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Abstract. We consider optimization problems with equality,
inequality, and abstract set constraints, and we explore various charac-
teristics of the constraint set that imply the existence of Lagrange multi-
pliers. We prove a generalized version of the Fritz–John theorem, and
we introduce new and general conditions that extend and unify the
major constraint qualifications. Among these conditions, two new
properties, pseudonormality and quasinormality, emerge as central
within the taxonomy of interesting constraint characteristics. In the case
where there is no abstract set constraint, these properties provide the
connecting link between the classical constraint qualifications and two
distinct pathways to the existence of Lagrange multipliers: one involv-
ing the notion of quasiregularity and the Farkas lemma, and the other
involving the use of exact penalty functions. The second pathway also
applies in the general case where there is an abstract set constraint.

Key Words. Pseudonormality, informative Lagrange multipliers, con-
straint qualifications, exact penalty functions.

1. Introduction

We consider finite-dimensional optimization problems of the form

min f (x), (1a)

s.t. x∈C, (1b)
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where the constraint set C consists of equality and inequality constraints as
well as an additional abstract set constraint x∈X,

CGX∩{x�h1(x)G0, . . . , hm (x)G0}

∩{x�g1(x)⁄0, . . . , gr (x)⁄0}. (2)

We assume throughout the paper that f, hi , gj are smooth (continuously
differentiable) functions from ℜn to ℜ, and that X is a nonempty closed set.
In our notation, all vectors are viewed as column vectors, and a prime
denotes transposition, so x′y denotes the inner product of the vectors x and
y. We will use throughout the standard Euclidean norm

��x��G(x′x)1�2.

Necessary conditions for the above problem can be expressed in terms
of tangent cones, normal cones, and their polars. In our terminology, a
vector y is a tangent of a set S⊂ℜn at a vector x∈S if either yG0 or there
exists a sequence {xk}⊂S such that xk ≠ x for all k and

xk→x, (xkAx)���xkAx��→y���y��.

An equivalent definition often found in the literature [e.g., Bazaraa, Sherali,
and Shetty (Ref. 1), Rockafellar and Wets (Ref. 2)] is that there exist a
sequence {xk}⊂S, with xk→x, and a positive sequence {α k} such that
α k→0 and (xkAx)�α k→y. The set of all tangents of S at x is denoted by
TS(x) and is also referred to as the tangent cone of S at x. The polar cone
of any cone T is defined by

T*G{z�z′y⁄0, y∈T}.

For a nonempty cone T, we will use the well-known relation T⊂ (T*)*,
which holds with equality if T is closed and convex.

For a closed set X and a point x∈X, we will also use the normal cone
of X at x, denoted by NX (x), which is obtained from the polar cone
TX (x)* by means of a closure operation. In particular, we have z∈NX (x) if
there exist sequences {xk}⊂X and {zk} such that xk→x, zk→z, and
zk∈TX (xk)* for all k. Equivalently, the graph of NX ( · ), viewed as a point-
to-set mapping, {(x, z) �z∈NX (x)}, is the closure of the graph of TX ( · )*. The
normal cone, introduced by Mordukhovich (Ref. 3), has been studied by
several authors, and is of central importance in nonsmooth analysis [see the
books by Aubin and Frankowska (Ref. 4), Rockafellar and Wets (Ref. 2),
and Borwein and Lewis (Ref. 5); for the case where X is a closed subset of
ℜn, our definition of NX (x) coincides with the ones used by these authors].
In general, we have

TX (x)*⊂NX (x), for any x∈X.
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However, NX(x) may not be equal to TX(x)*, and in fact it may not even be
a convex set. In the case where TX (x)*GNX (x), we will say that X is regular
at x. The term ‘‘regular at x in the sense of Clarke’’ is also used in the
literature [see, Rockafellar and Wets (Ref. 2, p. 199)]. Two properties of
regularity that are important for our purposes are that (i) if X is convex,
then it is regular at each x∈X, and (ii) if X is regular at some x∈X, then
TX(x) is convex [Rockafellar and Wets (Ref. 2, pp. 203 and 221)].

A classical necessary condition for a vector x*∈C to be a local mini-
mum of f over C is

∇f (x*)′y¤0, ∀y∈TC (x*), (3)

where TC (x*) is the tangent cone of C at x* [see e.g. Bazaraa, Sherali, and
Shetty (Ref. 1), Bertsekas (Ref. 6), Hestenes (Ref. 7), Rockafellar (Ref. 8),
Rockafellar and Wets (Ref. 2)]. Necessary conditions that involve Lagrange
multipliers relate to the specific representation of the constraint set C in
terms of the constraint functions hi and gj. In particular, we say that the
constraint set C of Eq. (2) admits Lagrange multipliers at a point x*∈C if,
for every smooth cost function f for which x* is a local minimum of prob-
lem (1), there exist vectors λ*G(λ*1 , . . . , λ*m) and µ*G(µ*1 , . . . , µ*r ) that
satisfy the following conditions:

�∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�′
y¤0, ∀y∈TX (x*), (4)

µ*j ¤0, ∀jG1, . . . , r, (5)

µ*j G0, ∀j ∉A(x*), (6)

where

A(x*)G{ j�gj (x*)G0}

is the index set of inequality constraints that are active at x*. Condition (6)
is referred to as the complementary slackness condition (CS for short). A
pair (λ*, µ*) satisfying Eqs. (4)–(6) will be called a Lagrange multiplier
vector corresponding to f and x*. When there is no danger of confusion,
we refer to (λ*, µ*) simply as a Lagrange multiplier vector or a Lagrange
multiplier. We observe that the set of Lagrange multiplier vectors corre-
sponding to a given f and x* is a (possibly empty) closed and convex set.

The condition (4) is consistent with the traditional characteristic prop-
erty of Lagrange multipliers: rendering the Lagrangian function stationary
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at x* [cf. Eq. (3)]. When X is a convex set, Eq. (4) is equivalent to

�∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�′
(xAx*)¤0,

∀x∈X. (7)

This is because, when X is convex, TX(x*) is equal to the closure of the set
of feasible directions FX(x*), which is in turn equal to the set of vectors of
the form α (xAx*), where αH0 and x∈X. If XGℜn, Eq. (7) becomes

∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)G0,

which together with the nonnegativity condition (5) and the CS condition
(6), comprise the familiar Karush–Kuhn–Tucker conditions.

In the case where XGℜn, it is well-known [see e.g. Bertsekas (Ref. 6,
p. 332)] that, for a given smooth f for which x* is a local minimum, there
exist Lagrange multipliers if and only if

∇f (x*)′y¤0, ∀y∈V(x*),

where V(x*) is the cone of first-order feasible variations at x*, given by

V(x*)G{y�∇hi (x*)′yG0, iG1, . . . , m, ∇gj (x*)′y⁄0, j∈A(x*)}.

This result, a direct consequence of the Farkas lemma, leads to the classical
theorem that the constraint set admits Lagrange multipliers at x* if
TC (x*)GV(x*). In this case, we say that x* is a quasiregular point or that
quasiregularity holds at x* {other terms used are that x* ‘‘satisfies the Aba-
die constraint qualification’’ [Abadie (Ref. 9), Bazaraa, Sherali, and Shetty
(Ref. 1)], or that x* ‘‘is a regular point’’ [Hestenes (Ref. 7)]}.

Since quasiregularity is a somewhat abstract property, it is useful to
have more readily verifiable conditions for the admittance of Lagrange
multipliers. Such conditions are called constraint qualifications, and have
been investigated extensively in the literature. Some of the most useful ones
are the following:

(CQ1) XGℜn and x* is a regular point in the sense that the equality
constraint gradients ∇hi (x*), iG1, . . . , m, and the active
inequality constraint gradients ∇gj (x*), j∈A(x*), are linearly
independent.

(CQ2) XGℜn, the equality constraint gradients ∇hi (x*), iG1, . . . , m,
are linearly independent, and there exists a y∈ℜn such that

∇hi (x*)′yG0, iG1, . . . , m,

∇gj (x*)′yF0, ∀j∈A(x*).
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For the case where there are no equality constraints, this is known as the
Arrow–Hurwitz–Uzawa constraint qualification, introduced in Ref. 10. In
the more general case where there are equality constraints, it is known as
the Mangasarian–Fromovitz constraint qualification, introduced in Ref. 11.

(CQ3) XGℜn, the functions hi are linear and the functions gj are
concave.

It is well-known that all of the above constraint qualifications imply
the quasiregularity condition

TC (x*)GV(x*),

and therefore imply that the constraint set admits Lagrange multipliers [see
e.g. Bertsekas (Ref. 6), or Bazaraa, Sherali, and Shetty (Ref. 1); a survey of
constraint qualifications is given by Peterson (Ref. 12)]. These results consti-
tute the classical pathway to Lagrange multipliers for the case where
XGℜn.

However, there is another equally powerful approach to Lagrange mul-
tipliers, based on exact penalty functions, which has not received much
attention thus far. In particular, let us say that the constraint set C admits
an exact penalty at the feasible point x* if, for every smooth function f for
which x* is a strict local minimum of f over C, there is a scalar cH0 such
that x* is also a local minimum of the function

Fc (x)Gf (x)Cc� ∑
iG1

m

�hi (x) �C ∑
jG1

r

g+
j (x)� ,

over x∈X, where we denote

g+
j (x)Gmax{0, gj (x)}.

Note that, like admittance of Lagrange multipliers, admittance of an exact
penalty is a property of the constraint set C, and does not depend on the
cost function f of problem (1).

We intend to use exact penalty functions as a vehicle toward asserting
the admittance of Lagrange multipliers. For this purpose, there is no loss
of generality in requiring that x* be a strict local minimum, since we can
replace a cost function f (x) with the cost function f (x)C��xAx*��2 without
affecting the problem’s Lagrange multipliers. On the other hand, if we allow
functions f involving multiple local minima, it is hard to relate constraint
qualifications such as the preceding ones, the admittance of an exact pen-
alty, and the admittance of Lagrange multipliers, as we show in Example
7.7 of Section 7.
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Note two important points, which illustrate the significance of exact
penalty functions as a unifying vehicle toward guaranteeing the admittance
of Lagrange multipliers.

(a) If X is convex and the constraint set admits an exact penalty at
x*, it also admits Lagrange multipliers at x*. [This follows from
Proposition 3.112 of Bonnans and Shapiro (Ref. 13); see also the
subsequent Proposition 4.4, which generalizes the Bonnans–
Shapiro result by assuming that X is regular at x* instead of being
convex.]

(b) All of the above constraint qualifications CQ1–CQ3 imply that C
admits an exact penalty. [The case of CQ1 was treated by
Pietrzykowski (Ref. 14); the case of CQ2 was treated by Zangwill
(Ref. 15), Han and Mangasarian (Ref.16), and Bazaraa and
Goode (Ref. 17); the case of CQ3 will be dealt with in the present
paper—see the subsequent Propositions 3.1 and 5.1.]

Figure 1 summarizes the relationships discussed above for the case
XGℜn, and highlights the two distinct pathways to the admittance of Lag-
range multipliers. The two key notions, quasiregularity and admittance of
an exact penalty, do not seem to be directly related (see Examples 7.2 and
7.3 in Section 7), but we will show in this paper that they are connected
through the new notion of constraint pseudonormality, which implies both
while being implied by the constraint qualifications CQ1–CQ3. Another
similar connecting link is the notion of constraint quasinormality, which is
implied by pseudonormality.

Unfortunately, when X is a strict subset of ℜn, the situation changes
significantly because there does not appear to be a satisfactory extension of
the notion of quasiregularity, which implies admittance of Lagrange multi-
pliers. For example, the classical constraint qualification of Guignard (Ref.
18) resembles quasiregularity, but requires additional conditions that are
not easily verifiable. In particular, Guignard (Ref. 18, Theorem 2) has
shown that the constraint set admits Lagrange multipliers at x* if

V(x*)∩conv(TX (x*))Gconv(TC (x*)), (8)

and if the vector sum V(x*)*CTX (x*)* is a closed set [here, conv (S )
denotes the closure of the convex hull of a set S]. The Guignard conditions
are equivalent to

V(x*)*CTX (x*)*GTC (x*)*,

which in turn can be shown to be a necessary and sufficient condition for
the admittance of Lagrange multipliers at x* based on the classical results
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Fig. 1. Characterizations of the constraint set C that imply admittance of Lagrange multi-
pliers in the case where XGℜn.

of Gould and Tolle (Refs. 19–20). In the special case where XGℜn, we have

TX (x*)Gℜn, TX (x*)*G{0},

and the condition (8) becomes

V(x*)Gconv(TC (x*)) [or equivalently, V(x*)*GTC (x*)*],

which is a similar but slightly less restrictive constraint qualification than
quasiregularity. However, in the more general case where X ≠ ℜn, condition
(8) and the closure of the set V(x*)*CTX (x*)* seem hard to verify. [Guig-
nard (Ref. 18) has treated only the cases where X is either ℜn or the non-
negative orthant.]

In this paper, we focus on the connections between constraint qualifi-
cations, Lagrange multipliers, and exact penalty functions. Much of our
analysis is motivated by an enhanced set of Fritz John necessary conditions
that are introduced in the next section. Weaker versions of these conditions
were shown in a largely overlooked analysis by Hestenes (Ref. 7) for the
case where XGℜn, and in the first author’s recent textbook (Ref. 6) for the
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case where X is a closed convex set (see the discussion in Section 2). They
are strengthened and further generalized in Section 2 for the case where X
is a closed but not necessarily convex set. In particular, we show the exist-
ence of Fritz–John multipliers that satisfy some additional sensitivity-like
conditions. These conditions motivate the introduction of two new types of
Lagrange multipliers, called informative and strong. We show that informa-
tive and strong Lagrange multipliers exist when the tangent cone is convex
and the set of Lagrange multipliers is nonempty.

In Section 3, we introduce the notions of pseudonormality and quasi-
normality, and we discuss their connection with classical results relating
constraint qualifications and the admittance of Lagrange multipliers. Quasi-
normality serves almost the same purpose as pseudonormality when X is
regular, but fails to provide the desired theoretical unification when X is not
regular (compare with Fig. 6). For this reason, it appears that pseudonor-
mality is a theoretically more interesting notion than quasinormality. In
addition, in contrast with quasinormality, pseudonormality admits an
insightful geometrical interpretation. In Section 3, we introduce also a new
and natural extension of the Mangasarian–Fromovitz constraint qualifi-
cation, which applies to the case where X ≠ ℜn and implies pseudonormality.

In Section 4, we make the connection between pseudonormality, quasi-
normality, and exact penalty functions. In particular, we show that pseudo-
normality implies the admittance of an exact penalty, while being implied
by the major constraint qualifications. In the process, we prove in a unified
way that the constraint set admits an exact penalty for a much larger variety
of constraint qualifications than has been known hitherto. We note that,
traditionally, exact penalty functions have been viewed as a computational
device and they have not been integrated earlier within the theory of con-
straint qualifications in the manner described here. Let us also note that
exact penalty functions are related to the notion of calmness, introduced
and suggested as a constraint qualification by Clarke (Refs. 21–22). How-
ever, there are some important differences between the notions of calmness
and admittance of an exact penalty. In particular, calmness is a property of
the problem (1) and depends on the cost function f, while admittance of an
exact penalty is a property of the constraint set and is independent of the
cost function. More importantly for the purposes of this paper, calmness is
not useful as a unifying theoretical vehicle because it does not relate well
with other major constraint qualifications. For example CQ1, one of the
most common constraint qualifications, does not imply calmness of problem
(1), as is indicated by Example 7.7 of Section 7; reversely, calmness of the
problem does not imply CQ1.

In Section 5, we discuss some special results that facilitate the proofs
of admittance of Lagrange multipliers and of an exact penalty. In Section
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6, we generalize some of our analysis to the case of a convex programming
problem and we provide a geometric interpretation of pseudonormality.
Finally, in Section 7, we provide examples and counterexamples that clarify
the interrelations between the different characterizations that we have
introduced.

2. Enhanced Fritz John Conditions

The Fritz John necessary optimality conditions (Ref. 23) are used often
as the starting point for the analysis of Lagrange multipliers. Unfortunately,
these conditions in their classical form are not sufficient to derive the admit-
tance of Lagrange multipliers under some of the standard constraint quali-
fications, such as when XGℜn and the constraint functions hi and gj are
linear [cf. CQ3]. Recently, the classical Fritz John conditions have been
strengthened through the addition of an extra necessary condition, and their
effectiveness has been significantly enhanced [see Hestenes (Ref. 7) for the
case XGℜn, and Bertsekas (Ref. 6, Proposition 3.3.11) for the case where
X is a closed convex set]. The following proposition extends these results by
allowing the set X to be nonconvex, and also by showing that the Fritz John
multipliers can be selected to have some special sensitivity-like properties
[see condition (iv) below].

Proposition 2.1. Let x* be a local minimum of problem (1)–(2). Then,
there exist scalars µ*0 , λ*1 , . . . , λ*m , and µ*1 , . . . , µ*r , satisfying the following
conditions:

(i) A�µ*0 ∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�∈NX (x*).

(ii) µ*j ¤0, for all jG0, 1, . . . , r.

(iii) µ*0 , λ*1 , . . . , λ*m , µ*1 , . . . , µ*r are not all equal to 0.

(iv) If the index set I∪J is nonempty, where

IG{i�λ*i ≠ 0}, JG{ j ≠ 0 ≠ 0�µ*j H0},

there exists a sequence {xk}⊂X that converges to x* and is such
that, for all k,

f (xk)F f (x*), λ*i hi (x
k)H0, ∀i∈I, µ*j gj (x

k)H0, ∀j∈J, (9)

�hi (x
k) �Go(w(xk)), ∀i ∉ I, g+

j (x
k)Go(w(xk)), ∀j ∉ J, (10)
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where

w(x)Gmin{min
i∈I

�hi (x) �, min
j∈J

g+
j (x)}. (11)

Proof. We use a quadratic penalty function approach. For each
kG1, 2, . . . , we consider the penalized problem

min Fk(x) ≡ f (x)C(k�2) ∑
iG1

m

(hi (x))2

C(k�2) ∑
jG1

r

(g+
j (x))2C(1�2) ��xAx*��2,

s.t. x∈X∩S,

where

SG{x � ��xAx*��⁄(}

and ∈H0 is such that f (x*)⁄ f (x) for all feasible x with x∈S. Since X∩S
is compact, by the Weierstrass theorem, we can select an optimal solution
xk of the above problem. We have, for all k,

f (xk)C(k�2) ∑
iG1

m

(hi (x
k))2C(k�2) ∑

jG1

r

(g+
j (x

k))2C(1�2) ��xkAx*��2

GFk(xk)⁄Fk(x*)Gf (x*), (12)

and since f(xk) is bounded over X∩S, we obtain

lim
k→S

�hi (x
k) �G0, iG1, . . . , m,

lim
k→S

�g+
j (x

k) �G0, jG1, . . . , r;

otherwise, the left-hand side of Eq. (12) would become unbounded from
above as k→S. Therefore, every limit point x̄ of {xk} is feasible; i.e.,
x̄∈C. Furthermore, Eq. (12) yields

f (xk)C(1�2) ��xkAx*��2⁄ f (x*), for all k,

so by taking the limit as k→S, we obtain

f (x̄)C(1�2) ��x̄Ax*��2⁄ f (x*).

Since x̄∈S and x̄ is feasible, we have f (x*)⁄ f (x̄), which when combined
with the preceding inequality yields ��x̄Ax*��G0 so that x̄Gx*. Thus, the
sequence {xk} converges to x*, and it follows that xk is an interior point of
the closed sphere S for all k greater than some k̄.
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For k¤ k̄, we have by the necessary condition (3),

∇Fk(xk)′y¤0, for all y∈TX (xk),

or equivalently,

−∇Fk(xk)∈TX (xk)*,

which is written as

−�∇f (xk)C ∑
iG1

m

ξ k
i ∇hi (x

k)C ∑
jG1

r

ζ k
j ∇gj (x

k)C(xkAx*)�∈TX (xk)*, (13)

where

ξ k
i Gkhi (x

k), ζ k
j Gkg+

j (x
k). (14)

Denote

δ kG11C ∑
iG1

m

(ξ k
i )

2C ∑
jG1

r

(ζ k
j )

2, (15)

µk
0G1�δ k, λ k

i Gξ k
i �δ k, iG1, . . . , m, µk

j Gζ k
j �δ k, jG1, . . . , r. (16)

Then, by dividing Eq. (13) with δ k, we obtain

−�µk
0 ∇f (xk)C ∑

iG1

m

λ k
i ∇hi (x

k)C ∑
jG1

r

µk
j ∇gj (x

k)C(1�δ k)(xkAx*)�∈TX (xk)*.

(17)

Since by construction we have

(µk
0)

2C ∑
iG1

m

(λ k
i )

2C ∑
jG1

r

(µk
j )

2G1, (18)

the sequence {µk
0 , λ k

1 , . . . , λ k
m , µk

1 , . . . , µk
r } is bounded and must contain a

subsequence that converges to some limit {µ*0 , λ*1 , . . . , λ*m , µ*1 , . . . , µ*r }.
From Eq. (17) and the defining property of the normal cone NX (x*)

[xk→x*, {xk}⊂X, zk→z*, and zk∈TX (xk)*, for all k, imply that
z*∈NX (x*)], we see that µ*0 , λ*i , and µ*j must satisfy condition (i). From
Eqs. (14) and (16), µ*0 and µ*j must satisfy condition (ii), and from Eq. (18),
µ*0 , λ*i , and µ*j must satisfy condition (iii). Finally, to show that condition
(iv) is satisfied, assume that I∪J is nonempty, and note that, for all suffi-
ciently large k within the index set K of the convergent subsequence, we
must have

λ*i λ k
i H0, for all i∈I,
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and

µ*j µk
j H0, for all j∈J.

Therefore, for these k, from Eqs. (14) and (16), we must have

λ*i hi (x
k)H0, for all i∈I,

and

µ*j gj (x
k)H0, for all j∈J,

while from Eq. (12), we have

f (xk)Ff (x*), for k sufficiently large

(the case where xkGx* for infinitely many k is excluded by the assumption
that I∪J is nonempty). Furthermore, the conditions

�hi (x
k) �Go(w(xk)), for all i ∉I,

and

g+
j (x

k)Go(w(xk)), for all j ∉J,

are equivalent to

�λ k
i �Go(min{min

i∈I
�λ k

i �, min
j∈J

µk
j }), ∀i ∉I,

and

µk
j Go(min{min

i∈I
�λ k

i �, min
j∈J

µk
j }), ∀j ∉ J,

respectively, so they hold for k∈K . This proves condition (iv). �

Note that, if X is regular at x*, i.e., NX (x*)GTX (x*)*, condition (i) of
Proposition 2.1 becomes

−�µ*0 ∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�∈TX (x*)*,

or equivalently,

�µ*0 ∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�′
y¤0, ∀y∈TX (x*).

If in addition, the scalar µ*0 can be shown to be strictly positive, then by
normalization we can choose µ*0 G1, and condition (i) of Proposition 2.1
becomes equivalent to the Lagrangian stationarity condition (4). Thus,
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if X is regular at x* and we can guarantee that µ*0 G1, the vector
(λ*, µ*)G{λ*1 , . . . , λ*m , µ*1 , . . . , µ*r } is a Lagrange multiplier vector that
satisfies condition (iv) of Proposition 2.1. A key fact is that this condition
is stronger than the CS condition (6). [If µ*j H0, then according to condition
(iv), the corresponding jth inequality constraint must be violated arbitrarily
close to x* (cf. Eq. (9)), implying that gj (x*)G0]. For ease of reference, we
refer to condition (iv) as the complementary violation condition (CV for
short).4 This condition will turn out to be of crucial significance in the next
section.

To place Proposition 2.1 in perspective, we note that its line of proof,
based on the quadratic penalty function, originated with McShane (Ref.
24). Hestenes (Ref. 7) observed that the McShane proof can be used to
strengthen the CS condition to assert the existence of a sequence {xk} such
that

λ*i hi (x
k)H0, ∀i∈I, µ*j gj (x

k)H0, ∀j∈J, (19)

which is slightly weaker than CV as defined here [there is no requirement
that xk, simultaneously with violation of the constraints with nonzero multi-
pliers, satisfies f (xk)Ff (x*) and Eq. (10)].

McShane and Hestenes considered only the case where XGℜn. The
case where X is a closed convex set was considered in Bertsekas (Ref. 6),
where a generalized version of the Mangasarian–Fromovitz constraint
qualification was also given. The extension to the case where X is a general
closed set and the strengthened version of condition (iv) are given in the
present paper for the first time.

To illustrate the use of the generalized Fritz John conditions of Prop-
osition 2.1 and the CV condition in particular, consider the following
example.

Example 2.1. Suppose that we convert a problem with a single equal-
ity constraint,

min
h(x)G0

f (x),

to the inequality constrained problem

min f (x),

s.t. h(x)⁄0, Ah(x)⁄0.

4This term is in analogy with ‘‘complementary slackness,’’ which is the condition that, for all
j, µ*j H0 implies gj (x*)G0. Thus, ‘‘complementary violation’’ reflects the condition that, for
all j, µ*j H0 implies gj (x)H0 for some x arbitrarily close to x* (and simultaneously for all j
with µ*j H0).
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The Fritz John conditions assert the existence of nonnegative multipliers
µ*0 , λ+, λ−, not all zero, such that

µ*0 ∇f (x*)Cλ+∇h (x*)Aλ−∇h (x*)G0. (20)

The candidate multipliers that satisfy the above condition, as well as the CS
condition

λ+h(x*)Gλ−h(x*)G0,

include those of the form

µ*0 G0 and λ+Gλ−H0,

which provide no relevant information about the problem. However, these
multipliers fail the stronger CV condition of Proposition 2.1, showing that,
if µ*0 G0, we must have either λ+ ≠ 0 and λ−G0 or λ+G0 and λ− ≠ 0.
Assuming ∇h(x*) ≠ 0, this violates Eq. (20), so it follows that µ*0 H0. Thus,
by dividing Eq. (20) by µ*0 , we recover the familiar first-order condition

∇f (x*)Cλ*∇h(x*)G0,

with

λ*G(λ+Aλ−)�µ*0 ,

under the regularity assumption ∇h(x*) ≠ 0. Note that this deduction would
not have been possible without the CV condition.

If we can take µ*0 G1 in Proposition 2.1 for all smooth f for which x*
is a local minimum, and X is regular at x*, then the constraint set C admits
Lagrange multipliers of a special type, which satisfy the stronger CV con-
dition in place of the CS condition. The salient feature of such multipliers
is the information which they embody regarding constraint violation with
corresponding cost reduction. This is consistent with the classical sensitivity
interpretation of a Lagrange multiplier as the rate of reduction in cost as
the corresponding constraint is violated. Here, we are not making enough
assumptions for this stronger type of sensitivity interpretation to be valid.
Yet it is remarkable that, with hardly any assumptions (other than their
existence), Lagrange multipliers of the type obtained through Proposition
2.1 provide a significant amount of sensitivity information: they indicate the
index set I∪J of constraints that, if violated, a cost reduction can be effected
[the remaining constraints, whose indices do not belong to I∪J, may also
be violated, but the degree of their violation is arbitrarily small relative to
the other constraints as per Eqs. (10) and (11)]. In view of this interpret-
ation, we refer to a Lagrange multiplier vector (λ*, µ*) that satisfies, in
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addition to Eqs. (4)–(6), the CV condition [condition (iv) of Proposition
2.1] as being informative.

An informative Lagrange multiplier vector is useful, among other
things, if one is interested in identifying redundant constraints. Given such
a vector, one may simply discard the constraints whose multipliers are 0
and check to see whether x* is still a local minimum. While there is no
general guarantee that this will be true, in many cases it will be; for example,
in the special case where f and X are convex, the gj are convex, and the hi

are linear, x* is guaranteed to be a global minimum, even after the con-
straints whose multipliers are 0 are discarded.

Now, if we are interested in discarding constraints whose multipliers
are 0, we are also motivated to find Lagrange multiplier vectors that have
a minimal number of nonzero components (a minimal support). We call
such Lagrange multiplier vectors minimal, and we define them as having
support I∪J that does not strictly contain the support of any other Lag-
range multiplier vector. Minimal Lagrange multipliers are not necessarily
informative. For example, think of the case where some of the constraints
are duplicates of others. Then, in a minimal Lagrange multiplier vector, at
most one of each set of duplicate constraints can have a nonzero multiplier,
while in an informative Lagrange multiplier vector, either all or none of
these duplicate constraints will have a nonzero multiplier. Nonetheless,
minimal Lagrange multipliers turn out to be informative after the con-
straints corresponding to zero multipliers are neglected, as can be inferred
by the subsequent Proposition 2.2. In particular, let us say that a Lagrange
multiplier (λ*, µ*) is strong if, in addition to Eqs. (4)–(6), it satisfies the
condition below:

(iv′ ) If the set I∪J is nonempty, where

IG{i�λ*i ≠ 0} and JG{ j ≠ 0 �µ*j H0},

then given any neighborhood B of x*, there exists a sequence
{xk}⊂X that converges to x* and is such that, for all k,

f (xk)Ff (x*), λ*i hi (x
k)H0, ∀i∈I, gj (x

k)H0, ∀j∈J. (21)

This condition resembles the CV condition, but is weaker in that it makes
no provision for negligibly small violation of the constraints corresponding
to zero multipliers, as per Eqs. (10) and (11). As a result, informative Lag-
range multipliers are also strong, but not reversely.
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Fig. 2. Relations of different types of Lagrange multipliers, assuming that the tangent cone
TX(x*) is convex (which is true in particular if X is regular at x*).

The following proposition, illustrated in Fig. 2, clarifies the relation-
ships between different types of Lagrange multipliers.

Proposition 2.2. Let x* be a local minimum of problem (1)–(2).
Assume that the tangent cone TX (x*) is convex and that the set of Lagrange
multipliers is nonempty. Then:

(a) The set of informative Lagrange multiplier vectors is nonempty,
and in fact the Lagrange multiplier vector that has minimum
norm is informative.

(b) Each minimal Lagrange multiplier vector is strong.

Proof. (a) We summarize the essence of the proof argument in the
following lemma (a related but different line of proof of this lemma is given
in Ref. 25).

Lemma 2.1. Let N be a closed convex cone in ℜn, and let a0 , a1 , . . . ,
ar be given vectors in ℜn. Suppose that the closed and convex set M⊂ℜr,
given by

MG�µ¤0 �−�a0C ∑
jG1

r

µ jaj�∈N	 ,

is nonempty. Then, there exists a sequence {dk}⊂N* such that

a′0dk→−��µ*��2, (22)

(a′jdk)+→µ*j , jG1, . . . , r, (23)

where µ* is the vector of minimum norm in M.
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Proof. For any γ¤0, consider the function

Lγ (d, µ)G�a0C ∑
jG1

r

µ jaj�′
dCγ ��d��A(1�2) ��µ��2.

Our proof will revolve around the saddle point properties of the convex�
concave function L0; but to derive these properties, we will work with its γ -
perturbed and coercive version Lγ for γ H0, and then take the limit as
γ →0. With this in mind, we first establish that, if γ H0, Lγ (d, µ) has a saddle
point over d∈N* and µ¤0.

Indeed, for any fixed µ̄¤0, Lγ ( · , µ̄) is convex over d∈N* and, if
µ̄∈M, we have

�a0C ∑
jG1

r

µ̄ jaj�′
d¤0, for all d∈N*,

so that

Lγ (d, µ̄)¤ γ ��d��A(1�2) ��µ̄��2, ∀d∈N*.

Hence, Lγ ( · , µ̄) is coercive over N*. Also, for any fixed d̄∈N*, Lγ (d̄, · ) is
concave and ALγ (d̄, · ) is coercive over µ∈ℜr. It follows from a theorem
given by Hiriart-Urruty and Lemarechal (Ref. 26, p. 334; see also Ref. 25)
that, for each γ H0, there exists a saddle point (d γ , µγ ) of Lγ over d∈N*
and µ¤0, satisfying

Lγ (d γ , µγ )Gmax
µ¤0

Lγ (d γ , µ)

Gmin
d∈N*

Lγ (d, µγ )

Gmax
µ¤0

min
d∈N*

Lγ (d, µ). (24)

We will now calculate some of the expressions in the above equations.
We have from Eq. (24)

Lγ (d γ , µγ )Gmax
µ¤0

Lγ (d γ , µ)

Ga′0d γCγ ��d γ ��Cmax
µ¤0

�� ∑
jG1

r

µ jaj�′
d γA(1�2) ��µ��2	 .

The maximum in the right-hand side above is attained when µj is equal
to (a ′jd γ )+ for all j [to maximize µ ja′jd γA(1�2)µ2

j subject to the constraint
µ j¤0, we calculate the unconstrained maximum, which is a′jd γ , and if it is
negative we set it to 0, so that the maximum subject to µ j¤0 is attained
for µ jG(a′jd γ )+]. Thus, we have

Lγ (d γ , µγ )Ga′0d γCγ ��d γ ��C(1�2) ∑
jG1

r

((a′jd γ )+)2 (25)
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and

µγ G[(a′1d γ )+, . . . , (a′rd γ )+]′. (26)

We also have from Eq. (24)

Lγ (d γ , µγ )Gqγ (µγ )A(1�2) ��µγ ��2

Gmax
µ¤0

{qγ (µ)A(1�2) ��µ��2}, (27)

where

qγ (µ)G inf
d∈N*

��a0C ∑
jG1

r

µ jaj�′
dCγ ��d��	 .

To calculate qγ (µ), we let

bG−�a0C ∑
jG1

r

µ jaj� ,

and we use the transformation

dGαξ , where α¤0 and ��ξ ��G1,

to write

qγ (µ)G inf
α¤0

��ξ ��⁄1, ξ∈N*

{α (γ Ab′ ξ )} (28)

G�0, if max
��ξ ��⁄1, ξ∈N*

b′ξ⁄γ ,

−S, otherwise.

We will show that

max
��ξ ��⁄1,ξ∈N*

b′ξ⁄γ , if and only if b∈NCS(0, γ ), (29)

where S(0, γ ) is the closed sphere of radius γ that is centered at the origin.
Indeed, if b∈NCS (0, γ ), then

bGb̂Cb̄, with b̂∈N and ��b̄��⁄γ ,

and it follows that, for all ξ∈N* with ��ξ ��⁄1, we have

b̂′ξ⁄0 and b̄ ′ξ⁄γ ,

so that

b′ξGb̂ ξCb̄ ′ξ⁄γ ,
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from which we obtain

max
��ξ ��⁄1, ξ∈N*

b′ξ⁄γ .

Conversely, assume that

b′ξ⁄γ , for all ξ∈N* with ��ξ ��⁄1.

If b∈N, then clearly b∈NCS (0, γ ). If b∉N, let b̂ be the projection of b
onto N and let b̄GbAb̂. Because N is a convex cone, the nonzero vector b̄
belongs to N* and is orthogonal to b̂. Since the vector ξGb̄���b̄�� belongs to
N* and satisfies ��ξ ��⁄1, we have

γ¤b′ξ ,

or equivalently,

γ ¤ (b̂Cb̄)′(b̄���b̄��)

G��b̄��.

Hence,

bGb̂Cb̄, with b̂∈N and ��b̄��⁄γ ,

implying that b∈NCS(0, γ ), and completing the proof of Eq. (29).
We have thus shown [cf. Eqs. (28) and (29)] that

qγ (µ)G�0, if −�a0C ∑
jG1

r

µ jaj�∈NCS (0, γ ),

−S, otherwise.

(30)

Combining this equation with Eq. (27), we see that µγ is the vector of mini-
mum norm on the set

Mγ G�µ¤0�A�a0C ∑
jG1

r

µ jaj�∈NCS(0, γ )	 .

Furthermore, from Eqs. (27) and (30), we have

Lγ (d γ , µγ )G−(1�2) ��µγ ��2,

which together with Eqs. (25) and (26), yields

a′0d γCγ ��d γ ��G−��µγ ��2. (31)

We now take the limit in the above equation as γ →0. We claim that
µγ →µ*. Indeed, since µ*∈Mγ , we have ��µγ ��⁄ ��µ*��, so that {µγ �γ H0} is
bounded. Let µ̄ be a limit point of µγ , and note that µ̄¤0 and ��µ̄��⁄ ��µ*��.



JOTA: VOL. 114, NO. 2, AUGUST 2002306

We have

− ∑
jG1

r

µγ
j ajGa0CνγCsγ ,

for some vectors νγ ∈N and sγ ∈S(0, γ ), so by taking the limit as γ →0 along
the relevant subsequence, it follows that νγ converges to some ν̄∈N, and we
have

− ∑
jG1

r

µ̄ jajGa0Cν̄.

It follows that µ̄∈M, and since ��µ̄��⁄ ��µ*��, we obtain µ̄Gµ*. The preceding
argument has shown that every limit point of µγ is equal to µ*, so µγ con-
verges to µ* as γ →0. Thus, Eq. (31) yields

lim sup
γ →0

a′0d γ ⁄A��µ*��2. (32)

Consider now the function

L0(d, µ)G�a0C ∑
jG1

r

µ jaj�′
dA(1�2) ��µ��2.

We have

a′0d γC(1�2) ∑
jG1

r

((a′jd γ )+)2Gsup
µ¤0

L0(d
γ , µ)

¤ sup
µ¤0

inf
d∈N*

L0(d, µ)

¤ inf
d∈N*

L0(d, µ*).

It can be seen that

inf
d∈N*

L0(d, µ)G�−(1�2) ��µ��2, if −�a0C ∑
jG1

r

µ jaj�∈N,

−S, otherwise.

Combining the last two equations, we have

a′0d γC(1�2) ∑
jG1

r

((a′jd γ )+)2¤A(1�2) ��µ*��2,

and since (a′jd γ )+Gµγ
j [cf. Eq. (26)],

a′0d γ ¤A(1�2) ��µ*��2A(1�2) ��µγ ��2.
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Taking the limit as γ →S, we obtain

lim inf
γ →0

a′0d γ ¤A��µ*��2,

which, together with Eq. (32), shows that

a′0d γ →−��µ*��2.

Since we have also shown that

(a′jd γ )+Gµγ
j →µ*j ,

the proof is complete. �

We now return to the proof of Proposition 2.2(a). For simplicity, we
assume that all the constraints are inequalities that are active at x* (equality
constraints can be handled by conversion to two inequalities, and inactive
inequality constraints are inconsequential in the subsequent analysis). We
will use Lemma 2.1 with the following identifications:

NGTX (x*)*, a0G∇f (x*), ajG∇gj (x*), jG1, . . . , r,

MGset of Lagrange multipliers,

µ*GLagrange multiplier of minimum norm .

If µ*G0, then µ* is an informative Lagrange multiplier and we are done.
If µ* ≠ 0, by Lemma 2.1, for any (H0, there exists a d̄∈N*GTX (x*) such
that

a′0 d̄F0, (33)

a′j d̄H0, ∀j∈J*, a′j d̄⁄( min
l∈J*

a′l d̄, ∀j ∉J*, (34)

where

J*G{ j�µ*j H0}.

By suitably scaling the vector d̄, we can assume that ��d̄��G1. Let {xk}⊂X
be such that xk ≠ x* for all k and

xk→x*, (xkAx*)���xkAx*��→ d̄.

Using the Taylor theorem for the cost function f, we have that, for some
vector sequence ξk converging to 0,

f (xk)Af (x*)G∇f (x*)′(xkAx*)Co(��xkAx*��)

G∇f (x*)′ (d̄Cξ k) ��xkAx*��Co(��xkAx*��)

G��xkAx*��[∇f (x*)′d̄C∇f (x*)′ξ kCo(��xkAx*��)���xkAx*��].
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From Eq. (33), we have

∇f (x*)′d̄F0,

so we obtain

f (xk)F f (x*), for k sufficiently large .

Using also the Taylor theorem for the constraint functions gj , we have for
some vector sequence ξk converging to 0,

gj (x
k)Agj (x*)G∇gj (x*)′(xkAx*)Co(��xkAx*��)

G∇gj (x*)′(d̄Cξ k) ��xkAx*��Co(��xkAx*��)

G��xkAx*�� [∇gj (x*)′d̄C∇gj (x*)′ξ kCo(��xkAx*��)���xkAx*��].
This, combined with Eq. (34), shows that, for k sufficiently large, gj (x

k) is
bounded from below by a constant times ��xkAx*�� for all j such that
µ*j H0 [and hence gj (x*)G0], and satisfies gj (x

k)⁄o(��xkAx*��) for all j such
that µ*j G0 [and hence gj (x*)⁄0]. Thus, the sequence {xk} can be used to
establish the CV condition for µ*, and it follows that µ* is an informative
Lagrange multiplier.

(b) We summarize the essence of the proof argument of this part in the
following lemma.

Lemma 2.2. Let N be a closed convex cone in ℜn, let a0 , a1 , . . . , ar be
given vectors in ℜn. Suppose that the closed and convex set M⊂ℜr, given
by

MG�µ¤0�A�a0C ∑
jG1

r

µ jaj�∈N	 ,

is nonempty. Among the index subsets J⊂{1, . . . , r} such that, for some
µ∈M, we have JG{ j�µ jH0}, let J̄⊂{1, . . . , r} have a minimal number of
elements. Then, if Jr is nonempty, there exists a vector d̄∈N* such that

a′0 d̄F0, a′j d̄H0, for all j∈J̄. (35)

Proof. We apply Lemma 2.1 with the vectors a1 , . . . , ar replaced by
the vectors aj , j∈J̄. The subset of M, given by

M̄r G�µ¤0�A�a0C ∑
j∈Jr

µ jaj�∈N, µ jG0, ∀j ∉ Jr	 ,

is nonempty by assumption. Let µ̄ be the vector of minimum norm on M̄r .
Since J̄ has a minimal number of indices, we must have µ̄ jH0 for all j∈J̄.
If J̄ is nonempty, Lemma 2.1 implies that there exists a d̄∈N* such that Eq.
(35) holds. �
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Given Lemma 2.2, the proof of Proposition 2.2(b) is very similar to the
corresponding part of the proof of Proposition 2.2(a). �

Sensitivity and Lagrange Multiplier of Minimum Norm. Let us first
introduce an interesting variation of Lemma 2.1.

Lemma 2.3. Let N be a closed convex cone in ℜn, and let a0 , . . . , ar

be given vectors in ℜn. Suppose that the closed and convex set M⊂ℜr, given
by

MG�µ¤0�A�a0C ∑
jG1

r

µ jaj�∈N	 ,

is nonempty, and let µ* be the vector of minimum norm on M. Then,

−��µ*��2⁄a′0dC(1�2) ∑
jG1

r

((a′jd )+)2, ∀d∈N*.

Furthermore, if dr is an optimal solution of the problem

min a′0dC(1�2) ∑
jG1

r

((a′jd )+)2, (36a)

s.t. d∈N*, (36b)

we have

a′0 d̄G−��µ*��2, (a′j d̄)+Gµ*j , jG1, . . . , r. (37)

Proof. From the proof of Lemma 2.1, we have that, for all γ H0,

−(1�2) ��µ*��2Gsup
µ¤0

inf
d∈N*

L0(d, µ)

⁄ inf
d∈N*

sup
µ¤0

L0(d, µ)

G inf
d∈N*

�a′0dC(1�2) ∑
jG1

r

((a′jd )+)2	 . (38)

If d̄ is an optimal solution of problem (36), we obtain

inf
d∈N*

�a′0dC(1�2) ∑
jG1

r

((a′jd )+)2	
Ga′0 d̄C(1�2) ∑

jG1

r

((a′j d̄)+)2

⁄a′0d γC(1�2) ∑
jG1

r

((a′jd γ )+)2.
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Since (according to the proof of Lemma 2.1)

a′0d γ →−��µ*��2 and (a′jd γ )+→µ*j , as γ →0,

by taking the limit above as γ →0, we see that equality holds throughout in
the above two inequalities. Thus, (d̄, µ*) is a saddle point of the function
L0(d, µ) over d∈N* and µ¤0. It follows that µ* maximizes L0(d̄, µ) over
µ¤0, so that

µ*j G(a′j d̄)+, for all j, and −��µ*��2Gα′0 d̄. �

The difference between Lemmas 2.1 and 2.3 is that, in Lemma 2.3,
there is the extra assumption that problem (36) has an optimal solution
(otherwise, the lemma is vacuous). It can be shown that, assuming that the
set M is nonempty, problem (36) is guaranteed to have at least one solution
when N* is a polyhedral cone. To see this, note that problem (36) can be
written as

min a′0dC(1�2) ∑
jG1

r

z2
j ,

s.t. d∈N*, 0⁄zj , a′jd⁄zj , jG1, . . . , r,

where the zj are auxiliary variables. Thus, if N* is polyhedral, then problem
(36) is a quadratic program with a cost function that is bounded below by
Eq. (38), and hence it has an optimal solution [see Bonnans and Shapiro
(Ref. 13, Theorem 3.128)]. Thus, when N* is polyhedral, Lemma 2.3 applies.
An important context where this is relevant is when XGℜn, in which case

NX (x*)*GTX (x*)Gℜn,

or more generally when X is polyhedral, in which case TX(x*) is polyhedral.
Another condition that guarantees the existence of an optimal solution of
problem (36) is that there exists a vector µ̄ in the set

MG�µ¤0�A�a0C ∑
jG1

r

µ jaj�∈N	
such that

−�a0C ∑
jG1

r

µ̄ jaj�∈ri(N ),

where ri(N) denotes the relative interior of N. The relevant analysis, which
is due to Xin Chen (private communication), is given in Ref. 25.

When problem (36) can be guaranteed to have an optimal solution and
Lemma 2.3 applies, the line of proof of Proposition 2.2(a) can be used to
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show that, if the Lagrange multiplier that has minimum norm, denoted by
(λ*, µ*), is nonzero, there exists a sequence {xk}⊂X and a positive constant
c such that

f (xk)Gf (x*)A ∑
iG1

m

λ*i hi (x
k)A ∑

jG1

r

µ*j gj (x
k)Co(��xkAx*��), (39)

hi (x
k)Gcλ*i ��xkAx*��Co(��xkAx*��), iG1, . . . , m, (40)

gj (x
k)Gcµ*j ��xkAx*��Co(��xkAx*��), if µ*j H0, (41)

gj (x
k)⁄o(��xkAx*��), if µ*j G0. (42)

These equations suggest that the minimum-norm Lagrange multiplier
has a sensitivity interpretation. In particular, the sequence {xk} above corre-
sponds to the vector d̄∈TX (x*) of Eq. (37), which solves problem (36). From
this, it can be seen that a positive multiple of d̄ solves the problem

min ∇f (x*)′d,

s.t. ∑
iG1

m

[∇hi (x*)′d ]2C ∑
j∈A(x*)

[∇gj (x*)′d )+]2Gβ , d∈TX (x*),

for any given positive scalar β . Thus, d̄ is the tangent direction that maxi-
mizes the cost function improvement (calculated up to first order) for a
given value of the norm of the constraint violation (calculated up to first
order). From Eq. (39), this first-order cost improvement is equal to

∑
iG1

m

λ*i hi (x
k)C ∑

jG1

r

µ*j gj (x
k).

Thus, the multipliers λ*i and µ*j express the rate of improvement per unit
constraint violation, along the maximum improvement (or steepest descent)
direction d̄. This is consistent with the traditional sensitivity interpretation
of Lagrange multipliers.

Alternative Definition of Lagrange Multipliers. Finally, let us make the
connection with Rockafellar’s treatment of Lagrange multipliers from Refs.
2, 8. Consider vectors λ*G(λ*1 , . . . , λ*m) and µ*G(µ*1 , . . . , µ*r ) that satisfy
the conditions

−�∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�∈NX (x*), (43)

µ*j ¤0, ∀jG1, . . . , r, µ*j G0, ∀j ∉ A(x*). (44)
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Such vectors are called ‘‘Lagrange multipliers’’ by Rockafellar, but in this
paper we will refer to them as R-multipliers, to distinguish them from Lag-
range multipliers as we have defined them [cf. Eqs. (4)–(6)].

When X is regular at x*, the Rockafellar’s definition and our definition
coincide. In general, however, the set of Lagrange multipliers is a (possibly
strict) subset of the set of R-multipliers, since TX (x*)*⊂ NX (x*) with
inequality holding when X is not regular at x*. Also, the existence of R-
multipliers does not guarantee the existence of Lagrange multipliers. Fur-
thermore, even if Lagrange multipliers exist, none of them may be informa-
tive or strong, unless the tangent cone is convex (cf. Proposition 2.2 and
Example 2.2 given below).

Note that multipliers satisfying the enhanced Fritz John conditions of
Proposition 2.1 with µ*0 G1 are R-multipliers, and they still have the extra
sensitivity-like property embodied in the CV condition. Furthermore,
Lemma 2.1 can be used to show that, assuming that NX(x*) is convex, if
the set of R-multipliers is nonempty, it contains an R-multiplier with the
sensitivity-like property of the CV condition. However, if X is not regular
at x*, an R-multiplier may not render the Lagrangian function stationary.
The following is an illustrative example.

Example 2.2. In this 2-dimensional example, there are two linear con-
straints a′1x⁄0 and a′2x⁄0 with the vectors a1 and a2 linearly independent.
The set X is the (nonconvex) cone

XG{x� (a′1x)(a′2x)G0}.

Consider the vector x*G(0, 0). Here,

TX (x*)GX and TX (x*)*G{0}.

However, it can be seen that NX(x*) consists of the two rays of vectors that
are colinear to either a1 or a2,

NX (x*)G{γ a1 �γ ∈ℜ}∪{γ a2 �γ ∈ℜ};

see Fig. 3.
Because NX (x*) ≠ TX (x*)*, X is not regular at x*. Furthermore, both

TX(x*) and NX(x*) are not convex. For any f for which x* is a local mini-
mum, there exists a unique Lagrange multiplier (µ*1 , µ*2 ) satisfying Eqs. (4)–
(6). The scalars µ*1 , µ*2 are determined from the requirement that

∇f (x*)Cµ*1 a1Cµ*2 a2G0. (45)

Except in the cases where ∇f (x*) is equal to 0 or to Aa1 or to Aa2 , we
have µ*1 H0 and µ*2 H0, but the Lagrange multiplier (µ*1 , µ*2 ) is neither



JOTA: VOL. 114, NO. 2, AUGUST 2002 313

Fig. 3. Constraints of Example 2.2. We have TX (x*)GXG{x� (a′1x)(a′2x)G0} and NX(x*) is
the nonconvex set consisting of the two rays of vectors that are colinear to either a1

or a2.

informative nor strong, because there is no x∈X that simultaneously viol-
ates both inequality constraints. The R-multipliers here are the vectors
(µ*1 , µ*2 ) such that ∇f (x*)Cµ*1 a1Cµ*2 a2 is either equal to a multiple of a1

or to a multiple of a2. Except for the Lagrange multipliers, which satisfy
Eq. (45), all other R-multipliers are such that the Lagrangian function has
negative slope along some of the feasible directions of X.

3. Pseudonormality, Quasinormality, and Constraint Qualifications

Proposition 2.1 leads to the introduction of a general constraint quali-
fication under which the scalar µ*0 in Proposition 2.1 cannot be zero.

Definition 3.1. We say that a feasible vector x* of problem (1)–(2) is
quasinormal if there are no scalars λ1 , . . . , λm , µ1 , . . . , µr , and a sequence
{xk}⊂X such that:

(i) A� ∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)�∈NX (x*).

(ii) µ j¤0, for all jG1, . . . , r.

(iii) λ1 , . . . , λm and µ1 , . . . , µr are not all equal to 0.
(iv) {xk} converges to x* and, for all k, λ ihi (x

k)H0, for all i with
λ i ≠ 0, and µ jgj (x

k)H0, for all j with µ j ≠ 0.
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If x* is a quasinormal local minimum, the Fritz John conditions of
Proposition 2.1 cannot be satisfied with µ*0 G0, so that µ*0 can be taken
equal to 1. Then, if X is regular at x*, the vector (λ*, µ*)G
(λ*1 , . . . , λ*m , µ*1 , . . . , µ*r ) is an informative Lagrange multiplier. Quasi-
normality was introduced for the special case where XGℜn by Hestenes
(Ref. 7), who showed how it can be used to unify various constraint qualifi-
cations. The extension for the case where X ≠ ℜn is investigated here for the
first time. A related notion, also introduced here for the first time, is given
in the following definition.

Definition 3.2. We say that a feasible vector x* of problem (1)–(2) is
pseudonormal if there are no scalars λ1 , . . . , λm , µ1 , . . . , µr , and sequence
{xk}⊂X such that:

(i) −� ∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)�∈NX (x*).

(ii) µ j¤0, for all jG1, . . . , r, and µ jG0, for all j∉A(x*).
(iii) {xk} converges to x* and

∑
iG1

m

λ ihi (x
k)C ∑

jG1

r

µ jgj (x
k)H0, ∀k. (46)

It can be seen that pseudonormality implies quasinormality. The fol-
lowing example shows that the reverse is not true. We will show later in this
section (Proposition 3.2) that, under the assumption that NX (x*) is convex
(which is true in particular if X is regular at x*), quasinormality is in fact
equivalent to a slightly weaker version of pseudonormality.

Example 3.1 Let the constraint set be specified by

CG{x∈X�g1(x)⁄0, g2(x)⁄0, g3(x)⁄0},

where XGℜ2 and

g1(x)Gx2
1C(x2A1)2A1,

g2(x)G[x1Acos(π�6)]2C[x2Csin(π�6)]2A1,

g3(x)G[x1Ccos(π�6)]2C[x2Csin(π�6)]2A1;
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Fig. 4. Constraints of Example 3.1.

see Fig. 4. Consider the feasible vector x*G(0, 0). Because there is no x that
simultaneously violates all three constraints, quasinormality is satisfied.
However, a straightforward calculation shows that we have

∑
jG1

3

∇gj (x*)G0,

while

g1(x)Cg2(x)Cg3(x)G3(x2
1Cx2

2)H0, ∀x ≠ x*,

so by using µG(1, 1, 1), the conditions for pseudonormality of x* are viol-
ated. Thus, even when XGℜn, quasinormality does not imply
pseudonormality.

We now give some additional constraint qualifications, which together
with CQ1–CQ3, given in Section 1, will be seen to imply pseudonormality
of a feasible vector x*.

(CQ4) XGℜn and, for some nonnegative integer r̄Fr, the following
superset C̄ of the constraint set C,

C̄G{x�hi (x)G0, iG1, . . . , m, gi (x)⁄0, jGr̄C1, . . . , r},

is pseudonormal at x*. Furthermore, there exists a y∈ℜn such
that

∇hi (x*)′yG0, iG1, . . . , m, ∇gj (x*)′y⁄0,∀j∈A(x*),

∇gj (x*)′yF0, ∀j∈{1, . . . , r̄}∩A(x*).
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Since CQ1–CQ3 imply pseudonormality, a fact to be shown in the sub-
sequent Proposition 3.1, we see that CQ4 generalizes all the constraint quali-
fications CQ1–CQ3.

(CQ5) (a) The equality constraints with index above some m̄̄⁄m,

hi (x)G0, iGm̄̄C1, . . . , m,

are linear.
(b) There does not exist a vector λG(λ1 , . . . , λm) such that

−� ∑
iG1

m

λ i∇hi (x*)�∈NX (x*), (47)

and at least one of the scalars λ1 , . . . , λ m̄ is nonzero.
(c) The subspace

VL (x*)G{y�∇hi (x*)′yG0, iGm̄̄C1, . . . , m}

has a nonempty intersection with the interior of
NX (x*)*.

(d) There exists a y∈NX (x*)* such that

∇hi (x*)′yG0, iG1, . . . , m, ∇gj (x*)′yF0,∀j∈A(x*).

We refer to CQ5 as the generalized Mangasarian–Fromovitz constraint
qualification, since it reduces to CQ2 when XGℜn and none of the equality
constraints is assumed to be linear. The constraint qualification CQ5 has
several special cases, which we list below.

(CQ5a) (a) There does not exist a nonzero vector λG(λ1 , . . . , λm)
such that

−� ∑
iG1

m

λ i∇hi (x*)�∈NX (x*).

(b) There exists a y∈NX (x*)* such that

∇hi (x*)′yG0, iG1, . . . , m, ∇gj (x*)′yF0, ∀j∈A(x*).

(CQ5b) There are no inequality constraints, the gradients ∇hi (x*),
iG1, . . . , m, are linearly independent, and the subspace

V(x*)G{y�∇hi (x*)′yG0, iG1, . . . , m}

contains a point in the interior of NX (x*)*.
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(CQ5c) X is convex, there are no inequality constraints, the functions
hi , iG1, . . . , m, are linear, and the linear manifold

{x�hi (x)G0, iG1, . . . , m}

contains a point in the interior of X.
(CQ5d) X is convex, the functions gj are convex, there are no equality

constraints, and there exists a feasible vector x̄ satisfying

gj (x̄)F0, ∀j∈A(x*).

CQ5a is the special case of CQ5 where all equality constraints are
assumed nonlinear. CQ5b is a special case of CQ5 (where there are no
inequality constraints and no linear equality constraints) based on the fact
that, if ∇hi (x*), iG1, . . . , m, are linearly independent and the subspace
V(x*) contains a point in the interior of NX (x*)*, then it can be shown that
assumption (b) of CQ5 is satisfied. Finally, the convexity assumptions in
CQ5c and CQ5d can be used to establish the corresponding assumption
(c) and (d) of CQ5, respectively. Note that CQ5d is the well-known Slater
constraint qualification, introduced in Ref. 27.

Let us also mention the following constraint qualification.

(CQ6) The set

WG{(λ , µ) �λ1 , . . . , λm , µ1 , . . . , µr satisfy conditions (i)
and (ii) of the definition of pseudonormality} (48)

consists of just the vector 0.

CQ6 is the constraint qualification introduced by Rockafellar (Ref. 8),
who used the McShane line of proof to derive the Fritz John conditions in
the classical form where CS replaces CV in Proposition 2.1. Clearly, CQ6 is
a more restrictive condition than pseudonormality, since the vectors in W
are not required to satisfy condition (iii) of the definition of pseudonor-
mality. If the set of R-multipliers [Eqs. (43) and (44)] is a nonempty closed
convex set, its recession cone is the set W of Eq. (48) [this is shown in a less
general context by Bonnans and Shapiro (Ref. 13, Proposition 3.14), but
their proof applies to the present context as well]. Since compactness of a
closed, convex set is equivalent to its recession cone containing just the 0
vector [Rockafellar (Ref. 28, Theorem 8.4)], it follows that, if the set of R-
multipliers is nonempty convex and compact, then CQ6 holds. In view of
Proposition 2.1, the reverse is also true, provided the set of R-multipliers
multipliers is guaranteed to be convex, which is true in particular if
NX (x*) is convex. Thus, if NX (x*) is convex, CQ6 is equivalent to the set of
R-multipliers being nonempty and compact. It can also be shown that, if X
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is regular at x*, then CQ6 is equivalent to CQ5a. This is proved by Rocka-
fellar and Wets (Ref. 2) in the case where XGℜn and can be verified in the
more general case where X ≠ ℜn by using their analysis given in p. 226 of
Ref. 2 [in fact, it is well-known that, for XGℜn, CQ5a is equivalent to
nonemptiness and compactness of the set of Lagrange multipliers; this is a
result of Gauvin (Ref. 29)]. However, CQ3, CQ4, CQ5 do not preclude the
unboundedness of the set of Lagrange multipliers and hence do not imply
CQ6. Thus, CQ6 is not as effective in unifying various existing constraint
qualifications as pseudonormality, which is implied by all the constraint
qualifications CQ1-CQ6, as shown in the following proposition.

Proposition 3.1. A feasible point x* of problem (1)–(2) is pseudonor-
mal if any one of the constraint qualifications CQ1–CQ6 is satisfied.

Proof. We will not consider CQ2, since it is a special case of CQ5. It
is also evident that CQ6 implies pseudonormality. Thus, we will prove the
result for the cases CQ1, CQ3, CQ4, CQ5 in that order. In all cases, the
method of proof is by contradiction, i.e., we assume that there are scalars
λ i , iG1, . . . , m, and µ j , jG1, . . . , r, which satisfy conditions (i)–(iii) of the
definition of pseudonormality. We then assume that each of the constraint
qualifications CQ1, CQ3, CQ4, and CQ5 is in turn also satisfied, and in
each case we arrive at a contradiction.

(CQ1) Since XGℜn, implying that NX (x*)G{0}, and since we also
have µ jG0 for all j∉A(x*) by condition (ii), we can write condition (i) as

∑
iG1

m

λ i∇hi (x*)C ∑
j∈A(x*)

µ j∇gj (x*)G0.

The linear independence of ∇hi (x*), iG1, . . . , m, and ∇gj (x*), j∈A(x*),
implies that λ iG0 for all i and µ jG0 for all j∈A(x*). This, together with
the condition µ jG0 for all j∉A(x*), contradicts condition (iii).

(CQ3) By the linearity of hi and the concavity of gj , we have that, for
all x∈ℜn,

hi (x)Ghi (x*)C∇hi (x*)′(xAx*), iG1, . . . , m,

gj (x)⁄gj (x*)C∇gj (x*)′(xAx*), jG1, . . . , r.
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By multiplying these two relations with λ i and µj , and by adding over i and
j, respectively, we obtain

∑
iG1

m

λ ihi (x)C ∑
jG1

r

µ jgj (x)

⁄ ∑
iG1

m

λ ihi (x*)C ∑
jG1

r

µ jgj (x*)

C� ∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)�′
(xAx*)

G0, (49)

where the last equality holds because we have λ ihi (x*)G0 for all i and
µ jgj (x*)G0 for all j [by condition (ii)], and

∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)G0

[by condition (i)]. On the other hand, by condition (iii), there is an x
satisfying

∑
iG1

m

λ ihi (x)C ∑
jG1

r

µ jgj (x)H0,

which contradicts Eq. (49).

(CQ4) It is not possible that µ jG0 for all j∈{1, . . . , r̄}, since if this
were so, the pseudonormality assumption for C̄ would be violated. Thus,
we have

µ jH0, for some j∈{1, . . . , r̄}∩A(x*).

It follows that, for the vector y appearing in the statement of CQ4, we have

∑
jG1

r̄

µ j∇gj (x*)′yF0,

so that

∑
iG1

m

λ i∇hi (x*)′yC ∑
jG1

r

µ j∇gj (x*)′yF0.

This contradicts the equation

∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)G0

[cf. condition (i)].
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(CQ5) We first show by contradiction that at least one of the
λ1 , . . . , λ m̄ and µ j , j∈A(x*) must be nonzero. If this were not so, then by
using a translation argument, we may assume that x* is the origin and that
the linear constraints have the form a′i xG0, iGm̄̄C1, . . . , m. Using con-
dition (i) we have

− ∑
iGm̄C1

m

λ iai∈NX (x*). (50)

Let ȳ be the interior point of NX (x*)* that satisfies

a′i ȳG0, for all iGm̄̄C1, . . . , m,

and let S be an open sphere centered at the origin such that

ȳCd∈NX (x*)*, for all d∈S.

We have from Eq. (50),

∑
iGm̄C1

m

λ ia′i d¤ 0, ∀d∈S,

from which we obtain

∑
iGm̄C1

m

λ iaiG0.

This contradicts condition (iii), which requires that there exists some
x∈S∩X such that

∑
iGm̄C1

m

λ ia′i xH0.

Next, we show by contradiction that we cannot have µ jG0 for all j. If
this were so, by condition (i) there must exist a nonzero vector λG
(λ1 , . . . , λm) such that

− ∑
iG1

m

λ i∇hi (x*)∈NX (x*). (51)

By what has been proved above, the multipliers λ1 , . . . , λ m̄ of the nonlinear
constraints cannot be all zero, so Eq. (51) contradicts assumption (b) of
CQ5.

Hence, we must have µ jH0 for at least one j, and since µ j¤0 for all j
with µ jG0 for j∉A(x*), we obtain

∑
iG1

m

λ i∇hi (x*)′yC ∑
jG1

r

µ j∇gj (x*)′yF0,
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for the vector y of NX (x*)* that appears in assumption (d) of CQ5. Thus,

−� ∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)�∉(NX (x*)*)*.

Since NX (x*)⊂ (NX (x*)*)*, this contradicts condition (i). �

A consequence of Proposition 3.1 is that, if any one of the constraint
qualifications CQ1–CQ6 holds and X is regular at x*, by Proposition 2.1,
the constraint set C admits informative Lagrange multipliers at x*. Without
the regularity assumption on X, CQ5 and CQ6 similarly imply the admit-
tance of an R-multiplier vector. In the next section, we will also show similar
implications regarding the admittance of an exact penalty at x*. To this
end, we establish a relation between quasinormality and a weaker version
of pseudonormality.

Proposition 3.2. Let x* be a feasible vector of problem (1)–(2), and
assume that the normal cone NX (x*) is convex. Then, x* is quasinormal if
and only if there are no scalars λ1 , . . . , λm and µ1 , . . . , µr satisfying con-
ditions (i)–(iii) of the definition of quasinormality together with the follow-
ing condition:

(iv′ ) {xk} converges to x* and, for all k, λ ihi (x
k)¤ 0 for all i,

µ jgj (x
k)¤0 for all j, and

∑
iG1

m

λ ihi (x
k)C ∑

jG1

r

µ jgj (x
k)H0.

Proof. For simplicity, we assume that all the constraints are inequal-
ities that are active at x*. First, we note that, if there are no scalars
µ1 , . . . , µr with the properties described in the proposition, then there are
no scalars µ1 , . . . , µr satisfying the more restrictive conditions (i)–(iv) in the
definition of quasinormality, so x* is not quasinormal.

To show the converse, suppose that there exist scalars µ1 , . . . , µr

satisfying conditions (i)–(iii) of the definition of quasinormality together
with condition (iv′ ), i.e., there exist scalars µ1 , . . . , µr such that:

(i) −� ∑
jG1

r

µ j∇gj (x*)�∈NX (x*).

(ii) µ j¤0, for all jG1, . . . , r.

(iii) {xk} converges to x* and for all k, gj (x
k)¤ 0 for all j, and

∑
jG1

r

µ jgj (x
k)H0.
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Condition (iii) implies that gj (x
k)¤ 0 for all j, and gj̄(x

k)H0 for some
j̄ such that µ j̄H0. Without loss of generality, we can assume j̄G1, so that
we have

g1(x
k)H0, for all k.

Let

ajG∇gj (x*), jG1, . . . , r.

Then, by appropriate normalization, we can assume that µ1G1, so that

−�a1C ∑
jG2

r

µ jaj�∈NX (x*). (52)

If Aa1∈NX (x*), the choice of scalars µm̄̄1G1 and µm̄̄ jG0 for all
jG2, . . . , r, satisfies conditions (i)–(iv) in the definition of quasinormality,
hence x* is not quasinormal and we are done. Assume that Aa1∉NX (x*).
The assumptions of Lemma 2.2 are satisfied, so it follows that there exist
scalars µm̄̄2 , . . . , µm̄̄r , not all 0, such that

−�a1C ∑
jG2

r

µm̄̄ jaj�∈NX (x*), (53)

and a vector d̄∈NX (x*)* with a′j d̄H0, for all jG2, . . . , r, such that µm̄̄ jH0.
Thus,

∇gj (x*)′d̄H0, ∀jG2, . . . , r with µm̄̄ jH0, (54)

while by Eq. (53), the µm̄̄ j satisfy

−�∇g1(x*)C ∑
jG2

r

µm̄̄ j∇gj (x*)�∈NX (x*). (55)

Next, we show that the scalars µm̄̄1G1 and µm̄̄2 , . . . , µm̄̄r satisfy con-
dition (iv) in the definition of quasinormality, completing the proof. We use
Theorem 6.26 and Theorem 6.28 of Rockafellar and Wets (Ref. 2) to argue
that, for the vector d̄∈NX (x*)* and the sequence xk constructed above, there
is a sequence dk∈TX (xk) such that dk→ d̄. Since xk→x* and dk→ d̄, by Eq.
(54), we obtain that, for all sufficiently large k,

∇gj (x
k)′dkH0, ∀jG2, . . . , r with µm̄̄ jH0.

Since dk∈TX (xk), there exists a sequence {xk
ν}⊂X such that, for each

k, we have xk
ν ≠ xk for all ν and

xk
ν →xk, (xk

νAxk)���xk
νAxk��→dk���dk��, as ν→S. (56)
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For each jG2, . . . , r such that µm̄̄ jH0, we use the Taylor theorem for the
constraint function gj. We have that, for some vector sequence ξν converg-
ing to 0,

gj (x
k
ν)Ggj (x

k)C∇gj (x
k)′(xk

νAxk)Co(��xk
νAxk��)

¤ ∇gj (x
k)′(dk���dk��Cξν) ��xk

νAxk��Co(��xk
νAxk��)

G��xk
νAxk��[∇gj (x

k)′dk���dk��C∇gj (x
k)′ξν

Co(��xk
νAxk��)���xk

νAxk��],

where the inequality above follows from Eq. (56) and the assumption that
gj (x

k)¤ 0, for all j and xk. It follows that, for ν and k sufficiently large,
there exists xk

ν ∈X arbitrarily close to xk such that gj (x
k
ν)H0, for all

jG2, . . . , r with µm̄̄ jH0.
Since g1(x

k)H0 and g1 is a continuous function, we have that
g1(x̃)H0 for all x̃ in some neighborhood Vk of xk. Since xk→x* and
xk

ν →xk for each k, by choosing ν and k sufficiently large, we get gj (x
k
ν)H0

for jG1 and each jG2, . . . , r with µm̄̄ jH0. This together with Eq. (55) vio-
lates the quasinormality assumption of x*, which completes the proof. �

The following example shows that the convexity of NX (x*) is an essen-
tial assumption for the conclusion of Proposition 3.2.

Example 3.2. Here, X is the subset of ℜ2 given by

XG{x2¤0� ((x1C1)2C(x2C1)2A2)((x1A1)2C(x2C1)2A2)⁄0};

see Fig. 5. The normal cone NX (x*) consists of the three rays shown in
Fig. 5 and is not convex. Let there be two inequality constraints with

g1(x)G−(x1C1)2A(x2)
2C1, g2(x)G−x2 .

Fig. 5. Constraints of Example 3.2.
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In order to have

−∑
j

µ j∇gj (x*)∈NX (x*),

we must have µ1H0 and µ2H0. There is no x∈X such that g2(x)H0,
so x* is quasinormal. However, for A2⁄x1⁄0 and x2G0, we have
x∈X, g1(x)H0, and g2(x)G0. Hence, x* does not satisfy the weak form of
pseudonormality given in Proposition 3.2.

4. Pseudonormality and Admittance of an Exact Penalty

We will show that pseudonormality implies that the constraint set
admits an exact penalty, which in turn, together with regularity of X at x*,
implies that the constraint set admits Lagrange multipliers. We first use the
generalized Mangasarian–Fromovitz constraint qualification CQ5 to obtain
a necessary condition for a local minimum of the exact penalty function.

Proposition 4.1. Let x* be a local minimum of

Fc (x)Gf (x)Cc� ∑
iG1

m

�hi (x) �C ∑
jG1

r

g+
j (x)�

over X. Then, there exist λ*1 , . . . , λ*m and µ*1 , . . . , µ*r such that

−�∇f (x*)Cc� ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�	∈NX (x*),

λ*i G1, if hi (x*)H0,
λ*i G−1, if hi (x*)F0,
λ*i ∈[−1, 1], if hi (x*)G0,
µ*j G1, if gj (x*)H0,
µ*j G0, if gj (x*)F0,
µ*j ∈[0,1], if gj (x*)G0.

Proof. The problem of minimizing Fc (x) over x∈X can be converted
to the problem

min f (x)Cc� ∑
iG1

m

wiC ∑
jG1

r

û j� .

s.t. x∈X, hi (x)⁄wi , −hi (x)⁄wi , iG1, . . . , m,

gj (x)⁄û j , 0⁄û j , jG1, . . . , r,
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which involves the auxiliary variables wi and ûj. It can be seen that, at the
local minimum of this problem that corresponds to x*, the constraint quali-
fication CQ5 is satisfied. Thus, by Proposition 3.1, this local minimum is
pseudonormal, and hence there exist multipliers satisfying the conditions of
Proposition 2.1 with µ*0 G1. With straightforward calculation, these con-
ditions yield scalars λ*1 , . . . , λ*m and µ*1 , . . . , µ*r satisfying the desired con-
ditions. �

Proposition 4.2. If x* is a feasible vector of problem (1)–(2), which is
pseudonormal, the constraint set admits an exact penalty at x*.

Proof. Assume the contrary, i.e., that there exists a smooth f such
that x* is a strict local minimum of f over the constraint set C, while x* is
not a local minimum over x∈X of the function

Fk (x)Gf (x)Ck� ∑
iG1

m

�hi (x) �C ∑
jG1

r

g+
j (x)�

for all kG1, 2,. . .. Let (H0 be such that

f (x*)Ff (x), ∀x∈C with x ≠ x* and ��xAx*��⁄(. (57)

Suppose that xk minimizes Fk (x) over the (compact) set of all x∈X
satisfying ��xAx*��⁄(. Then, since x* is not a local minimum of Fk over X,
we must have that xk ≠ x* and that xk is infeasible for problem (2), i.e.,

∑
iG1

m

�hi (x
k) �C ∑

jG1

r

g+
j (x

k)H0. (58)

We have

Fk (x
k)Gf (xk)Ck� ∑

iG1

m

�hi (x
k) �C ∑

jG1

r

g+
j (x

k)� ⁄ f (x*), (59)

so it follows that

hi (x
k)→0, for all i,

and
g+

j (x
k)→0, for all j.

The sequence {xk} is bounded and, if x̄ is any of its limit points, we have
that x̄ is feasible. From Eqs. (57) and (59), it then follows that x̄Gx*. Thus,
{xk} converges to x* and we have ��xkAx*��F( for all sufficiently large k.
This implies the following necessary condition for optimality of xk (cf. Prop-
osition 4.1):

−�(1�k)∇f (xk)C ∑
iG1

m

λ k
i ∇hi (x

k)C ∑
jG1

r

µk
j ∇gj (x

k)�∈NX (xk), (60)
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where

λ k
i G1, if hi (x

k)H0,

λ k
i G−1, if hi (x

k)F0,

λ k
i ∈[−1, 1], if hi (x

k)G0,

µk
j G1, if gj (x

k)H0,

µk
j G0, if gj (x

k)F0,

µk
j ∈[0, 1], if gj (x

k)G0.

In view of Eq. (58), we can find a subsequence {λ k, µk}k∈K such that, for
some equality constraint index i, we have �λ k

i �G1 and hi (x
k) ≠ 0 for all

k∈K or that, for some inequality constraint index j, we have µk
j G1 and

gj (x
k)H0 for all k∈K . Let (λ , µ) be a limit point of this subsequence.

We then have (λ , µ) ≠ (0, 0), µ ¤ 0. Using the closure of the mapping
x>NX (x), Eq. (60) yields

−� ∑
iG1

m

λ i∇hi (x*)C ∑
jG1

r

µ j∇gj (x*)�∈NX (x*). (61)

Finally, for all k∈K , we have

λ k
i hi (x

k)¤ 0, for all i,

µk
j gj (x

k)¤ 0, for all j,

so that, for all k∈K ,

λ ihi (x
k)¤ 0, for all i,

µ jgj (x
k)¤ 0, for all j.

Since by construction of the subsequence {λ k, µk}k∈K , we have that, for
some i and all k∈K, �λ k

i �G1 and hi (x
k) ≠ 0, or that, for some j and all

k∈K, µk
j G1 and gj (x

k)H0, it follows that, for all k∈K ,

∑
iG1

m

λ ihi (x
k)C ∑

jG1

r

µ jgj (x
k)H0. (62)

Thus, Eqs. (61) and (62) violate the hypothesis that x* is pseudonormal. �

A cursory examination shows that the proof of Proposition 4.2 goes
through if we substitute pseudonormality with the weaker version of
pseudonormality introduced in Proposition 3.3. Thus, by using also Prop-
osition 3.3, we obtain the following proposition.
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Proposition 4.3. If x* is a feasible vector of problem (1)–(2), which is
quasinormal, and if the normal cone NX (x*) is convex, then the constraint
set admits an exact penalty at x*.

The following proposition establishes the connection between admit-
tance of an exact penalty and admittance of Lagrange multipliers. Regu-
larity of X is an important condition for this connection.

Proposition 4.4. Let x* be a feasible vector of problem (1)–(2), and
let X be regular at x*. If the constraint set admits an exact penalty at x*, it
admits Lagrange multipliers at x*.

Proof. Suppose that a given smooth function f(x) has a local mini-
mum at x*. Then, the function f (x)C��xAx*��2 has a strict local minimum
at x*. Since C admits an exact penalty at x*, there exist λ*i and µ*j satisfying
the conditions of Proposition 4.1. [The term ��xAx*��2 in the cost function
is inconsequential, since its gradient at x* is 0.] In view of the regularity of
X at x*, the λ*i and µ*j are Lagrange multipliers. �

As an illustration of the above propositions, consider Example 3.1.
Here, since x* is quasinormal but not pseudonormal, Proposition 4.2 cannot
be used. However, since XGℜn and since NX (x*)G{0} is convex, Prop-
osition 4.3 applies and shows that the constraint set admits an exact penalty
at x*. By Proposition 4.4, since X is regular, the constraint set admits Lag-
range multipliers at x*. [This can also be shown using the fact
TC (x*)GV(x*)G{0}, which implies that X* is quasiregular.]

We will show in Example 7.1 in Section 7 that the converses of Proposi-
tions 4.2 and 4.3 do not hold; i.e., the admittance of an exact penalty func-
tion at a point x* does not imply pseudonormality or quasinormality.
Furthermore, we will also show in Example 7.4 that the regularity assump-
tion on X in Proposition 4.4 cannot be dispensed with. On the other hand,
because Proposition 4.1 does not require the regularity of X, the proof of
Proposition 4.4 can be used to establish that admittance of an exact penalty
implies the admittance of R-multipliers, as defined in Section 2. The
relations shown thus far, are summarized in Fig. 6, which illustrates the
unifying role of pseudonormality and quasinormality. In this figure, unless
indicated otherwise, the implications cannot be established in the opposite
direction without additional assumptions (Section 7 provides the necessary
examples and counterexamples).
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Fig. 6. Relations between various conditions, which when satisfied at a local minimum x*,
guarantee the admittance of an exact penalty and corresponding multipliers. In the
case where X is regular, the tangent and normal cones are convex. Hence, by Prop-
osition 2.2(a), the admittance of Lagrange multipliers implies the admittance of an
informative Lagrange multiplier, while by Proposition 4.3, quasinormality implies the
admittance of an exact penalty.
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5. Using the Extended Representation

In practice, the set X can often be described in terms of smooth equality
and inequality constraints,

XG{x�hi (x)G0, iGmC1, . . . , m̄̄, gj (x)⁄0, jGrC1, . . . , r̄}.

Then, the constraint set C can alternatively be described without an abstract
set constraint, in terms of all of the constraint functions

hi (x)G0, iG1, . . . , m̄̄, gj (x)⁄0, jG1, . . . , r̄.

We call this the extended representation of C, to contrast it with the rep-
resentation (2), which we call the original representation. Issues relating to
exact penalty functions and Lagrange multipliers can be investigated for
the extended representation and results can be carried over to the original
representation by using the following proposition.

Proposition 5.1.

(a) If the constraint set admits Lagrange multipliers in the extended
representation, it admits Lagrange multipliers in the original
representation.

(b) If the constraint set admits an exact penalty in the extended
representation, it admits an exact penalty in the original
representation.

Proof.

(a) The hypothesis implies that, for every smooth cost function f for
which x* is a local minimum, there exist scalars λ*1 , . . . , λ*m̄ and
µ*1 , . . . , µ*r̄ satisfying

∇f (x*)C ∑
iG1

m̄

λ*i ∇hi (x*)C ∑
jG1

r̄

µ*j ∇gj (x*)G0, (63a)

µ*j ¤0, ∀jG0,1, . . . , r̄, (63b)

µ*j G0, ∀j∉Ā(x*), (63c)

where

Ā(x*)G{ j�gj (x*)G0, jG1, . . . , r̄}.

For y∈TX (x*), we have

∇hi (x*)′yG0, for all iGmC1, . . . , m̄̄,

∇gj (x*)′y⁄0, for all jGrC1, . . . , r̄, with j∈Ā(x*).
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Hence, Eq. (63) implies that

�∇f (x*)C ∑
iG1

m

λ*i ∇hi (x*)C ∑
jG1

r

µ*j ∇gj (x*)�′
y¤ 0, ∀y∈TX (x*),

and it follows that λ*i , iG1, . . . , m, and µ*j , jG1, . . . , r, are Lagrange multi-
pliers for the original representation.

(b) Consider the exact penalty function for the extended
representation,

F̄r c (x)Gf (x)Cc� ∑
iG1

m̄

�hi (x) �C ∑
jG1

r̄

g+
j (x)� .

We have

Fc (x)GF̄r c (x), for all x∈X.

Hence, if x* is an unconstrained local minimum of F̄r c (x), it is also a local
minimum of Fc (x) over x∈X. Thus, for a given cH0, if x* is both a strict
local minimum of f over C and an unconstrained local minimum of F̄r c (x),
it is also a local minimum of Fc (x) over x∈X. �

Note that part (a) of the above proposition does not guarantee the
existence of informative Lagrange multipliers in the original representation,
and indeed in Example 7.5 given in Section 7, there exist some informative
Lagrange multipliers in the extended representation, but there exists none
in the original representation.

As an example where Proposition 5.1 is useful, consider the important
special case where all constraints are linear and X is a polyhedron. Then,
the constraint set need not satisfy quasinormality, as will be shown in
Example 7.6 in Section 7. However, by Proposition 3.1, it satisfies quasinor-
mality in the extended representation, so using Proposition 5.1, it admits
Lagrange multipliers and an exact penalty at any feasible point in the orig-
inal representation.

6. Extensions under Convexity Assumptions

In this section, we extend the theory of the preceding sections to the
case where the functions f and gj may be nondifferentiable, but are all
instead assumed convex (a slightly more general development is given in
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Ref. 25, where each of the functions f and gj may be either smooth or
convex). We thus consider the problem

min f (x), (64a)

s.t. x∈X, g(x)⁄0, (64b)

where g(x)G(g1(x), . . . , gr (x)) is the constraint function vector, and we
assume that X is a nonempty, closed, and convex set, and that each of the
functions f and gj is convex over ℜn. For simplicity, we assume no equality
constraints. The extension of the following analysis to the case where
there are linear equality constraints is straightforward: we simply replace
each equality constraint with two linear (and hence convex) inequality
constraints.

For a convex function F, we use the notation ∂F (x) to denote the set
of all subgradients of F at x∈ℜn. To generalize the enhanced Fritz–John
conditions under these assumptions, we use the following classical condition
for the problem of minimizing F (x) over X, where F is convex: if x* is a
local minimum of this problem and if the tangent cone TX (x*) is convex,
then

0∈∂F (x*)CTX (x*)*. (65)

By a nearly verbatim repetition of the proof of Proposition 2.1, while
using this necessary condition in place of A∇Fk(xk)∈TX (xk)*, together with
the convexity assumptions on X, f, gj , we obtain the following extension of
enhanced Fritz–John conditions:

Proposition 6.1. Consider problem (64), assuming that X is convex
and that the functions f and gj are convex over ℜn; let x* be a global mini-
mum. Then, there exists a scalar µ*0 and a vector µ*G(µ*1 , . . . , µ*r ),
satisfying the following conditions:

(i) µ*0 f (x*)Gmin
x∈X

{µ*0 f (x)Cµ*′g(x)}.

(ii) µ*j ¤0, for all jG0, 1, . . . , r.

(iii) µ*0 , µ*1 , . . . , µ*r are not all equal to 0.
(iv) If the index set JG{ j ≠ 0�µ*j H0} is nonempty, there exists a

sequence {xk}⊂X that converges to x* and is such that, for all
k,

f (xk)Ff (x*), µ*j gj (x
k)H0, ∀j∈J,

gj (x
k)Go�min

l∈J
gl (x

k)� , ∀j∉J.



JOTA: VOL. 114, NO. 2, AUGUST 2002332

The theory of the preceding sections can now be generalized using
Proposition 6.1. We first extend the definition of a Lagrange multiplier. If
x* is a global minimum of problem (64), we say that a vector µ*¤ 0 is a
Lagrange multiplier vector corresponding to f and x* if

f (x*)Gmin
x∈X

{ f (x)Cµ*′g(x)}, µ*′g(x*)G0. (66)

Note here that, since g(x*)⁄0, and µ*¤ 0, the condition µ*′g(x*)G0 of
Eq. (66) is equivalent to the condition µ*j gj (x*)G0 for all j, which is the
CS condition.

Similarly, the definition of pseudonormality is extended as follows:

Definition 6.1. Consider problem (64), assuming that X is convex and
that the functions f and gj are convex over ℜn. A feasible vector x* is said
to be pseudonormal if there exist no vector µG(µ1 , . . . , µr)¤ 0 and a
sequence {xk}⊂X such that:

(i) 0Gµ′g(x*)Ginfx∈X µ′g(x).
(ii) {xk} converges to x* and µ′g(xk)H0 for all k.

If a global minimum x* is pseudonormal, by Proposition 6.1, there
exists a Lagrange multiplier vector, which also satisfies the extra CV con-
dition (iv) of that proposition. Furthermore, the analysis of Section 3 is
easily extended to show that x* is pseudonormal under either one of the
following two criteria:

(a) Polyhedral Criterion. XGℜn and the functions gj are linear.
(b) Slater Criterion. There exists a feasible vector x̄ such that

gj (x̄)F0, jG1, . . . , r.

Thus, under either one of these criteria, a Lagrange multiplier vector is
guaranteed to exist.

If X is a polyhedron (rather than XGℜn) and the functions gj are linear,
we can also prove the existence of at least one Lagrange multiplier, by com-
bining the linearity criterion above with the extended representation of the
problem as in the preceding section. Also, the Slater criterion can be
extended to the case where there are additional linear equality constraints.
Then, in addition to the condition

gj (x̄)F0, for all j,

for the existence of a Lagrange multiplier, there should exist a feasible vec-
tor in the relative interior of X.
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Finally, let us provide a geometric interpretation of pseudonormality
under convexity assumptions. Consider the set

GG{g(x) �x∈X}

and the hyperplanes that support this set at g(x*). As Fig. 7 illustrates,
pseudonormality of the feasible point x* means that there is no hyperplane
H with a normal µ ¤ 0 such that:

(i) H supports G at g(x*) and passes through 0, i.e.,

HG{z�µ′zGµ′g(x*)G0}.

(ii) g(x*) can be approached by a sequence {g(xk)}⊂G∩ int(H̄r ), where
H̄r is the upper halfspace defined by the hyperplane H,

H̄r G{z�µ′z¤ 0}.

Figure 7 also indicates the type of constraint qualifications that guaran-
tee pseudonormality. The Slater condition can be rephrased to mean that
the set G intersects the interior of the nonpositive orthant. Clearly, if this is
so, there cannot exist a hyperplane with a normal µ ¤ 0 that simultaneously
supports G at g(x*) and passes through 0. Similarly, if XGℜn and the gj

are linear, the set G is an affine set, and if this is so, G is fully contained in
the hyperplane H and cannot intersect the interior of the upper halfspace
H̄r . Thus, the polyhedral and Slater criteria imply pseudonormality of all
feasible points.

7. Examples and Counterexamples

In this section, we provide examples and counterexamples that clarify
some of the earlier developments. In particular, we explore the relations
between various conditions given in Fig. 6, and we show (at least in the less
obvious cases) that the one-directional arrows cannot be reversed in the
absence of additional assumptions.

Example 7.1. Here, we show that, even with XGℜn, the admittance
of an exact penalty does not imply pseudonormality and quasinormality.
Let

CG{x∈ℜ2�g1(x)⁄0, g2(x)⁄0, h1(x)G0},

where

g1(x)G(x1A1)2Cx2
2A1,

g2(x)G(x1C1)2Cx2
2A1,

h1(x)Gx2 ;
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Fig. 7. Geometric interpretation of pseudonormality. Consider the set

GG{g(x) �x∈X}

and the hyperplanes that support this set at g(x*). For feasibility, G should intersect the
nonpositive orthant {z�z⁄0}. The first condition [0Gµ′g(x*)Ginfx∈X µ′g(x)] in the
definition of pseudonormality means that there is a hyperplane with normal µ, which
simultaneously supports G at g(x*) and passes through 0 [note that, as illustrated in
figure (a), this cannot happen if G intersects the interior of the nonpositive orthant;
cf. the Slater criterion]. The second condition [{xk} converges to x* and µ′g(xk)H0
for all k] means that g(x*) can be approached by a sequence {g(xk)}⊂G∩ int(H̄r ),
where H̄r is the upper halfspace defined by the hyperplane

H̄r G{z�µ′z¤ 0};

[cf. figures (b) and (c)]. Pseudonormality of x* means that there is no µ ¤ 0 and
{xk}⊂X satisfying both of these conditions. If the Slater criterion holds, the first
condition cannot be satisfied. If the polyhedral criterion holds, the set G is an affine
set and the second condition cannot be satisfied (this depends critically on XGℜn,
rather than X being a general polyhedron).
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Fig. 8. Constraints of Example 7.1. The only feasible point is x*G(0, 0).

see Fig. 8. The only feasible solution is x*G(0, 0) and the constraint gradi-
ents are given by

∇g1(x*)G(−2, 0), ∇g2(x*)G(2, 0), ∇h1(x*)G(0, 1).

Let µ1Gµ2G1 and λG0. With this choice of the multipliers, we have

µ1∇g1(x*)Cµ2∇g2(x*)Cλ∇h1(x*)G0.

In addition it can be seen that, arbitrarily close to x*, there exists some x
such that g1(x)H0 and g2(x)H0 simultaneously. Thus, x* is not quasinor-
mal and hence is not pseudonormal.

On the other hand, the directional derivative of the function

P(x)G�h1(x) �C ∑
jG1

2

g+
j (x)

at x* is positive in all directions. This is because the directional derivative
of ∑2

jG1g
+
j (x) is positive everywhere, except in the directions d1G(0, 1) and

d2G(0,A1), and with the introduction of the equality constraint, the func-
tion P(x) acquires a positive directional derivative in these directions as well.
By choosing a sufficiently large penalty parameter c, we can guarantee that
x* is a local minimum of the function Fc(x). Hence, the constraint set admits
an exact penalty at x*.

Example 7.2. Here, we show that, even with XGℜn, the admittance
of an exact penalty function does not imply quasiregularity. Let

CG{x∈ℜ2�g1(x)⁄0, g2(x)⁄0, g3(x)⁄0},
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where

g1(x)G−(x1C1)2A(x2)
2C1,

g2(x)Gx2
1C(x2C1)2A1,

g3(x)G−x2 ;

see Fig. 9. The only feasible solution is x*G(0, 0) and the constraint gradi-
ents are given by

∇g1(x*)G(−2, 0), ∇g2(x*)G(0, 2), ∇g3(x*)G(0,A1).

At x*G(0, 0), the cone of first-order feasible variations V(x*) is equal to
the nonnegative x1-axis and strictly contains T(x*), which is equal to x*
only. Therefore, x* is not a quasiregular point.

However, it can be seen that the directional derivative of the function,

P(x)G ∑
jG1

3

g+
j (x)

at x* is positive in all directions. This implies that we can choose a suffic-
iently large penalty parameter c, so that x* is a local minimum of the func-
tion Fc(x). The constraint set admits an exact penalty function at x*.

Fig. 9. Constraints of Example 7.2. The only feasible point is x*G(0, 0). The tangent cone
T(x*) and the cone of first order feasible variations V(x*) are also illustrated in the
figure.
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Example 7.3. Here, we show that, when XGℜn, the admittance of
Lagrange multipliers with quasiregularity (but not quasinormality) holding,
does not imply the admittance of an exact penalty. Let

CG{x∈ℜ2�g1(x)⁄0, g2(x)⁄0},

where

g1(x)Gx2 ,

g2(x)Gx6
1Cx3

2 .

At x*G(0, 0), the tangent cone is equal to the cone of first-order feasible
variations. Hence, x* is a quasiregular point, which implies that the con-
straint set admits Lagrange multipliers at x*. However, it is not true that
the constraint set admits an exact penalty function at x*. For this purpose,
we consider the function

f (x)G−x4
1Ax2 ,

which is a smooth function with a strict local minimum at x*. However, x*
is not a local minimum of the function Fc(x), no matter how large c is
chosen. To illustrate this, we consider the function

l (x1)GFc (x1 , 0)G−x4
1Ccx6

1 ,

which has a local maximum at x* for any cH0. Hence, the existence of
Lagrange multipliers does not guarantee the existence of an exact penalty.

Example 7.4. Here, we show that, if X is not regular, the admittance
of an exact penalty does not imply the admittance of Lagrange multipliers
(although it does imply the admittance of R-multipliers). Consider the set
X⊂ℜ2 depicted in Fig. 10, and let there be a single linear equality constraint

h(x)Gx1G0.

For x*G(0, 0), we have

TX (x*)*G{0},

while NX (x*) consists of the two rays shown in Fig. 10. Because

∇h(x*)G(1, 0)∉NX (x*),

pseudonormality is satisfied, and hence by Proposition 4.2, the constraint
set admits an exact penalty at x*. On the other hand, for the cost function

f (x)G−x2 ,
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Fig. 10. Constraints of Example 7.4.

we have

∇f (x*)Cλ∇h(x*) ≠ 0, for all λ ,

so there is no Lagrange multiplier. The nonadmittance of Lagrange multi-
pliers can also be verified in this example by noting that

V(x*)*CTX (x*)* ≠ TC (x*)*.

Example 7.5. Here, we show that there may exist informative Lag-
range multipliers in the extended representation of the constraint set, but
not in the original representation. This suggests that the extended represen-
tation of a constraint set cannot be used to infer the admittance of infor-
mative Lagrange multipliers as opposed to other characteristics of the
constraint set given by Proposition 5.1.

Let the constraint set be represented in extended form without an
abstract set constraint as

CG{x∈ℜ2�a′1x⁄0, a′2x⁄0, (a′1x)(a′2x)G0},

where

a1G(−1, 0), a2G(0,A1).

Consider the vector x*G(0, 0). Here, TC (x*) consists of the nonnegative
coordinate axes, whereas V(x*) is equal to the nonnegative orthant in the
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extended representation, as shown in Fig. 11. Although x* is not a quasi-
regular point, we have

TC (x*)*GV(x*)*,

which (as mentioned in Section 1) is a necessary and sufficient condition for
the admittance of Lagrange multipliers at x* when XGℜn. By Proposition
2.2, this implies that the constraint set admits informative Lagrange multi-
pliers in the extended representation.

Now, let the same constraint set be specified by the two linear con-
straint functions

a′1x⁄0, a′2x⁄0

together with the abstract constraint set

XG{x� (a′1x)(a′2)G0}.

Here,

TX (x*)GX and TX (x*)*G{0}.

The normal cone NX(x*) consists of the coordinate axes. Since

NX (x*) ≠ TX (x*)*,

X is not regular at x*. Furthermore, TX(x*) is not convex, so Proposition
2.2(a) cannot be used to guarantee the admittance of an informative

Fig. 11. Constraints and relevant cones for different representations of the problem in
Example 7.5.
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Lagrange multiplier. For any f for which x* is a local minimum, we must
have

−∇f (x*)∈TC (x*)*;

see Fig. 11. The candidate multipliers are determined from the requirement
that

−�∇f (x*)C ∑
jG1

2

µ jaj�∈TX (x*)*G{0},

which uniquely determines µ1 and µ2. If ∇f (x*) lies in the interior of the
positive orthant, we need to have µ1H0 and µ2H0. However, there exists
no x∈X that violates both constraints a′1x⁄0 and a′2x⁄0, so the multipliers
do not qualify as informative. Thus, the constraint set does not admit
informative Lagrange multipliers in the original representation.

Example 7.6. Here, we show that, if the constraint set involves linear
constraint functions and a polyhedral set X, then x* need not be quasi-
normal (even though it admits Lagrange multipliers). Let

CG{x∈X �a′x⁄0, b′x⁄0},

where

aG(1,A1), bG(−1,A1),

and

XG{x∈ℜ2 �a′x¤ 0, b′x¤ 0}.

The constraint set is depicted in Fig. 12.
The only feasible point is x*G(0, 0). By choosing µG(1, 1), we get

−(aCb)∈TX (x*)*,

while in every neighborhood N of x*, there is an x∈X∩N such that
a′xH0 and b′xH0 simultaneously. Hence, x* is not quasinormal. Note that
this constraint set admits Lagrange multipliers at x*G(0, 0) with respect to
its extended representation (cf. Proposition 3.1), so it admits Lagrange mul-
tipliers at x*G(0, 0) with respect to the original representation (cf. the dis-
cussion at the end of Section 5).

Example 7.7. Here, we show why in the definition of admittance of
an exact penalty, it is necessary to restrict attention to functions f with a
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Fig. 12. Constraints of Example 7.6. The only feasible point is x*G(0, 0). The tangent cone
TX(x*) and its polar TX(x*)* are shown in the figure.

strict local minimum at x*. Consider the 2-dimensional constraint set speci-
fied by

h(x)Gx2�(x2
1C1)G0, x∈XGℜ2.

The feasible points are of the form

xG(x1 , 0), with x1∈ℜ,

and at each of them the gradient ∇h(x*) is nonzero, so CQ1 holds. If
f (x)Gx2 , every feasible point is a local minimum, yet for any cH0, we have

inf
x∈ℜ2

{x2Cc�x2 ���x2
1C1�}G−S

(take x1Gx2 as x2→−S). Thus, the penalty function is not exact for
any cH0. It follows that CQ1 would not imply the admittance of an
exact penalty if we were to change the definition of the latter to allow
cost functions with nonstrict local minima. Note that for the cost function
f (x)Gx2 , it can be shown that the problem is not calm as per the definition
of Clarke (Refs. 21–22). In particular, the primal function of this problem
is given by

p(u)G inf
x2�(x2

1C1)Gu

x2G�u, if u¤ 0,

−S, if uF0,
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and violates the definition of calmness as defined in Ref. 22. Thus, CQ1
does not imply calmness, illustrating a fundamental difference between the
notions of calmness and of admittance of an exact penalty.
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25. BERTSEKAS, D. P., NEDIĆ, A., and OZDAGLAR, A. E., Conûex Analysis and
Optimization, Athena Scientific, Belmont, Massachusetts, 2002.

26. HIRIART-URRUTY, J. B., and LEMARECHAL, C., Conûex Analysis and Minimiz-
ation Algorithms, Vol. 1, Springer Verlag, Berlin, Germany, 1993.

27. SLATER, M., Lagrange Multipliers Reûisited: A Contribution to Nonlinear Pro-
gramming, Cowles Commission Discussion Paper, Mathematics, Vol. 403, 1950.

28. ROCKAFELLAR, R. T., Conûex Analysis, Princeton University Press, Princeton,
New Jersey, 1970.

29. GAUVIN, J., A Necessary and Sufficient Condition to Haûe Bounded Multipliers in
Conûex Programming, Mathematical Programming, Vol. 12, pp. 136–138, 1977.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


