Proximal Algorithms and Temporal Difference Methods

Bertsekas (M.L.T.)

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

January 2017

Proximal Algorithms and Temporal Difference Methods 1/37

A Bridge Between Convex Analysis and Approximate Dynamic

eparating hyperplane

Programming

:"\:- Google DeepMind

Challenge Match

Convex Analysis

Deterministic Problems
Proximal Algorithms
Iterative Regularization
Hyperplane Separation
Iterative Descent

Bertsekas (M.L.T.)

Approximate DP

I
I
|
I
I
|
I
I
I
|
|

Stochastic Problems

Policy Iteration

Large Linear Systems of Equations
Simulation-Temporal Differences
AlphaGo

Proximal Algorithms and Temporal Difference Methods 2/37

Problem Formulation: Find a Fixed Point of a Nonexpansive Mapping

Problem: Solve x = T(x)
where we assume that T : ®” — R" has a unique fixed point and is nonexpansive,

||T(X1) — T(Xg)” < ’y||X1 — XQH, Y X1, X € §Rn7

where 0 < <1 and || - || is some Euclidean norm.

Primary focus: The linear case

X=Ax+b

where | — A is nearly singular and/or has huge dimension.

@ “Nearly singular" suggests the use of regularization and the proximal algorithm.

@ “Huge dimension" suggests projection over a low-dimensional subspace and
simulation.)

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 3/37

Proximal Algorithm - Convex Analysis (Martinet, 1970)

The proximal mapping P(©) : " — R for x — T(x) = 0, where ¢ > 0

x — Unique solution of y — T(y) = 1E(X —Y)

The proximal algorithm is
Xk41 = P(C)(Xk)

Proximal Mapping

» Py
y | P(C)(I) T Yy «'y |Ik+2 Th1 T y

Special case: Convex minimization minyegx» f(X), or V£(x) =0

T(x) = x — VIf(x), f : Convex differentiable function

’
©)(x) = i _ x|I?
P (X)—argynggn{f(szCIIy XII}

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 4/37

Multistep Mappings - Temporal Differences - DP (1990s)

Consider the special case of a linear system T(x) = Ax + b
For A € (0, 1), introduce the multistep mapping

TV = (1 =) > AT
o0
o TWislinear: T (x) = AMx + b™), where

AN = (1 =)D NAT P =N A
£=0 £=0

@ T™ has the same fixed point as T

Algorithms (central in approximate DP/policy iteration/policy evaluation, where
T is the Bellman equation mapping of a policy)

® Xxy1 = T(xx) (value iteration) or xkp1 = T (xk)

@ X1 = Xk + vk (sample T (xc) — Xi) with ¢ L 0 (TD()) algorithm)

@ Simulation-based with intermediate projection onto a subspace of basis functions

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 5/37

Key Fact:

Tx

TNg = P Ty =TPOg
/

Py

. / \ c+1
POz =z 4+ NTWMzx — 1) TNz =2 + —=(POx —z)
c

Extrapolation Formula T = P() . T =T . p(c)

T IS FASTER

Bertsekas (M

Proximal Algorithms and Temporal Difference Methods 6/37

Extrapolated lteration

4 y—T(y)

N

C
I/ T v
TN(z) =T(F) 7= PO(z)
The extrapolated iterate T(Xx) is closer to x* than the proximal iterate X
A FREE LUNCH J

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 7137

Another Possibility: Introduce Projection into the Proximal Algorithm

Consider I1: Projection Onto a Low-Dimensional Subspace

@ Solve the projected proximal equation x = NP (x) [has the same solution as the
multistep equation x = M T (x)]

@ Use the projected proximal algorithm

Xt = NP9 (x)

modeled after the TD algorithms with projection.

T ay
P@gy, i \
i
R, :
1 T 1 1
/ ! i ! 1
Thel !] g Tr43
= 2 v

Tp1 = POy, T Mz, a2

Subspace S

The simulation-based TD methodology can be used in the proximal context
The sampled version of the projected proximal algorithm is identical to TD())

Xk+1 = Xk + vk (sample NP (x) — Xk), Y4 0

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 8/37

References for this Talk

@ D. P. Bertsekas, “Proximal Algorithms and Temporal Differences for Large Linear
Systems: Extrapolation, Approximation, and Simulation," Report LIDS-P-3205,
MIT, Oct. 2016.

@ D. P. Bertsekas, “Projected Proximal Algorithms for Large Linear Systems," in
preparation.

Related works on Monte Carlo Solution Methods for Linear Systems:
@ D. P. Bertsekas and H. Yu, “Projected Equation Methods for Approximate Solution
of Large Linear Systems," J. of Comp. and Applied Mathematics, Vol. 227, 2009.
@ M. Wang and D. P. Bertsekas, “Convergence of lterative Simulation-Based
Methods for Singular Linear Systems", Stoch. Systems, Vol. 3, 2013.

@ M. Wang and D. P. Bertsekas, “Stabilization of Stochastic Iterative Methods for
Singular and Nearly Singular Linear Systems", Math. of Op. Res., Vol. 39, 2013.

v

General textbook references:
@ Convex Optimization Algorithms, 2015 (DPB).
@ Dynamic Programming and Optimal Control: 4th edition, 2017 (DPB).

Bertsekas (M.LT.) Proximal Algorithms and Temporal Difference Methods 9/37

0 Acceleration of the Proximal Algorithm for Linear Systems
e Simulation-Based Projected Proximal Algorithms for Linear Systems
e Acceleration of the Proximal Algorithm for Nonlinear Systems

0 Acceleration of Forward-Backward and Proximal Gradient Algorithms

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 10/37

Properties of Multistep Mappings for Linear Systems

Consider the linear system x = Ax + b under the following assumption:
The system has a unique solution x* and spectral radius o(A) < 1.

Some basic results (Bertsekas and Yu, 2009)
@ The mapping T = (1 — \) 3202, A T*" has the form

>‘)(X) = AN x 1 p™)

where

V=(1=XN)> XA Y =" NAD
£=0 £=0
@ The eigenvalues of A have the form

0i=(1-2X\) ZA‘ “‘_C;_“), i=1,...,n,

where ¢, i = 1,...,n, are the eigenvalues of A. Furthermore,

o(AM)y <1, lim o (AY) =0

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 12/37

The Extrapolation Formula

Let ¢ > 0 and A = ;5. Consider the proximal mapping

P©: x — Unique solution of y — T(y) = 1E(X -Y)

Then:
T(>\) - T. P(C) _ P(C) . T

and x, P9x, and T®x are colinear:

T x = P9x 4 1E(P(C)x ~X)

Tz

TNz = Pl) Ty = TPOx
P

c+1

/ \
POz =2+ A\TWz —x) TNy =2+

(P)z —x)

Extrapolation Formula T = P(©) . T =T . P(c)

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 13/37

Proof outline

Main idea: Express the proximal mapping in terms of a power series

—1
POy — <C+1/—A> (b+1Ex>

and by a series expansion

c+1 A - =N
(5 I—A) _(X/—A> =\I/—)A)")\;/\A)

We have

Recall that - -
V=(1-2) D NATx+ Y NAD
£=0 £=0
Using these relations and the fact 1 = 152, it follows that

TN _ 7.p _ ple) . T

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 14/37

Acceleration

The eigenvalues of TV and P(©) are simply related:

0i = i - 0
where a
6; = ith Eig(T®Y), ;= ith Eig(P"9), ¢ = ith Eig(A)
Moreover, P(© and T™ have the same eigenvectors.

Convergence rate improvement: We have

O’(A()\))
a(A)

< O’(Z()\)) <1

s0 o(AM) < o(AV) i o (A) < 1.

Optimal extrapolation
The eigenvalues of the extrapolated iteration

Xer1 = (1 =NPO 44T x, >0

are 0i(y) = (1 — v)0; + ~v6;, and for some 4 > 1, we have acceleration for all v € (0, 7%).

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 15/37

A Note on Extrapolation in the Proximal Algorithm

* A

— >
8|
||
T
Sy
S
<y

Multistep Extrapolation
T (z) =T()
Extrapolation by a
Factor of 2

@ It is well-known that extrapolation by any factor less than 2 preserves the
convergence of the proximal algorithm, but does not guarantee acceleration.

@ This is a different and unrelated old result (Bertsekas, 1975, for the convex
minimization case, Eckstein and Bertsekas, 1992, for the general case).

@ The acceleration result of this talk holds only for the fixed point/nonexpansive case
x = T(x).

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 16/37

e Simulation-Based Projected Proximal Algorithms for Linear Systems

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 18/37

Approximation in a Subspace of Basis Functions

Approximate the solution x* of x = Ax + b within a low-dimensional subspace

Consider the subspace
S={or|re®’}

spanned by the columns ¢4, ..., ¢s of an n x s matrix ¢ (s << n)
/ Solution z*

Approximate solution &

.
i
|
1
1
i
1
+

Subspace S = {®r | r € Rs}

Examples
@ Standard bases: Polynomials, radial basis functions, wavelets, etc
@ Throw away some components of x interpolate for the rest

@ Aggregation (e.g., form a smaller system using linear combinations of rows and
columns of A)

@ Feature-based approximation (features of the components of x are the rows of ¢ -
generated “manually” or “automatically”, e.g., by a neural network)

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 19/37

How to Approximate Vectors x within S7?

Introduce a “projection” operation I : " — S (M is linear and MNx = x for all x € S) J

/ P

Subspace S = {®r | r € R}

.
1
1
1
1
1
1
:
¢

Projection Iz

General form: Oblique Projection
N=o(W=o) vz,

where = is a diagonal n x n positive semidefinite, and W is an n x s matrix such that
V'=0 is invertible J

Examples
@ Orthogonal projection (W = ¢ and = is positive definite)
@ Seminorm projection (= may have some 0 diagonal components)
@ Aggregation (In = @D, where the rows of ® and D are probability distributions)

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 20/37

Projected Proximal Equation: x = MP()(x)

m*f P((:)(zc)
H b
I
1
I
1

I+ 1/\1‘ — PO (z,)

Bias
Subspace S = {®r | r € Rs} (= 0asc— o)

Galerkin approximation approach: Project the equation not the solution

Recall the proximal equation
X = P(c)(X) — AN + B(A)

We solve the projected version x = NP (x) at the expense of “bias" (xc — Mx*)

Important Point: Large ¢ diminishes the bias
X —x= (- HZ(A))_1(X* — Mx*)

We have limy_1 A™) = 0, so the bias (x; — Mx*) — 0 as ¢ — oo

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods

21/37

Algebraic Form of the Projected Proximal Equations

Recall the proximal equation
x = POx) = AVx + BV

where
c

c+1

Z()‘) =(1-) Z)\eAe, B(A) _ Z)‘ZHA%’)=
£=0 £=0

For the oblique projection case M = (V=)W=

The projected equation is the (low-dimensional linear equation) r = Q™) r + d*) where

Q) = w'ze) 'w=AVe, o™ = (v'zo) 'w=p"

Important point:

o A% and B involve powers of matrices (which facilitates simulation)

@ For any value of A\, Q™) and d™® can be evaluated by simulation, just as
conveniently as for A =0

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 22/37

Projected Proximal and Proximal Projected Algorithms

Projected proximal: Fixed point algorithm for the projected proximal equation

X1 = NP9 (xc) or equivalently ri s = Q™ r + d™

Can also use its extrapolated version x4 = NMT™ (xc). Converges if MNP is a
contraction (true if ¢ is sufficiently large or if 1 is properly chosen)

Py

— -
T =TTPCOze 1oy,

\\

[

TOa,
;
‘
‘
|
‘
;
]
1
0

Tk+2

Subspace S

Proximal projected: Proximal algorithm for the low-dimensional proximal
equation r = QWr 4+ d)

k41 = /A’(a)(rk), (¢ > 0: unrelated to ¢ and \)
where P© : RS s RS is the mapping

r +— Unique solution of y — QWy — ™ =

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 23/37

The Need for Simulation for Large Systems

Recall the projected equation r = QM r + d®)
Q) = (wze) 'w=AVe, o® = (v'=e) 'w=p

AV (1 -nSNA, BV =S A A, A= 2
£=0 £=0

c+1

Need for simulation

e Q™ and d™ have low dimension but cannot be explicitly computed

@ Reason: They involve HUGE-dimensional inner products

@ Monte Carlo simulation can approximate HUGE-dimensional inner products
@ Connection with Monte Carlo integration

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 24/37

Simulation-Based Methodology

Simulation Analytics

@ Key idea: Interpret linear algebra operations (matrix products, inner products) as
computing expected values with suitable distributions (matrix =)

@ Approximate the expected values by using sampling and laws of large numbers
@ Generate samples of powers of A by using a suitable Markov chain

Important issues

Contraction properties of MP©)

@ Choice of projection (norm mismatch issue)

@ Near singularity of projected proximal equation (sensitivity to sampling error)
°

Bias-variance tradeoff (as A 1 1, less bias, greater simulation error, more sampling
needed)

Issues of importance sampling

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 25/37

Simulation-Based Experience

@ A happy union of research in Al (low-dimensional representations, deep neural
networks, BIG data) and in control/OR (DP, optimization, aggregation, etc)

@ Many algorithmic variations at the interface of DP, iterative stochastic optimization,
Monte Carlo methods

@ Challenging implementation, but very difficult problems can be addressed
@ A long history of successful implementation in approximate DP

@ Recent success story of AlphaGo program

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 26/37

e Acceleration of the Proximal Algorithm for Nonlinear Systems

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 28/37

Proximal Extrapolation for the Nonlinear System x = T(x)

@ Assume that the system has a unique solution x*, and T is nonexpansive:
HT(x1) — T(xz)H <X — x2||, Y xi,x2 € R
where || - || is some Euclidean norm and ~ is a scalar with 0 < v < 1.

@ Define the proximal mapping P©:

P© . x s Unique solution of y — T(y) = 1E(x -y)

@ Consider the extrapolated proximal mapping

c+1

EO(x) = x + (PP(x) — x)

@ Important note: P((x) and E(©(x) cannot be easily computed by simulation

Acceleration Result: We have E(9)(x) = T(P)(x)) and hence

IE9 00 — x| <A[IPO0) — x|

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 29/37

Geometric Interpretation and Proof

S T Y
E©)(z) i T(7) 74:
From the definition of P(®), we have

POM) + L(PO(x) — x) = T(PO(x).
so that
Cc+

1 (POx) =) = PO(x) + < (PO(x) = x) = T(PO(x)

E9(x) = x +
Hence, using the assumption,

|E@(x) - x* <[P0 = x*||.

< HT(P(C)(X)) G

- HT(P(C)(X)) — T(x")

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 30/37

0 Acceleration of Forward-Backward and Proximal Gradient Algorithms

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 32/37

Forward-Backward Splitting Algorithm for Fixed Point Problem
x = T(x) — H(x)

T-T@) +HT) =1(:-7)+HT)

! Forward Step
1 z=x—aH(x)

Proximal Step
T = P)(z)

/
—H(@) Slope = —1/a

Properties (Lions and Mercier, 1979, Gabay, 1983, Tseng, 1991):

@ If T is nonexpansive, and H is single-valued and strongly monotone, the F-B
algorithm converges to x™* if « is sufficiently small

@ For a minimization problem where H is the gradient of a strongly convex function,
it becomes the proximal gradient algorithm

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 33/37

Extrapolation and Acceleration

Extrapolated forward-backward algorithm
zk = Xk —aH(xk), Xk = P“)(z) (Forward-Backward lteration)

Xi+1 = Xk + j;(?k — zx) — H(Xk) (Extrapolation)

y—T(y)
N

T —|T(@x) + H(Tk) = £ (21 — T1) + H(Tx)

Forward Step
2 = xp — oH (x)

/

[SX S S

[

Extra{)olated
Forward-Backward Step
w1 = T(Tx) — H(Tk)
Forward-Backward Step /

Ty, = P@)(21) ~H) Siope = —1/a

o

We have
Xkr1 = T(Xk) — H(Xx)

so there is acceleration if T — H is contractive.

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods

Using Simulation in the Linear Case: T(x) = Ax + b, H(x) = Bx

Oblique projection M = ®(V'=®)~'W'= onto a subspace S = {¢r | r € R}

Zk =Xk —aBxx, Xk =NP®)(z) (Projected F-B lteration)

The projected F-B equation is the (low-dimensional linear equation)
r=aQ™r g
where

Q» — (W’E¢)71\V/EZ(>\)(/ — aB)o, d™ = (W’E¢)71\U/EB(>\)

AV = (- NINA, BV =3 A, A= i :
[0
£=0 £=0

Similar to the proximal case, it can be implemented by simulation.

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 35/37

Concluding Remarks

@ Proximal and multistep/TD iterations for fixed point problems are closely
connected

@ x, P9(x), and T™(x) are colinear and simply related (no line search needed)
@ Multistep iteration is faster than proximal

@ Cost-free acceleration of the proximal algorithm. It can be very substantial,
particularly for small ¢

@ Extrapolation formula provides new insight and justification for multistep methods

TD(\) is the stochastic version of the proximal algorithm
TD(X) with subspace approximation is stochastic version of the projected proximal

@ Bring the use of subspace approximation and simulation into the proximal context
(for linear problems)

@ The ideas extend to the forward-backward algorithm and potentially other
algorithmic contexts that involve fixed points and proximal operators

Bertsekas (M.L.T.) Proximal Algorithms and Temporal Difference Methods 36/37

Thank you!

Bertsekas (M Proximal Algorithms al 7 /37

Temporal Difference Me

	Acceleration of the Proximal Algorithm for Linear Systems
	Simulation-Based Projected Proximal Algorithms for Linear Systems
	Acceleration of the Proximal Algorithm for Nonlinear Systems
	Acceleration of Forward-Backward and Proximal Gradient Algorithms

