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AlphaGo (2016) and AlphaZero (2017)

AlphaZero (Google-Deep Mind)

Plays different!

Learned from scratch ... with 4 hours of training!

Plays much better than all chess programs

Same algorithm learned multiple games (Go, Shogi)

AlphaZero is not just playing better, it has discovered a new way to play!

With a methodology closely related to the special RL topics of this course
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Evolution of Approximate DP/RL

Decision/
Control/DP

Principle of 
Optimality

Markov Decision 
Problems

POMDP
 

Policy Iteration
Value Iteration

AI/RL
Learning through 
Data/Experience

Simulation,
Model-Free Methods

 
Feature-Based 

Representations

A*/Games/
Heuristics

Complementary 
Ideas

Late 80s-Early 90s

Historical highlights
Exact DP, optimal control (Bellman, Shannon, and others 1950s ...)

AI/RL and Decision/Control/DP ideas meet (late 80s-early 90s)

First major successes: Backgammon programs (Tesauro, 1992, 1996)

Algorithmic progress, analysis, applications, first books (mid 90s ...)

Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)

AlphaGo and Alphazero (DeepMind, 2016, 2017)
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Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
Deterministic <—-> Stochastic

Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces

One decision maker <—-> Two player games

... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
Approximation (use neural nets and other architectures to reduce dimension)

Simulation (use a computer model in place of a math model)

State of the art:
Broadly applicable methodology: Can address a very broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

There are no methods that are guaranteed to work for all or even most problems

There are enough methods to try with a reasonable chance of success for most
types of optimization problems

Role of the theory: Guide the art, delineate the sound ideas
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A Key Idea: Sequential Decisions w/ Approximation in Value Space

......

Current 
State

Next 
StateDecision

Cost
Decisions/Costs

Current Stage Future Stages

Exact DP: Making optimal decisions in stages (deterministic state transitions)
At current state, apply decision that minimizes

Current Stage Cost + J∗(Next State)

where J∗(Next State) is the optimal future cost, starting from the next state.

This defines an optimal policy (an optimal control to apply at each state and stage)

Approximate DP: Use approximate cost J̃ instead of J∗

At current state, apply decision that minimizes (perhaps approximately)

Current Stage Cost + J̃(Next State)

This defines a suboptimal policy
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Major Approaches/Ideas to Compute the Approximate Cost Function J̃

Problem approximation

Use as J̃ the optimal cost function of a related problem (computed by exact DP)

Rollout and model predictive control

Use as J̃ the cost function of some policy (computed somehow, perhaps according to
some simplified optimization process)

Use of neural networks and other feature-based architectures
They serve as function approximators

Use of simulation to generate data to “train" the architectures
Approximation architectures involve parameters that are “optimized" using data

Policy iteration/self-learning, repeated policy changes
Multiple policies are sequentially generated; each is used to provide the data to train
the next
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Aims and References of this Course

Purpose of this course
To explore the state of the art of approximate DP/RL at a graduate level

To explore in some depth some special research topics (rollout, approximate
policy iteration)

To provide the opportunity for you to explore research in the area

Main references:
Bertsekas, Reinforcement Learning and Optimal Control, Athena Scientific, 2019

Bertsekas: Class notes based on the above, and focused on our special RL
topics. Slides and videolectures from the 2019 ASU offering, and “Ten Key Ideas
..." overview lecture; check my web site

Selected papers on AlphaGo, AlphaZero, and others

Supplementary references
Exact DP: Bertsekas, Dynamic Programming and Optimal Control, Vol. I (2017),
Vol. II (2012) (also contains approximate DP material)

Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996

Sutton and Barto, 1998, Reinforcement Learning (new edition 2018, on-line)
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Terminology in RL/AI and DP/Control

RL uses Max/Value, DP uses Min/Cost
Reward of a stage = (Opposite of) Cost of a stage.

State value = (Opposite of) State cost.

Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
Agent = Decision maker or controller.

Action = Decision or control.

Environment = Dynamic system.

Methods terminology
Learning = Solving a DP-related problem using simulation.

Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.

Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.
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......
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System
xk+1 = fk (xk , uk ), k = 0, 1, . . . ,N − 1

where xk : State, uk : Control chosen from some set Uk (xk )

Cost function:

gN(xN) +
N−1∑
k=0

gk (xk , uk )

For given initial state x0, minimize over control sequences {u0, . . . , uN−1}

J(x0; u0, . . . , uN−1) = gN(xN) +
N−1∑
k=0

gk (xk , uk )

Optimal cost function J∗(x0) = min uk∈Uk (xk )
k=0,...,N−1

J(x0; u0, . . . , uN−1)
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Principle of Optimality: A Very Simple Idea
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Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)
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Set of States u = (u1, . . . , uN ) Current m-Solution (ũ1, . . . , ũm)
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Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)
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Principle of Optimality
Let {u∗0 , . . . , u∗N−1} be an optimal control sequence with corresponding state sequence
{x∗1 , . . . , x∗N}. Consider the tail subproblem that starts at x∗k at time k and minimizes
over {uk , . . . , uN−1} the “cost-to-go” from k to N,

gk (x∗k , uk ) +
N−1∑

m=k+1

gm(xm, um) + gN(xN).

Then the tail optimal control sequence {u∗k , . . . , u∗N−1} is optimal for the tail subproblem.

THE TAIL OF AN OPTIMAL SEQUENCE IS OPTIMAL FOR THE TAIL SUBPROBLEM
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DP Algorithm: Solves All Tail Subproblems Using the Principle of
Optimality

Idea of the DP algorithm
Solve all the tail subproblems of a given time length using the solution of all the tail
subproblems of shorter time length

By the principle of optimality: To solve the tail subproblem that starts at xk

Consider every possible uk and solve the tail subproblem that starts at next state
xk+1 = fk (xk , uk ). This gives the “cost of uk "

Optimize over all possible uk

DP Algorithm: Produces the optimal costs J∗
k (xk ) of the xk -tail subproblems

Start with
J∗N(xN) = gN(xN), for all xN ,

and for k = 0, . . . ,N − 1, let

J∗k (xk ) = min
uk∈Uk (xk )

[
gk (xk , uk ) + J∗k+1

(
fk (xk , uk )

)]
, for all xk .

The optimal cost J∗(x0) is obtained at the last step: J0(x0) = J∗(x0).
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Construction of Optimal Control Sequence {u∗
0, . . . ,u

∗
N−1}

Start with
u∗0 ∈ arg min

u0∈U0(x0)

[
g0(x0, u0) + J∗1

(
f0(x0, u0)

)]
,

and
x∗1 = f0(x0, u∗0 ).

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set

u∗k ∈ arg min
uk∈Uk (x∗k )

[
gk (x∗k , uk ) + J∗k+1

(
fk (x∗k , uk )

)]
, x∗k+1 = fk (x∗k , u

∗
k ).

Approximation in Value Space - Use Some J̃k in Place of J∗
k

Start with
ũ0 ∈ arg min

u0∈U0(x0)

[
g0(x0, u0) + J̃1

(
f0(x0, u0)

)]
,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . ,N − 1, set

ũk ∈ arg min
uk∈Uk (x̃k )

[
gk (x̃k , uk ) + J̃k+1

(
fk (x̃k , uk )

)]
, x̃k+1 = fk (x̃k , ũk ).
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Extensions

Stochastic finite horizon problems
The next state xk+1 is also affected by a random parameter (in addition to xk and uk )

Infinite horizon problems
The exact DP theory is mathematically more complex

Stochastic partial state information problems
Very hard to solve even approximately ... but offer great promise for applications

Minimax/game problems
The exact DP theory is substantially more complex ... but the most spectacular
successes of RL involve games
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Course Aims and Requirements

Our principal aim:
To get you to think about research in RL, and about how RL may apply to your current
research interests

Requirements:
Pass-Fail

Homework (50%): A total of 2-3

Research-oriented term paper (50%). A choice of:
I A mini-research project. You may work in teams of 1-3 persons. You are strongly

encouraged to at least try. Selected projects will be presented to the class at the end of
the term. I am available to help.

I A read-and-report term paper based on 2-3 research publications (chosen by you in
consultation with me)

Our TA: Shushmita Bhattacharya, sbhatt55@asu.edu
Office hours: Tuesdays or Thursdays 4-5pm, or by appointment
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Syllabus (Approximate)

Lecture 1 (this lecture): Introduction, finite horizon deterministic exact DP

Lecture 2: Stochastic exact DP, examples of problem formulation

Lecture 3: Approximation in value space, introduction to rollout (start from a policy,
get a better policy)

Lecture 4: Rollout, Monte Carlo tree search, model predictive control

Lecture 5: Rollout with an expert, multiagent rollout, constrained rollout

Lecture 6: Applications of rollout in large-scale discrete optimization and other
areas

Lecture 7: Parametric approximation architectures, feature-based architectures,
(deep) neural nets, training with incremental/stochastic gradient methods

Lecture 8: Value and policy networks; use in approximate DP; perpetual rollout

Lecture 9: AlphaGo and AlphaZero

Lecture 10: Infinite horizon and policy iteration

Lecture 11: Distributed asynchronous policy iteration

Lecture 12: Partitioned architectures and distributed asynchronous policy iteration

Lecture 13: Project presentations
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About Machine Learning and Math

Math requirements for this course are modest
Calculus, elementary probability, minimal use of vector-matrix algebra. Our objective is
to use math to the extent needed to develop insight into the mechanism of various
methods, and to be able to start research.

However a math framework is critically important
Human insight can only develop within some structure of human thought ... math
reasoning is most suitable for this purpose

On machine learning (from NY Times Article, Dec. 2018)
“What is frustrating about machine learning is that the algorithms can’t articulate what
they’re thinking. We don’t know why they work, so we don’t know if they can be trusted
... As human beings, we want more than answers. We want insight. This is going to be
a source of tension in our interactions with computers from now on."
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About the Next Lecture

We will cover:
Stochastic DP algorithm

DP algorithm for Q-factors

Examples of discrete deterministic DP problems

Partial information problems

PLEASE READ AS MUCH OF CHAPTER 1 OF CLASS NOTES AS YOU CAN

MAKE SURE YOUR NAME/EMAIL IS LISTED IN THE APPROPRIATE SIGNUP SHEET
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