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1. Introduction. Stochastic shortest path (SSP) problems are Markov decision processes (MDP) in which
there exists an absorbing and cost-free state, and the goal is to reach that state with minimal expected cost. In
this paper we focus on finite state and control models under the undiscounted total cost criterion. We call a
policy proper if under that policy the goal state is reached with probability 1 (w.p.1) for every initial state, and
improper otherwise. Let çSD denote the set of stationary and deterministic policies. We consider a broad class
of SSP models, which satisfy the following general assumption introduced in Bertsekas and Tsitsiklis [2]:

Assumption 1.1. (i) There is at least one proper policy in çSD, and (ii) any improper policy in çSD incurs
infinite cost for at least one initial state.

We will analyze a totally asynchronous stochastic approximation algorithm, the Q-learning algorithm
(Watkins [9], Tsitsiklis [8]), for solving SSP problems. This algorithm generates a sequence of so-called
Q-factors, which represent expected costs associated with initial state-control pairs, and it aims to obtain in the
limit the optimal Q-factors of the problem, from which the optimal costs and optimal policies can be determined.

Under Assumption 1.1, Tsitsiklis [8, Theorems 2 and 4(c)] proved that if the sequence 8Qt9 of Q-learning
iterates is bounded w.p.1, then 8Qt9 converges to the optimal Q-factors Q∗ w.p.1. Regarding the boundedness
condition, earlier results given in Tsitsiklis [8, Lemma 9] and the book by Bertsekas and Tsitsiklis [3, §5.6] show
that it is satisfied in the special case where both the one-stage costs and the initial values Q0 are nonnegative.
Alternative to Tsitsiklis [8], there is also a line of convergence analysis of Q-learning given in Abounadi
et al. [1], which does not require the boundedness condition. However, it requires a more restrictive asynchronous
computation framework than the totally asynchronous framework treated in Tsitsiklis [8]; in particular, it requires
some additional conditions on the timing and frequency of component updates in Q-learning.

In this paper we prove that 8Qt9 is naturally bounded w.p.1 for SSP models satisfying Assumption 1.1. Our
result thus furnishes the boundedness condition in the convergence proof by Tsitsiklis [8] and, together with the
latter, establishes completely the convergence of Q-learning for these SSP models.

This boundedness result is useful as well in other contexts concerning SSP problems. In particular, it is used
in the convergence analysis of a new Q-learning algorithm for SSP, proposed recently by the authors Yu and
Bertsekas [12], where the boundedness of the iterates of the new algorithm was related to that of the classical
Q-learning algorithm considered here. The line of analysis developed in this paper has also been applied by Yu
in [11] to show the boundedness and convergence of Q-learning for stochastic games of the SSP type.

We organize the paper and the results as follows. In §2 we introduce notation and preliminaries. In §3 we give
the boundedness proof. First we show in §3.1 that 8Qt9 is bounded above w.p.1. We then give in §3.2 a short
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proof that 8Qt9 is bounded below w.p.1 for a special case with nonnegative expected one-stage costs. In §3.3
we prove that 8Qt9 is bounded below w.p.1 for the general case; the proof is long, so we divide it into several
steps given in separate subsections. In §4 we illustrate some of these proof steps using a simple example.

2. Preliminaries.

2.1. Notation and definitions. Let So = 80111 : : : 1 n9 denote the state space, where state 0 is the absorbing
and cost-free goal state. Let S = So\809. For each state i ∈ S, let U4i5 denote the finite set of feasible controls,
and for notational convenience, let U405= 809. We denote by U the control space, U=

⋃

i∈So
U4i5. We define Ro

to be the set of state and feasible control pairs, i.e., Ro = 84i1 u51 i ∈ So1 u ∈U4i59, and we define R=Ro\8401059.
The state transitions and associated one-stage costs are defined as follows. From state i with control u ∈U4i5,

a transition to state j occurs with probability pij4u5 and incurs a one-stage cost ĝ4i1 u1 j5, or more generally,
a random one-stage cost ĝ4i1 u1 j1�5 where � is a random disturbance. In the latter case random one-stage
costs are all assumed to have finite variance. Let the expected one-stage cost of applying control u at state i be
g4i1 u5. For state 0, p00405= 1 and the self transition incurs cost 0.

We denote a general history-dependent, randomized policy by �. A randomized Markov policy is a policy of
the form � = 8�01 �11 : : : 9, where each function �k, k ≥ 0, maps each state i ∈ So to a probability distribution
�k4· � i5 over the set of feasible controls U4i5. A randomized Markov policy of the form 8�1 �1 : : : 9 is said to
be a stationary randomized policy and is also denoted by �. A stationary deterministic policy is a stationary
randomized policy that for each state i assigns probability 1 to a single control �4i5 in U4i5; the policy is also
denoted by �.

The problem is to solve the total cost MDP on So, where we define the total cost of a policy � for initial
state i ∈ S to be

J �4i5= lim inf
k→�

J �
k 4i51

with J �
k 4i5 being the expected k-stage cost of � starting from state i. Assumption 1.1 is stated for this total cost

definition. The optimal cost for initial state i is J ∗4i5 = inf� J
�4i5. Under Assumption 1.1, it is established in

Bertsekas and Tsitsiklis [2] that the Bellman equation (or the total cost optimality equation)

J 4i5= 4TJ 54i5
def
= min

u∈U4i5

{

g4i1 u5+
∑

j∈S

pij4u5 J 4j5

}

1 i ∈ S1 (2.1)

has a unique solution, which is the optimal cost function J ∗, and there exists an optimal policy in çSD, which
is proper, of course.

The Q-learning algorithm operates on the so-called Q-factors, Q = 8Q4i1 u51 4i1 u5 ∈ Ro9 ∈ <�Ro �. They repre-
sent costs associated with initial state-control pairs. For each state-control pair 4i1 u5 ∈Ro, the optimal Q-factor
Q∗4i1 u5 is the cost of starting from state i, applying control u, and afterwards following an optimal policy.
(Here Q∗40105 = 0, of course.) Then, by the results of Bertsekas and Tsitsiklis [2] mentioned above, under
Assumption 1.1, the optimal Q-factors and optimal costs are related by

Q∗4i1 u5= g4i1 u5+
∑

j∈S

pij4u5 J
∗4j51 J ∗4i5= min

u∈U4i5
Q∗4i1 u51 4i1 u5 ∈R1

and Q∗ restricted to R is the unique solution of the Bellman equation for Q-factors:

Q4i1u5= 4FQ54i1 u5
def
= g4i1 u5+

∑

j∈S

pij4u5 min
v∈U4j5

Q4j1 v51 4i1 u5 ∈R0 (2.2)

Under Assumption 1.1, the Bellman operators T and F given in Equations (2.1), (2.2) are not necessarily
contraction mappings with respect to the sup-norm � · ��, but are only nonexpansive. They would be contractions
with respect to a weighted sup-norm if all policies were proper (see Bertsekas and Tsitsiklis [3, Proposition 2.2,
pp. 23–24]), and the convergence of Q-learning in that case was established by Tsitsiklis [8, Theorems 3
and 4(b)]. Another basic fact is that for a proper policy � ∈çSD, the associated Bellman operator F� given by

4F�Q54i1 u5= g4i1 u5+
∑

j∈S

pij4u5Q4j1�4j551 4i1 u5 ∈R1 (2.3)

is a weighted sup-norm contraction, with the norm and the modulus of contraction depending on �. This fact
also follows from Bertsekas and Tsitsiklis [3, Proposition 2.2, pp. 23–24].
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2.2. Q-learning algorithm. The Q-learning algorithm is an asynchronous stochastic iterative algorithm for
finding Q∗. Given an initial Q0 ∈ <�Ro � with Q040105= 0, the algorithm generates a sequence 8Qt9 by updating
a subset of Q-factors at each time and keeping the rest unchanged. In particular, Qt40105 = 0 for all t. For
each 4i1 u5 ∈ R and t ≥ 0, let j iut ∈ So be the successor state of a random transition from state i after applying
control u, generated at time t according to the transition probability pij4u5. Then, with s = j iut as a shorthand to
simplify notation, the iterate Qt+14i1 u5 is given by

Qt+14i1 u5= 41 −�t4i1 u55Qt4i1 u5+�t4i1 u5
(

g4i1 u5+�t4i1 u5+ min
v∈U4s5

Q�svt 4i1 u54s1 v5
)

0 (2.4)

The variables in the above iteration need to satisfy certain conditions, which will be specified shortly. First we
describe what these variables are.

(i) �t4i1 u5 ≥ 0 is a stepsize parameter, and �t4i1 u5 = 0 if the 4i1 u5th component is not selected to be
updated at time t.

(ii) g4i1 u5+�t4i1 u5 is the random one-stage cost of the transition from state i to j iut with control u; i.e.,
�t4i1 u5 is the difference between the transition cost and its expected value.

(iii) �
jv
t 4i1 u51 4j1 v5 ∈ Ro, are nonnegative integers with �

jv
t 4i1 u5 ≤ t. We will refer to them as the delayed

times. In a distributed asynchronous computation model, if we associate a processor with each component 4i1 u5,
whose task is to update the Q-factor for 4i1 u5, then t − �

jv
t 4i1 u5 can be viewed as the “communication delay”

between the processors at 4i1 u5 and 4j1 v5 at time t.
We now describe the conditions on the variables. We regard all the variables in the Q-learning algorithm as

random variables on a common probability space 4ì1F1P5. This means that the stepsizes and delayed times
can be chosen based on the history of the algorithm. To determine the values of these variables, including which
components to update at time t, the algorithm may use auxiliary variables that do not appear in Equation (2.4).
Thus, to describe rigorously the dependence relation between the variables, it is convenient to introduce a family
8Ft9 of increasing sub-�-fields of F. Then the following information structure condition is required: Q0 is
F0-measurable, and

for every 4i1 u5 and 4j1 v5 ∈R and t ≥ 0, �t4i1 u5 and �
jv
t 4i1 u5 are Ft-measurable,

and �t4i1 u5 and j iut are Ft+1-measurable.

The condition means that in iteration (2.4), the algorithm either chooses the stepsize �t4i1 u5 and the delayed
times �

jv
t 4i1 u51 4j1 v5 ∈ R, before generating j iut , or it chooses the values of the former variables in a way that

does not use the information of j iut . We note that although this condition seems abstract, it is naturally satisfied
by the algorithm in practice.

In probabilistic terms and with the notation just introduced, the successor states and random transition costs
appearing in the algorithm need to satisfy the following relations: for all 4i1 u5 ∈R and t ≥ 0,

P4j iut = j �Ft5= pij4u51 ∀ j ∈ So1 (2.5)

E6�t4i1 u5 �Ft7= 01 E6�2
t 4i1 u5 �Ft7≤C1 (2.6)

where C is some deterministic constant. There are two more conditions on the algorithm. In the totally asyn-
chronous computation framework, we have the following minimal requirement on the delayed times used in
each component update: w.p.1,

lim
t→�

� jv
t 4i1 u5= �1 ∀ 4i1 u51 4j1 v5 ∈R0 (2.7)

We require the stepsizes to satisfy a standard condition for stochastic approximation algorithms: w.p.1,
∑

t≥0

�t4i1 u5= �1
∑

t≥0

�t4i1 u5
2 <�1 ∀ 4i1 u5 ∈R0 (2.8)

We collect the algorithmic conditions mentioned above in one assumption below. We note that these conditions
are natural and fairly mild for the Q-learning algorithm.

Assumption 2.1 (Algorithmic Conditions). The information structure condition holds, and w.p.1, Equa-
tions (2.5)–(2.8) are satisfied.

For boundedness of the Q-learning iterates, the condition (2.7) is in fact not needed (which is not surprising
intuitively, since bounded delayed times cannot contribute to instability of the iterates). We therefore also state a
weaker version of Assumption 2.1, excluding condition (2.7), and we will use it later in the boundedness results
for the algorithm.

Assumption 2.2. The information structure condition holds, and w.p.1, Equations (2.5), (2.6), (2.8) are
satisfied.
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2.3. Convergence of Q-learning: Earlier results. The following convergence and boundedness results
for Q-learning in SSP problems are established essentially in Tsitsiklis [8]; see also Bertsekas and Tsitsiklis
[3, §§4.3 and 5.6].

Theorem 2.1 (Tsitsiklis [8]). Let 8Qt9 be the sequence generated by the iteration (2.4) with any given
initial Q0. Then, under Assumption 2.1, 8Qt9 converges to Q∗ w.p.1 if either of the following holds:

(i) all policies of the SSP are proper;
(ii) the SSP satisfies Assumption 1.1 and in addition, 8Qt9 is bounded w.p.1.

In case (i), we also have that 8Qt9 is bounded w.p.1 under Assumption 2.2 (instead of Assumption 2.1).

Note that for a proper policy � ∈ çSD, by considering the SSP problem that has � as its only policy, the
conclusions of Theorem 2.1 in case (i) also apply to the evaluation of policy � with Q-learning. In this context,
Q∗ in the conclusions corresponds to the Q-factor vector Q�, which is the unique fixed point of the weighted
sup-norm contraction mapping F� (see Equation (2.3)).

The contribution of this paper is to remove the boundedness requirement on 8Qt9 in case (ii). Our proof
arguments will be largely different from those used to establish the preceding theorem. For completeness,
however, in the rest of this section, we explain briefly the basis of the analysis that gives Theorem 2.1, and the
conditions involved.

In the analytical framework of Tsitsiklis [8], we view iteration (2.4) as a stochastic approximation algorithm
and rewrite it equivalently as

Qt+14i1 u5= 41 −�t4i1 u55Qt4i1 u5+�t4i1 u54FQ
4iu5
t 54i1 u5+�t4i1 u5�̃t4i1 u51 (2.9)

where F is the Bellman operator given by Equation (2.2); Q4iu5
t denotes the vector of Q-factors with components

Q�
jv
t 4i1 u54j1 v51 4j1 v5 ∈Ro (which involve the delayed times); and �̃t4i1 u5 is a noise term given by

�̃t4i1 u5= g4i1 u5+�t4i1 u5+ min
v∈U4s5

Q�svt 4i1 u54s1 v5− 4FQ
4iu5
t 54i1 u5

(with s = j iut ). The noise terms �̃t4i1 u51 4i1 u5 ∈ R, are Ft+1-measurable. Conditional on Ft , they can be shown
to have zero mean and meet a requirement on the growth of the conditional variance, when the Q-learning
algorithm satisfies certain conditions (the same as those in Assumption 2.1 except for a slightly stronger stepsize
condition, which will be explained shortly). We then analyze iteration (2.9) as a special case of an asynchronous
stochastic approximation algorithm where F is either a contraction or a monotone nonexpansive mapping (with
respect to the sup-norm) and Q∗ is the unique fixed point of F . These two cases of F correspond to the two
different SSP model assumptions in Theorem 2.1: when all policies of the SSP are proper, F is a weighted
sup-norm contraction, whereas when Assumption 1.1 holds, F is monotone and nonexpansive (see §2.1). The
conclusions of Theorem 2.1 for case (i) follow essentially from Tsitsiklis [8, Theorems 1 and 3] for contraction
mappings, whereas Theorem 2.1 in case (ii) follows essentially from Tsitsiklis [8, Theorem 2] for monotone
nonexpansive mappings.

A specific technical detail relating to the stepsize condition is worth mentioning. To apply the results of
Tsitsiklis [8] here, we first consider, without loss of generality, the case where all stepsizes are bounded by some
deterministic constant. Theorem 2.1 under this additional condition then follows directly from Tsitsiklis [8]; see
also Bertsekas and Tsitsiklis [3, §4.3].1 (We mention that the technical use of this additional stepsize condition
is only to ensure that the noise terms �̃t4i1 u51 4i1 u5 ∈ R1 have well-defined conditional expectations.) We then
remove the additional stepsize condition and obtain Theorem 2.1 as the immediate consequence, by using a
standard, simple truncation technique as follows. For each positive integer m, define truncated stepsizes

�̂m
t 4i1 u5= min8m1�t4i1 u591 4i1 u5 ∈R1

which are by definition bounded by m, and consider the sequence 8Q̂m
t 9 generated by iteration (2.4) with

Q̂m
0 = Q0 and with �̂m

t 4i1 u5 in place of �t4i1 u5. This sequence has the following properties. If the original

1 The stepsize condition appearing in Tsitsiklis [8] is slightly different than condition (2.8); it is
∑

t≥0 �t4i1 u5
2 <C w.p.1, for some (deter-

ministic) constant C, instead of C being �, and in addition, it is required that �t4i1 u5 ∈ 60117. However, by strengthening one technical
lemma (Lemma 1) in Tsitsiklis [8] so that its conclusions hold under the weaker condition (2.8), the proof of Tsitsiklis [8] is essentially
intact under the latter condition. The details of the analysis can be found in Bertsekas and Tsitsiklis [3, Proposition 4.1 and Example 4.3,
pp. 141–143] (see also Corrollary 4.1 and §4.3.6 therein). A reproduction of the proofs in Tsitsiklis [8], Bertsekas and Tsitsiklis [3] with
slight modifications is also available Yu [10].
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sequence 8Qt9 satisfies Assumptions 2.1 or 2.2, then so does 8Q̂m
t 9. Moreover, since the original stepsizes

�t4i1 u51 t ≥ 01 4i1 u5 ∈R, are bounded w.p.1, we have that for each sample path from a set of probability one,
8Qt9 coincides with 8Q̂m

t 9 for some sufficiently large integer m. The latter means that if for each m, 8Q̂m
t 9

converges to Q∗ (or 8Q̂m
t 9 is bounded) w.p.1, then the same holds for 8Qt9. Hence the conclusions of Theorem 2.1

for case (i) are direct consequences of applying the weaker version of the theorem mentioned earlier to the
sequences 8Q̂m

t 9 for each m. Case (ii) of Theorem 2.1 follows from exactly the same argument, in view of
the fact that under Assumption 2.1, if 8Qt9 is bounded w.p.1, then 8Q̂m

t 9 is also bounded w.p.1 for each m.
[To see this, observe that by condition (2.8), the stepsizes in 8Qt9 and 8Q̂m

t 9 coincide for t sufficiently large;
more precisely, w.p.1, there exists some finite (path-dependent) time t̄ such that for all t ≥ t̄ and 4i1 u5 ∈ R,
�̂m
t 4i1 u5= �t4i1 u5 ∈ 60117. It then follows by the definition of 8Q̂m

t 9 that �Qt − Q̂m
t �� ≤ max�≤t̄ �Q� − Q̂m

� �� for
all t ≥ t̄.] So, technically speaking, Theorem 2.1 with the general stepsizes is a corollary of its weaker version
mentioned earlier.

3. Main results. We will prove in this section the following theorem. It furnishes the boundedness condition
required in Tsitsiklis [8, Theorem 2] (see Theorem 2.1(ii)), and together with the latter, establishes completely
the convergence of 8Qt9 to Q∗ w.p.1.

Theorem 3.1. Under Assumptions 1.1 and 2.2, for any given initial Q0, the sequence 8Qt9 generated by the
Q-learning iteration (2.4) is bounded w.p.1.

Our proof consists of several steps which will be given in separate subsections. First we show that 8Qt9 is
bounded above w.p.1. This proof is short and uses the contraction property of the Bellman operator F� associated
with a proper policy � in çSD. A similar idea has been used in earlier works of Tsitsiklis [8, Lemma 9] and
Bertsekas and Tsitsiklis [3, Proposition 5.6, p. 249] to prove the boundedness of iterates for certain nonnegative
SSP models.

In the proofs of this section, for brevity, we will partially suppress the word “w.p.1” when the algorithmic
conditions are concerned. Whenever a subset of sample paths with a certain property is considered, it will be
implicitly assumed to be the intersection of the set of paths with that property and the set of paths that satisfy
the assumption on the algorithm currently in effect (e.g., Assumption 2.1 or 2.2). In the proofs, the notation
“

a.s.
→” stands for almost sure convergence.

3.1. Boundedness from above.

Proposition 3.1. Under Assumptions 1.1(i) and 2.2, for any given initial Q0, the sequence 8Qt9 generated
by the Q-learning iteration (2.4) is bounded above w.p.1.

Proof. Let � be any proper policy in çSD; such a policy exists by Assumption 1.1(i). First we define
iterates (random variables) 8Q̂t9 on the same probability space as the Q-learning iterates 8Qt9. Let Q̂0 =Q0 and
Q̂t40105= 0 for t ≥ 0. For each 4i1 u5 ∈R and t ≥ 0, let

Q̂t+14i1 u5= 41 −�t4i1 u55Q̂t4i1 u5+�t4i1 u5
(

g4i1 u5+�t4i1 u5+ Q̂�sv̄t 4i1 u5

(

j iut 1�4j
iu
t 5
))

1

where in the superscript of � sv̄
t 4i1 u5, s is a shorthand for j iut and v̄ is a shorthand for �4j iut 5, introduced to avoid

notational clutter; and �t4i1 u5, j
iu
t and �t4i1 u5, as well as the delayed times �

jv
t 4i1 u51 4j1 v5 ∈Ro, are the same

random variables that appear in the Q-learning algorithm (2.4).
The sequence 8Q̂t9 is generated by the Q-learning algorithm (2.4) for the SSP problem that has the proper

policy � as its only policy, and involves the mapping F�, which is a weighted sup-norm contraction (see §2.1
and the discussion following Theorem 2.1). The sequence 8Q̂t9 also satisfies Assumption 2.2 (since 8Q̂t9 and
8Qt9 involve the same stepsizes, transition costs and delayed times). Therefore, by Theorem 2.1(i), 8Q̂t9 is
bounded w.p.1.

Consider now any sample path from the set of probability one on which 8Q̂t9 is bounded. In view of the
stepsize condition (2.8), there exists a time t̄ such that �t4i1 u5≤ 1 for all t ≥ t̄ and 4i1 u5 ∈R. Let

ã= max
�≤t̄

max
4i1 u5∈R

(

Q�4i1 u5− Q̂�4i1 u5
)

0

Then
Q�4i1 u5≤ Q̂�4i1 u5+ã1 ∀ 4i1 u5 ∈R1 � ≤ t̄0
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We show by induction that this relation also holds for all � > t̄. To this end, suppose that for some t ≥ t̄, the
relation holds for all � ≤ t. Then, for each 4i1 u5 ∈R, we have that

Qt+14i1 u5 ≤ 41 −�t4i1 u55Qt4i1 u5+�t4i1 u5
(

g4i1 u5+�t4i1 u5+Q�sv̄t 4i1 u54s1 v̄5
)

≤ 41 −�t4i1 u554Q̂t4i1 u5+ã5+�t4i1 u5
(

g4i1 u5+�t4i1 u5+ Q̂�sv̄t 4i1 u54s1 v̄5+ã
)

= Q̂t+14i1 u5+ã1

where the first inequality follows from the definition of Qt+1 and the fact �t4i1 u5 ≥ 0, the second inequality
follows from the induction hypothesis and the fact �t4i1 u5 ∈ 60117, and the last equality follows from the
definition of Q̂t+1. This completes the induction and shows that 8Qt9 is bounded above w.p.1. �

3.2. Boundedness from below for a special case. The proof that 8Qt9 is bounded below w.p.1 is long and
consists of several steps to be given in the next subsection. For a special case with nonnegative expected one-stage
costs, there is a short proof, which we give here. Together with Proposition 3.1, it provides a short proof of the
boundedness and hence convergence of the Q-learning iterates for a class of nonnegative SSP models satisfying
Assumption 1.1. Earlier works of Tsitsiklis [8, Lemma 9] and Bertsekas and Tsitsiklis [3, Proposition 5.6, p. 249]
have also considered nonnegative SSP models and established convergence results for them, but under stronger
assumptions than ours. (In particular, it is assumed there that all transitions incur costs ĝ4i1 u1 j1�5≥ 0, as well
as other conditions, so that all iterates are nonnegative.) To keep the proof simple, we will use Assumption 2.1,
although Assumption 2.2 would also suffice.

Proposition 3.2. Suppose that g4i1 u5≥ 0 for all 4i1 u5 ∈R and moreover, for those 4i1 u5 with g4i1 u5= 0,
every possible transition from state i under control u incurs cost 0. Then, under Assumption 2.1, for any given
initial Q0, the sequence 8Qt9 generated by the Q-learning iteration (2.4) is bounded below w.p.1.

Proof. We write 8Qt9 as the sum of two processes: for each 4i1 u5 ∈Ro,

Qt4i1 u5= g̃t4i1 u5+ Yt4i1 u51 t ≥ 01 (3.1)

where g̃t40105= g40105= 0 and Yt40105= 0 for all t, and for each 4i1 u5 ∈R,

g̃t+14i1 u5= 41 −�t4i1 u55g̃t4i1 u5+�t4i1 u5
(

g4i1 u5+�t4i1 u5
)

1

Yt+14i1 u5= 41 −�t4i1 u55Yt4i1 u5+�t4i1 u5 min
v∈U4s5

Q�svt 4i1 u54s1 v51

with g̃0 ≡ 0, Y0 = Q0, and s being a shorthand for j iut (to avoid notational clutter). Using the conditions (2.6)
and (2.8) of the Q-learning algorithm, it follows from the standard theory of stochastic approximation (see e.g.,
Bertsekas and Tsitsiklis [3, Proposition 4.1 and Example 4.3, pp. 141–143] or Kushner and Yin [5], Borkar [4])
that g̃t4i1 u5

a.s.
→ g4i1 u5 for all 4i1 u5 ∈R.2

Consider any sample path from the set of probability one, on which this convergence takes place. Then by
Equation (3.1), on that sample path, 8Qt9 is bounded below if and only if 8Yt9 is bounded below. Now from the
definition of Yt and Equation (3.1) we have

Yt+14i1 u5= 41 −�t4i1 u55Yt4i1 u5+�t4i1 u5 min
v∈U4s5

(

g̃�svt 4i1 u54s1 v5+ Y�svt 4i1 u54s1 v5
)

0 (3.2)

By condition (2.7) of the Q-learning algorithm, and in view also of our assumption on one-stage costs, the
convergence g̃t4j1 v5

a.s.
→ g4j1 v5 for all 4j1 v5 ∈ R implies that on the sample path under our consideration, for

all t sufficiently large,
g̃�jvt 4i1 u54j1 v5≥ 01 ∀ 4j1 v5 ∈Ro0

Therefore, using Equation (3.2) and the fact that eventually �t4i1 u5 ∈ 60117 [cf. Equation (2.8)], we have that
for all t sufficiently large and for all 4i1 u5 ∈R,

Yt+14i1 u5 ≥ 41 −�t4i1 u55Yt4i1 u5+�t4i1 u5 min
v∈U4s5

Y�svt 4i1 u54s1 v5

≥ min
�≤t

min
4j1 v5∈Ro

Y�4j1 v51

2 This convergence follows from a basic result of stochastic approximation theory (see the aforementioned references) if besides (2.6) and
(2.8), it is assumed in addition that the stepsizes are bounded by some (deterministic) constant. The desired result then follows by removing
the additional condition with the stepsize truncation proof technique described in §2.3. More details can also be found in Yu [10, Lemma 1];
therein implies the convergence desired here.
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which implies that for all t sufficiently large,

min
�≤t+1

min
4j1 v5∈Ro

Yt4j1 v5≥ min
�≤t

min
4j1 v5∈Ro

Y�4j1 v50

Hence 8Yt9 is bounded below on that sample path. The proof is complete. �

3.3. Boundedness from below in general. In this section, we will prove the following result in several
steps. Together with Proposition 3.1 it implies Theorem 3.1.

Proposition 3.3. Under Assumptions 1.1 and 2.2, the sequence 8Qt9 generated by the Q-learning itera-
tion (2.4) is bounded below w.p.1.

The proof can be outlined roughly as follows. In §3.3.1 we will introduce an auxiliary sequence 8Q̃t9 of a
certain form such that 8Q̃t9 is bounded below w.p.1 if and only if 8Qt9 is bounded below w.p.1. In §§3.3.2 and
3.3.3 we will give, for any given �> 0, a specific construction of the sequence 8Q̃t9 for each sample path from
a set of probability 1, such that each Q̃t4i1 u5 can be interpreted as the expected total cost of some randomized
Markov policy for a time-inhomogeneous SSP problem that can be viewed as a “�-perturbation” of the original
problem. Finally, to complete the proof, we will show in §3.3.4 that when � is sufficiently small, the expected
total costs achievable in any of these “perturbed” SSP problems can be bounded uniformly from below, so that
the auxiliary sequence 8Q̃t9 constructed for the corresponding � must be bounded below w.p.1. This then implies
that the Q-learning iterates 8Qt9 must be bounded below w.p.1.

In what follows, let ì′ denote the set of sample paths on which the algorithmic conditions in Assumption 2.2
hold. Note that ì′ has probability one under Assumption 2.2.

3.3.1. Auxiliary sequence 8Q̃t9. The first step of our proof is a technically important observation. Let us
write the Q-learning iterates given in Equation (2.4) equivalently, for all 4i1 u5 ∈R and t ≥ 0, as

Qt+14i1 u5= 41 −�t4i1 u55Qt4i1 u5+�t4i1 u5
(

g4i1 u5+�t4i1 u5+Q�svt 4i1 u54j
iu
t 1 v

iu
t 5
)

1 (3.3)

where viut is a control that satisfies
viut ∈ arg min

v̄∈U4s5

Q�sv̄t 4i1 u54j
iu
t 1 v̄51 (3.4)

and s1 v in the superscript of � sv
t 4i1 u5 are shorthand notation: s stands for the state j iut , and v now stands for the

control viut . We observe the following. Suppose we define an auxiliary sequence 8Q̃t9 where

Q̃t40105= 01 t ≥ 01 (3.5)

and for some nonnegative integer t0, and for all 4i1 u5 ∈R,

Q̃t+14i1 u5= 41 −�t4i1 u55Q̃t4i1 u5+�t4i1 u5
(

g4i1 u5+�t4i1 u5+ Q̃�svt 4i1 u54j
iu
t 1 v

iu
t 5
)

1 t ≥ t01 (3.6)

Q̃t4i1 u5= Q̃t0
4i1 u51 t ≤ t00 (3.7)

Let us consider each sample path from the set ì′. In view of Equation (2.8), there exists t′0 ≥ t0 such that
�t4i1 u5 ∈ 60117 for all t ≥ t′0 and 4i1 u5 ∈ R. By Equations (3.3) and (3.6), we then have that for all t ≥ t′0 and
4i1 u5 ∈R,

∣

∣Qt+14i1 u5− Q̃t+14i1 u5
∣

∣ ≤ 41 −�t4i1 u55
∣

∣Qt4i1 u5− Q̃t4i1 u5
∣

∣

+�t4i1 u5
∣

∣Q�svt 4i1 u54j
iu
t 1 v

iu
t 5− Q̃�svt 4i1 u54j

iu
t 1 v

iu
t 5
∣

∣

≤ max
�≤t

∥

∥Q� − Q̃�

∥

∥

�
1

which implies
max
�≤t+1

∥

∥Q� − Q̃�

∥

∥

�
≤ max

�≤t

∥

∥Q� − Q̃�

∥

∥

�
0 (3.8)

Therefore, on that sample path, 8Qt9 is bounded below if and only if 8Q̃t9 is bounded below. We state this as a
lemma.

Lemma 3.1. For any sample path from the set ì′, and for any values of t0 and Q̃t0
, the Q-learning sequence

8Qt9 is bounded below if and only if 8Q̃t9 given by Equations (3.5)–(3.7) is bounded below.

This observation is the starting point for the proof of the lower boundedness of 8Qt9. We will construct a
sequence 8Q̃t9 that is easier to analyze than 8Qt9 itself. In particular, we will choose, for each sample path from
a set of probability one, the time t0 and the initial Q̃t0

in such a way that the auxiliary sequence 8Q̃t9 is endowed
with a special interpretation and structure relating to perturbed versions of the SSP problem.
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3.3.2. Choosing t0 and initial Q̃t0
for a sample path. First we introduce some notation and definitions to

be used throughout the rest of the proof. For a finite set D, let P4D5 denote the set of probability distributions
on D. For p ∈ P4D5 and x ∈ D, let p4x5 denote the probability of x and supp4p5 denote the support of p,
8x ∈ D � p4x5 6= 09. For p11 p2 ∈ P4D5, we write p1 � p2 if p1 is absolutely continuous with respect to p2,
that is, supp4p15⊂ supp4p25. For signed measures p on D, we define the notation p4x5 and supp4p5 as well as
the notion of absolute continuity similarly. We denote by P̄4D5 the set of signed measures p on D such that
∑

x∈D p4x5= 1. This set contains the set P4D5.
For each 4i1 u5 ∈ Ro, we define the following. Let piu

o ∈ P4So5 correspond to the transition probabilities
at 4i1 u5:

piu
o 4j5= pij4u51 j ∈ So0

For each � > 0, let A�4i1 u5 ⊂ P4So5 denote the set of probability distributions that are both in the
�-neighborhood of piu

o and absolutely continuous with respect to piu
o , i.e.,

A�4i1 u5=
{

d ∈P4So5
∣

∣�d4j5−pij4u5� ≤ �1 ∀ j ∈ So1 and d � piu
o

}

0

(In particular, for 4i1 u5= 40105, p00
o 405= 1 and A�40105= 8p00

o 9.)
Let g denote the vector of expected one-stage costs, 8g4i1 u51 4i1 u5 ∈ Ro9. Define B� to be the subset of

vectors in the �-neighborhood of g whose 40105th component is zero: with c = 8c4i1 u51 4i1 u5 ∈Ro9,

B� =
{

c
∣

∣ c40105= 0 and �c4i1 u5− g4i1 u5� ≤ �1 ∀ 4i1 u5 ∈R
}

0

We now describe how we choose t0 and Q̃t0
for the auxiliary sequence 8Q̃t9 on a certain set of sample

paths that has probability one. We start by defining two sequences, a sequence 8g̃t9 of one-stage cost vectors3

and a sequence 8qt9 of collections of signed measures in P̄4So5. They are random sequences defined on the
same probability space as the Q-learning iterates, and they can be related to the empirical one-stage costs and
empirical transition frequencies on a sample path. We define the sequence 8g̃t9 as follows: for t ≥ 0,

g̃t+14i1 u5= 41 −�t4i1 u55g̃t4i1 u5+�t4i1 u54g4i1 u5+�t4i1 u551 ∀ 4i1 u5 ∈R3 (3.9)

g̃04i1 u5= 01 4i1 u5 ∈R3 and g̃t40105= 01 t ≥ 00

We define the sequence 8qt9 as follows. It has as many components as the size of the set R of state-control
pairs. For each 4i1 u5 ∈R, define the component sequence 8qiu

t 9 by letting qiu
0 be any given distribution in P4So5

with qiu
0 � piu

o , and by letting

qiu
t+1 = 41 −�t4i1 u55qiu

t +�t4i1 u5 ej iut 1 t ≥ 01 (3.10)

where ej denotes the indicator of j2 ej ∈ P4So5 with ej4j5 = 1 for j ∈ So. Since the stepsizes �t4i1 u5 may
exceed 1, in general qiu

t ∈ P̄4So5. Since j iut is a random successor state of state i after applying control u [cf.
condition (2.5)], w.p.1,

qiu
t � piu

o 1 t ≥ 00 (3.11)

By the standard theory of stochastic approximation (see, e.g., Bertsekas and Tsitsiklis [3, Proposition 4.1 and
Example 4.3, pp. 141–143] or Kushner and Yin [5], Borkar [4]; see also Footnote 2), Equations (2.6) and (2.8)
imply that

g̃t4i1 u5
a.s.

−→ g4i1 u51 ∀ 4i1 u5 ∈R1 (3.12)

whereas Equations (2.5) and (2.8) imply that

qiu
t

a.s.
−→ piu

o 1 ∀ 4i1 u5 ∈R0 (3.13)

Equations (3.13) and (3.11) together imply that w.p.1, eventually qiu
t lies in the set P4So5 of probability distri-

butions. The following is then evident, in view also of the stepsize condition (2.8).

Lemma 3.2. Let Assumption 2.2 hold. Consider any sample path from the set of probability one of paths
which lie in ì′ and on which the convergence in Equations (3.12), (3.13) takes place. Then for any �> 0, there
exists a time t0 such that

g̃t ∈ B�1 qiu
t ∈A�4i1 u51 �t4i1 u5≤ 11 ∀ 4i1 u5 ∈R1 t ≥ t00 (3.14)

In the rest of §3.3, let us consider any sample path from the set of probability one given in Lemma 3.2. For
any given � > 0, we choose t0 given in Lemma 3.2 to be the initial time of the auxiliary sequence 8Q̃t9. (Note
that t0 depends on the entire path and hence so does 8Q̃t9.)

3 The sequence 8g̃t9 also appeared in the proof of Proposition 3.2; for convenience, we repeat the definition here.
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We now define the initial Q̃t0
. Our definition and the proof that follows will involve a stationary randomized

policy �. Recall that �4u � i5 denotes the probability of applying control u at state i under �, for u ∈U4i51 i ∈ So.
Recall also that U =

⋃

i∈So
U4i5 is the control space. We now regard �4· � i5 as a distribution in P4U5 with its

support contained in the feasible control set U4i5 [that is, �4u � i5= 0 if u 6∈U4i5].
To define Q̃t0

, let � be a proper randomized stationary policy, which exists under Assumption 1.1(i). We define
each component Q̃t0

4i1 u5 of Q̃t0
separately, and we associate with Q̃t0

4i1 u5 a time-inhomogeneous Markov
chain and time-varying one-stage cost functions as follows. For each 4i1 u5 ∈R, consider a time-inhomogeneous
Markov chain 4i01 u051 4i11 u151 : : : on the space So × U with initial state 4i01 u05 = 4i1 u5, whose probability
distribution is denoted Piu

t0
and whose transition probabilities at time k−1 are given by: for all 4ī1 ū51 4j̄1 v̄5 ∈Ro,

Piu
t0

(

i1 = j̄1 u1 = v̄ � i0 = i1 u0 = u
)

= qiu
t0
4j̄ 5 · �4v̄ � j̄ 51 for k = 11

Piu
t0

(

ik = j̄1 uk = v̄ � ik−1 = ī1 uk−1 = ū
)

= pīj̄4ū5 · �4v̄ � j̄ 51 for k ≥ 21

where Piu
t0
4 · � · 5 denotes conditional probability. (The transition probabilities at 4ī1 ū5 6∈ Ro can be defined arbi-

trarily because regardless of their values, w.p.1, the chain will never visit such state-control pairs at any time.)
For each 4i1 u5 ∈R, we also define time-varying one-stage cost functions g

iu1t0
k 2 Ro 7→ <, k ≥ 0, by

g
iu1t0
0 = g̃t01 for k = 01 and g

iu1t0
k = g1 for k ≥ 10

We extend g
iu1t0
k to So ×U by defining its values outside the domain Ro to be +�, and we will treat 0 · � = 0.

This convention will be followed throughout.
We now define

Q̃t0
4i1 u5= EPiu

t0

[

�
∑

k=0

g
iu1t0
k 4ik1 uk5

]

1 ∀ 4i1 u5 ∈R1 (3.15)

where EPiu
t0 denotes expectation under Piu

t0
. The above expectation is well defined and finite, and furthermore, the

order of summation and expectation can be exchanged, i.e.,

Q̃t0
4i1 u5=

�
∑

k=0

EPiu
t0 6g

iu1t0
k 4ik1 uk570

This follows from the fact that under Piu
t0

, from time 1 onwards, the process 84ik1 uk51 k ≥ 19 evolves and incurs
costs as in the original SSP problem under the stationary proper policy �. In particular, since � is a proper
policy,

∑�

k=0 �g
iu1t0
k 4ik1 uk5� is finite almost surely with respect to Piu

t0
, and hence the summation

∑�

k=0 g
iu1t0
k 4ik1 uk5

is well defined and also finite Piu
t0

-almost surely. Since � is a stationary proper policy for a finite state SSP, we
have that under �, from any state in S, the expected time of reaching the state 0 is finite, and consequently,
EPiu

t0 6
∑�

k=0 �g
iu1t0
k 4ik1 uk5�7 is also finite. It then follows from the dominated convergence theorem that the two

expressions given above for Q̃t0
4i1 u5 are indeed equal.

3.3.3. Interpreting 8Q̃t9 as costs in certain time-inhomogeneous SSP problems. We now show that
with the preceding choice of t0 and initial Q̃t0

, each component of the iterates Q̃t1 t ≥ t01 is equal to, briefly
speaking, the expected total cost of a randomized Markov policy (represented by 8�iu1t

k 1 k ≥ 19 below) in a
time-inhomogeneous SSP problem whose parameters (transition probabilities and one-stage costs, represented
by 8piu1t

k 1 giu1tk 1 k ≥ 09 below) lie in the �-neighborhood of those of the original problem. While the proof of
this result is lengthy, it is mostly a straightforward verification. In the next, final step of our analysis, given in
§3.3.4, we will, for sufficiently small �, lower-bound the costs of these time-inhomogeneous SSP problems and
thereby lower-bound 8Q̃t9.

As in the preceding subsection, for any probability distribution P, we write P4 · � · 5 for conditional probability
and EP for expectation under P. Recall also that the sets A�4i1 u5 where 4i1 u5 ∈ Ro1 and the set B�, defined in
the preceding subsection, are subsets contained in the �-neighborhood of the transition probability parameters
and expected one-stage cost parameters of the original SSP problem, respectively.

Lemma 3.3. Let Assumptions 1.1(i) and 2.2 hold. Consider any sample path from the set of probability one
given in Lemma 3.2. For any � > 0, with t0 and Q̃t0

given as in §3.3.2 for the chosen �, the iterates Q̃t4i1 u5
defined by Equations (3.5)–(3.7) have the following properties for each 4i1 u5 ∈R and t ≥ 0:

(a) Q̃t4i1 u5 can be expressed as

Q̃t4i1 u5= EPiu
t

[

�
∑

k=0

giu1tk 4ik1 uk5

]

=

�
∑

k=0

EPiu
t 6giu1tk 4ik1 uk57
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for some probability distribution Piu
t of a Markov chain 84ik1 uk51 k ≥ 09 on So ×U and one-stage cost functions

giu1tk 2 Ro 7→ <, k ≥ 0 (with giu1tk ≡ +� on 4So ×U5\Ro).
(b) The Markov chain 84ik1 uk51 k ≥ 09 in (a) starts from state 4i01 u05= 4i1 u5 and is time-inhomogeneous. Its

transition probabilities have the following product form: for all 4ī1 ū51 4j̄1 v̄5 ∈Ro,

Piu
t 4i1 = j̄1 u1 = v̄ � i0 = i1 u0 = u5= piu1t

0 4j̄ � i1 u5 · �iu1t
1 4v̄ � j̄ 51 for k = 11

Piu
t 4ik = j̄1 uk = v̄ � ik−1 = ī1 uk−1 = ū5= piu1t

k−14j̄ � ī1 ū5 · �iu1t
k 4v̄ � j̄ 51 for k ≥ 21

where for all k ≥ 1 and 4ī1 ū5 ∈Ro, j̄ ∈ So,

piu1t
k−14· � ī1 ū5 ∈A�4ī1 ū51 �iu1t

k 4· � j̄ 5 ∈P4U5 with supp4�iu1t
k 4· � j̄ 55⊂U4j̄ 51

and moreover, piu1t
0 4· � i1 u5= qiu

t if t ≥ t0.
(c) The one-stage cost functions giu1tk in (a) satisfy

giu1tk ∈ B�1 k ≥ 01

and moreover, giu1t0 4i1 u5= g̃t4i1 u5 if t ≥ t0.
(d) For the Markov chain in (a), there exists an integer kt such that 84ik1 uk51 k ≥ kt9 evolves and incurs costs

as in the original SSP problem under the proper policy �; i.e., for k ≥ kt ,

�iu1t
k 4· � ī 5= �4· � ī 51 piu1t

k 4· � ī1 ū5= pīū
o 1 giu1tk 4ī1 ū5= g4ī1 ū51 ∀ 4ī1 ū5 ∈Ro0

Proof. The proof is by induction on t. For t = t0, Q̃t0
satisfies properties (a)–(d) by its definition and

our choice of the sample path and t0 (cf. Lemma 3.2). [In particular, for each 4i1 u5 ∈ R, piu1t0
k and �

iu1t0
k in

(a) are given by: for k = 0, piu1t0
0 4· � i1 u5 = qiu

t0
, piu1t0

0 4· � ī1 ū5 = pīū
o , ∀ 4ī1 ū5 ∈ Ro\84i1 u591 and for all k ≥ 1,

p
iu1t0
k 4· � ī1 ū5= pīū

o , ∀ 4ī1 ū5 ∈Ro, �iu1t0
k = �1 whereas kt0 = 1 in (d).] For t < t0, since Q̃t = Q̃t0

by definition, they
also satisfy (a)–(d). So let us assume that properties (a)–(d) are satisfied by all Q̃� , 0 ≤ � ≤ t, for some t ≥ t0.
We will show that Q̃t+1 also has these properties.

Consider Q̃t+14i1 u5 for each 4i1 u5 ∈R. To simplify notation, denote � = �t4i1 u5 ∈ 60117 (cf. Lemma 3.2). By
Equation (3.6),

Q̃t+14i1 u5= 41 −�5Q̃t4i1 u5+�4g4i1 u5+�t4i1 u5+ Q̃�svt 4i1 u54s1 v551

where s = j iut 1 v = viut , and � sv
t 4i1 u5≤ t. By the induction hypothesis, Q̃t and Q̃�svt 4i1 u5 can be expressed as in (a),

so denoting �̄ = � sv
t 4i1 u5 for short and noticing Piu

t 4i0 = i1 u0 = u5= 1 by property (b), we have

Q̃t+14i1 u5 = 41 −�5
�
∑

k=0

EPiu
t 6giu1tk 4ik1 uk57+�4g4i1 u5+�t4i1 u55+�

�
∑

k=0

EPsv
�̄ 6gsv1�̄k 4ik1 uk57

= 41 −�5giu1t0 4i1 u5+�4g4i1 u5+�t4i1 u55

+

�
∑

k=1

{

41 −�5EPiu
t 6giu1tk 4ik1 uk57+�EPsv

�̄ 6gsv1�̄k−14ik−11 uk−157
}

1

=

�
∑

k≥0

Ck1 (3.16)

where

C0 = 41 −�5giu1t0 4i1 u5+�4g4i1 u5+�t4i1 u551 (3.17)

Ck = 41 −�5EPiu
t 6giu1tk 4ik1 uk57+�EPsv

�̄ 6gsv1�̄k−14ik−11 uk−1571 k ≥ 10 (3.18)

Next we will rewrite each term Ck in a desirable form. During this procedure, we will construct the transition
probabilities piu1t+1

k and �iu1t+1
k that compose the probability distribution Piu

t+1 of the time-inhomogeneous Markov
chain for t + 1, as well as the one-stage cost functions giu1t+1

k required in the lemma. For clarity we divide the
rest of the proof into five steps.

(1) We consider the term C0 in Equation (3.17) and define the transition probabilities and one-stage costs for
k = 0 and t+ 1. By the induction hypothesis and property (c), giu1t0 4i1 u5= g̃t4i1 u5. Using this and the definition
of 8g̃t9 [cf. Equation (3.9)], we have

C0 = 41 −�5g̃t4i1 u5+�4g4i1 u5+�t4i1 u55= g̃t+14i1 u50 (3.19)
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Let us define the cost function and transition probabilities for k = 0 and t + 1 by

giu1t+1
0 = g̃t+11 piu1t+1

0 4· � i1 u5= qiu
t+11

and
piu1t+1

0 4· � ī1 ū5= pīū
o 1 ∀ 4ī1 ū5 ∈Ro\84i1 u590

By Lemma 3.2 and our choice of the sample path, g̃t+1 ∈ B� and qiu
t+1 ∈A�4i1 u5, so giu1t+1

0 and piu1t+1
0 satisfy the

requirements in properties (b) and (c).
(2) We now consider the term Ck in Equation (3.18), and we introduce several relations that will define the

transition probabilities and one-stage costs for k ≥ 1 and t + 1 (the precise definitions will be given in the next
two steps).

Consider each k ≥ 1. Let P k
1 denote the law of 4ik1 uk1 ik+15 under Piu

t , and let P k
2 denote the law of

4ik−11 uk−11 ik5 under Psv
�̄ . Let P k

3 denote the convex combination of them:

P k
3 = 41 −�5P k

1 +�P k
2 0

We regard P k
1 , P k

2 , P k
3 as probability measures on the sample space ì̃ = So ×U× So, and we denote by X1Y

and Z the function that maps a point 4ī1 ū1 j̄5 ∈ ì̃ to its first, second, and third coordinate, respectively. By
property (b) of Piu

t and Psv
�̄ from the induction hypothesis, it is clear that under either P k

1 or P k
2 , the possible values

of 4X1Y 5 are from the set Ro of state and feasible control pairs, so the subset Ro × So of ì̃ has probability 1
under P k

3 . Thus we can write Ck in Equation (3.18) equivalently as

Ck =
∑

ī∈So

∑

ū∈U4ī5

(

41 −�5P k
1 4X = ī1 Y = ū5 · giu1tk 4ī1 ū5+�P k

2 4X = ī1 Y = ū5 · gsv1�̄k−14ī1 ū5
)

0 (3.20)

In the next two steps, we will introduce one-stage cost functions giu1t+1
k to rewrite Equation (3.20) equiva-

lently as
Ck =

∑

ī∈So

∑

ū∈U4ī5

P k
3 4X = ī1 Y = ū5 · giu1t+1

k 4ī1 ū50 (3.21)

We will also define the transition probabilities �iu1t+1
k 4· � ī5 and piu1t+1

k 4· � ī1 ū5 to express P k
3 as

P k
3 4X = ī1 Y = ū5= P k

3 4X = ī 5 · �iu1t+1
k 4ū � ī 51 (3.22)

P k
3 4X = ī1 Y = ū1Z = j̄ 5= P k

3 4X = ī1 Y = ū5 ·piu1t+1
k 4j̄ � ī1 ū51 (3.23)

for all 4ī1 ū5 ∈Ro and j̄ ∈ So. Note that in the above, by the definition of P k
3 ,

P k
3 4X = ī 5= 41 −�5Piu

t 4ik = ī 5+�Psv
�̄ 4ik−1 = ī 51 ∀ ī ∈ So0 (3.24)

(3) We now define the one-stage cost functions for k ≥ 1 and t + 1.
Consider each k ≥ 1. Define the cost function giu1t+1

k as follows: for each 4ī1 ū5 ∈Ro,

giu1t+1
k 4ī1 ū5=

41 −�5P k
1 4X = ī1 Y = ū5

P k
3 4X = ī1 Y = ū5

· giu1tk 4ī1 ū5+
�P k

2 4X = ī1 Y = ū5

P k
3 4X = ī1 Y = ū5

· gsv1�̄k−14ī1 ū5 (3.25)

if P k
3 4X = ī1 Y = ū5 > 0, and giu1t+1

k 4ī1 ū5 = g4ī1 ū5 otherwise. With this definition, it is clear that Ck can be
expressed as in Equation (3.21) and this expression is equivalent to the one given in Equation (3.20).

We verify that giu1t+1
k satisfies the requirement in property (c); that is,

giu1t+1
k ∈ B�0 (3.26)

Consider each 4ī1 ū5 ∈ Ro and discuss two cases. If P k
3 4X = ī1 Y = ū5 = 0, then �giu1t+1

k 4ī1 ū5− g4ī1 ū5� = 0 by
definition. Suppose P k

3 4X = ī1 Y = ū5 > 0. Then by Equation (3.25), giu1t+1
k 4ī1 ū5 is a convex combination of

giu1tk 4ī1 ū5 and gsv1�̄k−14ī1 ū5, whereas giu1tk , gsv1�̄k−1 ∈ B� by the induction hypothesis (property (c)). This implies, by the
definition of B�, that �giu1t+1

k 4ī1 ū5−g4ī1 ū5� ≤ � for 4ī1 ū5 ∈R and giu1t+1
k 40105= 0 for 4ī1 ū5= 40105. Combining

the two cases, and in view also of the definition of B�, we have that giu1t+1
k satisfies Equation (3.26).
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We verify that giu1t+1
k satisfies the requirement in property (d). By the induction hypothesis giu1tk = g for k ≥ kt

and gsv1 �̄k−1 = g for k ≥ k�̄ + 1, whereas each component of giu1t+1
k by definition either equals the corresponding

component of g or is a convex combination of the corresponding components of giu1tk and gsv1 �̄k−1 . Hence

giu1t+1
k = g1 ∀k ≥ kt+1

def
= max8kt1 k�̄ + 190 (3.27)

(4) We now define the transition probabilities for k ≥ 1 and t + 1.
Consider each k ≥ 1. Define the transition probability distributions �iu1t+1

k and piu1t+1
k as follows:

�iu1t+1
k 4· � ī 5= P k

3 4Y = · �X = ī 51 ∀ ī ∈ So1 (3.28)

piu1t+1
k 4· � ī1 ū5= P k

3 4Z = · �X = ī1 Y = ū51 ∀ 4ī1 ū5 ∈Ro0 (3.29)

If in the right-hand sides of Equations (3.28)–(3.29), an event being conditioned upon has probability zero,
then let the corresponding conditional probability (which can be defined arbitrarily) be defined according to the
following:

P k
3 4Y = · �X = ī 5= �4· � ī 51 if P k

3 4X = ī 5= 03

P k
3 4Z = · �X = ī1 Y = ū5= pīū

o 1 if P k
3 4X = ī1 Y = ū5= 00

With the above definitions, the equalities (3.22) and (3.23) desired in step (2) of the proof clearly hold. We
now verify that �iu1t+1

k and piu1t+1
k satisfy the requirements in properties (b) and (d).

First, we show that piu1t+1
k satisfies the requirement in property (b); that is,

piu1t+1
k 4· � ī1 ū5 ∈A�4ī1 ū51 ∀ 4ī1 ū5 ∈Ro0

This holds by the definition of piu1t+1
k 4· � ī1 ū5 if P k

3 4X = ī1 Y = ū5 = 0, so let us consider the case
P k

3 4X = ī1 Y = ū5 > 0 for each 4ī1 ū5 ∈ Ro. By the induction hypothesis, Piu
t and Psv

�̄ satisfy property (b). Using
this and the definition of P k

1 and P k
2 , we have that for all j̄ ∈ So,

P k
1 4X = ī1 Y = ū1Z = j̄ 5= Piu

t 4ik = ī1 uk = ū5 ·piu1t
k 4j̄ � ī1 ū51

P k
2 4X = ī1 Y = ū1Z = j̄ 5= Psv

�̄ 4ik−1 = ī1 uk−1 = ū5 ·psv1�̄
k−14j̄ � ī1 ū51

which implies

P k
1 4Z = · �X = ī1 Y = ū5= piu1t

k 4· � ī1 ū51 P k
2 4Z = · �X = ī1 Y = ū5= psv1�̄

k−14· � ī1 ū51 (3.30)

and by property (b) from the induction hypothesis again,

P k
1 4Z = · �X = ī1 Y = ū5 ∈A�4ī1 ū51 P k

2 4Z = · �X = ī1 Y = ū5 ∈A�4ī1 ū50 (3.31)

Then, since P k
3 = 41 −�5P k

1 +�P k
2 with � ∈ 60117, we have

P k
3 4Z = · �X = ī1 Y = ū5 =

P k
3 4X = ī1 Y = ū1Z = ·5

P k
3 4X = ī1 Y = ū5

= 41 −�4ī1 ū55 ·P k
1 4Z = · �X = ī1 Y = ū5+�4ī1 ū5 ·P k

2 4Z = · �X = ī1 Y = ū51 (3.32)

where

�4ī1 ū5=
�P k

2 4X = ī1 Y = ū5

41 −�5P k
1 4X = ī1 Y = ū5+�P k

2 4X = ī1 Y = ū5
∈ 601170

Since the set A�4ī1 ū5 is convex, using the fact that �4ī1 ū5 ∈ 60117, Equations (3.31)–(3.32) imply that

P k
3 4Z = · �X = ī1 Y = ū5 ∈A�4ī1 ū51

and therefore, by definition [cf. Equation (3.29)], piu1t+1
k 4· � ī1 ū5= P k

3 4Z = · �X = ī1 Y = ū5 ∈A�4ī1 ū5.
We now verify that piu1t+1

k satisfies the requirement in property (d): for all 4ī1 ū5 ∈Ro,

piu1t+1
k 4· � ī1 ū5= pīū

o 1 ∀k ≥ kt+1 = max8kt1 k�̄ + 190 (3.33)
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By the induction hypothesis, property (d) is satisfied for � ≤ t, and in particular, for all 4ī1 ū5 ∈Ro,
piu1t
k 4· � ī1 ū5 = pīū

o for k ≥ kt and psv1�̄
k 4· � ī1 ū5 = pīū

o for k ≥ k�̄ . In view of Equations (3.30) and (3.32), we
have that if P k

3 4X = ī1 Y = ū5 > 0, then piu1t+1
k 4· � ī1 ū5 is a convex combination of piu1t

k 4· � ī1 ū5 and psv1�̄
k−14· � ī1 ū5

and hence satisfies Equation (3.33). But if P k
3 4X = ī1 Y = ū5 = 0, piu1t+1

k 4· � ī1 ū5 = pīū
o by definition. Hence

Equation (3.33) holds.
We now verify that �iu1t+1

k given by Equation (3.28) satisfies the requirements in properties (b) and (d). For
each ī ∈ So, �iu1t+1

k 4· � ī 5 = �4· � ī 5 by definition if P k
3 4X = ī 5 = 0; otherwise, similar to the preceding proof,

�iu1t+1
k 4· � ī 5 can be expressed as a convex combination of �iu1t

k 4· � ī 5 and �sv1�̄
k−14· � ī 5:

�iu1t+1
k 4· � ī 5=

41 −�5P k
1 4X = ī 5

P k
3 4X = ī 5

· �iu1t
k 4· � ī 5+

�P k
2 4X = ī 5

P k
3 4X = ī 5

· �sv1�̄
k−14· � ī 51

where if k = 1 and ī = s, we let �sv1�̄
0 4· � s5 denote the distribution in P4U5 that assigns probability 1 to the

control v [if k = 1 and ī 6= s, then the second term above is zero because Psv
�̄ 4i0 = s1 u0 = v5= 1 by the induction

hypothesis and consequently, P 1
2 4X = ī 5 = Psv

�̄ 4i0 = ī 5 = 0]. Combining the two cases, and using properties (b)
and (d) of the induction hypothesis, we then have that supp4�iu1t+1

k 4· � ī 55⊂U4ī 5 for ī ∈ So, and

�iu1t+1
k 4· � ī 5= �4· � ī 51 ∀k ≥ kt+11 ī ∈ So1 (3.34)

which are the requirements for �iu1t+1
k in properties (b) and (d).

(5) In this last step of the proof, we define the Markov chain for t+1 and verify the expression for Q̃t+14i1 u5
given in property (a).

Let the time-inhomogeneous Markov chain 84ik1 uk51 k ≥ 09 with probability distribution Piu
t+1, required in

property (a) for t + 1, be as follows. Let the chain start with 4i01 u05= 4i1 u5, and let its transition probabilities
have the product forms given in property (b) for t+ 1, where piu1t+1

k , k ≥ 01 and �iu1t+1
k , k ≥ 1, are the functions

that we defined in the preceding proof. Also let the time-varying one-stage cost functions giu1t+1
k , k ≥ 0, be

as defined earlier. We have shown that these transition probabilities and one-stage cost functions satisfy the
requirements in properties (b)–(d). To prove the lemma, what we still need to show is that with our definitions,
the expression given in property (a) equals Q̃t+14i1 u5.

First of all, because our definitions of the transition probabilities and one-stage cost functions for t+1 satisfy
property (d), they ensure that under Piu

t+1, 84ik1 uk51 k ≥ kt+19 evolves and incurs costs as in the original SSP
problem under the proper stationary policy �. Consequently, EPiu

t+1 6
∑�

k=0 g
iu1t+1
k 4ik1 uk57 is well defined and finite,

and the order of summation and expectation can be exchanged (the reason is the same as the one we gave at
the end of §3.3.2 for the expression of Q̃t0

):

EPiu
t+1

[

�
∑

k=0

giu1t+1
k 4ik1 uk5

]

=

�
∑

k=0

EPiu
t+1 6giu1t+1

k 4ik1 uk570 (3.35)

Hence, to prove property (a) for t + 1, that is, to show

Q̃t+14i1 u5= giu1t+1
0 4i1 u5+

�
∑

k=1

EPiu
t+1 6giu1t+1

k 4ik1 uk571

we only need to show, in view of the fact that Q̃t+14i1 u5=
∑�

k=0 Ck [cf. Equation (3.16)], that

C0 = giu1t+1
0 4i1 u51 Ck = EPiu

t+1 6giu1t+1
k 4ik1 uk571 k ≥ 10 (3.36)

The first relation is true since by definition giu1t+1
0 4i1 u5 = g̃t+14i1 u5 = C0 [cf. Equation (3.19)]. We now prove

the second equality for Ck, k ≥ 1.
For k ≥ 1, recall that by Equation (3.21),

Ck =
∑

ī∈So

∑

ū∈U4ī5

P k
3 4X = ī1 Y = ū5 · giu1t+1

k 4ī1 ū50

Hence, to prove the desired equality for Ck, it is sufficient to prove that

Piu
t+14ik = ī1 uk = ū5= P k

3 4X = ī1 Y = ū51 ∀ 4ī1 ū5 ∈Ro0 (3.37)
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By the definition of Piu
t+1, Piu

t+14uk = ū � ik = ī 5= �iu1t+1
k 4ū � ī 5 for all 4ī1 ū5 ∈ Ro, so in view of Equation (3.22),

the equality (3.37) will be implied if we prove

Piu
t+14ik = ī 5= P k

3 4X = ī 51 ∀ ī ∈ So0 (3.38)

We verify Equation (3.38) by induction on k. For k = 1, using Equation (3.24) and property (b) of Piu
t and

Psv
�̄ , we have that for every ī ∈ So,

P 1
3 4X = ī 5 = 41 −�5Piu

t 4i1 = ī 5+�Psv
�̄ 4i0 = ī 5

= 41 −�5piu1t
0 4ī � i1 u5+� es4ī 5

= 41 −�5qiu
t 4ī 5+� ej iut 4ī 5

= qiu
t+14ī 5= piu1t+1

0 4ī � i1 u5= Piu
t+14i1 = ī 51

where the last three equalities follow from the definition of qiu
t+1 [cf. Equation (3.10)], the definition of piu1t+1

0 ,
and the definition of Piu

t+1, respectively. Hence Equation (3.38) holds for k = 1.
Suppose Equation (3.38) holds for some k ≥ 1. Then, by the definition of Piu

t+1, we have that for all j̄ ∈ So,

Piu
t+14ik+1 = j̄ 5 =

∑

ī∈So

∑

ū∈U4ī 5

Piu
t+14ik = ī 5 · �iu1t+1

k 4ū � ī 5 ·piu1t+1
k 4j̄ � ī1 ū5

=
∑

ī∈So

∑

ū∈U4ī 5

P k
3 4X = ī 5 · �iu1t+1

k 4ū � ī 5 ·piu1t+1
k 4j̄ � ī1 ū5

= P k
3 4Z = j̄ 5= P k+1

3 4X = j̄ 51

where the second equality follows from the induction hypothesis, the third equality follows from Equa-
tions (3.22)–(3.23), and the last equality follows from the definition of P k

3 and P k+1
3 . This completes the induction

and proves Equation (3.38) for all k ≥ 1, which in turn establishes Equation (3.37) for all k ≥ 1. Consequently,
for all k ≥ 1, the desired equality (3.36) for Ck holds, and we conclude that Q̃t+14i1 u5 equals the expressions
given in Equation (3.35). This completes the proof of the lemma. �

3.3.4. Lower boundedness of 8Q̃t9. In §§3.3.2 and 3.3.3, we have shown that for each sample path from
a set of probability one, and for each � > 0, we can construct a sequence 8Q̃t9 such that Q̃t4i1 u5 for each
4i1 u5 ∈R is the expected total cost of a randomized Markov policy in an MDP that has time-varying transition
and one-stage cost parameters lying in the �-neighborhood of the respective parameters of the original SSP
problem. By Lemma 3.1, therefore, to complete the boundedness proof for the Q-learning iterates 8Qt9, it is
sufficient to show that when � is sufficiently small, the expected total costs of all policies in all these neighboring
MDPs cannot be unbounded from below.

The latter can in turn be addressed by considering the following total cost MDP. It has the same state space So
with state 0 being absorbing and cost-free. For each state i ∈ S, the set of feasible controls consists of not only
the regular controls U4i5, but also the transition probabilities and one-stage cost functions. More precisely, the
extended control set at state i is defined to be

U�4i5=
{

4u1piu1 �i5
∣

∣u ∈U4i51piu
∈A�4i1 u51 �i ∈ B�4i5

}

1

where B�4i5 is a set of one-stage cost functions at i: with z= 8z4u51u ∈U4i59,

B�4i5=
{

z
∣

∣ �z4u5− g4i1 u5� ≤ �1∀u ∈U4i5
}

0

Applying control 4u1piu1 �i5 at i ∈ S, the one-stage cost, denoted by c4u3 i1 �i5, is

c4u3 i1 �i5= �i4u51

and the probability of transition from state i to j is piu4j5. We refer to this problem as the extended SSP problem.
If we can show that the optimal total costs of this problem for all initial states are finite, then it will imply that
8Q̃t9 is bounded below because by Lemma 3.3, for each t and 4i1 u5 ∈R, Q̃t4i1 u5 equals the expected total cost
of some policy in the extended SSP problem for the initial state i.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yu and Bertsekas: Boundedness of Q-Learning for Stochastic Shortest Path Problems
Mathematics of Operations Research 38(2), pp. 209–227, © 2013 INFORMS 223

The extended SSP problem has a finite number of states and a compact control set for each state. Its one-stage
cost c4u3 i1 �i5 is a continuous function of the control component 4u1 �i5, whereas its transition probabilities are
continuous functions of the control component 4u1piu5 for each state i. With these compactness and continuity
properties, the extended SSP problem falls into the set of SSP models analyzed in Bertsekas and Tsitsiklis [2].
Based on the results of Bertsekas and Tsitsiklis [2], the optimal total cost function of the extended SSP problem
is finite everywhere if Assumption 1.1 holds in this problem—that is, if the extended SSP problem satisfies the
following two conditions: (i) there exists at least one proper deterministic stationary policy, and (ii) any improper
deterministic stationary policy incurs infinite cost for some initial state.

Lemma 3.4 (Bertsekas and Tsitsiklis [2]). If the extended SSP problem satisfies Assumption 1.1, then its
optimal total cost is finite for every initial state.

The extended SSP problem clearly has at least one proper deterministic stationary policy, which is to apply
at a state i ∈ S the control 4�4i51pi�4i5

o 1 g4i1 ·55, where � is a proper policy in the set çSD of the original SSP
problem (such a policy exists in view of Assumption 1.1(i) on the original SSP problem). We now show that for
sufficiently small �, any improper deterministic stationary policy of the extended SSP problem incurs infinite
cost for some initial state.

To this end, let us restrict � to be no greater than some �0 > 0, for which pij4u5 > 0 implies piu4j5 > 0 for
all piu ∈A�4i1 u5 and 4i1 u5 ∈R; i.e.,

piu
o � piu1 ∀piu

∈A�4i1 u51 4i1 u5 ∈R1 �≤ �00 (3.39)

[Recall that we also have piu � piu
o in view of the definition of A�4i1 u5.] To simplify notation, denote

A� = ×
4i1 u5∈R

A�4i1 u50

Recall the definition of the set B�, which is a subset of vectors in the �-neighborhood of the expected one-stage
cost vector g of the original problem: with c = 8c4i1 u51 4i1 u5 ∈Ro9,

B� =
{

c
∣

∣ c40105= 0 and �c4i1 u5− g4i1 u5� ≤ �1 ∀ 4i1 u5 ∈R
}

0

Note that B� =×i∈So
B�4i5, where B�405= 809 and B�4i5, i ∈ S are as defined earlier [for the control sets U�4i5

of the extended SSP problem]. For each â ∈ A� and � ∈ B�, let us call an MDP a perturbed SSP problem
with parameters 4â1 �5, if it is the same as the original SSP problem except that the transition probabilities and
one-stage costs for 4i1 u5 ∈R are given by the respective components of â and �.

Consider now a deterministic and stationary policy � of the extended SSP problem, which applies at each
state i some feasible control �4i5= 4�4i51pi�4i51 �i5 ∈ U�4i5. The regular controls �4i5 that � applies at states i
correspond to a deterministic stationary policy of the original SSP problem, which we denote by �. Then, by
Equation (3.39), � is proper (or improper) in the extended SSP problem if and only if � is proper (or improper)
in the original SSP problem. This is because by Equation (3.39), the topology of the transition graph of the
Markov chain on So that � induces in the extended SSP problem is the same as that of the Markov chain induced
by � in the original SSP problem, regardless of the two other control components 4pi�4i51 �i5 of � . Therefore, for
Assumption 1.1(ii) to hold in the extended SSP problem, it is sufficient that any improper policy � in çSD of
the original problem has infinite cost for at least one initial state, in all perturbed SSP problems with parameters
â ∈A� and � ∈ B� [cf. the relation between A�, B� and the control sets U�4i5]. The next lemma shows that the
latter is true for sufficiently small �, thus providing the result we want.

Lemma 3.5. Suppose the original SSP problem satisfies Assumption 1.1(ii). Then there exists �1 ∈ 401 �07,
where �0 is as given in Equation (3.39), such that for all �≤ �1, the following holds: for any improper policy
� ∈çSD of the original problem, there exists a state i (depending on �) with

lim inf
k→�

J̃
�
k 4i3 â1 �5= +�1 ∀â ∈A�1 � ∈ B�1

where J̃
�
k 4·3 â1 �5 is the k-stage cost function of � in the perturbed SSP problem with parameters 4â1 �5.

For the proof, we will use a relation between the long-run average cost of a stationary policy and the total
cost of that policy, and we will also use a continuity property of the average cost with respect to perturbations of
transition probabilities and one-stage costs. The next two lemmas state two facts that will be used in our proof.
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Lemma 3.6. Let � be a stationary policy of a finite-space MDP. If the average cost of � is nonpositive
(strictly positive, respectively) for an initial state, then its total cost is less than (equal to, respectively) +� for
that initial state.

Proof. This follows from the inequalities of Puterman [6, Theorem 9.4.1(a), p. 472] applied to a single
policy �. �

For an irreducible finite-state Markov chain with transition probability matrix P , we say that P is irreducible,
and we let �4P5 denote the unique invariant distribution, viewed as a vector.

Lemma 3.7. For any irreducible transition matrix P̄ , �4 · 5 is a continuous function on a neighborhood of P̄
in the space of transition matrices.

Proof. Since P̄ is irreducible, there exists a neighborhood N4P̄ 5 in the space of transition matrices such that
all P ∈ N4P̄ 5 are irreducible. Fix some � ∈ 40115 and denote P� = 41 − �5P + �I for a transition matrix P .
Then, for all P ∈ N4P̄ 5, P� is irreducible and aperiodic and �4P5 = �4P�5 with strictly positive components;
furthermore, by Seneta [7, Proof of Theorem 1.1(f), pp. 5–6], each row of the adjoint matrix Adj4I − P�5 is a
left eigenvector of P� corresponding to the eigenvalue 1, so any row of Adj4I − P�5 normalized by the sum of
that row is �4P�5= �4P5. Since Adj4I −P�5 is a continuous function of P , this shows that �4P5 is continuous
on N4P̄ 5. �

Proof of Lemma 3.5. Since the set çSD of the original SSP problem is finite, the number of improper
policies in this set is also finite. Therefore, it is sufficient to consider each improper policy in çSD and show
that the claim holds for all � no greater than some �̄ > 0.

Let �≤ �0 and let � ∈çSD be an improper policy. In any perturbed problem with parameters 4â1 �5 ∈A�×B�,
the topology of the transition graph of the Markov chain on So induced by � is the same as that in the original
problem. This means that the recurrent classes of the Markov chains induced by � are also the same for all
these �-perturbed problems and the original problem. Since � is an improper policy, it induces more than one
recurrent class, and on at least one of them, which we denote by E, the long-run average cost of � in the
original problem is strictly positive. The latter follows from Lemma 3.6 and the assumption that any improper
policy incurs infinite cost for some initial state in the original problem (Assumption 1.1(ii)). Let us show that
for � sufficiently small, the average cost of � on the recurrent class E in any perturbed problem with parameters
4â1 �5 ∈A� ×B� must also be strictly positive.

To this end, let P̄ denote the transition matrix of the Markov chain on E induced by � in the original problem.
Let �̄ = g; i.e., �̄ is the one-stage costs parameter of the original problem. For any one-stage costs parameter
� = 8�4i1 u51 4i1 u5 ∈Ro9, let cE4�5 denote the vector of one-stage costs, 8�4i1�4i551 i ∈E9, for states in E. Note
that cE4�5 is a continuous function of �.

The matrix P̄ is irreducible, so by Lemma 3.7, in the space of transition matrices on E, there exists a
neighborhood N4P̄ 5 of P̄ on which �4P5 is a (well-defined) continuous function. Consequently, on N4P̄ 5×N4�̄5,
where N4�̄5 is some neighborhood of �̄, the scalar product �4P5cE4�5 is a continuous function of 4P1 �5
(where �4P5, cE4�5 are treated as a row and column vector, respectively). We have �4P̄ 5cE4�̄5 > 0 because
in the original problem, the average cost of � for any initial state in E is strictly positive, as we showed
earlier. Therefore, there exists some neighborhood N4P̄ 1 �̄5 of 4P̄ 1 �̄5 contained in N4P̄ 5 × N4�̄5, on which
�4P5cE4�5 > 0.

Let Pâ denote the transition matrix of the Markov chain on E induced by � for the perturbed problem with
parameters 4â1 �5. There exists �̄ > 0 sufficiently small such that for all â ∈A�̄ and � ∈ B�̄, 4Pâ 1 �5 ∈N4P̄ 1 �̄5.
Then, for any perturbed problem with parameters â ∈A�̄ and � ∈ B�̄, since the average cost of � for any initial
state i ∈E is �4Pâ 5cE4�5 > 0, we have by Lemma 3.6 that lim infk→� J̃

�
k 4i3 â1 �5= +� for all states i ∈E. The

proof is now complete. �
With Lemma 3.5, we have established that if the original SSP problem satisfies Assumption 1.1, then the

extended SSP problem satisfies Assumption 1.1 and hence, by Lemma 3.4, has finite optimal total costs for all
initial states. As we showed earlier, combined with Lemma 3.3, this implies the lower boundedness of 8Q̃t9 for
sufficiently small �, stated in the following lemma, and thus completes our proof of Proposition 3.3 on the lower
boundedness of 8Qt9.

Lemma 3.8. Let Assumptions 1.1 and 2.2 hold. Let � ∈ 401 �17 where �1 is as given in Lemma 3.5. Then, on
any sample path from the set of probability one given in Lemma 3.2, with t0 and Q̃0 defined as in §3.3.2 for the
chosen �, the sequence 8Q̃t9 defined by Equations (3.5)–(3.7) is bounded below.

Proof of Proposition 3.3. The proposition follows from Lemmas 3.8 and 3.1. �
We have now established Theorem 3.1 on the boundedness of the Q-learning iterates 8Qt9.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Yu and Bertsekas: Boundedness of Q-Learning for Stochastic Shortest Path Problems
Mathematics of Operations Research 38(2), pp. 209–227, © 2013 INFORMS 225

0

1 2 1 2

a

1

0

a + �1k

1 + �2k

Time-inhomogeneous SSP at time k < ktOriginal SSP

Figure 1. A 3-states example illustrating parts of the lower boundedness proof of §3.3.
Notes. Transitions are deterministic. Control 0, indicated by the dashed lines, leads to the absorbing goal state 0. Control 1, indicated by
the solid arcs, leads to a nongoal state with the expected transition cost indicated on the arc.

4. An illustrative example. In this section we consider a simple 3-states example shown in the left graph
of Figure 1. We use it to illustrate the randomized Markov policies and the time-inhomogeneous SSP problems
associated with the auxiliary sequence 8Q̃t9, which we constructed in §3.3 for proving the lower boundedness
of the Q-learning iterates.

The state space is So = 8011129. The feasible controls are U415 = U425 = 80119, and all the transitions are
deterministic. For control 1, p12415= p21415= 1 and the expected one-stage costs are

g41115= a ∈ 4−11071 g42115= 10

For control 0, p10405= p20405= 1 and the transition costs are zero. This SSP problem clearly satisfies Assump-
tion 1.1. In the Q-learning algorithm, only two Q-factors, Qt4i115, i = 112, are being updated, and the remaining
Q-factors are fixed at zero. For simplicity we let �t4i115 ∈ 60117 for all t.

The example is simple in that all the transitions are deterministic. Consequently, in the time-inhomogeneous
SSP problems associated with the expressions of Q̃t4i1 u5 given by Lemma 3.3 (where time is indexed by k), the
state transition probabilities piu1t

k are time-invariant and identical to those in the original problem, and only the
expected one-stage costs at states 1 and 2 vary over time—the variation is due to the randomness in the transition
costs involved in the Q-learning algorithm. The right graph of Figure 1 illustrates such a time-inhomogeneous
SSP at time k: the expected one-stage costs of the SSP at states 1 and 2 have the form a + �1

k and 1 + �2
k ,

respectively, and they vary within a �-neighborhood of the original one-stage costs, for some �> 0 chosen in the
construction of Q̃t . Other quantities that can vary over time in the SSP problems associated with the expressions
of Q̃t41115 and Q̃t42115 are the conditional probabilities of the randomized Markov policies 8�iu1t

k 1 k ≥ 19 for
i = 112 and u= 1.

For this example, any � ≤ 41 + a5/2 is sufficiently small to fulfill the requirement of Lemma 3.8. Because
with such �, a − � + 1 − � ≥ 0, and evidently no policy can have cost less than a − � in an SSP whose
expected one-stage costs vary within the intervals 6a−�1a+�7 and 61−�11+�7 for states 1 and 2, respectively
[cf. Figure 1 (right)]. Consequently, a− � is a lower bound of Q̃t41115 and Q̃t42115, t ≥ 0, constructed in the
proof for such �.

We now do some direct calculation to illustrate the construction of 8Q̃t9 for this example. Consider a sample
path on which

g̃t41115→ a1 g̃t42115→ 11 as t → �0

Let t0 be such that

a− �≤ g̃t41115≤ a+ �1 1 − �≤ g̃t42115≤ 1 + �1 ∀ t ≥ t00

Let � be the proper policy that applies control 0 at states 1 and 2:

�40 � i5= 11 i = 1120

Then the initial Q̃t0
is given by

Q̃t0
4i115= g̃t04i1151 i = 112
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(the other components of Q̃t are zero for all t), and they are the total costs of the policy � for the initial state-
control pairs 4i115, in an SSP problem whose first-stage cost function is g̃t0 and whose one-stage cost functions
for the remaining stages are g. For t < t0, we have Q̃t = Q̃t0

by definition.
For the purpose of illustration, let us assume that on the sample path, the Q-learning algorithm updates both

Q-factors at time t0 and updates only Q41115 at time t0 + 1, with these updates being

Qt0+141115= 41 −�t0
411155Qt0

41115+�t0
41115

(

a+�t0
41115+Q�1

42115
)

1

Qt0+142115= 41 −�t0
421155Qt0

42115+�t0
42115

(

1 +�t0
42115+Q�2

41115
)

1

Qt0+241115= 41 −�t0+1411155Qt0+141115+�t0+141115
(

a+�t0+141115+Qt0+142115
)

1

where the stepsizes are in 40117 and �1, �2 ≤ t0. We express the corresponding components of Q̃t0+1 and Q̃t0+2

in the form given in Lemma 3.3. By definition,

Q̃t0+141115 = 41 −�t0
411155 Q̃t0

41115+�t0
41115

(

a+�t0
41115+ Q̃�1

42115
)

= 41 −�t0
411155 g̃t041115+�t0

41115
(

a+�t0
41115

)

+�t0
41115 g̃t042115

= g̃t0+141115+�t0
41115 g̃t0421151 (4.1)

where the definition of g̃t0+141115 is used to obtain the last equality. Equation (4.1) shows that Q̃t0+141115 is
equal to the cost of the Markov policy 8�

111t0+1
k 1 k ≥ 19 for the initial state-control pair 41115, with

�
111t0+1
1 41 � 25= �t0

411151 �
111t0+1
1 40 � 25= 1 −�t0

411151 (4.2)

�
111t0+1
1 4· � 15= �

111t0+1
k 4· � i5= �4· � i51 i = 1121 k ≥ 21 (4.3)

in an SSP problem with time-varying one-stage cost functions 8g111t0+1
k 1 k ≥ 09, where the first- and second-stage

cost functions are given by

g
111t0+1
0 4i115= g̃t0+14i1151 i = 1121 (4.4)

g
111t0+1
1 41115= a1 g

111t0+1
1 42115= g̃t0421151 (4.5)

and for the remaining stages, the one-stage cost functions are given by

g
111t0+1
k 41115= a1 g

111t0+1
k 42115= 11 k ≥ 21

the same as the cost function of the original problem. (The transition probabilities are the same as in the original
SSP problem and the one-stage costs for control 0 are all equal to 0.)

A similar calculation shows that

Q̃t0+142115= g̃t0+142115+�t0
42115g̃t0411151 (4.6)

and it is equal to the cost of the Markov policy 8�
211t0+1
k 1 k ≥ 19 for the initial state-control pair 42115, with

�
211t0+1
1 41 � 15= �t0

421151 �
211t0+1
1 40 � 15= 1 −�t0

421151

�
211t0+1
1 4· � 25= �

211t0+1
k 4· � i5= �4· � i51 i = 1121 k ≥ 21

in an SSP problem with time-varying one-stage cost functions 8g211t0+1
k 1 k ≥ 09, where the first- and second-stage

cost functions are given by

g
211 t0+1
0 4i115= g̃t0+14i1151 i = 1121

g
211 t0+1
1 41115= g̃t0411151 g

211 t0+1
1 42115= 11

and the remaining one-stage cost functions are the same as the cost function of the original problem.
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Finally, for Q̃t0+241115, using its definition and the expressions of Q̃t0+141115 and Q̃t0+142115 in Equa-
tions (4.1), (4.6), and using also the definition of g̃t0+241115, we have

Q̃t0+241115 = 41 −�t0+1411155Q̃t0+141115+�t0+141115
(

a+�t0+141115+ Q̃t0+142115
)

= g̃t0+241115+ 41 −�t0+1411155�t0
41115 · g̃t042115+�t0+141115 g̃t0+142115

+�t0+141115�t0
42115 · g̃t0411150 (4.7)

Thus Q̃t0+241115 is equal to the cost of the Markov policy 8�
111t0+2
k 1 k ≥ 19 for the initial state-control pair

41115 in an SSP problem with time-varying one-stage cost functions 8g
111t0+2
k 1 k ≥ 09. Here the Markov policy

is given by

�
111t0+2
1 41 � 25 = 41 −�t0+1411155�t0

41115+�t0+1411151 (4.8)

�
111t0+2
1 40 � 25 = 1 − �

111t0+2
1 41 � 251

�
111t0+2
2 41 � 15 = �t0+141115�t0

421151 (4.9)

�
111t0+2
2 40 � 15 = 1 − �

111t0+2
2 41 � 151

with all the other unspecified components of �111t0+2
k being identical to those of the proper policy �. In the SSP

problem, for the first three stages, the one-stage cost functions are given by

g
111t0+2
0 4i115= g̃t0+24i1151 i = 1121 g

111t0+2
1 41115= a1 (4.10)

g
111t0+2
1 42115=

41 −�t0+1411155�t0
41115 · g̃t042115+�t0+141115g̃t0+142115

41 −�t0+1411155�t0
41115+�t0+141115

∈ 61 − �11 + �71 (4.11)

and
g

111t0+2
2 41115= g̃t0411151 g

111t0+2
2 42115= 10 (4.12)

For the remaining stages, the one-stage cost functions are the same as the cost function of the original problem.
If we modify this example by introducing self-transitions at states 1 or 2, then the state transition probabil-

ities of the above time-inhomogeneous SSP problems will also vary over time due to the simulation noise in
Q-learning, and they can be calculated in the manner of the proof of Lemma 3.3. However, the preceding direct
calculations are highly simplified due to the special nature of this example and illustrate only parts of the proof
of §3.3. Even for SSP problems that are just slightly more complex, the full proof arguments of §3.3 become
necessary, as the readers may verify on their example problems.
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