Topics in Reinforcement Learning: Rollout and Approximate Policy Iteration

ASU, CSE 691, Spring 2020

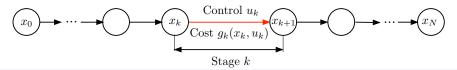
Dimitri P. Bertsekas dbertsek@asu.edu

Lecture 2

Outline

- Review of Exact Deterministic DP Algorithm
- 2 Examples: Finite-State/Discrete/Combinatorial DP Problems
- Stochastic DP Algorithm
- 4 Infinite Horizon Briefly
- 5 Problem Formulations and Examples

Finite Horizon Deterministic Problem



System

$$x_{k+1} = f_k(x_k, u_k), \qquad k = 0, 1, \dots, N-1$$

where x_k : State, u_k : Control chosen from some set $U_k(x_k)$

Cost function:

$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• For given initial state x_0 , minimize over control sequences $\{u_0, \ldots, u_{N-1}\}$

$$J(x_0; u_0, \ldots, u_{N-1}) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• Optimal cost function $J^*(x_0) = \min_{\substack{u_k \in U_k(x_k) \\ k=0,\dots,N-1}} J(x_0; u_0,\dots,u_{N-1})$

DP Algorithm: Solving Progressively Longer Tail Subproblems

Go backward to compute the optimal costs $J_k^*(x_k)$ of the x_k -tail subproblems

Start with

$$J_N^*(x_N) = g_N(x_N), \quad \text{for all } x_N,$$

and for $k = 0, \dots, N-1$, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)) \right], \quad \text{for all } x_k.$$

Then optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.

Go forward to construct optimal control sequence $\{u_0^*, \dots, u_{N-1}^*\}$

Start with

$$u_0^* \in \arg\min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + J_1^* \left(f_0(x_0, u_0) \right) \right], \qquad x_1^* = f_0(x_0, u_0^*).$$

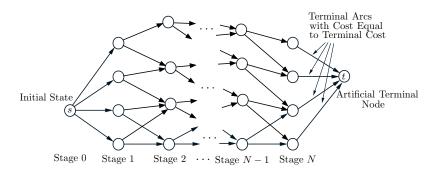
Sequentially, going forward, for k = 1, 2, ..., N - 1, set

$$u_k^* \in \arg\min_{u_k \in U_k(x_k^*)} \left[g_k(x_k^*, u_k) + J_{k+1}^* \left(f_k(x_k^*, u_k) \right) \right], \qquad x_{k+1}^* = f_k(x_k^*, u_k^*).$$

Approximation in value space approach: We replace J_k^* with an approximation \tilde{J}_k .

Bertsekas Reinforcement Learning 5

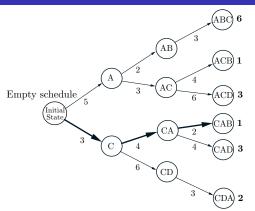
Finite-State Problems: Shortest Path View



- Nodes correspond to states x_k
- Arcs correspond to state-control pairs (x_k, u_k)
- An arc (x_k, u_k) has start and end nodes x_k and $x_{k+1} = f_k(x_k, u_k)$
- An arc (x_k, u_k) has a cost $g_k(x_k, u_k)$. The cost to optimize is the sum of the arc costs from the initial node s to the terminal node t.
- The problem is equivalent to finding a minimum cost/shortest path from s to t.

6/27

Discrete-State Deterministic Scheduling Example

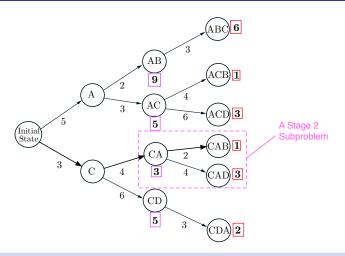


Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

DP Problem Formulation

- States: Partial schedules; Controls: Stage 0, 1, and 2 decisions; Cost data shown along the arcs
- Recall the DP idea: Break down the problem into smaller pieces (tail subproblems)
- Start from the last decision and go backwards

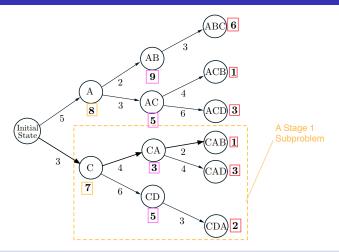
DP Algorithm: Stage 2 Tail Subproblems



Solve the stage 2 subproblems (using the terminal costs - in red)

At each state of stage 2, we record the optimal cost-to-go and the optimal decision

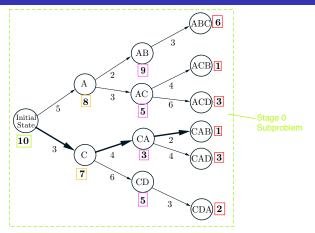
DP Algorithm: Stage 1 Tail Subproblems



Solve the stage 1 subproblems (using the optimal costs of stage 2 subproblems - in purple)

At each state of stage 1, we record the optimal cost-to-go and the optimal decision

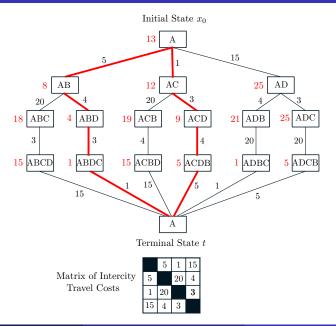
DP Algorithm: Stage 0 Tail Subproblems



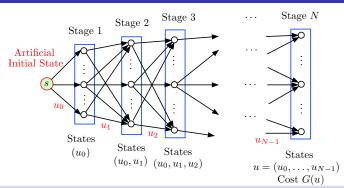
Solve the stage 0 subproblem (using the optimal costs of stage 1 subproblems - in orange)

- The stage 0 subproblem is the entire problem
- The optimal value of the stage 0 subproblem is the optimal cost J^* (initial state)
- Construct the optimal sequence going forward

Combinatorial Optimization: Traveling Salesman Example



General Discrete Optimization

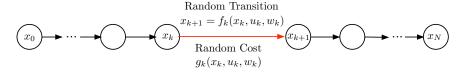


Minimize G(u) subject to $u \in U$

- Assume that each solution u has N components: $u = (u_0, \dots, u_{N-1})$
- View the components as the controls of N stages
- Define $x_k = (u_0, \dots, u_{k-1}), k = 1, \dots, N$, and introduce artificial start state $x_0 = s$
- Define just terminal cost as G(u); all other costs are 0

This formulation typically makes little sense for exact DP, but often makes a lot of sense for approximate DP/approximation in value space

Stochastic DP Problems - Perfect State Observation



- System $x_{k+1} = f_k(x_k, u_k, w_k)$ with random "disturbance" w_k (e.g., physical noise, market uncertainties, demand for inventory, unpredictable breakdowns, etc)
- Cost function:

$$E\left\{g_N(x_N)+\sum_{k=0}^{N-1}g_k(x_k,u_k,w_k)\right\}$$

- Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k is a "closed-loop control law" or "feedback policy"/a function of x_k . Specifies control $u_k = \mu_k(x_k)$ to apply when at x_k .
- For given initial state x_0 , minimize over all $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ the cost

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

• Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$

Reinforcement Learning

Bertsekas

The Stochastic DP Algorithm

Produces the optimal costs $J_k^*(x_k)$ of the tail subproblems that start at x_k

Start with $J_N^*(x_N) = g_N(x_N)$, and for k = 0, ..., N - 1, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} E\Big\{g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k)\big)\Big\}, \quad \text{for all } x_k.$$

- The optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.
- The optimal control function μ_k^* is constructed simultaneously with J_k^* , and consists of the minimizing $u_k^* = \mu_k^*(x_k)$ above.

Online implementation of the optimal policy, given J_1^*, \ldots, J_{N-1}^*

Sequentially, going forward, for k = 0, 1, ..., N - 1, observe x_k and apply

$$u_k^* \in \arg\min_{u_k \in U_k(x_k)} E\Big\{g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k)\big)\Big\}.$$

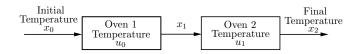
Issues: Need to compute J_{k+1}^* (possibly off-line), compute expectation for each u_k , minimize over all u_k

Approximation in value space: Use \tilde{J}_k in place of J_k^* ; approximate $E\{\cdot\}$ and \min_{u_k} .

Bertsekas Reinforcement Learning 16 / 27

Linear-Quadratic Problems - An Important Favorable Special Case

Linear-quadratic problems involve: multidimensional linear system, quadratic cost, unconstrained controls, independent disturbances



- System: $x_{k+1} = (1 a)x_k + au_k + w_k$ (w_k are random, independent, and 0-mean)
- Cost: $E\{r(x_N-T)^2+\sum_{k=0}^{N-1}u_k^2\}$
- A very favorable structure: The optimal policy $\mu_k^*(x_k)$ is a linear function of x_k ; it is the same as if w_1 and w_0 were set to their expected values (= 0). Can be computed by exact DP
- This is called certainty equivalence
- Certainty equivalence is a common approximation idea for other problems (replace the original stochastic problem with a deterministic version)

DP Algorithm for Q-Factors

Optimal Q-factors are given by

$$Q_{k}^{*}(x_{k}, u_{k}) = E\left\{g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1}^{*}(f_{k}(x_{k}, u_{k}, w_{k}))\right\}$$

They define optimal policies and optimal cost-to-go functions by

$$\mu_k^*(x_k) \in \arg\min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k), \qquad J_k^*(x_k) = \min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k)$$

DP algorithm can be written in terms of Q-factors

$$Q_k^*(x_k, u_k) = E\left\{g_k(x_k, u_k, w_k) + \min_{u_{k+1}} Q_{k+1}^*(f_k(x_k, u_k, w_k), u_{k+1})\right\}$$

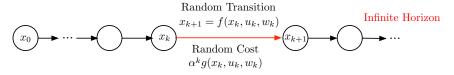
Some math magic: With $E\{\cdot\}$ outside the min, the right side can be approximated by sampling and simulation. (Can be exploited in stochastic iterative algorithms called Q-learning.)

• Approximately optimal Q-factors $\tilde{Q}_k(x_k, u_k)$, define suboptimal policies and suboptimal cost-to-go functions by

$$ilde{\mu}_k(x_k) \in \arg\min_{u_k \in U_k(x_k)} ilde{Q}_k(x_k, u_k) \qquad ilde{J}_k(x_k) = \min_{u_k \in U_k(x_k)} ilde{Q}_k(x_k, u_k)$$

Bertsekas Reinforcement Learning 18 / 27

Infinite Horizon Problems - An Overview



Infinite number of stages, and stationary system and cost

- System $x_{k+1} = f(x_k, u_k, w_k)$ with state, control, and random disturbance
- Policies $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k(x) \in U(x)$ for all x and k
- Special scalar α with 0 < α ≤ 1. If α < 1 the problem is called discounted
- Cost of stage k: $\alpha^k g(x_k, \mu_k(x_k), w_k)$
- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{w_k} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

- Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$
- If $\alpha = 1$ we assume a special cost-free termination state t. The objective is to reach t at minimum expected cost. The problem is called stochastic shortest path (SSP) problem

Infinite Horizon Problems - Theory and Algorithms

Value iteration (VI): Fix horizon N, let terminal cost be 0

• Let $V_{N-k}(x)$ be the optimal cost starting at x with k stages to go, so

$$V_{N-k}(x) = \min_{u \in U(x)} E_w \Big\{ \alpha^{N-k} g(x, u, w) + V_{N-k+1} \big(f(x, u, w) \big) \Big\}$$

• Reverse the time index and divide with α^{N-k} : Define $J_k(x) = V_{N-k}(x)/\alpha^{N-k}$ $J_k(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J_{k-1}(f(x, u, w)) \Big\} \tag{VI}$

- $J_N(x)$ is equal to $V_0(x)$, which is the N-stages optimal cost starting from x
- Hence, intuitively, VI converges to J*:

$$J^*(x) = \lim_{N \to \infty} J_N(x)$$
, for all states x (??)

The following Bellman equation holds: Take the limit in Eq. (VI)

$$J^*(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J^* \big(f(x, u, w) \big) \Big\}, \qquad \text{for all states } x \quad (??)$$

Optimality condition: Let $\mu(x)$ attain the min in the Bellman equation for all x

The policy $\{\mu, \mu, \ldots\}$ is optimal (??). (This type of policy is called stationary.)

Bertsekas Reinforcement Learning 21/27

How do we Formulate DP Problems?

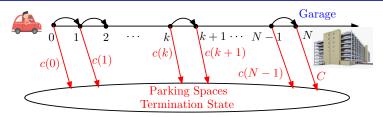
An informal recipe: First define the stages and then the states

Define as state x_k something that summarizes the past for purposes of future optimization, i.e., as long as we know x_k , all past information is irrelevant.

Some examples

- In the traveling salesman problem, we need to include all the info (past cities visited) in the state.
- In the linear quadratic problem, when we select the oven temperature u_k , the total info available is everything we have seen so far, i.e., the material and oven temperatures $x_0, u_0, x_1, u_1, \dots, u_{k-1}, x_k$. However, all the useful information at time k is summarized in just x_k .
- In partial or imperfect information problems, we use "noisy" measurements for control of some quantity of interest y_k that evolves over time (e.g., the position/velocity vector of a moving object). If I_k is the collection of all measurements up to time k, it is correct to use I_k as state.
- It may also be correct to use alternative states; e.g., the conditional probability distribution $P_k(y_k \mid I_k)$. This is called belief state, and subsumes all the information that is useful for the purposes of control choice.

Problems with a Terminal State: A Parking Example



- Start at spot 0; either park at spot k with cost c(k) (if free) or continue; park at garage at cost C if not earlier.
- Spot k is free with a priori probability p(k), and its status is observed upon reaching it.
- How do we formulate the problem as a DP problem?

We have three states. F: current spot is free, \overline{F} : current spot is taken, parked state

$$J_{N-1}^*(F) = \min \left[c(N-1), C \right], \qquad J_{N-1}^*(\overline{F}) = C$$

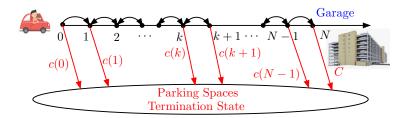
$$J_k^*(F) = \min \left[c(k), p(k+1)J_{k+1}^*(F) + \left(1 - p(k+1)\right)J_{k+1}^*(\overline{F}) \right], \qquad \text{for } k = 0, \dots, N-2$$

$$J_k^*(\overline{F}) = p(k+1)J_{k+1}^*(F) + \left(1 - p(k+1)\right)J_{k+1}^*(\overline{F}), \qquad \text{for } k = 0, \dots, N-2$$

Bertsekas Reinforcement Learning

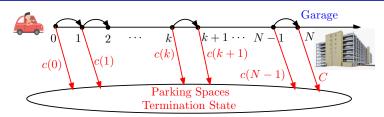
24 / 27

More Complex Parking Problems



- Bidirectional parking: We can go back to parking spots we have visited at a cost
- More complicated parking lot topologies
- Multiagent versions: Multiple drivers/autonomous vehicles, "searchers", etc
- "Relatively easy" cases: The status of already seen spots stays unchanged.

Imperfect State Information Problems



- A more complex type of parking example, where taken or free parking spots may free up or get taken, respectively, at the next time step with some probability
- The free/taken state of the spots is "estimated" in a "probabilistic sense" based on the observations (the free/taken status of the spots visited ... when visited)
- What should the "state" be? It should summarize all the info needed for the purpose of future optimization
- First candidate for state: The set of all observations so far. Another candidate: The "belief state", i.e., the conditional probabilities of the free/taken status of all the spots: $p(0), p(1), \ldots, p(N-1)$
- Generally, partial observation problems (POMDP) can be "solved" by DP with state being the belief state: $P(x_k \mid \text{set of observations up to time } k)$

About the Next Lecture

We will cover:

- General principles of approximation in value and policy space
- Brief discussion of the problem approximation approach
- Introduction to rollout

CHAPTER 2 OF THE CLASS NOTES POSTED PLEASE READ AS MUCH OF SECTIONS 2.1, 2.2 AS YOU CAN

1ST HOMEWORK (DUE IN 2 WEEKS) TO BE ANNOUNCED SHORTLY

27 / 27