Topics in Reinforcement Learning:
Rollout and Approximate Policy lteration

ASU, CSE 691, Spring 2020

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 3

Bertsekas Reinforcement Learning 1/24

0 The Foundational Concepts of RL: Approximation in Value and Policy Space
e General Issues of Approximation in Value Space

e Rollout for Deterministic Finite-State Problems

Bertsekas Reinforcement Learning 2/24

Recall the Stochastic DP Algorithm

Produces the optimal costs J(xx) of the tail subproblems that start at xx
Start with Jy(xn) = gnv(xn), and fork =0,...,N —1, let

J; (Xk) = min E{gk(Xk, Uk, Wk) + J;+1 (fk(Xk7 Uk, Wk)) }, for all x.
Uk € Uy (xk)

The optimal cost J*(xo) is obtained at the last step: J; (x0) = J* (o).

Online implementation of the optimal policy, given J;, ..., Jy
Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Uy €arg min E{gk(xk,u;ﬁWk)+J;‘+1(fk(xk,uk,Wk))}.
Uk € Uk (Xk)

The main difficulties: Too much computation, too much memory storage.

v

We will outline the main conceptual RL framework to deal with these difficulties

@ Approximation in value space: Use Jk, 1 in place of Ji41; possibly approximate
E{-} and miny,
@ Approximation in policy space: Directly approximate the optimal policies

Bertsekas Reinforcement Learning 4/24

Approximation in Value Space: One-Step Lookahead

Approximate Q-Factor Qp (zx, ux)

Min Approximation First Step “Future”
\ +——> +—>
min E{gk(ﬂ% Uk, Wi)+ Sk 11 (fﬂk+1)}

Uk

E{-} Approximation Cost-to-Go Approximation

At state xx, approximation in value space uses Jx+ (in place of Ji+1) and lookahead
minimization to obtain a suboptimal control Tk = fix(Xk)-

THE THREE APPROXIMATIONS:
@ How to construct Jx.1, k =0,...,N — 1.
@ How to simplify E{-} operation.
@ How to simplify min operation.

Each of the three approximations can be designed almost independently of the others,
leading to a large variety of methods.

Bertsekas Reinforcement Learning 5/24

Approximation in Value Space: Multistep Lookahead

At State zy,

DP minimization

First £ Steps “Future”
l k4-0—1
min E{gk(mkeukeu’k) + Z 9777,(Im7ﬂm(rm)swm) + Jk+l(xk+é)}
Uk Pl 415 s Hk+£—1 ———
Cost-to-go

Lookahead Minimization Approximation

@ At state xk, we solve an (-stage version of the DP problem with x, as the initial
state and Jx. . as the terminal cost function.

@ Use the first control of the ¢-stage policy thus obtained, while discarding the others.

Hoped benefits from using the more costly multistep optimization:

@ Minimization over many steps will work better than minimization over few steps
(with long enough lookahead we are optimal).

@ By using a long-step lookahead, we can afford a simpler/less accurate cost-to-go
approximation Jy .

Bertsekas Reinforcement Learning 6/24

Approximation in Value Space - Infinite Horizon

Approximate Q-Factor Q(z,u)

Min Approximation First Step “Future”

Atz ure%i?w)g{g(x,u,w) +aJ(f(:17,u,w))}

E{-} Approximation Cost-to-Go Approximation

Major advantages of the infinite horizon context

@ Only one approximate cost function J is needed, rather than the N functions
Ji,...,dn of the N-step horizon case.

@ Additional important algorithms are available for infinite horizon approximation in
value space. Approximate policy iteration, Q-learning, temporal difference
methods, and their variants are some of these.

@ Many of the finite horizon RL ideas generalize to infinite horizon ... so it is
convenient to develop them first within the simpler framework of finite horizon.

Bertsekas Reinforcement Learning 7/24

Approximation in Policy Space: The Major Alternative to Approximation

in Value Space

Control
up = fi(Te;me) [System State xy

» >

”| Environment]

Qontroller B
Mk (" Tk) B

A

Training Data

@ |dea: Select the policy by optimization over a suitably restricted class of policies.

@ The restricted class is usually a parametric family of policies rux (X, rk),
k=0,...,N—1, of some form, where r is a parameter (e.g., a neural net).

@ Important advantage once the parameters r, are computed: The computation of
controls during on-line operation of the system is often much easier ... at state xx
apply ux = pk(Xk,).

@ Often fik(x«, rx) is computed as a randomized policy, i.e., a set of probabilities of
applying each of the available controls at x. It is implemented by applying at state
Xk the control of maximum probability.

Bertsekas Reinforcement Learning 8/24

Approximation in Policy Space on Top of Approximation in Value Space

The approximate cost-to-go functions Jx1 define a suboptimal policy jix
through one-step lookahead.

@ Given functions Ji.1, how do we simplify computation of the lookahead policy?

@ Idea: Approximate jix using some form of regression and a training set consisting
of a large number g of sample pairs (x¢, uf), s =1,...,q, where u; = jix(xg), i.e.,

ug €arg min E{gk Xy U, wie) + Jirr (fe(X2, u, wk))}

ue Uk (xx)

Similarly for multistep lookahead.
@ Example: Introduce a parametric family of randomized policies ux(Xk, k),
k=0,...,N—1, of some form (e.g., a neural net), where r, is a parameter. Then

estimate the parameters r, by
q

ry € arg m,i”Z [l U — (X8, r)H2

=1

@ Note that to apply regression the parametrization ux(Xg, r) must take continuous
values. Often, uj; takes values 0 or 1 and (X, r) is a randomized policy.

Bertsekas Reinforcement Learning 9/24

Approximation in Value Space on Top of Approximation in Policy Space

Lookahead Tree

I ittt =)
Stages Beyond
Truncation

S CECEEEC R)

Rollout
with 7
B E T)

Truncated Horizon Terminal Cost
Approximation
[»@for Stages

Beyond

Truncation

L »®

L -0

Possible
States 41

@ Start with some policy = = {uo, - .., un—1}, called base policy, possibly obtained
through approximation in policy space.

@ Use one-step or multistep lookahead where Jj. 1 (X 1) is equal to the tail problem
cost Jk+1,~(Xkr1) starting from xi1 and using policy .

@ The policy # = {jio, . .., un—1} thus obtained is called the rollout policy.

@ Major issue: How to compute Jii 1, (Xk41)?
For deterministic problems: Run = from x,1 once and accumulate stage costs.
For stochastic problems: Run 7 from x. 1 many times and Monte Carlo average.
Simulate = for a limited number of stages, and neglect the costs of the remaining
stages or add some heuristic cost approximation at the end to compensate. This is
called truncated rollout.

Bertsekas Reinforcement Learning 10/24

Combined Approximation in Value and Policy Space

Approximation - : Rollout
.| Base _|in Value Space| | Approximation POhCZ
| Policy "l Multistep "|in Policy Space "
Lookahead
Cost Data Policy Data

Perpetual rollout and policy improvement

@ A fundamental property: In its idealized form (no approximations) each new policy
has no worse cost function than the preceding one, i.e., for all xx and k,

Jk,#(Xk) < Ik, (Xk)

@ Thus the algorithm is capable of self-improvement or self-learning.

@ lts natural extension to infinite horizon problems is the policy iteration algorithm,
and its foundation is the policy improvement property.

@ With approximations, self-improvement is approximate (to within an error bound).

@ There are many variations of this scheme: Optimistic policy iteration, Q-learning,
temporal differences, etc. They involve challenging implementation issues.

@ Most RL algorithms, including AlphaGo and Alphazero, use variants of the above
scheme.

Bertsekas Reinforcement Learning 11/24

Let’s Take a Working Break to Consider the Following Challenge

Question

Will longer lookahead produce a better policy than shorter lookahead?

Consider the following example J

Initial
State

5 —C
2-step lookahead
3-step lookahead

Two controls, u, u’, and cost function approximation Jx(xx) = 0.
There is a choice only at x.

Bertsekas Reinforcement Learning 12/24

The Answer is “Usually”, but NOT for this Example

0~0Optimal
u
Initial

State Suboptimal

2-step lookahead
3-step lookahead

Problem with “edge effects": u will be preferred based on 2-step lookahead. v’ will be
preferred based on 3-step lookahead. J

Bertsekas Reinforcement Learning 13/24

On-Line and Off-Line Lookahead Implementations

Approximate Min

irs “ 9
Discretization First Step &
min E{gk(xk, Uk, Wi)+ 1 (g;k,+1)}
Uk \
Approximate E{-} Approximate Cost-to-Go Jy 11
Certainty equivalence Problem appI'OXIHIat}OI}
Adaptive simulation Rolilout, Model Pre.dlfttl.ve Control
Monte Carlo tree search Parametric approximation
Neural nets
Aggregation

@ For many-state problems, the minimizing controls jix(xx) are computed on-line
(storage issue).

@ Off-line methods: All the functions Jx.1 are computed for every k, before the
control process begins.

@ Examples of off-line methods: Neural network and other parametric
approximations; also aggregation.

@ On-line methods: The values Jx1(x«1) are computed only at the relevant next
states xx+1, and are used to compute the control to be applied at the N time steps.

@ Examples of on-line methods: Rollout and model predictive control.
@ Rollout is well-suited for on-line replanning ... involves lots of on-line computation.

Bertsekas Reinforcement Learning 15/24

Simplifying the Minimization in Lookahead Schemes

min E{gk(xk, Uk, W) + Jk1 (e (X, Uk, Wk))}

Uk € Uk (xk)

o If Uk(xx) is a finite set, the minimization can be done by brute force.
o If Ux(xx) is an infinite set, it may be replaced by a finite set through discretization.

@ For deterministic problems and continuous control spaces, a more efficient
alternative may be to use nonlinear programming techniques.

@ For stochastic problems and continuous control spaces, we may use stochastic
programming. Lookahead must be short because of the high branching factor of
the lookahead tree when the problem is stochastic.

One simplification possibility is to simplify the E{-}:

Assumed certainty equivalence, i.e., choose a typical value wx of wg, and use the
control fix(xx) that solves the deterministic problem

. ~ v f ~
UKQJIKQXK) [gk(Xk, Uk, W) + Jiet (Fe(Xk, Uk, Wk))}

However, this may degrade performance significantly.

Bertsekas Reinforcement Learning 16/24

Another Approach to Simplifying the Minimization: Policy Space

Approximation

Sample

State

Sample

—
Control uj,

System Equation
or

Simulator

Sample

Next State z7, -

Sample

Jrt1

Sample Q-Factor

Transition Cost g;"

Bi =9+ jkﬂ(g”fcﬂ)

@ Collect (off-line) a large number of “representative" samples (x§, ug, Xi. 1, gi) and
corresponding sample Q-factors

@ Introduce a parametric family of Q-factors Qk(Xx, Ux, k).

Bk = gk

F jk+1 (Xics1)s

s=1,...

g

@ Determine the parameter vector 7 by the least-squares regression

q
o q = 2
T € argmin' (Qu(xt, uf, 1) — 67)
k
s=1

@ Use (on-line) the policy fik(xk) € argminy, cy, () Qk(Xk, Uk, Tk)

Bertsekas

Reinforcement Learning

17/24

Rollout will be Important for this Course

Aim of rollout: Start with a policy, get a better policy. J

Reasons why it will be important:
@ Rollout is the RL method that is easiest to understand and apply

@ Rollout is the not the most ambitious RL method, but it is the most reliably
successful

@ ltis very general: Applies to deterministic and stochastic, to finite horizon and
infinite horizon

@ [t contains as a special case model predictive control, one of the most important
control system design methods

@ |t forms a building block for most of RL methods used in practice (including
approximate policy iteration, Q-learning, temporal differences, etc)

@ We will go fairly deeply into the subject and cover new research

Bertsekas Reinforcement Learning 19/24

General Structure of Deterministic Rollout with Some Base Heuristic

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor
Qu(Xk, Uk) = Gk (Xk, Ux) + Hii1 (F(Xk, Ux))

using the base heuristic [Hk+1(Xk+1) is the heuristic cost starting from x1].
@ We select the control ux with minimal Q-factor.
@ We move to next state xx. 1, and continue.

@ Multistep lookahead versions (length of lookahead limited by the branching factor
of the lookahead tree).

Bertsekas Reinforcement Learning 20/24

Traveling Salesman Example of Rollout with a Greedy Heuristic

Next Cities Complete Tours

o) Current g
Initial City Partial Tour

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic

Nearest Neighbor
Heuristic

@ Ncitiesc=0,..., N — 1; each pair of distinct cities ¢, ¢/, has traversal cost
g(c, c').

@ Find a minimum cost tour that visits each city once and returns to the initial city.

@ Recall that it can be viewed as a shortest path/deterministic DP problem. States

are the partial tours, i.e., the sequences of ordered collections of distinct cities
exponentially growing size of state space.

@ Nearest neighbor heuristic; chooses the best one-hop extension of a partial tour.

@ Rollout algorithm: Start at some city; given a partial tour {co, . .., ck} of distinct
cities, select as next city cx+1 the one that yielded the minimum cost tour under the
nearest neighbor heuristic.

Bertsekas Reinforcement Learning 21/24

Criteria for Cost Improvement of a Rollout Algorithm - Sequential

Consistency

@ Special conditions must hold to guarantee that the rollout policy has no worse
performance than the base heuristic.

@ Two such conditions are sequential consistency and sequential improvement.
@ A sequentially consistent heuristic is also sequentially improving.
@ Any heuristic can be modified to become sequentially improving.

The base heuristic is sequentially consistent if it “stays the course"
@ If the heuristic generates the sequence
{Xk, X1, -, xn}
starting from state x, it also generates the sequence
{Xks1, -y XN}

starting from state xj1.

@ The base heuristic is sequentially consistent if and only if it can be implemented
with a legitimate DP policy {uo, . . ., un—1}-

@ Greedy heuristics are sequentially consistent (e.g., nearest neighbor for TS).

Bertsekas Reinforcement Learning 22/24

Policy Improvement for Sequentially Improving Heuristics

Sequential improvement holds if for all xx (Best heuristic Q-factor < Heuristic cost):

min : [gk(Xk, Uk) + Hit (Fe(Xx, Uk))] < Hie(xk),

Uy € U (Xk

where Hi(xx) is the cost of the trajectory generated by the heuristic starting from x.
True for a sequentially consistent heuristic [Hk(x«x) is the Q-factor of the heuristic at x].

Cost improvement property for a sequentially improving heuristic

Let the rollout policy be & = {jio, - . ., fin—1}, and let Jx = (x«) denote its cost starting
from xx. Then for all xx and k, Ji = (Xx) < Hk(Xk).

Proof by induction: It holds for k = N, since Jy > = Hy = gn. Assume that it
holds for index k + 1.

Ji#(Xk) = gk (X, fix (X)) + Jks1,7 (fk (XK, ﬁk(Xk)))
< Gk (Xk, fik(Xk)) + Hicer (Fe(Xk, fik (X))
= min [gk(Xk, Uk) + Hk+1 (fk(Xk7 uk))]

Uk € Uy (xk)

< Hk(x«)

Bertsekas Reinforcement Learning 23/24

About the Next Lecture

We will cover:
@ Rollout for deterministic and stochastic problems
@ Monte Carlo tree search
@ Model predictive control

PLEASE READ AS MUCH OF SECTIONS 2.3, 2.4, 2.5 AS YOU CAN
PLEASE DOWNLOAD THE LATEST VERSION OF NOTES FROM CANVAS

Bertsekas Reinforcement Learning 24/24

	The Foundational Concepts of RL: Approximation in Value and Policy Space
	General Issues of Approximation in Value Space
	Rollout for Deterministic Finite-State Problems

