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ERRATA

p. 29 (-2) Change “the artificial termination state t,” to “the artificial
termination state, denoted by (k, t),”

p. 30 (+7) Change k = 0, . . . , N − 1 to k = 1, . . . , N − 1

p. 62 (+7) Change minu∈Uk(xk) to minu∈Uk(xs
k
)

p. 65 (+3) Change “function approximation” to “function”

p. 66 (+24) Change “shortest problem” to “shortest path problem”

p. 67 (+1) Change “shortest problem” to “shortest path problem”

p. 76 (+3) Change the expression to

N−1∑
k=0

λk

(
n∑
i=1

ciuik − b

)
,

p. 113 The stability argument given here should be slightly modified by
adding over k ∈ [1,K] (rather than over k ∈ [0,K]). Then in Eq. (2.40)
H0(x0) should be replaced by

g0(x0, u0) +H1(x1).

This is the optimal cost of transfer from x0 to x` = 0 (i.e., the first `-stage
problem solved by MPC). Since this transfer is feasible by the constrained
controllability condition, the above expression is finite and the stability
condition is satisfied.
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p. 114 (+16) Change “Moreover, it is easily verified that the base heuristic
is not sequentially consistent. For example,” to “Moreover, it is easily
verified that the base heuristic is not sequentially consistent when ` > 2.
For example, when ` = 3,”

p. 116 (+2) Change “If the initial state lies within the set (−1, 1) the
constrained controllability condition is satisfied for sufficiently large λ” to
“If the initial state lies within the set (−1, 1) it can be driven to 0 within
a sufficiently large number of steps `”

p. 118 (+16) Delete the sentence starting with “By contrast if we remove
from Xk the boundary points ...”

p. 121 (+15) An added footnote: Further insight into the reasons for
the effectiness of approximation in value space schemes and for the bene-
ficial role of longer multistep lookahead can be obtained through research
that appeared in the subsequent books by the author:

Rollout, Policy Iteration, and Distributed Reinforcement Learning, Athena
Scientific, 2020.
Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive Con-
trol, Athena Scientific, 2022.

and the author’s paper “Newton’s Method for Reinforcement Learning and
Model Predictive Control,” Results in Control and Optimization, Vol. 7,
2022, pp. 100-121.

These sources show that the cost functions Jk,π̃ of the one-step lookahead
policy are the result of a Newton iteration starting from the cost function
approximations J̃k+1 [suitably enhanced by (`−1) DP iterations in the case
of `-step lookahead]. This interpretation also applies to the infinite horizon
problems discussed in Chapters 4-6, and shows that truncated rollout has a
similar beneficial effect: it acts as an economical way to increase the length
of lookahead.

p. 144 (+17) Delete “so that when a component gradient is reevaluated
at a new point, the preceding gradient of the same component is discarded
from the sum of gradients of Eq. (3.11).”

p. 159 (-9) Change

E(L1, . . . , Lm+1) = 1
2

(
y − F (L1, . . . , Lm+1, x)

)2
,

to
E(L1, . . . , Lm+1) = 1

2

∥∥y − F (L1, . . . , Lm+1, x)
∥∥2,

p. 167 Change the proposition statement as follows:

Proposition 3.5.1: (Least Squares Property of Conditional Prob-
abilities) Let ξ(x) be any prior distribution of x, so that the joint distri-
bution of (c, x) is

ζ(c, x) = ξ(x)p(c |x).
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For a pair of classes (c, c′), define z(c, c′) by

z(c, c′) =

{
1 if c = c′,
0 otherwise,

and for a fixed class c and any function h of (c, x), consider

E
{(
z(c, c′)− h(c, x)

)2}
,

the expected value with respect to the distribution ζ(c′, x) of the random

variable
(
z(c, c′) − h(c, x)

)2
. Then p(c |x) minimizes this expected value

over all functions h(c, x), i.e., for all functions h and all classes c, we have

E
{(
z(c, c′)− p(c |x)

)2} ≤ E{(z(c, c′)− h(c, x)
)2}

. (3.36)

p. 168 Change the page to read as follows:
The proof of the proposition may be found in textbooks that deal

with Bayesian least squares estimation (see, e.g., [BeT08], Section 8.3).†

† For a quick proof argument, fix c, and for any scalar y, consider for a given
x the conditional expected value E

{
(z(c, c′)−y)2 | x

}
. Here the random variable

z(c, c′) takes the value 1 with probability p(c |x) and the value 0 with probability
1− p(c |x), so we have

E
{(
z(c, c′)− y

)2 ∣∣ x} = p(c |x)(y − 1)2 +
(
1− p(c |x)

)
y2.

We minimize this expression with respect to y, by setting to 0 its derivative, i.e.,

0 = 2p(c |x)(y − 1) + 2
(
1− p(c |x)

)
y = 2

(
− p(c |x) + y

)
.

We thus obtain the minimizing value of y, namely y∗ = p(c |x), so that

E
{(
z(c, c′)− p(c |x)

)2 | x} ≤ E{(z(c, c′)− y)2 | x}, for all scalars y.

We set y = h(c, x) in the above expression and obtain

E
{(
z(c, c′)− p(c |x)

)2 | x} ≤ E{(z(c, c′)− h(c, x)
)2 | x}.

Since this is true for all x, we also have∑
x

ξ(x)E
{(
z(c, c′)− p(c |x)

)2 ∣∣ x} ≤∑
x

ξ(x)E
{(
z(c, c′)− h(c, x)

)2 ∣∣ x},
showing that Eq. (3.36) holds for all functions h and all classes c.
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The proposition states that p(c |x) is the function of (c, x) that minimizes

E
{(
z(c, c′)− h(c, x)

)2}
(3.37)

over all functions h of (c, x), for any prior distribution of x and class c. This
suggests that we can obtain approximations to the probabilities p(c |x),
c = 1, . . . ,m, by minimizing an empirical/simulation-based approximation
of the expected value (3.37).

p. 177 (+8) Change µk to µk

p. 186 (+6) Change “cost 0” to “cost g(i, u, j)”

p. 187-188 The conversion of the discounted problem to an equivalent
SSP problem needs correction. The cost per stage of the equivalent SSP
problem at state i when control u is applied should be

E
{
g(i, u, j)

}
=

n∑
j=1

pij(u)g(i, u, j)

(regardless of whether the next state is j = 1, . . . , n or the artificial termi-
nation state t) and not g(i, u, j).

p. 191 (+3) Change “minimizing” to “maximizing”

p. 199 (Eq. (4.25)) Change τ`j to τ`j(t)

p. 203 (+9) Change “Prop. 4.3.2” to “Prop. 4.3.3”

p. 205 (+13) Change “for all states i = 2, . . . , n” to “from all states
i = 2, . . . , n− 1”

p. 225 (+2) Change jk to ik+1

p. 226 (-15 and -12) Change c = 0 to c ≤ 0.

p. 232 (+14) Change “Here ε” to “Here δ”

p. 232 (+15) Change “Also δ” to “Also ε”

p. 232 (+18) Change “cases δ = 0” to “cases ε = 0”

p. 245 (+2) (1st printing of the book) Change “(i, u)” to “(is, us)”

p. 257 (+5 and +9) The summation should be over j not i

p. 260 (Eq. (5.42)) The limit should be as q →∞
p. 263 (+15) Change J̃µ(i) to J̃µ

p. 266 (+13) Change C to Cλ Cλ

p. 267 (line 4 of the caption of Fig. 5.5.1) Change T (λ) to T
(λ)
µ

p. 267 (-10) Change ΠJµ to Π(Jµ)

4



p. 276 (line 4 of the caption of Fig. 5.7.3) Change µ(r) to µ̃(r)

p. 279 (+10) Change “Section 1.3” to “Section 3.1.3”

p. 283 (-8) Change r to rk

p. 287 (Eqs. (5.79) and (5.80)) Change = to ∈
p. 287 (+19) Change is to iq

p. 287 (+20) Change is to iq

p. 321 (+11) Change J̃1 to J̃
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