disturbances and observation errors are IDIknown except for the fact that
they belong to given bolDlded sets. The cases of botb energy constraints and
individual instantaneoos con.'ltraints for the IDIcertain quantities are con-
sidered. In the former case, the set of possible system states compatible
witb the observations receivecl is shown to be an ellipsoid, and equations for
its center and weighting matrix are given, wbile in the latter case, equations
describing a bounding ellipsoid to the set of possible states are derived. All
tbree problems of filtering, prediction, and smoothing are examined by
relating them to standard tralcking problems of optimal control theory. The
resulting estimators are similar in structure and comparable in simplicity to
tbe corresponding stochastic linear minimum-variance estimators, and it is
sbown tbat tbey provide distinct advantages over existing scbemes for
recursive estimation witb a set-membersbip description of uncertainty.
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I.. INTRODUCTION

T HIS PAPER is concerned with the estimation of the
state of a linear dynamic system when there is un-

certainty in the initial state, disturbances in the system
dynamics, and errors in the measurement of the system
output. The most common approach to such problems is to
model the initial state as a random vector and the dynamics
and measurement noises as stochastic processes. Under
these circumstances, all information about the system state
at any time that is provided by the measurements of the
system output is contained in the probability density
function (or distribution function) of the state conditioned
on these measurements. This probability density function is
then used, explicitly or implicitly, to determine an estimate
of the system that is best in some prescribed sense.

In this paper, the uncertain quantities are not modeled
as random variables or stochastic processes, but are con-
sidered instead to be unknown except that they belong to
given sets in appropriate vector spaces. In this case, all
information about the system state that is provided by the
observations of the system output may be summarized by
the set of states consistent with both the observations
received and the constraints on the uncertain quantities.
The estimation problem then becomes one of characterizing
this set of possible states. This approach to the estimation
problem was first taken by Witsenhausen [1] in the frame-
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reduced to a combination of two tracking problems, one in
forward time and one with time reversed. This leads to an
estimator involving two systems, one operating in forward
time and one with time reversed, as in the corresponding
stochastic smoothing problem.

The second type of constraint that is considered is the
more practically important case where the uncertain
quantities are constrained at each instant of time to lie in
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work of a more general problem. An ellipsoidal approxima.,
tion algorithm with certain computational advantages was
later given by Schweppe [2], [3]. In this algorithm, the
observations are used to calculate recursively a bounding
ellipsoid to the set of possible states, under the assumption
that the sets containing the initial condition and the input
and observation noises are, or can be approximated by,
ellipsoids. For related work also see [4]-[7].

Attention in this paper will be directed primarily to the
case of a continuous-time linear dynamic system

f(t) = A(t)x(t) + B(t)u(t) (1)

.y(t) = C(t)x(t) + v(t)

where x(t) E R" is the system state, u(t) ERr is an input
disturbance, and v(t) E Rm is measurement noise. The corre-
sponding results for discrete-time systems are summarized in
Appendix I.

Two distinct types of contraints on the uncertain quanti-
ties will be considered. The first is the energy-type constraint

f 'l [x(to) -xo]"P-1[x(to) -xoJ + u'(t)Q-l(t)u(t)
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+ v'(t)R-1(t)v(t) d

where Xo is a given n vector, 'P, Q(t), andR(t)
positive-definite matrices, and to and t1 are fixed
final times, respectively. For this constraint, we
the set of possible states at any time consisten
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a certain stochastic estimation problem. We ex
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In this case the set of states consistent with the observed
output and these constraints is not an ellipsoid and it is not,
in general, easily characterized by a finite set of numbers.
However, an eUipsoidal bound to it can be determined by
bounding the instantaneous constraints by an energy
constraint and ~g'the results derived for that constraint.
The resulting estimator is similar to that proposed by
Schweppe [3], but it has two important advantages: first,
the gain matrix, does not depend on the particular output
observations received and is therefore precomputable;
second, it reduces to a constant system as the final time
becomes infinite. In all other respects it is comparable to that
proposed by Schweppe.

In the next section we formulate more precisely an
estimation p.roblem with an energy constraint on the
uncertain quantities. The filtering, prediction, and smooth-
ing problems are then examined, in turn, in Sections III-V.
Section VI contains a formulation of the estimation problem
with instantaneous constraints on the uncertain quantities..
A bound on the set of possible states for this problem is
detived in ~tion VII, and the behavior of the resulting
estim3tor as the- finaJ time becomes infinite is examined in
Section VIII.

II. FORMULATK>N OF THE PROBLEM WITH ENERGY

CONSTRAINTS

In this section we formulate a general estimation problem
involving a continuous-time linear dynamic system and a
combined energy constraint on the uncertain quantities.
This problem includes as special cases the filtering, predic-
tion, and smoothing problems.

Problem 1: Consider the linear continuous-time dynamic
system

.i'(t) = A(t)x(t) + B(t)u(t) (1)

to which there are, available noise-corrupted measurements

z(t) ~ J?<t) + v(t) "'" C(t)x(t) + v(t) (2)

where x(t}e RA is the &ystem &tate, u(t) e R' is the, input
disturbance, v(t)e Rm i& the mea&urement noise, and the
matrice& A(t), B(t).and C(t) have the appxopriatedimen&ion&.
The initial state ;J;(to) and the disturbances u(.) and v(.)
are a&sumed unknown except that they satisfy the energy
constraint

i ll [x(to) -x~r'P- ~[x(to) ~ xo] + u'(t)Q- ~(t).u(t)

10

+-v'(t)R~ l(t)v(t)dt ~ 1. (3)

It is clear that there exist u(. ) and x(to) satisfying (6) and (8)
if and only if

J*[;, t] 4, min J[;, t; u, x(to)J ~ 1 (10)
.(.~

subject again to the system (1) and the boundary condition
(6). We remark that, (Of the purposes of the minimization
indicated in (10), the vector x(to) is not chosen separately

where Xo is a given n vector 'P, Q(t}, and R(t) are given
positive-definite symme:tric matrices, and t~ and t1 are
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fixed initial and final times. Let t be an arbitrary time in
[to, tJ, let Tbe a fixed real number, and let Z(t) denote the
measured system output function up to time t, i.e.,

Z(t) = {(z(s), s):s E [to, tn. (4)

Find the set X(t + 71t) of possible system states x(t + T) at
time t + Tthat are consistent with the constraint (3) and the
output function Z(t) observed up to time t.

If T = 0 this problem is usually called the filtering
problem, if T > 0 it is called the prediction problem while
if T < 0 it is called the smoothing problem. These problems
are considered in turn in.the next three sections. We begin
with the filtering problem~

III. FILTERING PROBLEM WITH ENERGY CONSTRAINTS

Given an observed 'output function Z(t) = {(z(s). s): S E
[to. tn, we have, by definition of X(qt), that ~ E X(tlt) if and
only if there exist a vector x(to) and functions u( .) and v( .)
defined on [to, t) such that
[x(to) -xo)"P-1[x(to) -xol + f ' u'(S)Q-l(S)u(S)

to

+ v'(s)R-1(s)l1(s) ds ~ 1 (5)

x(t) = ~ (6)

and. from (2),

I1(s) = z(s) -C(s)x(s), to ~ s ~ t (7)

where x(.) is the trajectory of the system (1) corresponding
to the initial state x(to) and the input disturbance u(.).
Notice that the integration in the constraint (5) is from to to
t. whereas that in the original constraint (3) is from to to the
final time tl' These two constraints are entirely consistent
and, insofar as the determination of X(qt) is concerned, they
are equivalent. since it is possible that all the available
disturbance energy has been used during the interval [tot).
Substitution of (7) into (5) immediately gives that ~ E X(tft)
if and only if there exist a vector x(to) and a function u( .)
defined on [to, t) such that ..~~,"

CC/

J[~, t;u,x(to)) ~ 1" (8)

subject to the system (1) and the constraint (6), where
J[~ t; u.x(to») is defined by

J[~,t;u,x(to)) ~ [x(to) -xo)"i'-l[X(to) -xo)

+ f ' u'(S)Q-l(S)u(S) + [z(s) -C(s)x(s»)' R-1(s)[z(s)

'0

-C(s)x(s)) ds. (9)
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but is considered specified by the (unconstrained) choice of
u( .) and the system (1) with the single boundary condition
(6), viz., x(t) = f,. It should be clear that this leads to a
simpler minimization problem than would be obtained if
x(to) were somehow chosen separately and u(.) chosen
subject to the constraint that it transfer the system between
state x(to) at time 0 and state f, at time t. To emphasize the
fact that x(to) is considered to be determined by the system
(1) with boundary condition (6) and the unconstrained
choice of control u(.), we henceforth delete the explicit
dependence of J upon x(to) and write J[~, t ;ux(to)] as
J[f, t; u]. In fact, the minimization indicated in (10) subject
to the system (1) and the boundary condition x(t) = f, is
simply the tracking (or servomechanism) problem in which
time is reversed. In other words, the cost J[f" t; u] is to be
minimized and the system (1) is viewed as starting at state
f, at time t and running backwards to time to. The problem
of characterizing the set X(tlt) of states at time t consistent
with the energy constraint (3) and the observed output
function Z(t) = {(z(s), s) : S E [to, t]} has thus been reduced to
the following tracking (or servomechanism) problem of
optimal control theory.

Problem ]' : Consider the linear system (1) with boundary
condition x(t) = f,. Consider also the quadratic cost
functional J[f" t; u] defined by (9), where 'P, Q(s), and R(s)
are symmetric positive-definite matrices, Xo is a given
n vector, and z(.) is a given m-vector-valued function
defined on [to, t]. Find the set X(~ t) of all states f, at time t
for which

J*[f" t] ~ min J[f" t; u] ~ 1. (10).
As noted above, Problem l' is simply the standard

tracking problem of optimal control theory in which the
system operates in reverse time. The solution to the tracking
problem is well known (see, e.g., [8]), and we need only make
the appropriate identifications to obtain the solution to
Problem 1. The relevant results are summarized in the
following proposition.

Proposition]: The solution to Problem 1', and therefore
the solution to Problem 1 in the filtering case, is the ellipsoid
X(~t) given for all tE [to, tl] by

X(tlt) = {f,:[f, -x(tlt)]'K(t)[f, -x(~t)] ~ 1- <52(t)} (11)

cov [u(t), u(-r)] = Q(t)c5(t --r)

cov [v(t), v(-r)] = R(t)c5(t --r)

and the initial state is uncorrelated with II(t) and v(t) for all t.
Thus, there is a one-one correspondence between filtering
problems where the uncertain quantities satisfy an energy
constraint and stochastic filtering problems of the form
given above. This is not altogether surprising in view of the
fact that we have reduced the former problem to a linear
least-squares optimal control problem, and there is a well-
known correspondence between such problems and lin.ear
least-squares stochastic estimation (filtering) problems [9].
Notice, however, that the cQrrespondence used in this case

where the n x n positive-definite matrix K(t) is the solution
to the Riccati equation

K(s) = -A'(s)K(s) -K(s)A(s) -K(s)B(s)Q(s)B'(s)K(s)

+ C(s)R-1(s)C(s) (12)

with boundary condition

K(to) = '1'-1. (13)

The n vector x(tJt) is the solution to the linear differential

equation
i(sls) = A(s)x(~s) + K- l(s)C(s)R- I(S)[%(s)

-c(s)x(sls)] ,(14)

with boundary condition

x(tolto) = Xo (15)

and the positive real number {)2(t) js given by

{)2(t) = I t [%(s) -C(s)x(sls)], R-1(s)[z(s) -C(s)x(sls)] ,dB, (16)

to

Since the matrix K(t) is positive definite for all t ~ to. the
ellipsoid X(qt) may also be expressed as

X(~t) = {;:[; -X(t~t)]'1:-1(t),[~ ~ x(qt)] $ .1 -{)2(t)} (17)

where the n x n positive-definite matrix 1:.(t) is giv~ (or .-all
t > to as the solution to the Riecati equation'

t(s) = A(s)1:(s) + 1:(s)A'(s) -'- 1:(s)C(s)R-1(s)C(s)1:(s)

+ B(s)Q(s)H(s) (1.8)

with boundary condition

1:(to) = '1'. (19)

We remark that the weighting matrix 1:(t) of the ellipsoid
X(qt) does not depend on the particular observed output
and therefore may be precomputed using the Riccati
equatiOn (18) with boundary condition (19). The center
x(qt) of the ellipsoid and the s~lar {)2(t) both depend 01) the
particular output measuremen~s and are computed on-line
using (14H16). The existence and positive definiteness of
1:(t) for all t e[to, t 1] is guaranteed by the existence and
positive definiteness of the matrix K(t) associated with ~e
tracking problem. Furthermore, the observed output must
correspond to some permissible x(to), 11(.), and 11(.) and
thus X(qt) must contain at lea,st one point; consequently, it
follows from (17) that {)2(t) rt;lust be less than or equal to

unity.
It should be noted that the linear differential equation (14)

with initial condition (15) describing the center x(tlt) of the
ellipsoid X(qt) and the Ric~ti equation (18) with boundary
condition (19) for its weighting matrix are precisely those
specifying the Kalman filter for the stochastic minimum-
variance estimation problem involving the linear system (1)
and the observations (2), where the initial state is a random
vector with mean Xo and covariance 'P, the noises II( .) and
v( .) are uncorrelated white zero-mean stochatic processes
with covariances
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is not the usual one involving the adjoint equation, but
rather a second possible correspondence that is valid when
conditions are such that the solution to the Riccati equation
is positive definite.

IY. PREmcnoN PROBLEM WITH ENERGY CoNSTRAINTS

The solution to the prediction problem follows closely
that for the filtering problem given in the preceding section.
In fact, the prediction problem may be formally reduced to a
filtering problem by suitably changing the weighting
matrix R(s), as we now show.

Given t e [totl -T] and given an observed output
function Z(t) = {(%(s), s):s e [to, t]} it follows by the defini-
tion of X(t + Tit) that; e X(t + Tit) if and only if there exist
a vector x(to), a function II( .) defined on [to, t + T], and a
function v(. ) defined on [to, t] such that

i t+T [x(to) -XoY'P-1[x(to) -Xo] + u'(S)Q-1(S)u(S) ds

to

+ i t v'(s)R-1(s)v(s) ds ~ 1 (20)

to

x(t + T) = ; (21)

and

v(s) = %(s) -C(s)x(s), to ~ s ~ t. (22)

Substitution of (22) into (20) yields that; e X(t + TI t) if and
only if there exist a vector x(to) and a function u( .) defined
on [to, t + T] with the property that

J 1[;, t + T; u] ~ 1

subject to the system equation (1) with boundary condition
x(t + T) = ;, where J 1[;, t + T; u] is defined by

J 1[;' t + T; u] = [x(to)- xoY'P-1[x(to) -xo]

It+T I t + U'(S)Q-l(S)u(S) ds + [%(s)

to to

-C(s)x(s)]'R-1(s)[%(s) -C(s)x(s)] ds. (23)

The n vector x(t + TIt) is given by
x(t + Tit) = cD(t + T, t)x(qt) (26)

where the vector x(qt) is the solution of the linear differential
equation (14) with the boundary condition (15), and the
positive scalar term 02(t) is given by (16).

Thus the solution to the prediction problem may be
readily obtained from the solution to the filtering problem.
The center of the ellipsoid X(t + TIt) is obtained from the
center of the ellipsoid X(qt) simply by multiplying the latter
by the transition matrix cD(t + T, t) as indicated in (26).
The weighting matrix of the ellipsoid X(t + Tit) is easily
obtained from that of X(qt) simply by propagating the
former through the system as indicated in (25), while the
scaling term 1 -02(t) does not change since no measure-
ments from t to t + T are available. These, of course, are
precisely the operations that are performed to obtain the
solution to the stochastic prediction problem from that of
the stochastic filtering problem. Thus, as in the filtering case,
there is a one-one correspondence between prediction
problems where the uncertain quantities satisfy an energy
constraint and stochastic prediction problems of the type
indicated in the preceding section.

If R11(s) is defined over [to, t + T] by

-1 { R-l(S), to ~ S ~ t
R1 (s) =

0, t < s ~ t + T.

The expression (23) for J 1[;, t + T; u] becomes

(24)

J l[~ t + T; u] = [x(to) -XO]"I'-l[X(tO) -XO]

f '+T + U'(S)Q-l(S)U(S) + [%(S)

'0

-C(S)X(S)]' R1-1(S) [%(S) -C(S)x(S)] ds,

which is identical to that for J[;, t + T; u, x(to)] given by
(9), when R-.1(s) is replaced byR11(s). We remark that the
matrix R-1(s) defined by (24) is nonnegative definite rather
than positive definite, while the matrix R-1(s) in (3) has
been assumed positive definite. It is easily seen, however,

that Proposition 1 still holds for R -l(S) nonnegative definite,
since the solution of the equivalent tracking problem
(Problem 1') requires only that the weighting matrix R-1(s)
on output deviations in the cost functional (9) be nonnega-
tive definite. Hence no difficulty is created in what follows
by the nonnegative definiteness of the matrix R11(s).

Thus the prediction problem, that of characterIzing
X(t + Tit), has been reduced, by the appropriate definition
of R11(s), to a tracking problem. This tracking problem is,
in turn, equivalent to the filtering problem of Section III
over the interval [to, t + T]. The solution of the prediction
problem is thus given by Proposition 1 with, of course, t
replaced by t + T and R-:-1(s) replaced by R11(s): The
solution may, however, be expressed more conveniently by
substituting the expression (24) for R11(s) into the equations
corresponding to (14HI9) under the indicated identifica-
tions, and splitting the interval [to, t + T] into the two
intervals [to, t] and [t, t + T]. The following proposition
then follows after some straightforward manipulations.

Proposition 2.. The solution to Problem 1 in the prediction
case, is the ellipsoid X(t + Tit) given for all te[to,tl -t]
by

X(t + Tit) = {;: [; -x(t + Tlt)]'~-l(t + Tit)

x [; -x(t + Tit)] ~ 1 -iJ2(t)}

where the n x n positive-definite matrix ~(t + Tit) is given
by

~(t + Tit) = cD(t + 7; t)~(t)cl>'(t + 7; t)

f '+T +, cD(t + T, s)B(s)Q(s)B'(s)cD'(t + T, s) ds (25)

where cI»(t, s) is the transition matrix corresponding to the
matrix A(t) and the matrix 1:.(t) is given as the solution of the
Riccati equation (18) with the boundary condition (19).
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V. SMOOTHING PROBLEM WITH ENERGY CONSTRAINTS

The solution to the smoothing problem follows similar
lines to that of the filtering and prediction problems. As in
the corresponding stochastic smoothing problem, however,
the solution is slightly more complicated in that two
dynamic systems, one operating in forward time and the
other in reverse time, are required for a solution.

Given T> 0, t e [to + T, tJ and an observed output
function Z(t) = {(%(s), s):s e [to, t]}, it follows directly from
the definition of X(t -TIt) that; e X(t -TIt) if and only if
there exist a vector x(to), a function u(.) d~fined on [to, t],
and a function v(.) defined on [to, t] such that

J[;, t -T; II] + 12[;, t -T; II] :$ 1 (27)

where J[;, t ~ T; II] is given by (9), J 2[;, t -T; II] is defined

by

J 2[;, t -T; II] = f'- T II'(S)Q- l(s)ll(S)

+ [%(s) -C(s)x(s)]' R-1(s)[%(s) -C(s)x(s)] ds (28)

and x(. ) is the trajectory of the system (1) under the input
II( .) with boundary condition

x(t -T) = ;. .(29)

Thus a necessary and sufficient condition for; e X(t -Tit)
is that there exists 11(.) defined on [to, t] such that

min {J[;, t -T; II] + J 2[;, t -T; II} :$ 1. (30)
u(.) "

Since, for fixed; and t -T, J[;, t -T; II] depends only on
the portion of 11(.) defined over [to, t -T] and J2[;, t -
T; II] depends only on the section of 11(.) defined on
[t -T, t], we may write (30) as

min J[;, t -T; II] + min J 2[;, t -T; II] :$ 1. (31)
u(.) u(.)

i '-T rj2(t -T) =

'0
[%(s) -C(s)x(s)]' R-1(s) [%(s)

.-C(s)x(s)] ds

/5~(t -T) = 1'- T [.%(S) -C(S)X2(S)]' R- l(S) [%(S)

-C(S)X2(S)] ds. (38)

Alternatively the ellipsoid (32) can be written as

X(t -Tit) = {;:[; -x(t -Tlt)]'~-l(t -T)

.[; -x(t -Tit)] s 1- /52(t)} (39)

where the n x n positive-definite matrix ~(t -T) is given as
the solution of the equation

t(s) = [A(s) + B(s)Q(s)B'(s)K(s)]~(s)

+ I:(s)[A(s) + B(s)Q(s)B'(s)K(s)]' -B(s)Q(s)B'(s) (40)

with the boundary condition

~(t) = K-1(t). (41)

The n vector x(t -7ft) is the solution of the differential

equation

dx(sjt) = }.(slt) = Ax(slt)
ds

+ B(s)Q(s)B'(s)K(s)[x(slt) -x(s)] (42)

with the boundary condition

x(tlt) ~ x(t) (43)

and t,he scalar term £52(t) is given by

The minimization of J[~, t -T; u] is simply the tracking
problem with time reversed that was obtained in Section III
(with, of course, t -T replacing t). The minimization of
J2[~, t -T; u] is just a tracking problem in forward time
fromt -Tto t. Since twas chosen arbitrarily in [to + T,t!],
we may therefore use Proposition 1 and the standard
results on tracking problems to write down a complete
characterization of X(t -Tit), and therefore give a com-
plete solution to the smoothing problem with energy
constraints.

Proposition 3: The solution to Problem 1 for the smooth-
ingcaseistheellipsoidX(t -Tlt)givenforallte[to + T,tJ
by

X(t -Tit) = {~:[~ -x(t -T)]'K(t -T)[~ -x(t -T)]

+ [; -X2(t -T)]'K2(t -T)[~ -X2(t -T)]

~ 1 -<52(t -T) -<5~(t -T)} (32)

where the n x n positive-definite matrix K(t -T) is given
by the solution to the Riccati equation (12) with initial
condition (13) and the n x n nonnegative-definite matrix

152(t) = i' [z(s) -C(s)x(s)]' R-1(s)[Z(S) -C(S)X(S)] ds (44)

'0

where K(s) and x(s) are given for all s by (12) and (14) with
boundary conditions (13) and (15).

K2(t) satisfies the Riccati equation

K2(s) = -A'(s)K2(s) -K2(s)A(s)

+ K2(s)B(s)Q(s)B'(s)K2(s) -C(s)R-1(s)C(s) (33)

with'terminal boundary condition

K2(t) = O. (34)

The n vector x(t -T) is the solution to the linear differential
equation (14) with initial condition (15), the n vector
X2(t -T) satisfies

12(s) = A(S)X2(S) -K:;1(S)C(s)R-1(s)

.[%(s) -C(S)X2(S)] (35)

with the terminal boundary condition

X2(t) = 0 (36)

and the positive scalar terms t52(t -T), t5~(t -T) are given
by
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Proof: Equations (32J~38~ follow directly frOm the
reformulation of the problem as two tracking problems, one
in forward time and one in reverse time, with common
boundary condition x(t ~ T) = ~. The equivalence of the

two expressions (32) and (39) for X(t -Tft) when ~t),
x{t -Tit), and t52(t) are given by (40H44) involves straight-
forward but tedious manipulations using the identifications

~-l(t -T) = K(t -:- T) + Kz(t -T)

£-l(t ~ T)x(t ~ TIt) = K(t ~ T)x(t -T)

+ J(2(t ~ T)X2(t -T)

15Z(t) + x'(t -Tlt)r,~ 1(t -T)x(t -Tit)

== 152(t ~ T) + x'(t ~ T)K(t ~ T)x(t -T)

+ t5~(t ~ T) + x;(t -T)K2(t -T)X2(t -T),

which as is readily seen by ~xpanding out (32) and (39), are
sufficient for equality of the two expressions for X(t~ TIt).
The first two of these identifications are also used in [10]
where the corresponding stochastic smoothing result is

proved.
[x(to) -XO]"P-1[X(tO) -XO] ~ 1

u'(S)Q-l(S)u(S) ~ 1, Vs e [to,tJ

v'(s)R-1(s)v(s) ~ 1, V'S e [to, tJ

(45b)
We remark that, as long as the system (1) is completely

observa:ble from y(t) == C(t)x(t), the matrix K2(s) is
positive definite for all s < t. The presence of Ki 1(5) in (35)
thus poses a potential difficulty only at s = t when, by
(34), K2(t) = O. As shown in [10], this difficulty may be
removed by using (33) and (35) to write

where '1', Q(s), and R(s) are symmetric positive-definite
matrices and Xo is a given n vector. As in Problem 1; find
the set X(t + Tit) of system states at time t that are con-
sistent with both the measured output function Z(t) =
{(z(s), S):SE [to, t]} up to time t and the constraints (45).

.[K2(s)X2(S)] -C(s)R-1(s)z(s)

with, from (34) and (36), K2(t)X2(t) = 0, from which X2(S)
can be determined for all s < t.

Note that the solution to the smoothing problem may be
generated by a combina.tion of two filters, one operating
forward in time (which corresponds to the tracking problem
with ti~e reversed), and the other operating backwards in
time (which corresponds to the tracking problem in forward
time). A similar interpretation of the solution to the stochas-
tic minimum-variance smoothing problem is well known
[10]. In fact, (42) and (40) for the center x(t -Tit) and weight-
ing matrix ~(t -T) of the ellipsoid X(t -Tit) are precisely
those specifying the best estitnate and trror covariance for
the stochastic minimum..variance smoothing problem of
[11] with the identifications for the noise covariances
described earlier in Section III.

In Sections Ill; IV, a~d V a compl:ete solution has been
given to Problem 1. Entirely analogous derivations and
results can be given for the discrete system counterpart or
Problem 1. Due to space limitations, we will only state the
result for the filtering case for both energy constraints and
instantaneous constraints (to be discussed in the next
section) in Appendix I.

VII. FILTERING PROBLEM WITH INSTANTANEOUS

CONSTRAINTS

Contrary to the case of energy constraints, it is very
difficult to obtain the exact solution of Problem 2. The
energy constraint (3) is an ellipsoid in the space R" x
L2[to, tJ x L2[to, tJ where L~[to' tJ is the space of
Lebesgue-square-integrable p-vector-valued functions on
[to, tl]. Since any measured output function Z(t) defines
a linear variety in this space and since the intersection of an
ellipsoid with a linear variety is also an ellipsoid, the set of
possible system states X(t + Tl.t), obtained by a linear
transformati,on on this ellipsoid interse~tion, is also an
ellipsoid, ,as found in Sections III-V. The individual
instantaneous constraints (45) do not, on the othe:. hand,
define an ellipsoid and thus the intersection of the linear
variety defined by any observed output with the set in
R" x L2[to, tJ x Li[to, tl] satisfying (45) is not, in general,
an ellipsoid. Consequently, the set of system states at time t
consistent' with the observed output function is not, in
general, an ellipsoid: it is a convex set that, in contrast to the
ellipsoidal case, cannot be characterized generally by a
finite set of numbers.

Alternatively, it is possible to cast Problem 2 as an optimi-
zation problem, as was done with Problem 1. This optimiza-

ft;c!ft~f

VI. FORMULAnON OF THE CONTINUOu~TlME PROBLEM
WITH INSTANTANEOUS CONSTRAINTS

White the preceding sections show it to be of theoretical
interest, the model for the uncertainty described by the
energy constraint (3) is of limited use as far as practical
applications are concerned. From a practical viewpoint, a
far more natural model for uncertainty is that in which the
uncertain quantities are individually constrained at each
point in time. In this section we formulate such a problem,
which is then examined in Section VII using the results of
the preceding sections. In particular, we bound the instan-
taneous constraints by a single combined energy constraint
and apply the results of Section III. The resulting estimator
is shown to be simpler but otherwise comparable to that
proposed by Schweppe [3], with the additional advantage
that it permits a steady-state solution.

Problem 2: Consider Problem 1 in which the single
energy constraint (3) on the uncertain quantities is
replaced by the three individual i~stantaneous constraints
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tion problem, however, will involve control constraints. as
well as state constraints and does not admit a closed form
solution, with the result that practical on-line algorithms
cannot be devised.

Thus, one is forced to seek approximate solutions to
Problem 2. The approach taken by Schweppe [2], [3] is to
compute a bounding ellipsoid to the set X(t + Tit). Since
an ellipsoid in R" is completely characterized by an n vector
(its center) and an n x n weighting matrix, the storage
problem is reduced to more manageable proportions.
Schweppe considered the filtering and prediction problems
for a discrete system in [2], and gave a recursive algorithm
for the center and weighting matrix of a bounding ellipsoid
to the set of possible states. The approach used was to bound
recursively the set of possible states at each time instant by
an ellipsoid. This algorithm was later extended to the
continuous system case [3] using a discrete-to-continuous
limiting argument. The following lemma gives the filtering
algorithm that is presented in [3].

Lemma 1: A bounding ellipsoid to the set of system states
X(qt) of Problem 2, is given for all t E [to, ~l] by

X*(q t) = {~: [~ -x(t)]'~ -l(t) [~ -.i(t)] :s; I} (46)

where the n x n positive-definite matrix I:.(t) is the solution
of the equation

t(s) = A(s)~(s) + ~(s)A'(s) -p(s)~(s)C(s)R-1(s)C(s)~(s)

+ P-1(s)B(s)Q(s)B'(s) + [P(s) + p(s) -02(S)]~(s) (47)

with the boundary condition

~(to) = 'P. (48)

The n vector x(t) is the solution to the differential equation

1.(s) = A(s)x(s) + p(s)~(s)C(s)R-1(s)[z(s) -C(s)x(s)] (49)

with the boundary condition

x(to) = Xo (50)

and the positive real number 02(S) is given for all s by

02(S) = p(s)[z(s) -C(s)x(s)]' R-1(s) [z(s) -C(s)x(s)] (51)

and P(s), p(s) are any real-valued time functions with
0 < P(s),O < p(s) for all s E [to, tl].

The structure of the estimator of the above lemma is
shown in Fig. 1, and it can be seen to have the basic structure
of the stochastic Kalman filter. It should be noted, however,
that the gain matrix {p(t)~(t)C'(t)R-1(t)} depends on the ob-
servations made at a particular run and must therefore be
calculated by integrating the nonlinear matrix differential
(47) on-line. Furthermore, even for a time-invariant
system, this estimator does not possess a steady-state
structure due to the fact that the solution of (47) does not
converge toa steady state as time increases.

These disadvantages are avoided in the estimator we now
derive. The approach is again to bound the set of possible
states consistent with the observations by an ellipsoid. In

contrast to (2], we do this indirectly by bounding the

instantaneous constraints (45) with an energy constraint

of the form (3) and then using the results of Sections III and

V to produce an ellipsoidal bound on X(qt). For simplicity,

we concentrate our attention on the filtering problem;

entirely analogous results can be derived for the predicti()n

and smoothing problems.

An energy bound for the instantaneous constraints (45)

is given in the following lemma.

Lemma 2: The set V, c R" x L;[to, t] x Li[to. t] where

V, = {x(to),lI(s), v(s), to ~ s ~ t:[x(to) -XO]"JI-I[x(tO)

-xo] ~ 1, U'(S)Q-I(S)u(S) .s: 1, v'(S)R-l(S)I1(S) ~ 1} (52)

is contained in the set

U,* = {x(to), II(s), v(s), to ~ s ~ t :al(x(tO)

-XOJ"JI-I[x(tO) -xo] + I ' [a2(s)u'(s)Q-l(s)lI(s)

10

+ a3(s)v'(s)R-1(s)l1(s)] ds ~ 1} (53)

where al is any positive constant and a2(')' a3(.') are any

positive integrable real~valued functions (i.e., al > 0,

a2(s) > 0, a3(s) > 0, to ~ s ~ t) such that

at + I ' [a2(s) + a3(s)] ds = 1. (54)

10

Proof: Multiply (45a--<:), respectively, by at, a2(s), and

a3(s), integrate the last two from to to t, add, and use (54).

Having bounded the instantaneous constraints (52) by

the energy constraint (53), we are now in a position to

apply the results of Section III to give a bounding ellipsoid

to the set X(qt). The equations that result by application of

Proposition 1 become simpler if we write ai' a2( .), and

a3( .) in the following form.

al = exp (- i: [p(a) + p(a)] da) (55a)

a2(s) = fJ(s) exp

\ I c \

","'
~~'JfiJ"","!i'

where 

p(. J and p(. J are positive integrable real-valuedfunctions 
(i.e., 0 < P(s),O < p(s), to $ s ~ t). It is easy to see

that under the identifications (55) the condition (54) issatisfied.

By combining now Lemma 2 under the identifications (55)
with Proposition 1 we have after straightforward manipula-
tion the following solution to Problem 2.

Proposition 4.. A bounding ellipsoid to the set of systemstates 
X(tlt) of Problem 2, is given for all t E [to, tJ by

X*(tlt) = {~: [~ -x(t)]'I:-1(t)[~ -x(t)] ~ 1 -t52(t)} (56)where 

the n x n positive-definite matrix I:(t) is the solutionof 
the equation.
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t(s) = A(s)~(s) + ~(s)A'(s) -p(S)~(s)C(s)R-1(s)

.C(S)~(s) + P-l(S)B(S)Q(S)B'(S) + [.8(S) + p(s)]~(s) (57)

with the boundary condition

~to) = '1'. (58)

The n vector x(t) is the solution to the linear differential
equation

f.(s) = A(s)x(s) + p(s)~(s)C(s)R-1(s)[z(s) -C(s)x(s)] (59)

with the boundary condition

x(to) = Xo (60)

and the positive'real number fJ2(t) is the solution to the
differential equation

'

I ;;

y~~~~:,
(Jrit'-~~~,~

~~~

tJ2(S) = -[P(S) + p(S)]<52(S) + p(S) [Z(S)

-C(s)x(s)]'R-1(s)[z(s) -C(s)x(s)] (61)
with the boundary condition

<52(to) = 0 (62)

and P(s), p(s) are any positive real-valued time functions on
[to, t1].

The structural form of the estimator of Proposition 4 is
shown in Fig. 2. It can be seen that it has a similar structure
to the estimator of Fig. 1. However, it has the 'advantage that
the gain matrix {p(t)1:(t)C(t)R-1(t)} is precomputable once
the time functions P( .), p( .) are selected. Furthermore, as
will be discussed in the next section, for a time-invariant
system the estimator of Proposition 4 can be implemented as
a time-invariant system if the final time t 1 I approaches
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infinity. In practical applications this last advantage can be
of extreme importance.

A vital question concerns the comparison of the quality
of approximation to the set of possible states provided by
the two estimators. It turns out that the approximation is
comparable in the following sense. Let P'(.), p'( .) be the
time functions used in the estimator of Lemma 1, and let
P( .), p( .) be the time functions in the estimator of Propo-
sition 4. Then, as was first shown by Schlaepfer [7], if we
select for all S E [to, tJ

P'(s) = [1 -c52(s)] -1 P(s)

p'(s) = [1 -c52(S)] -1 p(s)

where c52(s) is the observation dependent term of (61) in
Proposition 4, the estimate ellipsoids provided by the two
estimators are identical for all time.

In the estimator of Proposition 4 it is important that the
time functions P(.) and p(.) be selected judiciously. An
algorithm has been derived by the authors for selection of
these time functions so that the trace of the weighting
matrix 1:(tl) is minimum at the final time t1. Due to space
limitations the presentation of this algorithm will be
deferred to a future publication. A question of importance
also is how closely the bounding ellipsoid X*(q t) of Propo-
sition 4 approximates the exact set of possible states X(q t).
This is a very difficult question to answer in general, par-
ticularly for the continuous time case, and more research
is required in this area. Some partial answers are available
for the discrete system case, and they will be reported in a
future publication.

It should be noted that the result of Proposition 4 can
be easily modified for the case where the ellipsoids (45b),
(45c) of the input and observation noise are not centered at
the origin, as well as for the case where a control input is
present. As in the stochastic case, the effect of any deter-
ministic inputs can be superimposed by the linearity of the
system.

We remark that similar estimators to the one of Propos i-
tion 4 can be derived for the smoothing and prediction
problems, by making use of Lemma 2 and the results of
Sections IV and V. The resulting estimators are likewise
linear and are similar in structure to the corresponding
stochastic estimators. The resulting predictor has similar
advantages over the predictor of [2], [3] to the ones men-
tioned in connection with the filtering problem. The smooth-
ing case of Problem 2 has not been treated previously in the
literature.

It should also be noted that a problem analogous to
Problem 2 can be stated for a discrete-time system, and
results that are similar to those reported in this section can
be derived. We will not repeat the derivations but instead,
for purposes of easy reference, we will state in Appendix I the
result for the filtering case and outline its derivation.

Finally, we remark that a- problem falling in some sense
between Problems 1 and 2 is that in which the initial state,

I::, ;

f: ,

~

the input disturbance function, and the observation
disturbance function are individually bounded by separate
energy constraints of the form

[x(to) -xoJ"P-1[x(to) -xo] :S 1
f tl u'(t)Q-l(t)U(t) dt :S 1

to

f tl v'(t)R- 1 (t)v(t) dt :S 1

to

where the vector Xo and the matrices 'P, Q-l(t), and R-1(t)
are as defined in Problem 1. This problem can be solved
using an approach that is analogous to that used in solving
Problem 2. The three separate energy constraints are first
bounded by a single energy constraint of the form (53),
where the multipliers a2 and a3 are in this case constants
rather than functions. The solution to Problem 1 can then
be used to give at each time an upper bound on the set of
possible system states that are consistent with the observed
output function and the above individual energy con-
straints. The details are straightforward and are not in-
cluded here.

VIII. CONSTANT SYSTEMS AND INFINITE TIME INTERVALS

In this section we consider the special case of Problem 2
where the system and the disturbance ellipsoids are con-
stant, i.e., A, B, C, Q, and R are constant matrices. If we
select the real-valued functions P(.) and p(.) to be also
constant (i.e., P(t) = P > 0, p(t) = p > 0), (57) for the
matrix ~(t) in Proposition 4 becomes

t(s) = AI:(s) + ~(s)A' -p~(s)C R-1C~(s)

+ p-l BQR + (p + p)~(s) (63)

with initial condition ~(O) = 'P. This equation can be put
into the usual Riccati equation form

t(s) = A*~(s) + ~(s)A*'

-~(S)CR*-lCI:(S) + BQ*B' (64)

by defining the matrices A*, Q*, R* as

A* = A + i<P + p)I,R* = p-1R,Q* = P-IQ (65)

where I is the identity matrix. It is well known that the
solution of (64) converges to a positive-definite steady-state
solution ~oo as s -+ 00 if the pair (A*, C) is completely
observable and the pair (A*, B) is completely controllable.
The pair (A*, B) is completely controllable if and only if th~
pair (A, B) is completely controllable, i.e., the constant
system (1) is completely controllable. This can be seen by
the fact that if b is a column vector of the matrix B, the
subspace spanned by the vectors (b, AB, A2b, ..., A"-lb) is
the same as the subspace spanned by the vectors [b, (A +
l)b, (A + l)2b,..., (A + l)"-lb] which, in view of (65), is the
same as the subspace spanned by the vectors (b, A*b,
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[A -1:..,CR*-lq = [A* -1:..,CR*-lq -!f./J + p)l

with /1', p > 0, and the matrix (A* -1:..,CR-l) is stable by
a well-known property of the Riccati equation. Further-
more, the driving term H(t)C R*-l[Z(t) -CX(t)] goes to
zero as t -.00 since H(t) -.0 as t -.00 and [z(t) -Cx(t)] is
bounded. Therefore, the solution of (75) goes asymptotically
to zero as t -.00 and therefore x(t) -.j(t) as t -.00.

Also, from (69) and (73)

[cS2(t) -j2(t)J = -(p + p) [c52(t) -J.2(t)J + E(t) (76)

A*2b,.. ., A*"-lb). Similarly, the pair (A*, C) is completely
observable if and only if the pair (A, C) is completely observ-
able. Thus, for a completely controllable and observable
time-invariant system, the gain ~(t)C R* -1 in the estimator
of Proposition 4 after an initial transient will converge to
the steady-state constant gain ~(X)C R* -1. For practical
reasons, one would like to implement the estimator as a
time-invariant system using the steady-state gain for the
whole time interval, i.e., starting at the initial time to = O.
This is possible since, as we will prove below, the approxi-
mation that results if we neglect the initial transient
vanishes as time goes to infinity.

Using the identifications (65), the estimator of Proposi-
tion 4 for a time-invariant system gives the estimate
ellipsoid

X*(tlt) = {; :[; -x(t)]'~-l(t)[; -x(t)] ~ 1 -t52(t)} (66)

(67)
i(s) = Ax(s) + I:(s)C R*'" 1 [%(s) -CX(S)]

t(S) = A *I:(S) + I:(s)A *, -I:(S)C R* -lCI:(S)

+ BQ* B' (68)

p(5:) = -<P + p)c52(s)

+ [%(s) -CX(S)]' R* -1 [%(s) -Cx(s)]
(69)

where

E(t) = [z(t) -Cx(t)]'R*-l[Z(t) -Cx(t)]

-[z(t) -C.p(t)]' R* -1 [z(t) -C.p(t)].

Since x(t) -'to j(t) as t -'to 00, we have f(t) -=-+ 0 as t -'to 00, and
since (I;' + p) > 0 the solution of (76) goes to zero as t -'to 00.
Hence <52(t) -'to J2(t) as t -'to 00.

Thus, in applications where the system is constant and the
final time approaches infinity, one can use the steady-state
time-invariant estimator and be assured that the error that
results from neglecting the initial transient of the solution
of the Riccati equation vanishes as time increases. An
entirely analogous argument can be given for the discrete
case, and similarly one obtains a time-invariant estimator
for a constant system.

Finally, we note that in the infinite time case the param-
eter selection problem is greatly alleviated, as we now have
to select only two constants 1;', p with 0 < 1;'. 0 < p in the
continuous case, and 0 < I;' < 1, 0 < p < 1 in the discrete
case. If, for example, we are interested in selecting I;',p
so that the trace of the matrix 1:", is minimized, we can do
this by a simple search in the discrete case. For a continuous
system a steepest-descent method can be used, where the
partial derivatives (a/al;') tr 1:", and (a/ap) tr 1:", can be
calculated by differentiation of the algebraic Riccati
equation.

with

x(O) = .1"00 ~(O) = '1'0 02(0) = O. (70)

If~CX) is the steady-state solution of the Riccati equation (68)
and we implement the estimator as a time-invariant
system using the steady-state gain ~CX)CR*-l, the resulting
estimate ellipsoid will be given by

Y(qt) = {~:[~ -.9(t)]'~~l[~ -y(t)] ~ 1 -82(t)} (71)

where

.9(s) = AjJ(s} + I:ooCR*-l[Z(S) -Cj(s)] (72)

J2(S) = -(fJ + p)J2(S)

+ [Z(S) -C,(S)]' R* -l[Z(S) -C'(s)] (73)

with

.9(0) = xo, 32(0) = O. (74)

Using the fact that I;(t)-;,,:,~,", as t -+ 00, it will now be proved
that x(t) -+ y(t) and ()2(t) -+ 32(t) as t -+ 00, i.e" that the
estimate X*(~t) of (66) converges to the set Y(~t) of(71) as
t -+ 00. To this end, let I;(tlt) = ~'"' + H(t) where H(t) -+ 0
as t -+ 00. Then from (67) and (72) we have

[.i:(t) -j(t)] = (A -~,",CR*-lC)[X(t) -.9(t)]

+ H(t)C'R*-l[Z(t) '"- Cx(t)]. (75)

Now note that the matrix (A -~«tC R*-lC) is stable (has
eigenvalues with negative real parts), since, by (65)

;'I.'!;,"~t~
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IX. CoNCLUSIONS

Attention has been given to the problem of estimating the
state of a linear dynamic system from noisy measurements
of the output, when the initial condition of the system and
the input and observation noise vectors are unknown
except for the fact that they lie in given sets. The cases of
both energy constraints and individual instantaneous
constraints for the uncertain quantities have been con-
sidered. In the former case, the set of possible states com-
patible with the observations received was shown to be an
ellipsoid and equations for its center and weighting matrix
were given. In the latter case equations describing a bound-
ing ellipsoid to the set of possible states were derived. All
three problems of filtering, prediction, and smoothing have
been examined by relating them to standard tracking
problems of optimal control theory. The estimators derived
are similar in structure and comparable in simplicity to the

I""'J
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corresponding stochastic linear minimum-variance estima- Compare (45b).
tors, an~ i~ was shown that they provide distin~t ad~antages v~R.-1v. < 1 i = 1 ...N
over exIstmg schemes. The results reported In thIS paper 0' ,-, " .
can also be used in the solution of certain minimax control Compare (45c).
problems as has been shown elsewhere [12].

A problem that requires further consideration is the Energy Constraint Bounding Instantaneous Constraint
question of the qualIty of approximation resulting from the Compare Lemma 2, (55).
ellipsoidal bounding operation in the instantaneous con- ( -)"P-1( -)
straint case. Some results pertinent to this question, an ao Xo P Xo Po
algorithm for the judicious selection of the parameter time k, -1 , -1
functions in Proposition 4 and the Special case where the + .L (aZi-1ui-1Qi-1Ui-1 + aZiviRi vj ~ 1

, 0=1
observation noise is degenerate, will be considered in a
future publication. ao = (1 -Po)(1 -P1)(1 -P1)'" (1 -Pk- J(1 -Pk)

a1 = Po(1 -pJ(1 -P1)' ..(1 -Pt-1)(1 -Pt)

ApPENDIX I az = P1(1 -P1)' ..(1 -Pt- J(l -Pt)
DISCRETE TIME ESTIMATORS FOR THE

FILTERING PROBLEM aZk-1 = Pt-1(1 -Pk)

System .f aZt = Pt

Xt+ 1 = A,.xk + BkUk' k == 0" ..,N -1, 0 < Pi-1 < 1, 0 < Pi < 1, i = 1"", k.

Compare (1).

k = 0,...Zk = CkXk + Vk'

Compare (2).

Filtering Algorithm for Instantaneous Constraint

Compare Proposition 4.
X*(klk} = {; :(; -Xk)'~ -l(klk}(; -Xk} ~ 1 -c52(k}}

Xk+l = Akxk + Pk+l~(k + Ilk + I},""" 'CC ,j

ci'

,"i~~.;~ '.tic ';

!! ~j1

.G+IR;;l(Zt+l -Ck+lAkXt)

Xo = Po

Energy Constraint

[Xo -Jio]"P-1[xo -Jio]
N-l

+ L (U;Qi-lUi + v;+ 1 Ri-+\ Vi + 1) ~ 1.
i=O .

Compare (3).
~(k +' Ilk + 1) = [(1 -Pk+ l)~-l(k + Ilk)

+ Pk+1Ck+1Rk+llCk+J-1

~(k + Ilk) = (1 -Pk)-l Ak~(klk)Ak + Pk 1 BkQkB~

~(OIO) = 'P

Filtering Algorithm for Energy Constraint

Compare Proposition 1
Xklt = {":(,, -Xk)'I:-1(klk)(" -it) ~ 1 -c52(k)}

Xt+ 1 = AtXt + I:(k + Ilk + I)Ct+ lRk+~

.(Zt+ 1 -Ct+ lAtXt)

Xo = Po

~(k + Ilk + 1) = [~-I(k + Ilk) + Q+1Ri:;ICk+l]-1

1;(k + Ilk) = A~(klk)A~ + BkQkB't

~(OIO) = 'P

k
1J2(k) = i~1 (%1 -CiAi-1Xi-l)'[Ci~ 1.

152(k) = (1 -Pt- J(1 -pJc'i2(k -1)

+ (Zt -CtAt-1xt-1)'[(1 -pJ-1Ct~(kjk -I)Ck

+ p;1RJ-1(Zt -C".At-1Xt-1)
152(0) = 0

0 < Pt-1 < 1, 0 < Pk < 1, k = 1,..., N.

.(ili -1)<:'; + RJ-l(%; -CjAj-lXj-J.

e

Instantaneous Constraints

(xo -PO)"I'-l(XO -Po) ~ 1.
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Abstract-Sequeotial estim:ltion of the states of several high-order
interconnected systems may be prohiiJlitive on computer time and storage if
the problem is formulated as for a single system. Therefore, multilevel
systems theory has been appJj,ed to ~Ierive a coordination algorithm, with
one-step convergence, for a number of subsystem Kalman estimators. The
procedure may be computationally attractive for sparsely coupled subsystems
with few stochastic inputs.

I.. INTRODUCTION

Q UITE apart from its theoretical importance, the
Kalman filter [1], [2] is now regarded as a highly

practicable technique for state and parameter estima-
tion [3]. For the linear system the theory is on a rigorous
basis but an extension of the filter, by means of local
linearization, has proved to be a useful approximation [4]-
[7]. However, when the order of the system becomes high
(e.g., 50 state .variables) the on-line req1;1irements on storage
and computing.time may become pr04ibitive.. This paper is

Manuscript received May II, 1970. Paper recommended by M. Aoki,
Chairman of the IEEE G-AC Stochastic Systems; Estimation, Identifica-
tion Committee.

The author is with the University of Waterloo, Waterloo, Ont., Canada.

concerned with the application of multilevel systems
theory to the problem, especially when the total system is
composed of several subsystems and the manner of decom-
position is evident from the system structure.

Multilevel systems theory has been under development in
various forms since about 1962, primarily by Mesarovic,
Lefkowitz, Pearson, Macko, and Takahara. Of the more
recent references [8}-[12] the book [12] is by far the most
comprehensive at the time of writing. The author is applying
the theoretical developments due to Mesarovic, Macko,
and Takahara. Multilevel theory has previously been
applied to the problem of state estimation but Chen and
Perlis [13] were using an earlier form of the theory (essen-
tially as a constrained minimization) and they did not derive
a recursive or sequential estimator (compare with the
Kalman filter). Furthermore, the coordination process was
simple and slowly cohvergent. On the other hand, using the
so-called interaction prediction principle the essential form
of the Kalman filter for each subsystem is preserved below.
In addition, a coordination algorithm is derived having the
property of one-step convergence.


