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CHAPTER 3 SOLUTIONS

3.1

A customer that carries out the order (eats in the restaurant) stays for 5 mins (25 mins).
Therefore the average customer time in the system is T = 0.5*5 + 0.5*25 = 15. By Little's
Theorem the average number in the system is N = A*T =5*15=75.

3.2

We represent the system as shown in the figure. The number of fl1es in the entire system is
exactly one at all times. The average number in node i is AiRi and the average number in
node 3 is'IolPl + A2P2. Therefore the throughput pairs (AhA2) must satisfy (in addition to
nonnegativity) the constraint

If the system were slightly different and queueing were allowed at node 3, while
nodes 1 and 2 could transmit at will, a different analysis would apply. The transmission
bottleneck for the files of node 1 implies that

1
A S-

} R}

Similarly for node 2 we get that

Node 3 can work on only one file at a time. Ifwe look at the flle receiving service at node 3
as a system and let N be the average number receiving service at node 3, we conclude from
Little's theorem that



and N S 1

This implies that

AIPI + A
2
P2 S 1

3.3

Working
Machines ...-.

R

Machines
.Waiting
Repair

Q

Repairmen

We represent the system as shown in the figure. In particular, once a machine breaks
down, it goes into repair if a repairperson is available at the time, and otherwise waits in a
queue for a repaiIperson to become free. Note that ifm=1 this system is identical to the one
of Example 3.7.

Let Abe the throughput of the system and let Q be the average time a broken down
machine waits for a repairperson to become free. Applying Little's theorem to the entire
system, we obtain

A(R+Q+P) =N

from which

A(R+P) S N

(1)

(2)

Since the number of machines waiting repair can be at most (N-m), the average waiting
time AQ is at most the average time to repair (N-m) machines, which is (N-m)P. Thus,
from Eq. (1) we obtain

A(R+ (N - m)P + P) ~ N

Applying Little's theorem to the repairpersons, we obtain

APSm

(3)

(4)



The relations (2)-(4) give the following bounds for the throughput A

N ..... '1 < . {m N }
R + (N - m +1)P ~ I\. - nun p 'R + P (5)

(1)

Note that these bounds generalize the ones obtained n Example 3.7 (see Eq. (3.9».
By using the equation T=N/A. for the average time between repairs, we obtain from Eq. (5)

min{NP/m,R + P} S; T S; R + (N - m +1)P

3.4

IfAis the throughput of the system, Little's theorem gives N = AT, so from the relation T=
a + J3N2 we obtain T = a +J3A.2T2 or

A=VTrr;

This relation betweeen A. ands T is plotted below.

~=2a T

(2)

The maximum value of A. is attained for the value 1"" for which the derivative of (T - a)/J3T2
is zero (or 1/(131'2) - 2(T - a)/(J3T3) = 0). This yields 1"" = 2a and from Eq. (1), the
corresponding maximal throughput value

A* =_1_
vap

(b) When A. < A.", there are two corresponding values of T: a low value corresponding to an
uncongested system where N is relatively low, and a high value corresponding to a
congested system where N is relatively high. This assumes that the system reaches a
steady-state. However, it can be argued that when the system is congested a small increase
in the number of cars in the system due to statistical fluctuations will cause an increase in
the time in the system, which will tend to decrease the rate of departure ofcars from the
system. This will cause a further increase in the number in the system and a funher increase
in the time in the system, etc. In other words, when we are operating on the right side of



the curve of the figure, there is a tendency for instability in the system, whereby a steady
state is never reached: the system tends to drift towards a traffic jam where the car depature
rat~ from the system tends towards zero and the time a car spends in the system tends
towards infinity. Phenomena of this type are analyzed in the context of the Aloha
multiaccess system in Chapter 4.

3.5

The expected time in question equals

E{Time} = (5 + E{stay of 2nd student})*P{ 1st stays less or equal to 5 minutes}
+ (E(stayof 1st Istay of 1st ~ 5} + E{stay of2nd})* .

P{1st stays more than 5 minutes}.

We have E(stay of 2nd student} = 30, and, using the memoryless property of the
exponential distribution,

E{stay of 1st I stay of lst ~ 5} = 5 + E(stay of 1st} = 35.

Also

P{1st student stays less or equal to 5 minutes} = 1 - e-S/30
P{1st student stays more than 5 minutes}= e-S/3o.

By substitution we obtain

E{Time} = (5 + 30)*(1 - e-S/3o) + (35 + 30)* e-SI3O =35 + 30*e-SI30 = 60.394.

3.6

(a) The probability that the person will be the last to leave is 1/4 because the exponential
distribution is memoryless, and all customers have identical service time distribution. In
particular, at the instant the customer enters service, the remaining service time ofeach of
the other three customers served has the same distribution as the service time of the
customer.

(b) The average time in the bank is 1 (the average customer service time) plus the expected
time for the first customer to finish service. The latter time is 1/4 since the departure
process is statistically identical to that of a single server facility with 4 times larger service
rate. More precisely we have

P {no customer departs in the next t mins} =P{I st does not depart in next t mins}
* P{2nd does not depart in next t mins}
* P{ 3rd does not depart in next t mins}
* P{4th does not depart in next t mins}

= (e-t)4 = e-4t.

Therefore

P(the first departure occurs within the nextt mins} = I - e-4t,



and the expected time to the next depature is 1/4. So the answer is 5/4 minutes.

(c) The answer will not change because the situation at the instant when the customer
begins service will be the same under the conditions for (a) and the conditions for (c).

3.7

In the statistical multiplexing case the packets of at most one of the streams will wait upon
arrival for a packet of the other stream to finish transmission. Let W be the waiting time ,
and note that 0 ~ W ~ T/2. We have that one half of the packets have system time T/2 + W
and waiting time in queue W. Therefore

Average System Time = (l/2)T/2 + (1/2)(T/2+W) = (T+W)/2
Average Waiting Time in Queue =W/2
Variance of Waiting Time = (1/2)(W/2)4(l/2)(W/2)2 = W2/4.

So the average system time is between T/2 and 3T/4 and the variance of waiting time is
between 0 and T2/16.

3.8

Packet Arrivals

~ 1 J Time

I~ •
r 1

r Z

Fix a packet. Let rl and r2 be the interarrival times between a packet and its immediate
predecessor, and successor respectively as shown in the figure above. Let Xl and X2 be the
lengths of the predecessor packet, and of the packet itself respectively. We have:

P{No collision wi predecessor or successor) = P{rl > Xl' r2 > X2}
= P{rl > XdP{r2 > X2}·

P{No collision with any other packet} = PI P{r2 > X2}

where

PI =P{No collision with all preceding packets}.

(a) For fixed packet lengths (= 20 msec)

P{rl > Xtl = P{r2 > X2} =e-I..*20 =e-O.OI*20 =e-O.2

PI = P{rl ~tl·

Therefore the two probabilities of collision are both equal to e-O.4 = 0.67.



(b) For X exponentially distributed packet length with mean 1/1J. we have

....

P{rl > Xl} = P{rz >~} =f P{rl > X I Xl = X}p{XI = X}dX
o
....

=f e-AXJJe-JiXdX =....JL.
o A+Jl

Substituting A= 0.01 and IJ.= 0.05 we obtain P{rl > Xl} = P{rz > Xz}= 5/6, and

P{No collision w/ predecessor or successor} =(5/6)2 = 0.694.

Also PI is seen to be the steady-state probability of a customer finding an empty system in
the M/MIoo system with arrival and service rate Aand J.1 respectively. Therefore PI =e-AIJI. =
e~~.Therefare .

P{No collision with any other packet} = e~~5/6 =0.682.

3.9

(a) For each session the arrival rate is A= 150/60 = 2.5 packets/sec. When the line is
divided into 10 lines of capacity 5 Kbits/sec, the average packet transmission time is 1/1J.=
0.2 secs. The corresponding utilization factor is p =A/IJ. = 0.5. We have for each session
NQ = p2/(l- p) =05, N = p/(1- p) = I, and T =NIA. = 0.4 secs. For all sessions
collectively NQ and N must be multiplied by 10 to give NQ = 5 and N = 10.

When statistical multiplexing is used, all sessions are merged into a single session with 10
times larger A and J.1.; A= 25, 1I1J. = 0.02. We obtain p = 0.5, NQ = 0.5, N = I, and T =
0.04 secs. Therefore NQt N, and T have been reduced by a factor of 10 over the TOM
case.

(b) For the sessions transmitting at 250 packets/min we have p = (250/60)*0.2 = 0.833
and we have NQ =(0.833)2/(1 - 0.833) =4.158, N =5, T = Nf).. = 5/(250/60) = 1.197 .
·secs. For the sessions transmitting at 50 packetslmiJi we have p = (50/60)*0.2 =0.166, NQ
= 0.033, N = 0.199, T = 0.199/(50/60) =0.239.

The corresponding averages over all sessions are NQ = 5*(4.158 + 0.033) = 21, N =5*(5
+0.199) =26, T = Nf).. = N/(5*AI+ 5*A.z) =26/(5*(250/60)+5*(50/60» =1.038 sees.

When statistical multiplexing is used the arrival rate of the combined session is 5*(250+
50) =1500 packets/sec and the same values for NQ, N, and T as in (a) are obtained.

3.10



(a) Let In be the time of the nth arrival, and'tn=ln+l -In. We have for s ~ 0

P{tn>s} =P{A(ln+s)-A(ln)=O} =e-AS

(by the Poisson distribution of arrivals in an interval). So

P{tn S s} = 1 - e-AS

which is (3.11).

To show that 'tl' 't2, ... are independent, note that (using the independence of the numbers
of arrivals in disjoint interVals)

P{ 't2 > s J 'tl ='t} =P{O arrivals in ('t, 't+s] I 'tl ='t)
=P{O arrivals in ('t, 't+s]) = eoAS =P{'t2 > s}

Therefore 't2 and 'tl are independent.

To verify (3.12), we observe that

P{A(t +~) - A(t) = O} = e-~

so (3.12) will be shown if

lim~o (e-~- 1+ Aa)/8 = 0

Indeed, using L'HospitaI's rule we have

lim~-+O (e-~ - 1 + A~)/~ =lim~-+o (_A.e-A8 + A) =0

To verify (3.13) we note that

P(A(t + ~) - A(t) = I} = A.&-~

so (3.13) will be shown if

limHO (A~e-~- A~)/~ =0

This is equivalent to

which is clearly true.

To verify (3.14) we note that

P{A(t +~) - A(t) ~ 2} =1 - P{A(t +~) - A(t) =O} - P{A(t +~) - A(t) =I}



= I - (l - A.5 + 0(5»-(A.5 + 0(5»=0(5)

(b) Let Nl' N2 be the number of arrivals in two disjoint interVals of lengths 't1 and~. Then

P{N1+N2 = n} = ~:#{Nl = k, N2 = n-k} = »'t:#{Nl = k}P{N2 = n-k}
= ~-A:tl [(A.'tl)k/ld]e-).'t2[(A.~)(n-k)/(n-k)!]

= e-A{'tl + 'E2)D!t=o[(A.'tl)k(A.'t2)(n-k)]/[k!(n-k)!]

= e-A{'tl + 't2)[(A.'tl + A't2)n/n!]

(The identity

~[akb<n-k)]/(k!(n-k)!]=(a + b)l1/n!

can be shown by induction.)

(c) The number of arrivals of the combined process in disjoint interVals is
clearly independent, so we need to show that the number of arrivals in an
interval is Poisson distributed, i.e.

P(A1(t + 't) + ... + At(t + 't) - Al(l) - .•. - At(t) =n}
= e-().l + ... + Ak)'t[(AI + ... + At)'t]n/n!

For simplicity let k=2; a similar proof applies for k > 2. Then

P(A1(t + 't) + A2(t + 't) - AI(t) - A2(t) = n}
= DtnJ{A1(t + 't) - AI(t) =m, A2(t + 't) - A2(t) =n-m}
=Dt~{AI(t + 't) - AI(t) = m}P{A2(t + 't) - A2(t) = n-m}

and the calculation continues as in part (b). Also

P(l arrival from Al prior to t 11 occured}
= P{l arrival from AI' 0 from A2 }/P(l occured)
= (AIte-A.lte-A2t)/(A.te-At) =AlA.

(d) Let t be the time of arrival. We have

pet < s I 1 arrival occured} = P{ t < S, 1 arrival occured}/P{ 1arrival occured}
=P{ 1 arrival occured in [tl' s), 0 arrivals occured in [s, t:zl }IP{ 1 arrival occured)
=(A(s - tl)e-A.(s - t1>e-A.(s - t2»/ (A(t2 - tl)e-A.<t2 - tl» = (s - tl)/(t2 - tl)

This shows that the arrival time t is uniformly distributed in [tl' t21..

3.11



(a) Let us call the two transmission lines 1 and 2, and let Nl(t) and N2(t) denote the
respective numbers of packet arrivals in the interval [O,t]. Let also N(t) = Nl(t) + N2(t). We
calculate the joint probability P{Nl(t) = n, N2(t) = m}. To do this we first condition on N(t)
to obtain

Since

P{Nl(t) =n, N2(t) =m I N(t) =k} =0

we obtain

when k;t:n+m

P{Nl(t) = n, N2(t) =m} =P{Nl(t) =n, N2(t) =m I N(t) =n + m}P{N(t) =n + m}
=P{Nl(t) = n, N2(t) =m I N(t) =n + m}e-At[(A.t)n+m/(n + m)!]

However, given that n+m arrivals occurred, since each arrival has probability p of being a
line 1 arrival and probability I-p of being a line 2 arrival, it follows that the probability that
n of them will be line 1 and m of them will be line 2 arrivals is the binomial probability

Thus

" n m _i..tCAt)t*m
P{N1(t) =n, N2(t) = m} =(n+m p (1- p) e ( )'n+m.

n ,

Hence

-i..l(l-p) (At(l_p»m
e ,m.

(1)

00

P{Nt(t) =n} =LP{Nt(t) = n, N2(t) =m}
m=O

00

_Alp o..tp)n~ _A.l(l_p)(At(1-p»m
=e -()I L..Je ,n . ffi.

m=O

That is, (Nl(t), t ~ O} is a Poisson process having rate Ap. Similarly we argue that (N2(t),
t ~ O} is a Poisson process having rate 1..(1 - p). FiniIly from Eq. (1) it follows that the
two processes are independent since the joint distribution factors into the marginal
distributions.



(b) Let A, A}, and A2 be as in the hint. Let I be an interarrival interVal of A2 and consider
the number of arrivals of A} that lie in I. The probability that this number is n is the
probability ofn successive arrivals of A} followed by an arrival of A2, which is pD(l - p).
This is also the probability that a customer finds upon arrival n other customers waiting in
an MIMII queue. The service time of each of these customers is exponentially distributed
with parameter J.!., just like the intemrival times of process A. Therefore the waiting time of
the customer in the MIMII system has the same distribution as the interanival time of
process A2. Since by part (a), the process A2 is Poisson with rate J.!. - A., it follows that the
waiting time of the customer in the MIMII system is exponentially distributed with
parameter J.1. - :l

3.12

For any scalar s we have using also the independence of't} and 't2

P(min{'t} ,'t2} ~ s) =P('t} ~ s, 't2 ~ s) =P('t} ~ s) P( 't2 ~ s)

Therefore the distribution of min{'t},'t2J is exponential with mean 1/(A} + 1..2).

By viewing 'tl and 't2 as the arrival times of the first arrivals from two independent
Poisson processes fwith rates A} and 1..2, we see that the equation P('t} < 'tV =1..}/01.} + 1..2)
follows from Problem 3.IO(c).

Consider the MIMII queue and the amount of time spent in a state k>O between
transition into the state and transition out of the state. This time is min{'tJ,'t2} , where 't} is
the time between entry to the state k and the next customer arrival and 't2 is the time
between entry to the state k and the next service completion. Because of the memmyless
property of the exponential distribution, 't} and 't2 are exponentially distributed with means
If)., and 1/J.1., respectively. It follows using the fact shown above that the time between
entty and exit from stae k is exponentially distributed with mean 1/Q..+J.1.). The probability
that the transition will be from k to k+1 is AJ(A.+J,l) and that the transition will be from k to
k-l is J.L!(A.+J,l). For state 0 the amount of time spent is exponentially distributed with mean
If)., and the probability of a transition to state 1 is 1. Because of this it can be seen that
MIMII queue can be described as a continuous Markov chain with the given properties.

3.13

(a) Consider a Markov chain with state

n =Number of people waiting + number ofempty taxi positions

Then the state goes from n to n+I each time a person arrives and goes from Ii to n-I (if n ~
1) when a taxi arrives. Thus the system behaves like an MIMII queue with arrival rate 1 per
min and departure rate 2 per min. Therefore the occupancy distribution is



Pn=(I-p)/fil

where p=I/2. State D, for 0 S D S 4 corresponds to 5, 4, 3, 2, 1 taxis waiting while D > 4
corresponds to no taxi waiting. Therefore

P (5 taxis waiting) = 1/2
P(4 taxis waiting) =1/4
P (3 taxis waiting) =118
P{2 taxis waiting} = 1/16
P(I taxi waiting) = 1/32

and P{no taxi waiting) is obtained by subtracting the sum of the probabilities above from
unity. This gives P(no taxi waiting} =1/32.

(b) See the hint

(c) This system corresponds to taxis aniving periodically instead of arriving according to a
Poisson process. It is the slotted MID/1 system analyzed in Section 6.3.

3.14

(a) The average message transmission time is 1/J.1 =UC so the service rate is J.1 =CIL.
When the number of packets in the system is larger than K, the anival rate is A}. We must

... ".. have

Os A} < IJ.
OS~

in order for the anival rate at node A to be less than the service rate for large state values.
For these values, therefore, the average number of packets in the system will stay bounded.

(b) The corresponding Markov chain is as shown in the figme below. The steady-state
probabilities satisfy

~+A2 ~+A2 ~+A2 ~ ~

®;.~.0:

J1 J.1 J1 J.1 J.1 J.1

for n Sk
for n>k

where P =(AI + "-2)/J1, PI =AI/J.1. We have

1:-n=OPn= 1

or



from which we obtain after some calculation

PO= [(1- p)(1- PI)]I[l- PI - pk(P-PI)]

and

PO =(1 - Pl)/[l + k(l - PI)]

For packets of source 1 the average time in A is

where

forp <1

forp = 1

N=~-n=onPn

is the average number in the system upon arrival. The average number in A from source 1
is

For packets of source 2 the average time in A is

T2 = (1/J.1.)(1+ N')

where

k-l

L nPn
N' = =n=;;;..:O:...-_

k-l

LPn
n=O

is the average number in the system found by an accepted packet of source 2. To find the
average number in the system from source 2 we must find the anival rate into node A of
packets from source 2. This is

A'2 = "-2P{arriving packet from source 2 is accepted} = "-2~-ln=O Pn

and the average number from source 2 in A is

3.15



The transition diagram of the corresponding Markov chain is shown in the figure. We have
introduced states 1',2', ..., (k-l)' corresponding to situations where there are customers
in the system waiting for service to begin again after the system has emptied out. Using
global balance equations between the set of states (I ',2', ... ,i') and all other states, for i'
=1', ... , (k-l)', we obtain APO =API' =AP2' = ... =AP(k-I)" so

Po =PI' =1'2' =... =P(k-l)'

Also by using global balance equations we have

J.1PI = APO
JlP2 = A(PI + PI') = A(PI + Po)

JlPk =A.<Pk-1 + P(k-l)') =A<Pk-1 + Po)
JlPi+1 =APi i ~ k.

By denoting p =A./Jl we obtain

Pi =pl+i-k(l + P+ ... +pk-I)PO

1 SiSk

i > k.

Substituting these expressions in the equation PI' + ... + P(k-l)' + Po + PI + ... =1 we
obtain Po

After some calculation this gives Po =(1 - p)/k (An alternative way to verify this fannula is
to observe that the fraction of time the server is busy is equal to P by Little's theorem). .
Therefore, the fraction of time the server is idle is (1 - p). When this is divided among the k



equiprobable states 0,1', ..., (k-l)' we obtain Po = (l - p)/k. The average number in the
system is

- -
N =PI' + 21>2' + ... + (k - I)P(k-l)' + L,wi =Pok(k; 1) + ~)Pi

i=O i:::O

where the probabilities Pi are given in the equations above. After some calculation this
yields

N =(k-I)/2 + p/(I - p).

The average time in the system is (by Little's Theorem) T = NIA.

3.16

JLI

The figure shows the Markov chain corresponding to the given system. The local ba1aDce
equation for it can be written down as :

but,



3.17

The discrete time version of the MIMI1 system can be characterized by the same Markov
chain as the continuous time MIMII system and hence will have the same occupancy
distribution.

3.18

1 1 1 1

2 2 2 2

3.19

1
PI =IPo

1
Pn =IPn-1 for 1~S4

Solving the above equations we get,

24-n

Pn =31 for 0~S4

4 26
N= Lnpn =31"

n=O

Pea customer arrives but has to leave) = 1/31

Hence .the arrival rate of passengers who join the queue =

(l-P4) A. = .3Q. per minute =A. (say)
31 a

26/31 13 .
T =N/\ = 30/31 =15rnmutes



We have here an M/M/m/m system where m is the number of circuits provided by the
company. Therefore we must find the smallest m for which Pm < 0.01 where Pm is given
by the Erlang B formula

We have A. = 30 and J.l = 1/3, so A./J.l = 30·3 =90. By substitution in the equation above we
can calculate the required value of m

3.20

We view this as an M/MIm problem We have

A=O.5, E(X) = 1/J.l = 3, m=? ~ that W<0.5

We know that the utilization factor has to be less than I or m has to be greater than or equal
to 2. By the M/MIn results we have

..A..p
W= mJ.l Q = PQ

A. (l....A..) mJ.l-A.
IDJ.1

Po (&)m
where P

Q
= u

m! (l_...A-)

IDJ.1

and
[

m-l QJJ.lt
Po = 2, n'n=O .

-1

QJJl)m 1
+ m! (1- A./Il)]

As can be seen from the expressions above m should be at most 5 because at m=5 , W is
less than 0.5 because PQ is less than 1.

The following C program calculates the optimum m.

double PO(lambda,mu,m) (
Imho = lambda/mu;
rho =mrho/m;
for(n=O; n<m; n++)

tempI = pow(mrho,n)/ fact(n);



temp2 = pow(mrho,m)/(fact(m)*(I-rho»;
retum(lI( tempI + temp2 »; 1* this returns Po *1

}

int fact(n) {
if (n==O) return (1);
else

retum(n* fact (n-1»;
}

double W(lambda,mu,m){
PQ =PO(lambda,mu,m) * pow(mrho,m) 1

(fact(m) * (I-rho»;
retum(pQ/(m *mu - lambda»;
} 1* this returns W for a given m */

mainO {
lambda = 0.5; mu = 0.333; previous_W = 100.0;
for(m=2; m<=5; m++)

if «temp = W(lambda,mu,m» < Previous_W)
previous_W = temp;

else
{ print(m-1);
break;

}
}

3.21

We have Pn = pDpo where p = AJJl. Using the relation

m

L Pn =1
n=O

we obtain

PO= 1
m

Lpt
n=O

"Thus

= 1- P
1_prn+l

_ ptl(l- p)
Pn- 1_ptD+l'

3.22

OSnSm

(a) When all the courts are busy, the expected time between two departures is 40/5 = 8
minutes. H a pair sees k pairs waiting in the queue, there must be exactly k+1 departures
from the system before they get a court. Since all the courts would be busy during this
whole time, the average waing time required"before k+1 departures is 8(k+1) minutes.



(b) Let X be the expected waiting time given that the coons are found busy. We have

A. =1/10, ~ = 1/40, p =A.I(5~) =0.8

and by the M!MIm results

W= PPQ
1..(1 - p}

Since W =XPQ, we obtain X =W/PQ =pl[A(l - p)] = 40 min.

3.23

Let

Pm = P(the 1st m servers are busy}

as given by the Erlang B formula. Denote

rm =Arrival rate to servers (m+I) and above
Am = Arrival rate to server m.

We have

rm=PmA
Am = rm-l - rm=(Pm-l - Pm}A.·

The fraction of time server m is busy is

3.24

We will show that the system is described by a Markov chain that is identical to the M/IM/l
chain. For small 0 we have

P(k arrivals andj departures} =O(O} if k+j~2

P{O arrivals and 1 departure I starting state = i ~ i}

= P {O arrivals Istarting state i ~ I} • P{1·departure I starting state i ~ I}



We have

P{ 0 arrivals Istarting state i ~ I} =prO arrivals} =1 - A~ + O{~).

The probability P{ 1 departure Istarting state i > I} is obtained from the binomial

distribution or sum of i Bernoulli trials, each with a probability of success equal to (IJ/i) ~

+ O{~). We need the probability of one success, which is

( ~ ) (1- (JJIi) ~+ O(~»)i-l (QJIi) ~ + O(~»

Therefore

. P{ 0 arrivals and 1depanure I starting state =i ~ I}

=( ~ )(1- (JJIi) ~ + O(~»i-l ((JJIi) ~ + O{~». (1-~ + O{~» =!J.S + O(~
Similarly

P{ 1 arrival and 0 departure I starting state = i}
=P{l arrival} • prO departure Istarting state =i}

=(~+ O(~» • [ ( ~ ) (1 - (IJ/i) ~ + O(~»i] =~ + O(~)

Thus the transition rates are the same as for the MIMIl system.

3.25

Let nl be the number of radio-to-radio calls and n2 be the number of radio-to-nonradio calls

which have not finished yet Then we have the following Markov chain:



"
all states such that

2"1 + "2 ~ m

PI_ Al
fJ.

P2- A2
fJ.

The occupancy distribution p(nhn2) is of the form

and 0 otherwise (it is easy to check that this fonnula satisfies the global balance equations).

To calculate G note that

L LP(nl,n:z} =1 :::) G = L p71(l-p 1» i 2 (1-p 2) =
{(nl.n~12n r+n~}. {(nlon~2n~~}



lmJ- +1 m+1
= I-p 2 - (l-p l)P

1 2

l_(~)l~J+1

l-~
P;

Let

~G=

m m+2 m/2+1
I_p r1 -(l...('\ 'h P2 - PI if m even

I ~ 1~2 2
P2 -P 1

m+1
m+1 p~+l _ p-2-

I-p 2 - (l-p l)P~ 1 if m odd
1 P;-P1

Then

PI = blocking probability of radio-to-radio calls

P2 = blocking probability of radio-to-nonradio calls

P2 = 2, p(n1,nz)
2n]-tnz=rn

But

nr1:S 2n]+n~m 2n]+n2= m-l

and

liJ liJ
P2 =LP(nI' m-2n 1) = I, P~U-P 1)p;-2n U _p 2)/G =

D~ D~



3.26

Defme the state to be the number of operational machines. This gives a Markov chain,
which is the same as in an M/M/1/m queue with arrival rate Aand service rate J.1. The
required probability is simply Po for such a queue.

3.27

Assume J.11 > Jl2 .

We have the following Markov chain:

vertical cut

- --
__ i~n~~~

A A 1

~ ro
Jl 1+Jlz l

I....
I

Let state 1 represent 1 customer in the system being served by server 1
Let state I' represent 1 customer in the system being served by server 2

i) Flow across a vertical cut

Pi = Jll + J.12 Pi-l

Therefore

for i ~ 2



ii) Flow in and out of state l'

(A + 1l2) PI' = P2 III

Therefore

iii) Flow across horizontal cut

Therefore

PI =~ (P2 + P2 III ) = P2 I:!l (1 + III )
I\, \ A + 112 A A + 112

iv) Flow in and out of state 0

PO A= 71:1 III + PI' 112

Therefore

PO =f P2 (IlI
A

Il2 (1 + fJ.I ) + fJ.l fJ.2)
I\, ~ A + 112 A+ 112

We have

from which

3.28

1 (1 + (1l2A») III
." +" +

I\, I\, + 112
III + 112

-1

(1+ (ilIA») 112 (1 + fJ.l)~
A A + 112 )



We have

E{r} =E{(tYi)} E{ E{ (tYirn}]= E{ns?+n(n-I)~}
=E{n}(s?- r) + E{n2}r

Since

E{n} = AlIl,

we obtain

E{n } = 0t+ o..IIl) = AIIl + (AIIl)

OF E{r} - F2= E{f2} - {AIIl)2r = (A4J.)(S?- r) + [(AIIl) + OJIl)2]r - {A/IJ.)2r
= OJIl)s?'

so finally

3.29

For each value of x, the average customer waiting time for each of the two types of
customers (x items or less, vs more than x) is obtained by the P-K formula for an MlGl1
system with anival rate and service time parameters depending on x. By computing the
overall customer waiting time for each x in the feasible range [1,40], we can numerically
compute the optimal value of x.

Here is a program to find x to minimize the average waiting time:

Lambda=l; PascT= 100000o; T=O; x=-l;
while (x<=40) do
if (T> PascT) do

begin
PascT=T;
x = x+1;
lambda1 = lambda * x/40;
E_service_time_l = (l+x)!2;
E_service_time_2 = {41+x)/2;
E_service_time_square1 = 0;
E_service_time_square2 = 0;
for i=l to x do

E_service_time_squarel =
E_service_time_square1+(i*i);



3.30

end;

for i=x+1 to 40 do
E_service_time_square2 =

E_service_time_square2+(i*i);
E_service_time_squarel =

E_service_time_squarel/x;
E_service_time_square2 =

E_service_time_square2/(40-x);
Tl = E_service_time_l +
(lambda*E_service_time_square1/(2.0*(1
lambdal *E_service_time_l»);
1'2 = E_service_time_2 +

(lambda*E_service_time_square2/(2.0*(I
lambda2*E_seIVice_time_2»);

T = (Tl *x + T2*(40-x»/40;

print(x);

From Little's Theorem (Example 1) we have that P{ the system is busy} = AE{X} .
Therefore P{the system is empty} = 1 - AE{X}.

The length of an idle period is the interanival time between two typical customer arrivals.
Therefore it has an exponential distribution with parameter A, and its average length is lfA.

Let B be the average length of a busy period and let I be the average length of an idle
period. By expressing the proportion of time the system is busy as B/(I + B) and also as
AE{X} we obtain

B = E{X}/(1 - AE{X}).

From this the expression 1/(1 - AE{X}) for the average number of customers served in a
busy period is evident.

3.31

The problem with the argument given is that more customers arrive while long-service
customers are served, so the average service time of a customer found in service by another
customer upon arrival is more than E{X} .

3.32

Following the hint we write for the ith packet



N.

U=R+ ~V..
1 1 L,Ui-J

j=l

where

U i : Unfinished work at the time of anival of the ith customer
~: Residual service time of the ith customer
N i : Number found in queue by the ith customer
".i: SeIVice time of the jth customer

Hence

Since Xj_j and Ni are independent

and by taking limit as i-+oo we obtain U = R + (l/J.1)NQ= R + OJJ.1)W = R + pW, so

W=(U -R)/p.

Now the result follows by noting that both U and R are independent of the order of
customer service (the unfinished work is independent of the order of customer service, and
the steady state mean residual time is also independent of the customer service since the
graphical argument of Fig. 3.16 does not depend on the order of customer service).

3.33

Consider the limited service gated system with zero packet length and reservation interVal
equal to a slOL We have

TroM = Waiting time in the gated system

For E{X2} = 0, E{V} = 1, ayl = 0, p =°we have from the gated system formula (3.77)

Waiting time in the gated system =(m + 2 - 2A)/(2(l - A.» =m/(2(1 - A.» +1

which is the fonnula for TTDM given by Eq. (3.59) .

3.34



(a) The system utilization is p, so the fraction of time the system transmits data is p.
Therefore the portion of time occupied by reservation intervals is 1 - p.

(b) If

p: Fraction of time a reservation interval is followed by an empty data interval

and M(t) is the number of reservation intervals up to time t, then the number of packets
transmitted up to time t is =(l - p)M(t). The time used for reservation intervals is =
M(t)E{V}, and for data intervals == (1- p)M(t)E{X}. Since the ratio of these times must be
(l - p)fp we obtain

(l - p)fp =(M(t)E{V})f«(1 - p)M(t)E{X}) =E{V}/«l - p)E{X})

or

1 - P = (pE{V})f«1 - p)E{X})

which using A= plE{X}, yields p = (1 - P - A.E{V})f(1 - p)

3.35

Consider a gated all-at-once version of the limited service reservation system. Here there
are m users, each with independent Poisson arrival rate A./J.l. Each user has a separate
queue, and is allowed to make a reservation for at most one packet in each reservation
interval. This packet is then transmitted in the subsequent data interval. The difference with
the limited service system of Section 3.5.2 is that here users share reservation and data
intervals.

Consider the ith packet arrival into the system and suppose that the user associated with
packet i is user j. We have as in Section 3.5.2

E{W.} =E{R.} +E{N.}/J.l+{l +E{Q.} -E{m.})E{V}
1 1 1 1 1

where Wj, ~, Nj, J.l, E{V} are as in Section 3.5.2, Qj is the number of packets in the queue
of user j found by packet i upon arrival, and mj is the number (0 or 1) of packets of user j
that will start transmission between the time of arrival of packet i and the end of the frame
in which packet i arrives. We have as in Section 3.5.2

R=lim. E{R.} +E{N.}/J.l+{l +E{Q.} -E{m.})E{V}
1-+00 1 1 1 1

N =lim· E{N·} =AW1-+00 1

Q= limj-+oo E{Q} = AW/m

so there remains to calculate~~{mj}.

There are two possibilities regarding the time ofarrival of packet i.



a) Packet i arrives dming a reservation interVal. This event, call it A, has steady
state probability (l-p)

PtA} = I-p.

Since the ratio of average data interVa11ength to average reservation interVa1length
is p/(l-p) we see that the average steady state length ofa data interVal is pE{V)/(l
p). Therefore the average steady state number ofpackets per user in a data interVal
is pE{V}/«I-p)mE{X}) =AE{V}/((l-p)m). This also equals the steady state value
ofE{mJ A) in view of the system symmeny with respect to users

lim. E{m.! A) = AElV) .
l-too 1 (1 - P)m

b) Packet i arrives dming a data interval. This event, call it B, has steady state
probability p

PCB) =p.

Denote

a = ~-too E(lDj I B),

~= liIDj-too E(lDj I B, the data interval of arrival ofpacket i contains k
packets}.

Assuming k > 0 packets are contained in the data interval ofanival, there is equal
probability 11k of arrival during the transmission of any one of these packets.
Therefore

k

~ =~ ! k - n =k(k - 1) =k - 1 .
~k m 2km m
n=1

Let P(k) be the unconditional steady-state probability that a nonempty data interval
contains k packets, and E(k)and E(k2 ) be the corresponding fU'St two moments.
Then we have using Bayes' rule

~-too P(The data interval of arrival of packet i contains k packets) = kP(k)IE(k).

Combining the preceding equations we have

_~ kP(k) _~ P(k)k(k - 1) _ E{k2
} _..!..

a - £.J E{k} ak - ~ 2E{k}m - 2mE{k} 2m'
k=l Ie=l



We have already shown as part of the analysis of case a) above that

E{k} =A.E{V}/(l - p)

so there remains to estimate E{k2}. We have

m

E{k
2

} =L k
2
P(k)

k=l

H we maximize the quantity above over the distribution P(k), k =0,1,..., m subject
to the constraints r.~l kP(k) =E{k}, r.~=o P{k) =1, P{k) ~ 0 (a simple linear .
programming problem) we find that the maximum is obtained for P(m) =E{k}/m,
P(O) =1 -E{k}/m, and P(k) = 0, k = 1,2,...,m-1. Therefore

E{k2} S mE{k}.

Similarly if we minimize E {k2} subject to the same constraints we find that the
minimum is obtained for P(k'-l) =k' - Elk}, P{k) =1 - (k' - E{k}) and P(k') =0
for k ¢ k' - 1, k' where k' is the integer for which k' - 1 S E{k} < k'. Therefore

E{k2} ~ (k' -1)2(k' - E{k}) + (k')2[l - (k' - E{k})]

After some calculation this relation can also be written

E{k2} ~ Elk} + {k' -1)(2E{k} - k') for. E{k} E (k' - 1, k'),
k' =1, 2, ..., m

Note that the lower bound above is a piecewise linear function ofE{k}, and equals
(E{k})2 at the breakpoints k' =1,2,...,m. Summarizing the bounds we have

E{k) + {k' - 1)(2E{k} - k') 1 1 1
2mE{k} - 2m S a S 2' - 2m '

where k' is the positive integer for which

k' - 1 S E{k} < k' .

Note that as E{k} approaches its maximum value m (i.e., the system is heavily
loaded), the upper and lower bounds coincide. By combining the results for cases
a) and b) above we have

lim. E{m.) = peA} lim. Elm.! A} +P{B} lim. Elm IB}
I~ 1 . I~ 1 I-+- 1



= (l-p) AB{V} +pa
(1- p)In

or finally

lim E{ }
AB{V}

m = +pa
i~ 1 m

where a satisfies the upper and lower bounds given earlier. By taking limit as i -+
00 in the equation

E{Wj } = E{~} + E{Nd/JJ. + (l + E{Q) - E{Illj})E{V)

and using the expressions derived we finally obtain

where a satisfies

E{k} + (k' - 1)(2E{k) - k') _...!... < <.!. _...!...
2mE{k} 2m _(1 - 22m'

E{k) is the average number of packets per data interval

E{k} = A.E{V)/(l- p)

and k' is the integer for which k' - 1 S E{k} < k'. Note that the formula for the
waiting time W becomes exact in the limit both as p -+ 0 (light load), and as p -+ 1
- AE{V}/m (heavy load) in which case E{k} -+ m and a-+ 112 -112m. When m =
1 the formula for W is also exact and coincides with the one derived for the
corresponding single user one-at-a-time limited service system.

3.36

For each session, the arrival rates, average transmission times and utilization factors for the
short packets (class 1), and the long packets (class 2) are

Al = 0.25 packets/sec,
~ = 2.25 packets/sec,

1/~1 =0.02 sees,
1/JJ.2 = 0.3 sees,

PI =0.005
P2 =0.675.



The corresponding second moments of transmission time are

NQ2 ="-2*w2 =0.855
Nz= "-2*Tz = 2.273.

The total arrival rate for each session is A= 2.5 packets/sec. The overall 1st and 2nd
moments of the transmission time, and overall utilization factors are given by

1/~ =0.1 *(1/~}) + 0.9*(l/~2) =0.272
E{X2} = 0.1 *E{X}2} + 0.9*E{X22} = 0.081
P =A/~ =2.5*0.272 =0.68.

We obtain the averagetime in queue W via the P - K formula W = (A.E{X2})/(2*(l- p» =
0.3164. The average time in the system is T = 1/~ + W = 0.588. The average number in
queue and in the system are NQ =AW =0.791, and N =AT = 1.47.

The quantities above correspond to each session in the case where the sessions are time 
division multiplexed on the line. In the statistical multiplexing case W, T, NQand N are
decreased by a factor of 10 (for each session).

In the nonpreemptive priority case we obtain using the corresponding fonnulas:

W} =(AIE{XI2} + AzE{X2
2})/(2*(l - PI» =0.108

Wz =(AIE{XI2} + "-2E{X22})/(2*(l- PI)*(l - PI - pz» =0.38

T} = l/~} + WI =0.128
Tz= 1/~z + Wz = 1.055
NQI = Al*W1 = 0.027
NI =AI*TI =0.032

3.37

(a)
A= 1/60 per second
E(X) = 16.5 seconds
E(X2) = 346.5 seconds
T = E(X) + AE(X2)/2(l-AE(X»

= 16.5 + (346.5/60)/2(1- 16.5/60) = 20.48 seconds

(b) Non-Preemptive Priority

In the following calculation, subscript 1 will imply the quantities for the priority 1
customers and 2 for priority 2 customers. Unsubscripted quantities will refer to the overall
system.



E(X) = 16.5, E(X
I

) = 4.5, E(X2 ) = 19.5

EW) = 346.5

1 2
R = 2 AE(X ) = 2.8875

PI = \ E(XI ) = 0.015

P
2
=1..

2
E(X2) =0.26
R

WI =- = 2.931
I-p
R

I

W2 =-- = 4.043
I-P

2

TI = 7.4315, T2 = 23.543
AT +AT

T= 1 1 2 2 =20.217
A

(c) Preemptive Queueing

The anival rates and service rates for the two priorities are the same for preemptive
system as the non-preemptive system solved above.

2 2
E(Xl) = 22.5, E(X2 ) = 427.5

1 2
R1 =2 \ E(X1) =0.0075

1 2
~ = R1+ 21..

2
E(X2) = 2.8575

E(X
1
)(l-p ) + R}

T = 1
1

I-p
1

E(X2)(l-P -p ) +~
T = 1 2

2 (l-p )(l-p -p )
1 1 2



3.38

(a) The same derivation as in Section 3.5.3 applies for Wk, Le.

where Pi = ~/(IllJl), and R is the mean residual service time. Think of the system as being
comprised of a serving section and a waiting section. The residual service time is just the
time until any of the customers in the waiting section can enter the serving section. Thus,
the residual service time of a customer is zero if the customer enters service immediately
because there is a free server at the time of arrival, and is otherwise equal to the time
between the customer's arrival, and the first subsequent service completion. Using the
memoryless property of the exponential distribution it is seen that

R = PoE{Residual service time Iqueueing occurs} = Pd(m~).

(b) The waiting time of classes 1, ..., k is not influenced by the presence of classes
(k+1), ... ,n. All priority classes have the same service time distribution, thus,
interchanging the order of service does not change the average waiting time. We have

W(k) = Average waiting time for the M/MIm system with rate A.l + ... + A.k·

By Little's theorem we have

Average number in queue of class k = Average number in queue of classes 1 to k
- Average number in queue of classes 1 to k-l

and the desired result follows.

3.39

Let k be such that

PI + ... + Pk-l S; 1 < PI + ... + Pk'

Then the queue of packets of priority k will grow infmitely, the arrival rate of each priority
up to and including k-1 will be accomodated, the departure rate of priorities above k will be
zero while the departure rate of priority k will be

- (l-p -"'-p )Ax= 1 k-l
Xk

In effect we have a priority system with k priorities and arrival rates



-
A' = A· for i < k1 1

- (l-Pl-···-PI.:-l)
AI.:= XI.:

For priorities i < k the arrival process is Poisson so the same calculation for the waiting
time as before gives

k

I~Xt
VV.= ~l

1 2(1 - PI - ... - PH)(1- PI - ... - pr i<k

For priority k and above we have infinite average waiting time in queue.

3.40

(a) The algebraic verification using Eq. (3.79) listed below

is straightforward. In particular by induction we show that

R(PI + + pIJ
P W + ... + P W - ------.-;;;..
Ilk k - 1 - PI - ... - Pk

The induction step is carried out by verifying the identity

The alternate argument suggested in the hint is straightforward.

(b) Cost

VVe know thatWI ~ W2 ~ ..... ~ Wn. Now exchange the priority of two neighboring
classes i and j=i+1 and compare C with the new cost



In C' all the terms except k = i and j will be the same as in C because the interchange does
not affect the waiting time for other priority class customers. Therefore

C'-c = 5.. p·W'o +.s.. p·W'· - .s.. poW,o - 5... p,W·- J J - I I - I I - J J.
Xj Xi Xi Xj

We know from pan (a) that

n

L PkWk = constant
ltzl

Since Wk is unchanged for all k except k = i andj (= i+l) we have

PiWi + pjWj = piW'j"+pjW'j.

Denote

B = PiWi - PiWi =PjWrPjWj

Clearly we have B ~ 0 since the average waiting time of customer class i will be increased
if class i is given lower priority. Now let us assume that

Then

c· c· (c. Co)C'-c = I (p .W'I'-P .WI·) - J (p .WJ._p oW'J) = B I _ J
Xo I I X' J J X· X.

I J I J

Therefore, only if ci < ci+l can we reduce the cost by exchanging the priority
Xi X i+l

order of i and i+1. Thus, if (l,2,3,....n) is an optimal order we must have

..:.L> C2> c3 > > cn
Xl -X

2
-X

3
-"·-X

n

3.41

Let D(t) and Ti(t) be as in the solution of Problem 3.31. The inequality in the hint is evident
from Figure 3.30. and therefore it will suffice to show that



lim 2.~T.=lim 2.~T.
t~ t.£..J 1 t~ t ~ 1

ieLXt) 1=1

We first show that

(1)

as k --+ 00 (2)

where tk is the arrival time of the kth customer. We have by assumption

and by taking the limit ask~ in the relation

(k+l)!tk+1 - kltk = 1/tk+1 - «tk+1 - tk)!tk+1)(kltk)

we obtain

as k --+ 00 (3)

We also have

so
k +1 k

I, T. I,Tj1
j=l i=l --+0
lx+1 lx

or

k

~T.
T ~ I t
2.:!:!.. + 1=1 (__'1< _ 1) --+ 0
~+1 lx \+1

which proves (2).

as k --+ 00 (4)

Let E > 0 be given. Then, from (2), there exists k such that T j < lj E for all i > k. Choose t
large enough so that a(t) > k. Then



13(t) t a¢)

~~ S !r(t)dt s~~
.. i=1 i=l

or

P(t) o.(t)

~ ~
PCt) i=l S .!.ltr('t)d'ts a(t).!=!-..
t pet) tot act)

Under the assumptions

we have

R=A.M

where

R = lim 1.rr(t)dt
t....oo t.lo

is the time average rate at which the system earns. .

(b) Take ri(t) =1 for all t for which customer i resides in the system, and ri(t) = 0 for all
other t.

(c) IfXi and Wi·are the seIVice and queueing times of the ith customer we have

where the two terms on the right above correspond to payment while in queue and seIVice
respectively. Applying pan (a) while taking expected values and taking the limit as i -+ 00,

and using the fact that Xi and Wi are independent we obtain

where U, the rate at which the system earns, is the average unfinished work in the system.
Since the anival process is Poisson, U is also the average unfInished work seen by an
arriving customer. Therefore U = W, and the p: K formula follows.



3.43

We have similar to Section 3.5

W=R+ pW+ WB

where the mean residual service time is

(1)

We derive the average waiting time of a customer for other customers that arrived in the
same batch

WB= LAE{WB Ibatchh~ sizej}
j

where

Pj =Probability a batch has size j
rj == Proportion of customers arriving in a batch of size j

We have

jP·
=~

n

Also since the customer is equally likely to be in any position within the batch

Thus from (2)

Substituting in (1) we obtain



-
R WBW=--+-

1-p 1-p

- 2 - 2" -
AnX x(n - n)

= 2(1 ) +
- p 2n(l - p)

3.44

(a) Let Po be the steady state probability that an arriving packet finds the system empty.
Then, in effect, a packet has service time X with probability 1 - Po, and service time X + /1
with probability Po. The fraction of time the system is busy is obtained by applying Little's
Theorem to the service portion of the system

A[E{X}(l - Po) + (E{X} + E{/1})Pol = A(E{X} + E{/1}po)

This is also equal to P{system busy} == 1 - Po, so by solving for Po' we obtain

Po =(l - AE{X})/(l + AE{/1}) =(l - p)/(l + A.E{/1})

where p = A.E{X}.

(b) Let

E {I} =average length of an idle period
E{B} = average length of a busy period

Since the arrival process is Poisson we have

E{I} =l/A. =average time betwen last departure in a busy period and the
next arrival in the system

E{I} 1(A. 1 - AE{X}
Po = E{I} + E{B} = 1/A+ E{B} = 1 + AE{~}

E{B} = E{X} + E{~} =E{X} + E{~}

1 - E{X}A 1 - P

(c) We calculate the mean residual time using a graphical argument



From the figure we have

where ~(i) is the service time of the first packet of the ith busy period, and

M(t) =# ofarrivals up to t
N(t) = 4# of busy periods up to t

Taking the limit as t-+oo, and using the fact

Iim N(t)_l-Po_ A(l-p)
t....oo t - E{B} - 1+ AE{6}

we obtain

We have, as in Section 3.5, W = R +pW or

W=RJ(l- p)

Substituting the expression for R obtained previously we obtain

't



AE{X2
} A 2 2

W = 2(1- p) + 2(1 + AE{~}) [E{(X +~) } - E{X }]

3.45

(a) It is easy to see that

Pr (system busy serving customers) =p

Pr (system idle) = I-p = P(O in system) + P(l in idle system) + ...
+ P(k:-l in idle system)

It can be seen that

P(O in system) = pel in idle system) =... = P(k-l in idle system) =(l-p)/k

implying that
(l-p )(k-l)

P(nonempty and waiting) = k

(b) A busy period in this problem is the length of time the system is nonempty" The end of

each busy period is a renewal point for the system. Between two renewal points, the

system is either waiting (with 0 or more customers) or serving.

Let W be the expected length of a waiting period.
Since arrivals are poisson, we have

- k
W =-

J..,"

Let S be the expected length of a serving period.

Then the probability that the system is serving =p = S
S+W

implying that

l-l = W
P S

or
_ pk

S=pW=~
l-p I-p



Let j be the expected length of time the system is empty.

The expected length of a busy period = S + W - j

= p(kJA.) + k _1
l-p A A

_pk+(l-p)(k-l)_ k+p-I
- A(1-p ) - A(1-p )

PI~) is k times the average length of an MlG/1 busy period and k~I

is the average time from the first arrival until the system starts serving.

(c) We will call the k packets that are in the system at the beginning of the busy period
"old" packets. Those that come during the busy period (and are therefore served during
this period) are called "new" packets.

We consider the following service discipline: the server transmits old packets only when it
doesn't have new packets available at that moment (so it's not FCFS). Since this discipline
doesn't depend on the length of the packets it will give the same average number of packets
in the system. Thus a busy period looks as illustrated below:

b1 b2 bk-1 bk
.- - .- - - .- - - -- ... - p

- - - ... - - - - - - - - ...
.- _I.-~- ... 1- P

P P

old 1 new old 2 new old3 old k-1 new old k new

- -po

Busy period

In a subperiod bi of the busy period, the old packet i and the new packets combine to give
the same distribution as a normal MlG/1 busy period except that there are an extra k-i old
packets in the system. It is easy to see that the distribution of the length of bi,b2, ... bk is
the same since each of them is exactly like an MlG/1 busy period.

~ E(N I serving) = E(N I bI) P(b} I serving) + ... + E(N I b0 P(bk I serving)

P(bi I serving) = ~



E(N I bi) = E(NM/G/l I busy) + k-i
implying that

E(N I serving) =~ (k E(NM/G/l I busy) + .f (k-i»)l 1=1

k-l
=""2+ E(NMIG/l 1busy)

We have

E(NM/G/l) =E(NM/G/l I busy) P

from which

E(NM/G/ll busy) =E(NMlGll)
P

or

E(N I .) E(NM/<m) k-l
servmg = +T

P

Also

E(N I busy waiting) =E(N I waiting with 1) P(waiting with 11 busy waiting) + ...

+ E(N Iwaiting with k-I) P(waiting with k-II busy waiting)

P(waiting with i J busy waiting)

=P(waiting withj I busy waiting) =k~l for all 0 < i,j < k

from which

1 k-l k
E(N Ibusy waiting) =k-l .L i =2

1=1

(d) E(N) =E(N J busy waiting) P(busy waiting) + E(N I busy serving) P(busy serving)

_!. (k-I) (I-p) (E.(NM/Gll) k-l)
-2 k + ~ P + 2 P

k-l
= E(NM/G/l) +T



3.46

We have

W=RI(l- p)

where

{

M(t) 1.(t) V2}
R = lim ~,,~XZ+ ~"~

t-+oo t £..J2 1 t £..J 2
i=l i=l

where L(t) is the number of vacations (or busy periods) up to time t. The average length of
an idle period is

and it can be seen that the steady-state time average number of vacations per unit time

We have

Therefore

and

3.47

1.(t) 2
~v.

1.(t) 2 £-J 2:
1,"" 1.~ Vi =lim L(t) ..:...i==--l_
~"'t~t t 2 t~ t L(t)

_ A'Xl + V2(l -p)
R- 2 21

w= A'Xl + Vl
2(1 - p) 21

lin\ L(t) yz = V2(l -p)
~t 21 21

(a) Since arrival times and service times are independent, the probability that there was an
arrival in a small interval 0 at time 't - x and that this arrival is still being served at time 't is
Ao[l - Fx(x)).



(b) Wehave

-
X =JxdFx(x)

o

and by calculating the shaded area of the figme below in two different ways we obtain

- -fxdFx(x) =J[1 - Fx(x)]dx
o 0

This proves the desired expression.

x x+dx x

(c) Let Pn(x) be the steady state probability that the number of anivals that occUlTed prior to
time 't - x and are still present at time 't is exactly n.

.For n ~ 1 we have

Pn(x - 0) = (1 - A[l- Fx(x)]O}Pn(x) + A[1 - Fx (x)]OPn_l(X)

and for n =0 we have

po(x - 0) = (1 - A[l - Fx(x)]O}po(x).

Thus Pn(x), n =0, 1, 2, ... are the solution of the differential equations

dpJdx = a(x)pn(x) - a(x)Pn_l(x) for n ~ 1



dP<ldx = a(x)po(x)

where

a(x) =1..[1 - Fx(x)].

Using the known conditions

for n =0

Pn(OO) = 0
Po(oo) =1

forn ~ 1

it can be verified by induction starting with n =0 that the solution is

Since

-
-ja(y)dy [J a(y)dyt

Pn(x) = [e II ] x n! x ~ 0, n =0, I, 2, ...

- -f a(y)dy = A.J [l - Fx(x)]dy = A.E{X}
o 0

we obtain

Pn(O) =e-AE(X) [A.E{~}t ,
n.

n =0, 1,2, ...

Thus the number of anivals that are still in the system have a steady state Poisson
distribution with mean AE{X}.

3.48

(a) Denote

f(x) =Er[(max{O,r-x})2]

and

g(x) =(Er[max{O,r-x}])2,

where ErH denotes expected value with respect to r (x is considered constant). We will
prove that f(x)/g(x) is montonically nondecreasing for x nonnegative and thus attain its
minimum value for x=O. We have



a~~) = E~:X (maX{O,r-xn2] = 2E1maX{O,r-X)' :X (max{O,r-xn],

where

a(max{O,r-x}) =_u(r-x)
ax

where u(') is the step function. Thus

af(x)ax=-2Er [(max(O,r-x})· u(r-x)] =-2EJmax{O,r-x}]

Assume for simplicity that r has a probability density function (the solution is similar in the
more general case). Then

Thus

~~) g(x) - f(x)a!~) =2Er lmax{O,r-x}JEr [(max(O,r-x})2]Irxp(r)dr

- 2Er[max{O,r-x}]E,.([max{O,r-x}])2

For ~~~ monotonically nondecreasing we must have a~~) g(x) - f(x) a~~) ~ 0 or equivalently

Er [(maX{o,r-x})1J p(r)dr - (Er[max{O,r-x}]) 2
r~

which is true by Schwanz's inequality. Thus the ratio

f(x) Er[(max{O,r-x})2]

g(x) = (Er[max{O,r-x}])2

is monotonically nondecreasing and attains its minimum value at x=O. On the other hand,
we have



(1)

since r ~ 0, and the result follows.

(b) We know (cf. Eq. (3.93» that

Ik =-min{O,Wk + Xk - 'tk} =max{O,'tk - Wk - Xk}

=max{O,'tk- SkI,

where Sk is the time in the system. Since the relation in part (a) holds for any nonnegative
scalar x, we can take expected values with respect to x as well, and use the fact that for any
function of x, g(x), E(g(x)2) ~ E2(g(x», and find that

Erx[(max{O,r-x})2] ~£.. <Erx[max{0,r-x}])2.• (r2) •

where x is considered to be a random variable this time. By letting r = 'tic. x = Sk. and
k~oo,we find from (I) that

or

12 -(1)2 >~ - (t)2

(1)2 fi)2

or
-2

~2 > (I) ~2'II - Va
('t)2

(since a; is defined as the variance of intermival times)

Since j = l-p and t =.! we get
A A

a~ ~ (l_p)2 a~

By using Eq. (3.97), we then obtain

< A(a; + a~ A(l-p) a;
W - 2(1-p) - 2



A.E[X] = E[B]/(E[B]+If)...) ;

3.49

(a) Since the arrivals are Poisson with rate A. the mean time until the next arrival starting
from any given time (such as the time when the system becomes empty) is If)... The time
average fraction of busy time is AE,[X]. This can be seen by Little's theorem applied to the
service facility (the time average number ofcustomers in the server is just the time average

n
fraction of busy time), or it can be seen by letting V'i represent the time the server is

i=I
busy with the first n customers, dividing by the arrival time of the nth customer, and going
to the limit.

Let E[B] be the mean duration of a busy period and E[I] = If).. be the mean duration
of an idle period. The time average fraction of busy time must be E[B]/(E[B]+E[I]). Thus

EOO
E[B] = I - AE[X]

This is the same as for the FCFS M/G/1 system (Problem 3.30).

(b) If a second customer arrives while the first customer in a busy period is being served,
that customer (and all subsequent customers that arrive while the second customer is in the
system) are served before the first customer resumes service. The same thing happens for
any subsequent customer that arrives while the first customer is actually in service. Thus
when the fJISt customer leaves, the system is empty. One can view the queue here as a
stack, and the first customer is at the bottom of the stack. It follows that E[B] is the
expected system time given a customer arriving to an empty system.

The customers already in the system when a given customer arrives receive no
service until the given customer departs. Thus the system time of the given customer
depends only on its own service time and the new customers that arrive while the given
customer is in the system. Because of the memoryless property of the Poisson arrivals and
the independence of service times, the system time of the given customer is independent of
the number of customers (and their remaining service times) in the system when the given
customer arrives. Since the expected system time of a given customer is independent of the
number of customers it sees upon arrival in the system, the expected time is equal to the
expected system time when the given customer sees an empty system; this is E[B] as
shown above.

(c) Given that a customer requires 2 units of service time, look first at the expected system
time until I unit of service is completed. This is the same as the expected system time of a
customer requiring one unit of service (i.e., it is one unit of time plus the service time of all
customers who arrive during that unit and during the service of other such customers).
When one unit of service is completed for the given customer, the given customer is in
service with one unit of service still required, which is the same as if a new customer
arrived requiring one unit of service. Thus the given customer requiring 2 units of service
has an expected system time of2C. Extending the argument to a customer requiring n units
of service, the expected system time is nCo Doing the argument backwards for a customer
requiring lin of service, the expected system time is C/n. We thus conclude that E[system
time I X=x] = ex.
(d) We have



3.50

00

E[B] =JCx dF(x) = CE[X];
1

C= 1 _ AE[X]

(a) Since (Pj} is the stationary distribution, we have for all je S

P.i(~qji +~ CJji ) =~Pi<Iij +~ PJ~j
iES ilS iES ilS

Using the given relation, we obtain for all jeS

p·Lq,,=LP·q··
J lEi Jl lEi 1 .IJ

Dividing by L p. , it follows that_ 1
lES

for all jeS, showing that {Pi} is the stationary distribution of the truncated chain.

(b) If the original chain is time reversible, we have PAii =PiQij for an i and j, so the

condition of part (a) holds. Therefore, we have PAii = PiQij for all states i andj of the
truncated chain.

(c) The fmite capacity system is a truncation of the two independent MIMIl queues system,
which is time reversible. Therefore, by part (b), the truncated chain is also time reversible.
The formula for the steady state probabilities is a special case of Eq. (3.39) of Section 3.4.

3.51

(a) Since the detailed balance equations hold, we have

Thus for i, j e Sk, we have

p. p.
U

J q"=-Ul q.. <=> x.:O .. =x1jCl..
k JI k IJ PJI I)

and it follows that the Xi. i e Sk satisfy the detailed balance equations. Also



Therefore, {Xi lie Sk} as defmed above, is the stationary distribution of the Markov chain
with state space St.

(b) Obviously

K K

LUk=LLPj=l.
k=l k=l JESt

Also we have

UIRkm= 2, xJ-qjiUP
JESt
iES.

which in view of the fact XjUt =Pj for je St, implies that

UIRkm= ~ PR...
'" J JI

JESt
iES.

and

uJimk =~ XJjQ .•Um =~ q ..p.=~ q.. p.
~ JI ~ JJ j ~ Jj j
jES. jES. iES.
iESt iESt JESt

(3)

Since the detailed balance equations Pj<iji =qijPi hold, we have

"" PR. .. = "" q..D.~ j jJ ~ Jl' I

JESt iES.
iES. JESt

Equations (2)-(4) give

(1)

(2)

(4)

(5)



Equations (1) and (5) imply that {Uk I k=I,...,K} is the stationary distribution of the
Markov chain with states l,u.,k, and transition rates Cikm.

(c) We will deal only with Example 3.13. (Example 3.12 is a special case with k=m).

5
1

50
-....;....---Io*-....-.....:._----:~____:"""""'-----..w::.L-~........._----.:.;.;...;;....-~ __----:.:.:.....,

For i =O,I,...,k we define Si as the set of states (i,O), (i,I),..., (i,m-i), (see Figure 1).
Then the truncated chain with state space Si is

~ ~ ~1

SI0'~0'~ ~~8
Al A} A}

We denote by rep) the stationary probability of state j of the truncated chain Si and we let

Then

Thus



or

Therefore.

X~i) = I-Pl.J '=0 12k . 0 1 2 .tJl 1.. ...... J=.. .....m-l
J I_pf*l

The transition probabilities of the aggregate chain are

.-1-1
,., ~ (1) ~ (ll.- 'l 0)
ql, 1+1 = ~ XJ. q .. =~ XJ, ' J\.2 = A2(l-Xm _~

Jl joe
j E S)iE S)tl

= AJ1- I-Pl pm-l)-=).,2 l--r/f -1
\ I-p~·I+1 1 I-p~-l+l

The aggregate chain is given by the following figure.

Thus we have

1 mol
Ul+l = P2. -PI Ul

I-p~·l+l

from which



1 1-1 ( 1" rn-j ) 1" m - 1 +1
U - zn 1 - 1 U

1 - P2 j=O 1 rn-j+l - Pz 1 m+l 0

"1 "1
Furthermore, we have

or

from which

1-p~+1

Uo = -~-l-n.r-+l
k+l 1 ~

1-P2 _pm+1 . PI
1-pz 1 1- Pz

PI

and

1 pm - l + l
UI = UO p~ _-..:..-0..

1 --
1-p~+ I

Thus

from which we obtain the product form

(d) We are given that the detailed balance equations hold for the truncated chains. Thus for
i, je Sk, we have Piqij = Pjqji. Furthermore,



Thus {7tj Ije Sk} is the distribution for the truncated chain Sk and the result ofpan (a)
holds.

To prove the result ofpan (b), we have to prove that the global balance equations
hold for the aggregate chain, i.e.,

k k

LiikmUk= L UuRmk'
~l ~l

or equivalently

k k

L L 7tjUkqji= L L Qij7tiUm

~ljES ...iES. m=l jESlriES.

For j E Sk, we have 1tjUk =Pj, and for i e Sm, we have1tiUm =Pi. so we must show

k k

L L Pjqji= L L qifi
~ljES..iES. m=l jES.. iES.

or

(6)

Since {Pi} is the distribution of the original chain, the global balance equations

~ p.q.. =~ p.q..£.J J JI ~ I IJ
all i all i

By summing over all je Sk, we see that Eq. (6) holds. Since

and we just proved that the Uk'S satisfy the global balance equations for the aggregate
chain, {Uk I k =1,...,K} is the distribution of the aggregate chain. This proves the result
of pan (b).



3.52

Consider a customer arriving at time tl and departing at time t2. In reversed system tenns,
the arrival process is independent Poisson, so the arrival process to the left of t2 is
independent of the times spent in the system ofcustomers that arrived at or to the right of
t2. In particular, t2 - tl is independent of the (reversed system) arrival process to the left of
t2. In forward system terms, this means that t2 - tl is independent of the departure process
to the left of t2.

3.53

(a) Ifcustomers are served in the order they arrive then given that a customer departs at
time t from queue 1, the arrival time of that customer at queue 1 (and therefore the time
spent at queue I), is independent of the departure process from queue 1 prior to 1. Since
the depanures from queue 1 are arrivals at queue 2, we conclude that the time spent by a
customer at queue 1 is independent of the anival times at queue 2 prior to the customer's
arrival at queue2. These arrival times, together with the corresponding independent (by
Kleinrock's approximation) service times determine the time the customer spends at queue
2 and the departure process from queue 2 before the customer's departure from queue 2.

(b) Suppose packets with mean service time 1/J! arrive at the tandem queues with some rate
Awhich is very small (A. «J!). Then, the apriori probability that a packet will wait in
queue 2 is very small.

Assume now that we know that the waiting time of a packet in queue 1 was
nonzero. This information changes the aposteriori probability that the packet will wait in
queue 2 to at least 1/2 (because its service time in queue 1 will be less than the service time
at queue 2 of the packet in front of it with probability 1/l). Thus the knowledge that the
waiting time in queue 1 is nonzero, provides a lot of information about the waiting time in
queue 2.

3.54

It can be verified by checking the detailed balance equations that the MlM/l/m queue is
reversible. Hence the arrival and departure process are the same. The arrival process is
Poisson but with probability Pm an anival does not enter the system. Also since an external
arrival process is independent of the state of the system, the arrival process to the sytem is
still Poisson but with rate A(l - Pm). By reversibility we conclude that the depanure
process is also Poisson with rate A(1 - Pm).

3.SS

Let

p = Al
1 J!1



P =A.2
2 Jl2

=-
A. + CPU P1- m servers -

~~ +
JJ,

- I

VOJl2
AP2

~=
P1

Using Jackson's Theorem and Eqs. (3.34)-(3.35) we fmd that

where

[

. ]_1
m-l (mp l)n (mp l)m

Po= L n! + m!(l-p )
n=O 1 .

3.56

(a) We have

P(Xn=i) = (l-p)pi; ~ p = AlJl

P(Xn=i, Dn=i) =P(Dn=j 1Xn=i) P(Xn=i) = J.!A(l_p)pi; ~l, j=l
= 0; i=Oj=l
= (l-J.!A)(I-p)pi; ~I,j=O

= I-p; i=O, j=O

(b) P(Dn=l) = Li=l fU\«l-p)pi = ~p = U

(e) P(X -·1 n_-I) P(Xn=i,Dn=1} =
. n-1 .~- - P(Dn=I) (J.!A(1_p)pi 11M = (l_p)pi-l ; ~l

= 0; i=O



(d) P(Xn+I=i1 Dn=l) = P(Xn=i+ll Dn=l) = (l_p)pi ; ~O

In the [1I'st equality above, we use the fact that, given a departure between nA and (n+1).1,
the state at (n+1).1 is one less than the state at nA; in the second equality, we use part d).
Since P(Xn+I=i) = (l_p)pi, we see that Xn+l is statistically independent of the event Dn=1.
It is thus also independent of the complementary event Dn=O, and thus is independent of
the random variable On.

(e) P(Xn+l=i, Dn+l=i I Dn) = P(Dn+l=i I Xn+l=i, Dn}P(Xn+l=i I Dn}
= P(Dn+l=j I Xn+I=i)P(Xn+l=i }

The first part of the above equality follows because Xn+1is the state of the Markov process
at time (n+1).1, so that, conditional on that state, Dn+1 is independent ofeverything in the
past The second part of the equality follows from the independence established in e).
This establishes that Xn+1, Dn+1 are independent ofDn; thus their joint distribution is given
by b).

(f) We assume the inductive result for k-l and prove it for k; note that part f establishes the
result for k=1. Using the hint,

P(Xn+Ic=il Dn+k-l=l, Dn+k-2,..., Dn}=P(Xn+k-l=i+ll Dn+k-I=I,Dn+k-2,·~·,Dn)
P(Xn+k-l=i+l, Dn+k-l=1IDn+k-2,..., Dn}

=
P(Dn+k-l=ll Dn+k-2,..., Dn}

P(Xn+k-l=i+ I,Dn+k-l=l)
= P(Dn+k-l-l)

= P(Xn+k-1=i+1IDn+k-l=l) = P(Xn+k=i I Dn+t-l=l}

The third equality above used the inductive hypothesis for the independence of the pair
(Xn+k-I.On+k-l) from Dn+k-2,...Dn in the numerator and the corresponding independence
of Dn+k-l in the denominator. From part e}, with n+k-l replacing n, P(Xn+t=i I Dn+k-l) =
P(Xn+k=i), so

P(Xn+k=i1 Dn+k-I=I, Dn+k-2,..., Dn) = P(Xn+0

Using the argument in e}, this shows that conditional on Dn+k-2,..., Dn, the variable Xn+k
is independent of the event Dn+k-l=1 and thus also independent of Dn+k-l=0. Thus Xn+k
is independent of Dn+k-l,..., Dn. Finally,

P(Xn+t=i, Dn+k=i I Dn+k-l,"', Dn) = P(Dn+k=j IXn+k=i)P(Xn+k=i1 Dn+k- lo..., On)

= P(Dn+k=j I Xn+t=i}P(Xn+k=i)

which shows the desired independence for k.

(g) This shows that the departure process is Bernoulli and that the state is independent of
past depanures; i.e., we have proved the flI'St tW.D parts of Burke's theorem without using



reversibility. What is curious here is that the state independence is critical in establishing
the Bernoulli property.

3.57

The session numbers and their rates are shown below:

Session Session number p Session rate xp

ACE 1 100/60= 5/3
ADE 2 200/60 = 10/3
BCEF 3 500/60 = 25/3
BDEF 4 600/60 = 30/3

The link numbers and the total link rates calculated as the sum of the rates of the sessions
crossing the links are shown below:

Link

AC
CE
AD
BD
DE
BC
EF

Total link rate

Xl = 5/3
Xl + x3 = 30/3
x2 = 10/3
x4= 10
x2+ x4 = 40/3
x3 =25/3
X3 + X4 = 55/3

For each link (ij) the service rate is

Jlij = 50000/1000 = 50 packets/sec,

and the propagation delay is Dij =2 x 10-3 sees. The total arrival rate to the system is

y = ~ Xi = 5/3 + 10/3 + 25/3 + 30/3 = 70/3

The average number on each link (i, j) (based on the Kleinrock approximation fonnula) is:

- ~j
Ni; - A. + "-iJ"~J", J-lij - ij

From this we obtain:

Link

AC
CE
AD
BD

Average Number of Packets on the Link

(5/3)/(150/3 - 5/3) + (5/3)(2/1000) = 5/145 + 1/300
1/4 + 1/50
1/14 + 1/150
1/4 + 1/50



DE
Be
EF

4/11 + 2/75
1/5 + 1/60
11/19 + 11/300

The average total number in the system is N == 1:(ij) Nij == 1.84 packet The average delay
over all sessions is T = Nfy = 1.84 x (3nO) = 0.0789 sees. The average delay of the
packets of an individual session are obtained from the fonnula

L [ A,.. 1 ]IJT = +-+0·
P Jli.(JJ... - t.) J..l... IJ

(iJ) on p J IJ IJ IJ

For the given sessions we obtain applying this formula

3.S8

Session p

1
2
3
4

Average Delay Tp

0.050
0.053
0.087
0.090

We convert the systeminto a closed network with M customers as indicated in the hint
The (k+l)st queue corresponds to the "outside world". It is easy to see that the queues of
the open systems are equivalent to the first k queues of the closed system. For example.
when there is at least one customer in the (k+1)st queue (equivalently. there are less than M
customers in the open system) the anival rate at queue i is

k
r·

~r _l_=r..
~ m k I
_1

. Furthermore. when the (k+1)st queue is empty no external arrivals can occur at any queue
i, i = I.Z....,k. If we denote with p(nh....nIJ the steady state distribution for the open
system. we get

J 1C)M-Ln
Pfp~···~ ~k+l

G(M)
otherwise



where

ri· 12kPi =J.L,l= , ,... , ,

and G(M) is the normalizing factor.

3.59

H we insert a very fast MIMII queue {JJ.-+oo) between a pair of queues, then the probability
distribution for the packets in the rest of the queues is not affected. H we condition on a
single customer being in the fast queue, since this customer will remain in this queue for
1/J.L (~) time on the average, it is equivalent to conditioning on a customer moving from
one queue to the other in the original system.

H P(nlt...,nIJ is the stationary distti.bution of the original system ofk queues and
P'(nl....,nk,nk+l) is the corresponding probability distribution after the insertion of the fast
queue k+l, then

.'." ...

P(n},...,nk I arrival) = P'(nl,...,nk, nk+l = 1 I nk+l = 1),

which by independence of nl, ...,nk, nk+l, is equal to P(nl,...,nk).

3.60

Let Vj =utility function ofjth queue.

We have to prove that

But from problem 3.65 we have

Thus it is enough to prove that



where Pj =max{pJ,..., Pk}. We have

= A(M)+B(M)

Since Pj = max{PI,u.,Pk} we have that

lim A(M) = 0
M-+ooB(M) .

Thus, Eq. (1) implies that

or, denoting n'j = nj - 1,

(1)

lim
M

-+oo-..._+--+1Ij+,;...·__+Ilr'M-_-_1 _

G(M)

or

lim Pj G(M-1) = 1
M-+oo G(M)

3.61

m

We have LP i = 1 .
;.0

1

The arrival rate at the CPU is A!po and the arrival rate at the ith I/O pon is Ap/PO- By
Jackson's Theorem, we have



m

II Di
P(no. nt .....nm) = Pi (l - Pi)

i=o

wherep = A.
Jlo PO

A n;
and Pi=~

JliPO
fori> 0

The equivalent tandem system is as follows:

, ~ l-------l' 1/0 1 ~

The arrival rate is A.. The service rate for queue 0 is IloPo and for queue i (i > 0) is JliP<lPi'

3.62

Let A.o be the arrival rate at the CPU and let Ai be the arrival rate at YO unit i. We have

Ai = PiI..O. i =I.....m.

Let

and

A"p.=_l. i=O.I •...•m.
1 Jl j

By Jackson's Theorem. the occupancy distribution is

where G(M)is the nonnalization constant corresponding to M customers.

Let



AOU O=
J.lo

be the utilization factor of the CPU. We have

Uo=P(no~ 1)= It P(nO,nl, ... ,nm>
11.....+..........

'D.a

= It
'D·...,+_.....~1

P'D'.<l,p D, P D.
o 1'" m

G(M)

G(M-l) 1 G(M-l)
=Po G(M) =J.lo G(M)'

where we used the change of variables n'o =no-l. Thus the arrival rate at the CPU is

G(M-l)
AO= G(M)

and the arrival rate at the I/O unit i is

p.G(M-l)
Ai = I G(M)' i=I,... ,m.

3.63

(a) We have A= Nrr and

T=T1 +T2 +T3

where

T1 = Average time at first transmission line
T2 =Average time at second transmission line
T3 =z

We have

so

(1)



___N__ S; AS; __N__

N(X + Y) + Z x + y + Z .

Also

so finally

ASK,
X

As 1
y

N <'\ < . {K 1. __N__}_1\._nDn , ,

N(X+Y)+Z X Y X+Y+Z

(b) The same line of argument applies except that in place of (l) we have

XST1 S(N-K+l)X

3.64

(a) The state is determined by the number of customers at node 1 (one could use node 2
just as easily). When there are customers at node 1 (which is the case for states 1,2, and
3), the departure rate from node 1 is J1l; each such departure causes the state to decrease as
shown below. When there are customers in node 2 (which is the case for states 0, 1, and
2), the departure rate from node 2 is J12; each such depanure causes the state to increase.

~ ~. ~

~~E ~~
J1} J1} J11

(b) Letting Pi be the steady state probability of state i, we have Pi =Pi-l p, where p =J.L2IJ.Ll.
Thus Pi = POpi. Solving for po,

PO = [1 + p + p2 + p3]-l, Pi = PO pi; i=I,2,3.

(c) Customers leave node 1 at rate J1l for all states other than state O. Thus the time
average rate r at which customers leave node 1 is J1l (I-PO), which is

(d) Since there are three customers in the system, each customer cycles at one third the rate
at which departures occur from node 1. Thus a customer cycles at rate r/3.

(e) The Markov process is a birth-death process_and thus reversible. What appears as a
departure from node i in the forward process appears as an arrival to node i in the backward



process. If we order the customers 1, 2, and 3 in the order in which they depart a node,
and note that this order never changes (because of the FCFS service at each node), then we
see that in the backward process, the customers keep their identity, but the order is reversed
with backward departures from node i in the order 3,2, 1,3,2, 1, ....

3.65

Since J.lj(m) =J.lj for all m, and the probability distribution for state n =(nl....,nlJ is

rill J1Ir.

Pen) = ~(M)'

where

J...
p.=_J

J J.l.
J

The utilization factor Uj (M) for queue j is

U j(M) = 2, Pen) = --,-Dro---:G:-::(M~)--
D +_+D lliti, .

U.Dj'O

Denoting nj = nj-l, we get

~ n l n'l nk

£- PI ...p ....p k . Pj p.G(M-I)
U (M) - D,+.•+D't..·+D..tol-l J _ -::..,J=....".,...._

j - G(M) - G(M) .

3.66

Let Cj indicate the class of the ith customer in queue.

We consider a state (q,c2,...,Cn) such that J.lq :¢: J.lcn'



,C 1 ,C 2 ,no Cn

CIt C 2 ,... Cn ,

·~Cl,C2'."~

If the steady-state distribution has a product form then the global balance equations for this
state give

P(CI)'''P(Cn)(Jlcl + Al +... + A.c) =p(c})"·P(Cn-I)A.cn

+ (JlIP(l) + J.12P(2) + .. + flcP(c» P(CI)· ..··P(cn)

or

P(Cn)(JlCI + Al + ... + ~) = A.cn + (JlIp(l) + Jl2P(2) + ... + Jlcp(c»· p(cn)

Denote

M = JlIP(l) + Jl2P(2) + ... + Il<:p(c)

Then

p(Cn)(JlcI +A) = Acn + M'p(cn)

or

Acp(c ) = D

n Jl +A-M
Cl

This is a contradiction because even if ACI =0, p(cn) still depends on Jlcl ' The

contradiction gives that Jlci =Jl =constant for every class. Thus we can model this

system by a Markov chain only if JlI =Jl2 =... = flc.



(b) We will prove that the detailed balance equations hold. Based on the following figure

state z
2

n

Jlr
""'"

c n r '".-

(CI, C 2 ,no Cn_t) - (Cl,C 2 ,mCn)

A.c
p

\.. ~ \.. ~

state Z1

the detailed balance equations are

or

ACPc"'Pc =J.1 P "'Pc'
II 1 ...1 Cll CI II

which obviously holds.


