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Abstract. In this paper we consider strongly polynomial variations of the auction algorithm for the single 
origin/many destinations shortest path problem. These variations are based on the idea of graph reduction, that is, 
deleting unnecessary arcs of the graph by using certain bounds naturally obtained in the course of the algorithm. We 
study the structure of the reduced graph and we exploit this structure to obtain algorithms with 0 (n minlm, n log n }) 
and O(n 2) running time. Our computational experiments show that these algorithms outperform their closest 
competitors on randomly generated dense all destinations problems, and on a broad variety of few destination 
problems. 

Keywords: shortest path, network optimization, auction 

1. Introduction 

In this paper we focus on the auction algorithm for shortest path problems proposed by 
Bertsekas [4], [5]. This algorithm is closely related to auction algorithms for other network 
flow problems, and in particular to the naive auction algorithm for the assignment problem 
introduced in [1], and further discussed in [2] and in the tutorial paper [3]; see [5] for a 
detailed analysis of these relations. The auction algorithm can be viewed as a special type 
of dual coordinate ascent method, and is fundamentally different from the classical label 
setting and label correcting methods, which can be viewed as primal cost improvement 
methods. For the single origin and single destination case, the algorithm is very simple. It 
maintains a single path starting at the origin. At each iteration, the path is either extended 
by adding a new node, or contracted by subtracting its terminal node. When the destination 
becomes the terminal node of the path, the algorithm terminates. 

The auction algorithm has a pseudopolynomial complexity, but in practice it outperforms 
its closest competitors by a broad margin for important types of problems with one origin 
and few destinations. However, for the many (or all) destinations case, the algorithm is 
apparently outperformed by state-of-the-art label setting and label correcting methods. It is 
possible to convert the auction algorithm to a weakly polynomial one by using the device of 
arc length scaling, but then unfortunately its practical performance tends to become worse. 

Strongly polynomial versions of the auction algorithm were obtained by Pallottino and 
Scutell~t [11] by adding to the extension and contraction operations a reduction operation. 
Here, each time a node i becomes the terminal node of the path for the first time, all its 

*Research supported by NSF under Grant No. DDM-8903385, by the ARO under Grant DAAL03-86-K- 017 l, 
by a CNR-GNIM grant, and by a Fullbright grant. 



100 BERTSEKAS ET AL. 

incoming arcs except the one of the path are deleted; since the path is shortest for i, these 
arcs can be deleted. The auction algorithm thus obtained has an O (m 2) running time, where 
m is the number of  arcs. By using the idea of presorting the outgoing arcs of  each node in 
order of  non-decreasing length, the running time was reduced further to O (mn), where n 
is the number of  nodes. 

In this paper we strengthen the graph reduction idea by using upper bounds to the node 
shortest distances in order to delete arcs more effectively. We study the structure of the 
reduced graph thus obtained, and we exploit this structure to obtain algorithms with im- 
proved t ime complexity. In particular, we develop an algorithm with O (n min{m, n log n }) 
running time, and another one, somewhat more complicated, which runs in O (n 2) time. 
These theoretical improvements have resulted in auction algorithms with substantially im- 
proved practical performance for single origin/all destinations problems, as well as for 
difficult single origin/few destinations problems, for which the original method exhibits 
pseudopolynomial  behavior. 

The paper  is organized as follows: In Section 2, we describe the original auction algo- 
rithm. In Section 3, we describe the graph reduction process, and we observe that it creates 
an interesting graph structure, named the extended tree. This structure is useful in explain- 
ing the mechanism of graph reduction, in simplifying the proof  of  the associated complexity 
bounds, and in suggesting ways to improve the algorithm's theoretical and practical per- 
formance. In particular, in Section 4, with a small modification of the auction algorithm 
with graph reduction, we improve its running time from O(n rain{m, n log n}) to O(n2). 
Finally, in Section 5, we discuss implementations of  the various algorithms and present 
computational results. These results show that for dense all destinations problems, auction 
algorithms with graph reduction outperform by a modest  margin their closest competitors. 
For broad classes of few destination problems, auction algorithms with graph reduction 
outperform their closest competitors by a large margin. 

2. The Auction Algorithm for Shortest Paths 

We first describe the original auction algorithm of [4] for the single origin and single 
destination case. We are given a directed graph (A/', A). We assume that each node has at 
least one outgoing arc, and that there is at most  one arc between two nodes in each direction, 
so that we can unambiguously refer to an arc (i, j ) .  In the following, by apath we mean a 
sequence of nodes (il, i2 . . . . .  ik) such that (iq, iq+l) is an arc for all q = 1 . . . . .  k - 1. I f  in 
addition the nodes il, i2 . . . . .  ik are distinct, the sequence (il, i2 . . . . .  ik) is called a simple 
path. A sequence of nodes (il, i2 . . . . .  ik) such that ii = ik and (iq, iq+l) is an arc for all 
q = 1 . . . . .  k - 1 is called a cycle. Each arc (i, j )  has a length aij associated with it. The 
length of a path or of  a cycle is defined to be the sum of its arc lengths. In this section, we 
assume that all cycles have positive length, although the initialization of the algorithm is 
greatly simplified if, in addition, all arc lengths are nonnegative. Of  course, it is necessary 
to assume that there are no negative length cycles, because otherwise there may not exist a 
shortest path between the origin and the destination. 

Let node 1 be the origin node and let t be the destination node. The algorithm maintains 
at all times a simple path P = (1, il, i2 . . . . .  ik). The node ik is called the terminal node 
of P.  The degenerate path P = (1) may also be obtained in the course of  the algorithm. 
If  ik+l is a node that does not belong to a path P = (1, il, i2 . . . . .  ik) and (ik, ik+l) is 
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an arc, extending P by ik+l means replacing P by the path (1, il, i2 . . . . .  ik, i k+ l ) .  If P 
does not consist of just the origin node 1, contracting P means replacing P with the path 
(1, il, i2 . . . . .  ik-l) .  

The algorithm also maintains a variable Pi for each node i (called price of i) such that 

Pi <-- aij + P j ,  V (i, j )  C A, (la) 

Pi = aij + p j ,  for all pairs of successive nodes i and j of P. (lb) 

We denote by p the vector of prices Pi. A pair (P, p) consisting of a path P and a price 
vector p, that satisfies the above conditions, is said to satisfy complementary slackness (or 
CS for short). Note that, by our assumption on the cycle lengths, if (P, p) satisfies the CS 
conditions, then P is a simple path. A basic fact is that if a pair (P, p) satisfies the CS 
conditions, then the portion of P between node 1 and any node i ~ P is a shortest path 
from 1 to i, while Pl - Pi is the corresponding shortest distance. To see this, observe that 
by Eq. (lb), Pl - Pi is the length of the portion of P between 1 and i, and by Eq. (la) every 
path connecting 1 and i must have length at least equal to pl - Pi. 

We will assume that an initial pair (P, p) satisfying CS is available. This is not arestrictive 
assumption when all arc lengths are nonnegative, since then one can use the default pair 

P = (1), Pi = 0 ,  Vi. 

When some arcs have negative lengths, an initial choice of a pair (P, p) satisfying CS may 
not be obvious or available but there are algorithms for obtaining such a pair (see [4], [5] 
for a discussion of this point). 

We now describe the algorithm. Initially, (P, p) is any pair satisfying CS. The algorithm 
proceeds in iterations, transforming a pair (P, p) satisfying CS into another pair satisfying 
CS. At each iteration, the path P is either extended by a new node or else is contracted 
by deleting its terminal node. In the latter case, the price of the terminal node is increased 
strictly. A degenerate case occurs when the path consists of just the origin node 1; in this 
case the path is either extended, or else is left unchanged with the price Pl being strictly 
increased. The iteration is as follows: 

Typical Iteration o f  the Auction Algorithm 

Let i be the terminal node of P. If 

Pi < min {aij Jr- p j  }, 
(i,j)~A 

go to Step 1; else go to Step 2. 

Step 1: (Contraction) Set 

Pi : -  min {aij + pj},  
(i,j)~A 

and if i 5~ 1, contract P. Go to the next iteration. 
Step 2: (Extension) Extend P by node Ji, where 

Ji = arg min {aij + pj  }. 
(i i)~A 

(2) 

(3) 

(4) 
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Origin 

Q , - Q  
Figure 1. Illustration of pseudopolynomial behavior of the auction algorithm. Here the origin is node 1 and the 
destination is node 5. The arc lengths are shown next to the arcs. L is a large integer. Beginning with Pi = 0 ,  for 
all i, the price Pl is increased L times, by 1 unit, for i = 1, 2, 3, 4. In fact, only when P3 reaches L, an extension 
to the destination 5 is possible. 

If  ji  is the destination t, stop: P is the desired shortest path. Otherwise, go to the next 
iteration. 

Following the extension Step 2, P is a simple path from 1 to j i .  Indeed, if this were 
not so, then adding ji to P would create a cycle, and for every arc (i, j )  of  this cycle we 
would have Pi = aij '}- Pj.  Thus, the cycle would have zero length, which is not possible 
by our assumptions. If  on the other hand it were known that there is no arc (i, j )  such that 
j belongs to P,  the algorithm would also be valid in the case where there are zero length 
cycles; this observation will be useful in the next section. 

It is shown in [4] that if there exists at least one path from 1 to t, then t will become the 
terminal node of  the path P in a finite number of  iterations, at which time P is a shortest path 
from 1 to t. The algorithm's worst-case running time was shown to be pseudopolynomial 
in [4], assuming that the arc lengths aq are integer; in fact, it is not difficult to see that the 
number of  iterations is bounded by nZL, where L = max( i , j )~  A laijl is the arc length range. 
An example of  the worst-case behavior of the algorithm is shown in Fig. 1. For randomly 
generated problems, the average running time does not seem to depend on L. However, 
one may anticipate practical situations where pseudopolynomial behavior occurs because 
there are many cycles with small length in the graph, such as the one illustrated in Fig. 1. 

The single destination algorithm can be used to find a shortest path tree to all destinations; 
in fact, one can switch to a new destination once a shortest path to a given destination is 
found, while leaving the pair (P,  p) unchanged. Equivalently, in order to find a shortest 
path tree, one can just continue to iterate until every destination becomes the terminal node 
of  P.  

The preceding algorithm may be termed "forward" in that the path P gradually extends in 
the forward direction from the origin towards the destination. It is possible to combine this 
forward algorithm with a "reverse" version that maintains a path R ending at the destination, 
which is gradually extended backward towards the origin. When the paths P and R meet, 
a shortest path is found. Also in the case where there are several destinations, it is possible 
to maintain a separate path for each destination. Such combined forward/reverse versions 
are much faster than the forward version described earlier when the number of  destinations 
is relatively small. Apparently this is due to the fact that the number of  nodes that become 
terminal is much smaller in forward/reverse versions. For simplicity, in the following 
sections we restrict attention primarily to forward algorithms, but these algorithms admit 
forward/reverse versions as well. 
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3. The Auction Algorithm with Graph Reduction 

We now describe a strongly polynomial auction algorithm for the all destinations shortest 
path problem. This algorithm differs from the one of Section 2 in that each contraction 
or extension is preceded by a graph reduction operation, that deletes unnecessary nodes or 
arcs of the graph. 

Each iteration starts with a subgraph G of the original graph (A/', A) and a pair (P, p) 
satisfying CS, and generates a subgraph ~ of ~ and another pair (P, P) satisfying CS. Note 
that P is a path of G, while T is a path of ~. Furthermore, p consists of a price for each 
node of G, while ff consists of a price for each node of ~. 

In the following, we call 9 the reduced graph, to distinguish it from (A/', A), which we 
call the originalgraph. The set of arcs of the reduced graph is denoted by At. In the absence 
of a contrary statement, when we refer to arcs and nodes in the course of the algorithm, we 
imply that they belong to the (current) reduced graph. A node of the reduced graph that has 
already become the terminal node of P at least once is referred to as a tree node. A node 
j that is not a tree node but is connected with an arc (i, j )  6 .At to a tree node i will be 
referred to as a border node. An arc (i, j )  of the reduced graph will be called a tree arc if 
both i and j are tree nodes, and it will be called a border arc if i is a tree node and j is a 
border node. It will be shown later that throughout the algorithm, each tree node other than 
the origin has a unique incoming arc in the reduced graph, and that this arc is a tree arc. 
Furthermore, the origin has no incoming arcs in the reduced graph. Thus the tree nodes and 
tree arcs form a tree, justifying our terminology. 

The typical iteration of the auction algorithm with graph reduction is essentially the same 
as the one of the auction algorithm of the preceding section, except that the basic contraction 
or extension step is preceded by the graph reduction step. There are two ways in which the 
graph reduction step can delete arcs or nodes: 

(a) When the current terminal node has no outgoing arcs, in which case the node is deleted, 
and the iteration is terminated. 

(b) When the current terminal node i has some outgoing arcs, but this is the first iteration 
at which i is a tree node. In this case, all the incoming arcs of i, except the tree arc that 
belongs to P, are deleted, and some new border arcs may be created, which can cause 
some additional arcs to be deleted. 

Central to the graph reduction process is a variable uj for each node j ,  which in the course 
of the algorithm is an upper bound to the shortest distance from 1 to j ;  uj is monotonically 
nonincreasing, and it is equal to the shortest distance once j becomes the terminal node of 
P. As will be shown shortly [Prop. l(g)], uj behaves exactly as the temporary label of node 
i that is generated by Dijkstra's algorithm; see e.g. [10], [7], [5]. It will be shown that at all 
times, uj  is equal to the length of the shortest path from 1 to j in the subgraph consisting 
of the tree and border nodes. In fact, an arc (k, j )  is deleted if the path from 1 to j going 
through the terminal node of P is shorter than the current "best" path going through k. 

We now describe the algorithm. Initially, 

{ O  i f i = l ,  (5) 
ui = i f / #  1, 

P = (1), p is any vector such that Pi <_ aij -I- p j  for all (i, j )  6 .4,  and the reduced graph 
G is equal to the original graph. 
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Typical Iteration of  the Auction Algorithm with Graph Reduction 

Let i be the terminal node of P.  If  i has no outgoing arcs and i = 1 stop (the problem is 
infeasible); else go to Step 1. 

Step 1: ( G r a p h  Reduct ion)  If  i has no outgoing arcs, go to Step l(a); else go to Step 2 
or Step l(b) depending on whether i was the terminal node of P at some earlier iteration 
or not. 

Step l(a): (Deletion of Terminal Node) Contract P ,  delete i and the arc of P that 
was incoming to i, and go to the next iteration. 

Step l (b) :  (First  Scan of Terminal Node) Delete all incoming arcs of i, except (if 
i ~ 1) for the arc of P that is incoming to i. Also, for each outgoing arc (i, j )  c At, if 

Ui + aij ~ U j ,  (6) 

delete (i, j ) ;  else delete the arc (k, j )  6 .Ar for which k is a tree node other than i, 
and set 

Uj : =  ui + aij. (7) 

I f  i has no outgoing arcs left, contract P ,  delete i and all its incoming arcs, and go to 
the next iteration; otherwise go to Step 2. 

Step 2: (Decide on Con t rac t ion  or Extension) If  

Pi < min {aij+Pj},  (8) 
(i,j)eAr 

go to Step 3; else go to Step 4. 
Step 3: (Cont rac t ion)  Set 

Pi :=  min {aij Jr- p /} ,  
(i,j)EAr 

and if i ~ 1, contract P.  Go to the next iteration. 
Step 4: (Extension) Extend P by node ji where 

ji = arg min {a l l+P j}. 
(i,j)E,Ar " 

If  the number of  the tree nodes is equal to n, then stop: the set of the tree arcs defines a 
shortest path tree. Otherwise, go to the next iteration. 

Note that the algorithm now includes an infeasibility test. We will show shortly that, in 
a finite number of  iterations, the algorithm either produces a shortest path tree rooted at the 
origin, or else it verifies that some nodes are not connected to 1. Figure 2 illustrates how 
as a result of graph reduction, the number of  iterations to solve the problem of Fig. 1 is 
dramatically reduced. 

There are two structures underlying the algorithm, which will also prove particularly 
important in the complexity analysis: 

(a) The set T of tree nodes and tree arcs, which will be called the shortest path tree; this 
set will be shown to be a tree in the following Prop. l(e). 
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Origin 

Q o-- 
Figure 2. Illustration of the algorithm with zero initial prices for the example problem of Fig. 1. In the auction 
algorithm with graph reduction, the first iteration is an extension along the arc (1, 2) at which arc (4, 2) is deleted. 
The second and third iterations are extensions along arcs (2, 3) and (3, 4), respectively. At the fourth iteration, 
node 4 and arc (3, 4) are deleted. At the fifth, sixth, and seventh iterations, a contraction occurs at nodes 3, 2, and 
1, respectively. At the eighth, nineth, and tenth iterations, an extension occurs at nodes 1, 2, and 3, respectively, 
and the algorithm terminates since then all nodes will have become tree nodes. If arc (3, 4) were not present, the 
nodes 1, 2, 3, and 5 would become tree nodes in that order, and then nodes 5, 3, 2, and 1 would be deleted in that 
order, indicating that the problem is infeasible (there is no path from 1 to 4). 

(b) The set E of  the tree arcs and the border arcs, which will be called the extended tree; 

this set will  also be shown to be a tree in the following Prop. l(f). 

Figure 3 provides another illustration of the algorithm, the shortest path tree T, and the 
extended tree E. The original graph is shown in Fig. 3(a). First, the price Pl is raised to 1, 
node 1 becomes a tree node, and nodes 2 and 6 become border nodes; an extension to node 
2 is then performed, and nodes 3 and 4 become border nodes. Then an extension to node 3 
is performed, the arcs (5, 3) and (6, 3) are deleted, and node 7 becomes a border node. After  
successive contractions of  P all the way to the origin, and successive extensions all the way 
to node 5, arcs (8, 5) and (3, 7) are deleted, as shown in Fig. 3(b). As far as the deletion 
of  the border  arc (3, 7) is concerned, it is due to the improvement of  u7 because a shorter 
path, through node 5, has been found. The extended tree E is shown in Fig. 3@). After  
further successive contractions of  P all the way to the origin, the subsequent extension is 

to node 6, and then to node 7; node 8 enters E as a border node, while arcs (5, 7) and (8, 7) 
are deleted. Note that the current reduced graph coincides with the final shortest  path tree, 
even if  8 is still a border node. In the following iterations, successive contractions of  P all 
the way to the origin are performed, followed by successive extensions all the way to node 
5, and by another sequence of  contractions to node 1. During these operations, nodes 4 and 
5, together with the arcs (2, 4) and (4, 5), are deleted. Another sequence of  extensions to 
node 3, fol lowed by a sequence of  contractions to the origin, causes the deletion of nodes 2, 
3, and arcs (1, 2) and (2, 3). After  that, P is extended all the way to the last node 8, which 
thus enters the shortest path tree T as the algorithm terminates. 

Before proceeding with the analysis, we note that the graph reduction allows us to solve 
a more general problem. First, we do not need to assume that each node has at least one 
outgoing arc, since such a node will automatically be deleted in the graph reduction step. 
Second, we can relax the positivity assumption on the cycle lengths to nonnegativity. The 
purpose of  disallowing zero length cycles was to ensure that the extension step did not 
lead to a node j that is already in P ,  thereby closing a cycle (see the remark following the 
description of  the auction algorithm in the preceding section), Since, however, all incoming 
arcs of  a tree node except its unique predecessor arc on P are deleted in the graph reduction 
step, it is impossible to close such a cycle even when there are zero length cycles. 
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Figure 3. Illustration of the algorithm for an example problem. 
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extended tree E: { O,  0 ; - -  , --} 
border nodes 
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Figure 4. Il lustration o f  the structure o f  the extended tree E.  

The following proposition establishes some basic facts and identifies some important 
graph structures underlying the algorithm. 

PROPOSITION 1. The following properties hold at the end of the graph reduction step of 
each iteration of  the auction algorithm with graph reduction: 

(a) (P,  p) satisfies CS. 
(b) The shortest distance of a node from the origin in the reduced graph is the same as its 

shortest distance in the original graph. 
(c) Each tree node except the origin has a unique incoming arc in the reduced graph, and 

this arc is a tree arc. The origin has no incoming arc in the reduced graph. 
(d) Each border node has a unique incoming border arc in the reduced graph. 
(e) The shortest path tree T is a tree rooted at the origin. For each tree node i, the unique 

path of  T from 1 to i is a shortest path. 
(f) The extended tree E is a tree rooted at the origin, in which all border nodes are leaf 

nodes (ef Fig. 4). 
(g) For all tree nodes and border nodes i, ui is equal to the length of the unique path of the 

tree E from 1 to i. Furthermore, ui is equal to the shortest distance from 1 to i using 
paths of the original graph that consist of tree nodes, exeept perhaps for i. 

(h) I f  i is a tree node, ui is equal to the shortest distance from 1 to i. 

PROOF. We use induction. In the starting iteration, the terminal node of  P is the origin 
1. The graph reduction step deletes all incoming arcs of 1, and sets uj = alj for all 
outgoing arcs (1, j ) ,  which become border arcs, while the corresponding nodes j become 
border nodes. There is only one tree node (the origin) and there are no tree arcs. It is 
straightforward to verify (using also our assumption that there is at most one arc between 
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two nodes in each direction), that properties (a)-(h) hold at the end of this first graph 
reduction step. 

Suppose now that we are at the end of the graph reduction step of an iteration. We will 
show that properties (a)-(h) hold, assuming that they hold at the end of all preceding graph 
reduction steps. There are four possibilities: 

(1) The preceding graph reduction step was followed by a contraction that transformed 
the path P '  = (1 . . . . .  i, j )  to the path P = (1 . . . .  , i) and changed the price p j  to 
min(j,k)~atr{ajk + pk}. This left the trees T and E unchanged. It is straightforward 
to verify that properties (a)-(h) were maintained by the contraction. The subsequent 
graph reduction step changed nothing, since i must have been the terminal node at an 
earlier iteratibn, while also i could not be deleted since it has at least one outgoing arc 
[the tree arc (i, j ) ] .  Therefore, properties (a)-(h) hold at the end of  the graph reduction 
step in this case. 

(2) The preceding graph reduction step ended with deletion of the terminal node and its 
incoming arc. In this case, no contraction or extension was performed. Since the 
new terminal node i must have been the terminal node at some earlier iteration, the 
subsequent graph reduction step either deleted i (if i had no outgoing arcs), or else 
changed nothing. In either case it can be seen that properties (a)-(h) were preserved. 

(3) The preceding graph reduction step was followed by an extension that transformed the 
path P '  = (1 . . . . .  j )  to the path P = (1 . . . . .  j ,  i), where the node i was already a 
tree node (it had been the terminal node of P at an earlier iteration). This left the price 
vector p and the trees T and E unchanged, so the properties (a)-(h) were maintained by 
the extension. The subsequent graph reduction step could at most delete i and the tree 
arc ( j ,  i) in the case where i has no outgoing arc, but this still would have maintained 
the properties (a)-(h). 

(4) The preceding graph reduction step was followed by an extension that transformed the 
path P = (1 . . . . .  j )  to the path pt  = (I . . . . .  j ,  i), where the node i had never before 
been the terminal node. This left the price vector p unchanged, but created a new tree 
node (the node i, which was previously a border node), a new tree arc [the arc ( j ,  i), 
which was previously the unique border arc incoming to i, based on the induction 
hypothesis], and possibly several new border nodes and border arcs. By property (g) 
and the induction hypothesis, ui must have been equal to the length of the path P ' ,  
which is a shortest path since the pair ( U ,  p) satisfies CS. Thus ui was equal to the 
shortest distance of i as required by property (h). It can be also seen that properties 
(a), (b), and (e) must be satisfied at the end of this extension step, but the remaining 
properties (c), (d), (f), and (g) may not hold for two reasons: 1) the new tree node i 
may have some incoming arcs (k, i), where k is not a tree node, and 2) some border 
nodes may have two incoming border arcs (one that existed prior to the extension and a 
second one that was created when i became a tree node). It can be seen, however, that 
the following graph reduction step will delete all incoming arcs of  i [except ( j ,  i) in 
the case where i itself is not deleted because it has no outgoing arcs], so that property 
(c) will be restored. Furthermore, the graph reduction step will also delete exactly one 
of the two incoming border arcs for every border node that has two incoming border 
arcs, thereby restoring properties (d) and (f). In addition, for all outgoing arcs (i, k), 
the value of uk will be updated in a way that makes it equal to the shortest distance 
from 1 to k using paths consisting of tree nodes except for k, as required by property 
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(g). As a result, all the properties (a)-(h) must hold at the end of the graph reduction 
step. The induction proof is now complete. 

[] 

We now show the validity of the algorithm. 

PROPOSITION 2. Assume that all cycles have nonnegative length. The auction algorithm 
with graph reduction terminates either with a shortest path tree, or with the deletion of the 
origin. The latter case occurs if and only if the problem is infeasible. 

PROOF. Suppose that the algorithm does not terminate. Then at least one tree node, say i, 
will become the terminal node of P infinitely many times and its price Pi will also increase 
infinitely many times. Following each increase of pi, we have pi .= aij + pj for some 
outgoing arc (i, j ) ,  so there is at least one tree node j such that (i, j )  is an arc and p) will 
also increase infinitely many times. Using repeatedly this argument, we conclude that there 
must be a cycle of tree nodes whose prices will increase infinitely many times. But this is 
a contradiction since, by Prop. 1, the tree nodes and the corresponding tree arcs belong to 
the shortest path tree T, which cannot contain a cycle. Thus the algorithm must terminate. 

By definition, the algorithm can only terminate if either each node of the original graph 
has become the terminal node of P at least once [in which case, by parts (a) and (b) of 
Prop. 1, a shortest path tree will be found], or if the tree T collapses into the origin. Just 
before the latter case occurs, the reduced graph will consist of two disconnected subgraphs, 
the first being just the origin, and the second containing all nodes which have never become 
tree nodes. Since by Prop. l(b) the shortest distance from 1 to each such node is the same 
in the reduced and in the original graph, it follows that there are no paths from 1 to those 
nodes in the original graph, and so the algorithm correctly indicates that the problem is 
infeasible in this case. [] 

Estimate of the Running Time of the Algorithm 

It is useful for the purposes of our complexity analysis to divide the iterations intofirst scan 
iterations, contraction cycles, and extension cycles. A first scan iteration is an iteration 
in which the terminal node of P is terminal for the first time (it has just become a tree 
node). An extension cycle is a sequence of successive iterations involving an extension, 
such that (a) the iteration immediately preceding the cycle either is a first scan iteration or 
involves a contraction, and (b) the iteration immediately following the cycle also either is a 
first scan iteration or involves a contraction. Similarly, a contraction cycle is a sequence of 
successive iterations involving a contraction, such that the iteration immediately preceding 
the cycle is either a first scan iteration or else involves an extension, while the iteration 
immediately following the cycle involves an extension. (Note that a first scan iteration can 
only follow an iteration involving an extension.) As an example, for the problem of Fig. 1, 
the algorithm first performs first scan iterations at nodes 1, 2, 3, and 4 in that order, then 
performs a contraction cycle involving nodes 3, 2, and 1 in that order, and finally performs 
an extension cycle involving nodes 1, 2, and 3 in that order, and then terminates when node 
5 becomes the terminal node of P. 

To estimate the running time of the algorithm, we first note that the first scan iterations 
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take O(m) total time, since they involve at most one calculation of sums of the form ui -[-aij 
and aij + p] per arc (i, j ) ,  and a total of O (m) arc deletions. Next we note that an extension 
cycle takes O (n) time because it involves examination of a subset of the arcs of the extended 
tree E existing at the start of the cycle, and there are at most (n - I) such arcs since E 
is a tree by Prop. l(f). Similarly, a contraction cycle takes O(n) time because it involves 
the examination of a subset of the arcs of the extended tree existing at the start of the 
cycle. Clearly, there are less than n first scan iterations. As far as the extension and the 
contraction cycles are concerned, we will show that their number is O(min{m, n log n}), 
thereby leading to an O (n min{m, n log n }) running time (assuming that m > n). 

The key property is that an iteration that extends P by an arc (i, j )  is followed by a 
(possibly empty) sequence of successive extensions that leads to one of two possible types 
of nodes, as illustrated in Fig. 3: 

(a) A border node k, in which case k becomes a tree node, and a first scan iteration follows. 
(b) A tree node k (maybe k = j) ,  in which case a contraction follows together with either 

the deletion of node k (if it has no outgoing arcs), or an increase of pk. 

The extension cycle that led to k is said to be successful in case (a) and failed in case (b). 
The number of successful extension cycles is less than n, since each such cycle is followed 
by a first scan iteration. The number of failed extension cycles is shown in the Appendix to 
be O(min{m, n log n}). Thus the total number of extension cycles is O (min{m, n log n}). 
Finally, since a contraction cycle is preceded by either a first scan iteration or a failed 
extension cycle, the number of contraction cycles is also less than O (min{m, n log n}). We 
have thus proved the following proposition. 

PROPOSITION 3. The auction algorithm with graph reduction has an O(n min{m, n log 
n}) running time. 

An interesting question is whether the worst-case bound O (n min{m, n log n }) is tight and 
also whether it is representative of the practical performance of the algorithm. According 
to the preceding analysis, the running time can be divided into three parts: 

(a) The O (m) time needed for first scan operations; this is clearly a tight bound and cannot 
be improved. 

(b) The time needed for the O (n) successful extension cycles and their following contrac- 
tion cycles. Typically, the number of such cycles is of the order of n, but the number 
of operations per cycle depends on the average number of arcs in the path P during the 
cycle. For sparse graphs, the time for these contraction and extension cycles typically 
seems to be of order n 2, consistent with our earlier worst-case analysis, and probably 
dominates the O (m) time needed for first scan iterations. In contrast, for very dense or 
complete graphs (m = n2), the time for first scan iterations seems to dominate. 

(c) The time needed for the failed extension cycles and the following contraction cycles. 
We derived an O (n rain{m, n log n }) estimate for this time, making it the complexity 
bottleneck. In practice, however, this time seems to be negligible relative to the times 
for (a) and (b) above. The reason is that the number of failed extension cycles is much 
smaller than the estimated number (and indeed much smaller than n according to our 
experimentation). 
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We have been unable to construct an example showing the tightness of the O(min{m, n 
log n}) bound for the number of  failed extension cycles. It is thus an open question whether 
this bound can be improved. It is possible, however, to modify the algorithm and guarantee 
that failed extension cycles never occur, at the expense of O (n 2) extra work. This leads to 
algorithms with an O (n z) running time, which are the subject of  the next section. 

4. Auction Algorithms with Improved Running Time 

We now consider the possibility of  modifying the algorithm to eliminate the failed extension 
cycles described in the preceding section. To this end, we introduce some definitions. 

Following each contraction or extension at the terminal node i, there are one or more 
arcs (i, j )  such that Pi = ai.] + P j ,  We arbitrarily select one of these arcs and call it the 
candidate arc o f  i, until the next iteration when a contraction or an extension at i occurs, 
and a possibly different arc becomes the candidate arc of i. We adopt the convention that 
an extension occurs along the candidate-arc, that is, if (i, j )  is the candidate arc of  i and 
an extension takes place at i, then node j becomes the terminal node of P ,  while (i, j )  
continues to be the candidate arc of i. This guarantees that every arc of the current path P 
is a candidate arc. Note that, according to our definition, a tree node always has a candidate 
arc. It is possible, however, that an arc can be deleted while it is the candidate arc of  a 
node, and indeed it can be shown that this is what causes failed extension cycles (see the 
Appendix for further discussion of this point). 

We now introduce a graph, called multipath and denoted M, which will play a central 
role in the algorithms of  this section. The nodes of M are the tree nodes and the border 
nodes of  the current reduced graph, that is, the tree and the border nodes that have not yet 
been deleted; the arcs of M are the candidate arcs (i, j )  that still belong to the reduced 

graph and still satisfy Pi = aij + pj.  
It can be seen that the multipath M is a subgraph of both the reduced graph and the 

extended tree, and that the path P belongs to M. Note that M can change with each 
iteration. In particular, a new arc (i, j )  may enter M by becoming a candidate arc through 
a contraction or extension at i; also a current candidate arc (i, j )  that belongs to M may 
stop satisfying pi = aij -1- pj  because of a contraction at j ,  or may be deleted because of  
a first scan iteration at a node k with uk + akj < u i, in which case it will get out of  M [cf. 
Eqs. (6) and (7)]. 

Given a node i of  the multipath M, it can be seen that there is a unique path of M, denoted 
PM(i), with the property that PM(i) starts at i and ends at a node j that has no outgoing arc 
in the multipath [if node i itself has no outgoing arc, as for example when i is a border node, 
then PM(i) = (i)]. The reason for existence and uniqueness of  this path is that each node 
has at most one outgoing arc in M, since at most one of the outgoing arcs of  a node can be 
a candidate arc at any one time, and furthermore M has no cycles, since it is a subgraph of  
the extended tree. The last node of  PM(i) is denoted by last(i) and is either a border node 
or a tree node. If  last(i) is a border node for every node i of M that does not belong to 
P,  we say that M is complete; otherwise we say that M is incomplete. Figure 5 illustrates 
these definitions. 

We now make two observations that are important for our purposes: 

(a) When the path P extends to a tree node i and last(i) is a border node, a sequence of  
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Figure 5. Illustration of a multipath. Its arcs are the candidate arcs (i, j )  that still belong to the reduced graph 
and still satisfy pf ~ a i i +  Pj.  Tree arcs are shown with solid lines and border arcs are shown with broken lines. 
The tree nodes are gray shaded. In (a) a complete multipath is shown; the last node last(i) of each path PM(i) is 
a border node. In (b), the multJpath is shown after two successive extensions (to node j and then to node k) and 
the first scan operation at node k, in which arcs (t, u) and (x, y) are deleted. The multipath becomes incomplete 
because the last node of each of the paths PM(t), PM(v), PM(W), and P~(x)  is not a border node. 
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extensions follows along the path PM(i) until the border node last(i) is reached by P,  
and a first scan iteration occurs at that node. 

(b) I f  M is complete at the start of some iteration that is not a first scan iteration, then 
M will still be complete at the end of the iteration. To prove this we assume that the 
terminal node i at the given iteration is a tree node, and we show that at the end of 
the iteration, the last nodes of  the paths PM(j)  of all nodes j r P are border nodes. 
Indeed, the paths PM(j)  of all nodes j r P,  except possibly for i, have this property 
because they are not affected by the iteration. There remains to consider the case Of 
a contraction when the terminal node i exits P.  Then i acquires a candidate arc (i, j )  
during the iteration, and the path PM (i) at the end of the iteration consists of  arc (i, j )  
followed by the path PM(j) ,  which must end at a border node since M is complete 
at the start of  the iteration. This completes the proof that the completeness of M is 
preserved by an iteration other than a first scan iteration. 

Observation (a) above shows that if we could guarantee that M is complete at all times, 
there would be no failed extension cycles; each first scan iteration would be followed by 
a (possibly empty) contraction cycle, which would in turn be followed by a successful 
extension cycle. Unfortunately, in the auction algorithm of the preceding section, the 
multipath need not be complete, and observation (b) shows that this is due to first scan 
iterations when some candidate arcs may be deleted. This motivates the idea of occasionally 
restructuring the multipath to either maintain its completeness or to otherwise ensure that 
whenever an extension to a tree node i occurs, last(i) is a border node. If  this could be 
done in O (n) t ime per first scan iteration, the total time required for multipath restructuring 
would be O (n2), and the running time of the algorithm would be O (n 2) by the analysis of  
the preceding section. We will provide two different ways for doing this. 

Connection Sequences 

Suppose that at the end of an iteration of the auction algorithm with graph reduction we 
have a multipath M that is not complete. Then there must exist at least one tree node i ~ P 
such that last(i) = i, that is, the current candidate arc (i, j )  has been either deleted or else 
the price P i was increased at least once since the last time (i, j )  became the candidate arc 
of  i. For a tree node i ~ P with last(i) = i, we define an operation, called a connection 
operation at i, which is defined as follows: it deletes i and its unique incoming arc if i has 
no outgoing arcs, and otherwise sets 

Pi : =  min {aij-t-pj},  
(i,j)EA 

and selects arbitrarily one of the arcs (i, j )  attaining the minimum above and declares it as 
the new candidate arc of i. 

Note that when a connection operation at i is performed and i is not deleted, exactly one 
arc will be added to the multipath (this is the new candidate arc of  i), but it is possible that 
another candidate arc will get out of  the multipath; this will happen if for some tree node v, 
the arc (v, i) was a candidate arc, and Pi was increased through the connection operation, 
in which case (v, i) will not continue to qualify for membership in the multipath, so that 
last(v) = v. 
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Our intent is to restore the completeness of  portions of  the multipath through a sequence 
of connection operations at tree nodes i r P with last(i) = i. Such a sequence is called 
a connection sequence and is specified by the corresponding sequence of  tree nodes at 
which the connection operations are performed. We would like a connection sequence to 
contain at most one connection operation per node, so we impose the requirement that once 
a connection operation is performed at a node i, the condition last(i) = i does not arise at 
the end of  a subsequent connection operation in the same sequence. It will be shown below 
(Prop. 4) that this is guaranteed if the sequence of  nodes 

{ i l ,  i2 . . . . .  ik}, 

corresponding to the sequence of  connection operations, has the property that for q = 
2 . . . . .  k, the unique path from 1 to iq on the shortest path tree does not pass through node i~ 
for all s < q (this will be true in particular if, for q = 2 . . . . .  k, node iq became a tree node 
before node iq-l).  A connection sequence with this property is called properly ordered. In 
particular, we have the following proposition. 

PROPOSITION 4. 
of nodes 

Consider a properly ordered connection sequence corresponding to a set 

I = {il, i2 . . . . .  ik). 

Then for  q = 1 . . . . .  k, at the end o f  the connection operation at iq we have last(is) ~ is 
for  all s < q such that is was not deleted during the connection operation at i,.. 

PROOF. We use induction. Suppose that for some q < k, at the end of the connection 
operation at iq, we have last(is) ~ i,. for all s < q such that i.,. was not deleted. Consider the 
multipath M at the end of  the connection operation at iq+l. Then we have last(iq+l ) 5~ iq+l, 
since iq+l just acquired a new candidate arc that qualifies for membership in M. The only 
node of  M whose candidate arc can exit M during the connection operation at iq+l is a 
node i such that (i, iq+l) was the candidate arc of  i at the start of  this connection operation. 
Such a node cannot be one of the nodes i,. with s < q, because the path of the shortest path 
tree from 1 to iq+l cannot pass through such a node (by the definition of a properly ordered 
connection sequence). Therefore, by the induction hypothesis, we have last(is) ~ i,. for all 
s < q + 1, completing the induction proof. [] 

The main consequence of  Prop. 4 is that a properly ordered connection sequence can 
contain at most  one connection operation per node. 

Multipath Restructuring 

In what follows we assume that some additional data structures are maintained by the 
algorithm. These are: 

(a) A data structure that maintains the portion of the shortest path tree T that consists 
of the undeleted nodes. This data structure must have the property that it allows the 
enumeration of  the nodes of any subtree Tj of T that is rooted at some node j in a way 
that is consistent with the topological order of  the subtree, and in time proportional to 
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the number of nodes of the subtree. In particular if the subtree Tj consists of k nodes, 
the data structure should allow in time O (k) the ordering of the nodes as 

{il, i2 . . . . .  ik}, 

where for q = 2 . . . . .  k, the unique path from j to iq on Tj does not pass through 
node is for all s < q. Furthermore, the total time for maintaining the data structure 
during the entire duration of the algorithm should be O(n); there are several tree data 
structures that can be used for this purpose. 

(b) Two arrays that maintain the candidate arc and the node last(i) for each node i of the 
multipath. Maintaining these arrays can be done with O (1) computation per contrac- 
tion, extension, or connection operation, so the additional overhead will be lumped 
into the time for contractions, extensions, and connection operations. The reason for 
maintaining last(i) is to be able to check quickly whether last(i) is a border node, and 
whether last(i) = i. There is, however, an additional computational benefit: if an 
extension occurs at a tree node i such that last(i) 7~ i, we know that it will be followed 
by several extensions along the corresponding candidate arcs, culminating with last(i) 
becoming the terminal node of i. Thus we can jump directly to last(i), and save the 
computation for the extensions. 

Suppose now that we are given the subtree Tj of the shortest path tree T that is rooted 
at a node j and we construct a properly ordered connection sequence as follows: we start 
by performing a connection operation at a node il r P of T i with last(il) = il, which is 
such that the path of 7"] from j to any node i of Tj with last(i) = i does not pass through 
il; then we perform a connection operation at a node i2 r P of Tj with last(i2) = i2, which 
is such that the path of Tj from j to nodes i of Tj with last(i) ---- i in the current multipath 
does not pass through i2. We similarly continue with nodes i3, i4, etc. (The overhead for 
selecting the nodes iq in this order is O(k),  where k is the number of nodes in Tj, by using 
the data structure that maintains the tree T mentioned earlier.) The resulting connection 
sequence will be properly ordered and by Prop. 4, eventually (within at most k connection 
operations), there will be no more nodes i c Tj left with i r P and last(i) = i. We call this 
connection sequence, a complete connection sequence at j .  Since the number of arithmetic 
operations for a connection operation at a node i is proportional to the number of outgoing 
arcs of i, and there are at most k - 1 arcs in Tj, it is seen that the running time of the 
complete connection sequence at j is O (k). 

The special case where j = I and the tree Tj is the entire shortest path tree, is of particular 
interest. It is seen that a complete connection sequence at the origin 1 has running time 
O (n) and ends with a complete multipath. 

Consider now the auction algorithm with graph reduction, modified so that at the end 
of each first scan iteration, we perform a complete connection sequence at the origin 1 
that restores the completeness of the multipath. We call this, the auction algorithm with 
multipath restructuring. There are no failed extension cycles in this algorithm because the 
multipath is complete at the end of all iterations, so the required computation for contraction 
and extension cycles is O(n2), as argued in the preceding section. The computation for 
first scan iterations and for multipath restructuring is also O (n2). We have thus proved the 
following proposition. 
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PROPOSITION 5. The running time of the auction algorithm with multipath restructuring 
is O(n2). 

Instead of performing a complete connection sequence at the origin after each first scan 
iteration, one may consider implementations of the multipath restructuring process that are 
more practically efficient. For example, by using various data structures one can calculate 
the list of tree nodes i r P such that last(i) is not a border node following a first scan 
operation and use this list to order appropriately the ensuing connection operations. 

Path Scanning 

An alternative approach to ensure that each extension cycle will be successful, is to allow the 
multipath M to be incomplete at the end of an iteration, but whenever an impending failed 
extension cycle is detected, to appropriately restructure the multipath by means of complete 
connection sequences at certain nodes. In particular, we consider an algorithm which is the 
same as the auction algorithm with graph reduction except that if for the terminal node i 
of P we find that last(j) is not a border node for all nodes j attaining the minimum in the 
expression 

min {aij q- pi}, 
(i,j)~Ar 

we do not perform the contraction or extension as per Step 3 or Step 4, respectively, of 
the auction algorithm with graph reduction. Instead, we perform a complete connection 
sequence at each of the nodes j such that (i, j )  belongs to the reduced graph and last(j) is 
not a border node, and then decide via Step 2 of the auction algorithm with graph reduction 
whether a contraction or an extension will be performed. Thus Steps 2, 3, and 4 of the 
auction algorithm with graph reduction are replaced by the following modified versions. 

Modifications for the Path Scanning Algorithm 

1. Modified Step 2: (Decide on Contraction, Extension, or Connection Sequence) If 
last(ji) is not a border node for all nodes Ji such that 

ji = arg min {a U + p j  }, 
(i,j)EAr 

perform a complete connection sequence at each node j such that (i, j )  belongs to the 
reduced graph and last(j) is not a border node. If  

Pi < min {aij + p j}, 
(i,,j)EAr 

go to Step 3; else go to Step 4. 
2. Modified Step 3: (Contraction) Set 

Pi : =  min {ai.j q- p j} ,  
(i,j)C.Ar 

and if i ~ 1, contract P. Go to the next iteration. 
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3. Modified Step 4: (Extension) Extend P by one of the nodes ji such that 

ji : a rg  min {aij -]- p j  }. 
(i,j)c.4r 

If the number of the tree nodes is equal to n, then stop: the set of the tree arcs defines a 
shortest path tree. Otherwise, go to the next iteration. 

The algorithm that uses the above modified Steps 2, 3, and 4 in place of Steps 2, 3, and 
4 of the auction algorithm with graph reduction, is called the auction algorithm with path 
scanning (since prior to a contraction or extension, it scans the possible extension paths 
checking whether the last node on these paths is a border node). We have the following 
proposition. 

PROPOSITION 6. The running time of the auction algorithm with path scanning is O (n2). 

PROOF. Consider the subtrees Tj that are involved in the complete connection sequences 
that occur between two successive first scan iterations. We prove by contradiction that these 
subtrees are all disjoint. Indeed, assume that there is a node i that belongs to two subtrees 
Tj and Tj, such that complete connection sequences were performed at nodes j and j '  at 
iterations z and z t, respectively, where r < ~i, and no first scan iteration occurred between 
iterations z and r ' .  Since by construction of the algorithm, each extension is followed by 
other extensions culminating in a first scan iteration, it follows that only contractions can 
occur between iterations r and r t. Thus the path from j~ to i on the shortest path tree passes 
through j ,  and if {j', j l ,  J2 . . . . .  Jk, J} is the portion of this path that connects j '  to j ,  it 
can be seen that the complete connection sequence at j was followed by contractions at 
jk, jk-1 . . . . .  jl, j '  in that order. By construction of the algorithm, following a contraction 
at any node k, the node last(k) is a border node, so following the contraction at j ' ,  the node 
last(j') is a border node. This is a contradiction since in order for a complete connection 
sequence at j '  to occur, last(j ~) must not be a border node. 

Having proved that the subtrees Tj involved in the complete connection sequences that 
occur between two successive first scan iterations are disjoint, it can be seen that the 
time required for all these complete connection sequences is O (n), showing that the total 
overhead for multipath restructuring is O(n2). Since as before, the time for successful 
extension sequences, contraction sequences, and first scan iterations is O(n2), the result 
follows. [] 

By comparing the path scanning and the multipath restructuring approaches, we observe 
that both approaches guarantee a running time of O (n 2) when combined with the auction 
algorithm with graph reduction. However, the version based on path scanning differs from 
the version using multipath restructuring since only partial restructuring of the multipath is 
performed to the extent needed. 

5. Implementation Issues and Computational Results 

In this section we describe briefly the implementation of some of the auction algorithms with 
graph reduction and we give some experimental results. All of our implemented forward 
auction codes use the following data structures: 
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(a) A linked list that stores the arcs of the graph and allows one to scan sequentially the 
"forward star" (set of outgoing arcs) of each node. This list is modified as arcs are 
getting deleted. (Actually, in our implementations, we postpone the removal of an 
arc from the linked list until the first subsequent time that its start node becomes the 
terminal node of P. It turns out that it is more convenient to update the linked list at 
that time, while the outgoing arcs of the start node are scanned.) 

(b) An array that stores the start node and an array that stores the end node of each arc. 
(c) An array that stores the candidate arc of each tree node. 

We have selectively employed two techniques for improving performance. The first is to 
maintain, in addition to the candidate arc, the "second best" outgoing arc of a tree node; this 
technique has been used in all the forward codes and can save computation by executing 
many of the contraction steps without scanning all the outgoing arcs of the terminal node 
(see [4] and [5]). The second technique is to maintain for each node i of the multipath, the 
node last(i) as described in Section 4; this allows us to extend quickly the path P from i to 
last(i), thereby effectively compressing a whole extension cycle into a single extension. 

We have also implemented a forward/reverse version of the auction algorithm with graph 
reduction. This implementation is identical to the forward/reverse auction code published 
in [5], except that its forward portion uses the error bounds to delete nodes and arcs exactly 
as in the algorithm of Section 3. In the reverse portion of the algorithm there is no graph re- 
duction. The switch from forward to reverse and back is controlled in a way that polynomial 
complexity is preserved. Regarding data structures, we also use in addition a linked list that 
stores the "backward star" of each node, that is, the set of incoming arcs to the node. The 
"second best" data structure was not used in the forward/reverse code, because it requires 
that prices increase monotonically, which is not the case in forward/reverse methods. 

Summary of Results 

We have experimented with two random problem generators: the public domain NETGEN 
generator [9], and a generator called COMPLGEN, which simply introduces each of the 
n(n - 1) possible arcs with a specified probability and assigns to it an integer length from 
a given range according to a uniform distribution. We have experimented with two types 
of problems: 

(1) All destination problems with varying degrees of density. For such problems we found 
that forward auction algorithms with graph reduction perform better than their closest 
competitors for dense problems but worse for relatively sparse problems. 

(2) Few destination problems. For such problems we found that forward/reverse auction 
algorithms with graph reduction perform much better than their closest competitors, 
without suffering from the pseudopolynomial behavior of their counterparts that do not 
use graph reduction. 

Experiments with Dense Single Origin~All Destinations Problems 

We have tested four different FORTRAN auction/shortest path codes for the single origin/all 
destinations problem: 
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Table 1. Average solution times of 20 runs in hundredths of a second on a Mac IIsi for randomly generated fully 
dense single origin/all destinations shortest path problems. 

N S - H E A P  A S P - R  ASP-R2  ASP-R2-Last ASP-R-PScan 

100 14.5 13.8 13.0 13.3 13.6 
200 53.5 48.7 47.3 47.8 48.6 
300 117.3 102.9 101.5 102.8 102.8 
400 205.1 176.8 176.2 177.7 176.9 

(1) ASP-R: This is the auction algorithm with graph reduction as described in Section 3. 
(2) ASP-R2: This is the same as ASP-R except that it uses the "second best" outgoing arc 

data structure. 
(3) ASP-R2-Last:  This is the same as ASP-R2 except that it uses in addition the last(i) 

array. 
(4) ASP-R-PScan: This is the path scanning algorithm of Section 4. 

We have compared these codes with the state-of-the-art FORTRAN code S-HEAP from 
[8]. This is a label setting code that uses a binary heap, and has outperformed all other label 
setting and label correcting codes in the tests of [8] for fully dense randomly generated 
graphs. All the codes were run on a Macintosh IIsi under System 7.0 using the Absoft 
compiler. We have found that for the single origin/all destinations problem, all of the above 
codes are superior to auction codes that do not use graph reduction (forward or combined 
forward/reverse). 

We have generally found that for all-destination problems, the auction algorithms with 
graph reduction outperform by a small margin S-HEAP for relatively dense problems. 
We have also found that for all-destination problems, the relative performance of forward 
auction deteriorates as the graph density decreases, and the above auction codes are slower 
(by as much as two times) than the S-HEAP code (see the subsequent Tables 2 and 3). 

We present in Table 1 some results with fully dense graphs. We have generated such 
graphs by independently selecting each arc length as an integer from the range [1, 1000] 
according to a uniform distribution. We have found that the arc length range does not affect 
materially the running times of various algorithms; for example if the cost range is [1, 
10000], the running times grow by no more than 3%. 

Experiments with Single Origin/Few Destinations Problems 

For problems with few destinations, forward/reverse auction codes without graph reduction 
have proved to be extremely efficient for many types of problems [4], but are susceptible 
to pseudopolynomial behavior in the presence of cycles with small positive lengths as 
illustrated in Fig. 1. Our experiments show that when graph reduction is introduced in 
these codes, it eliminates the difficulties due to small length cycles and results in superior 
performance for a much broader range of problems with few destinations. Thus, for few 
destination problems, forward/reverse auction algorithms with graph reduction perform 
much better than their closest competitors, without suffering from the pseudopolynomial 
behavior of their counterparts that do not use graph reduction. 
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Table 2. Solution times in seconds on a Mac llci for NETGEN problems without any extra bidirectional arcs. 
Each entry gives the times of the corresponding method for One destination/10 destinations/All destinations. 

N A S-HEAP A S P F R - N R  A S P F R - R  ASP-R2 

2000 8000 .317/.350/.367 .050/.067/.917 .055/.075L925 .5671.667L667 
2000 20000 .450/.483/.500 .117/.150/1.68 .133/.217/1.30 .683/.750/.816 
3000 12000 .050/.550/.550 .033/.083/1.43 .033/.117/1.43 .800/.983/1.02 
3000 30000 .583/.717/.767 .017/.183/2.45 .033/.267/2.03 .800/1.08/1.30 
4000 16000 .617/.767/.767 .050/.100/1.88 .050/.135/1.95 1.00/1.40/1.43 
4000 40000 .200/1.00/1.05 .017/.183/3.33 .033/.267/2.82 .183/1.55/1.80 
5000 20000 .700/.983/.983 .033/.133/2.45 .033/.167/2.45 1.08/1.83/1.83 
5000 50000 .283/1.15/1.35 .017/.200/4.63 .017/.267/3.57 .283/1.68/2.28 

To support this assessment, we present some results using problems obtained using the 
NETGEN program. Problems were generated by specifying the number of nodes N, the 
number of  arcs A, the length range (chosen to be [1, 1000] in all our experiments), and 
a single source and sink (automatically chosen by NETGEN to be nodes 1 and N). For 
each problem generated by NETGEN, an additional modified version was generated by 
adding 100 bidirectional arcs of  length 1, thus creating a problem with many small-length 
cycles that are likely to induce pseudopolynomial behavior for auction algorithms without 
graph reduction. 

We tested three auction codes, in addition to S-HEAP: 

(1) A S P F R - N R :  This is the forward/reverse auction algorithm without graph reduction 
given in [5]. 

(2) A S P F R - R :  This is the forward/reverse auction algorithm with graph reduction as 
described above. 

(3) ASP-R2:  This is the forward auction with graph reduction that uses the "second best" 
outgoing arc data structure. 

All the codes were compiled with the Absoft compiler for the Apple Macintosh and were 
run on a Macintosh IIci under System 6.0.8. The times are shown in Tables 2 and 3, for 
the cases of  one destination (node N in all problems), 10 destinations (nodes N - 100i and 
N / 2  - 100i for i = 0, 1, 2, 3, 4 in all problems), and all destinations. 

In summary the results are as follows: 
For the problems without the extra bidirectional unit length arcs (cf. Table 2), for- 

ward/reverse auction with and without graph reduction run very close. The forward auction 
code ASP-R2 is uniformly worse than S-HEAP for few and many destinations (by roughly a 
factor of 2). S-HEAP is far worse than the forward/reverse codes for few destinations, but its 
relative performance improves as the number of  destinations increases. For all-destination 
problems S-HEAP becomes better than the forward/reverse codes (by a factor up to 3). 

For the problems with the extra bidirectional unit length arcs (cf. Table 3), forward/reverse 
auction without graph reduction runs much slower than auction with graph reduction for 
any number of  destinations, and sometimes even slower than both S-HEAP and ASP-R2 for 
few destinations. The forward auction code ASP-R2 continues to be uniformly worse than 
S-HEAP for few and many destinations. Both ASP-R2 and HEAP seem unaffected by the 
small length cycles. Generally, we have found that the performance of  the forward/reverse 
code with graph reduction with few destinations deteriorates as the number of small length 
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Table 3. Solution times in seconds on a Mac Ilci for NETGEN problems with 100 extra bidi- 
rectional arcs of unit length. Each entry gives the times of the corresponding method for 
One destination/10 destinations/All destinations. The number of arcs given in the column under A includes the 
200 extra unit length ares. 

N A S-HEAP ASPFR-NR ASPFR-R ASP-R2 

2000 8200 .267/.367/.367 .417/.683/9.47 .133/.200/.983 .367/.617/.700 
2000 20200 .500/.500/.533 .317/.983/11.27 .167/.375/1.53 .783/.783/.850 
3000 12200 .517/.567/.567 .150/.400/11.65 .083/.183/1.57 .867/1.02/1.03 
3000 30200 .633/.750/.783 .017/.767/12.87 .017/.450/2.20 .883/1.13/1.32 
4000 16200 .667/.767/.785 .217/1.17/14.45 .117/.450/2.13 1.08/1.45/1.45 
4000 40200 .250/1.05/1.08 .167/1.18/19.85 .099/.551/3.05 .233/1.65/1.83 
5000 20200 .767/1.00/1.00 .117/.717/15.50 .117/.367/2.63 1.18/1.90/2.65 
5000 50200 .367/1.25/1.38 .050/1.53/24.12 .050/.683/3.85 .367/1.87/2.32 

cycles increases (basically, graph reduction protects the forward portion from pseudopoly-  
nomial behavior but not the reverse portion). However, forward/reverse auction with graph 
reduction continues to dominate substantially S-HEAP for few destinations. 

Appendix 

In this appendix we focus on a sample run of the algorithm and we show that the number of  
failed extension cycles of  the auction algorithm with graph reduction is O (min{m, n log n}). 
We first recall the definition of candidate arc that was introduced in Section 4. 

Fol lowing each contraction or extension at the terminal node i, there are one or more 
arcs (i, j )  such that Pi --~ aij -t- p j .  We arbitrarily select one of these arcs and call it the 
candidate arc o f  i, until the next iteration when a contraction or an extension at i occurs, 
and a possibly  different arc becomes the candidate arc of i. If  an arc (i, j )  is deleted while 
it is s imultaneously a candidate arc and a border arc, it is called candidate-deleted. 

Candidate-deleted arcs are interesting for our purposes because their deletion can cause 
failed extension cycles. In particular, a failed extension cycle is a sequence of  successive 
extensions at the end of  which the terminal node of  the path P is a tree node i satisfying 
tpi < aij -t- p j  for all arcs (i, j )  of  the reduced graph. Consider the preceding time, say 
iteration r ,  when i was the terminal node of  the path P (prior to the given failed extension 

cycle). At  that iteration, a contraction at i occurred, and Pi was set to satisfy Pi --= aii -t- p j  
for some candidate arc (i, j ) .  We call this candidate arc and the corresponding iteration 
r ,  the critical arc and the critical iteration of the failed extension cycle, respectively. We 

have the following lemma. 

LEMMA A.1. Let (i, j )  be the critical arc o f  a fai led extension cycle. Then (i, j )  is 
candidate-deleted. Furthermore, j became a tree node at some iteration between the critical 
iteration o f  (i, j )  and the final iteration o f  the failed extension cycle. 

PROOF. Let  iterations r and ~ be the critical and the final iteration of the failed extension 
cycle, respectively. At  the end of  iteration ~ we have Pi = aij + p j  for the critical arc 
(i, j ) ,  while at the start of  iteration ~" we had pi < aij -t- p j, so pj  was increased prior to 
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iteration g, implying that j was a tree node at iteration ~'. I f  (i, j )  belonged to the reduced 
graph at the start of  iteration ~, then (i, j )  must have been the unique tree arc incoming to 
j .  Hence immediately following the price increase of p]  and the associated contraction, 
node i became the terminal node of  P.  This, however, is a contradiction since g was the 
first iteration when i became the terminal node of P subsequent to the critical iteration r.  
Therefore (i, j )  must have been deleted prior to iteration g. Let ~" be the iteration at which 
(i, j )  was deleted. At that iteration, i was a tree node (since z < ~'), while j was not a tree 
node (since no incoming tree arc of a tree node can be deleted). Hence (i, j )  was a border 
arc at iteration ~, and it was also a candidate arc since it was a candidate arc at iteration ~: 
and i did not again become the terminal node of  P until iteration ~-. Thus, the arc (i, j )  is 
candidate-deleted. [] 

Lemma A.1 also shows that an arc cannot become critical in connection with more than 
one failed extension cycle. Thus there is a distinct critical arc associated with each failed 
extension cycle, thereby showing that the number of  failed extension cycles is at most m. 
We state this formally. 

COROLLARY A. 1. The number o f  fai led extension cycles is at most m. 

Since by Lemma A.1, a critical arc is candidate-deleted, it will suffice for our purposes 
to show that the number of candidate-deleted arcs is O (n log n); we will do this in Lemma 
A.6 below, after some preparatory analysis. 

For an arc (i, j )  to get deleted while it is a border arc, a first scan iteration must occur at 
a node k with uk + akj < uj  [cf. Eqs. (6) and (7)]. We call node k the dominating node of 
this arc. We also write i < j if node i became a tree node before node j .  We have: 

LEMMA A.2. I f  k is the dominating node o f  an arc (i, j )  that was deleted while it was a 

border arc, then i -< k -< j .  

PROOF. Arc (i, j )  was deleted when a first scan iteration occured at the dominating node 
k. At that iteration, (i, j )  was a border arc, so i was a tree node, while j was not a tree 
node. This implies that i < k < j .  [] 

The following lemma gives a basic property. 

LEMMA A.3. Consider a candidate-deleted arc (i, j )  that was deleted at iteration r, and 
suppose that, after the deletion o f ( i ,  j ) ,  i became the terminal node o f  P f o r  the f irst  time 
at iteration ~. Then the price o f  j increased at some iteration between r and ~, and hence 
j became a tree node prior to ~. 

PROOF. Let p be the price vector at the end of  iteration ~: and let ~ be the price vector 
at the start of  iteration ~. Let also d /denote  the shortest distance from 1 to i. We argue 
by contradiction. If  p j  = p j ,  then since Pi = -ffi and Pi = aij -F- p j ,  we must have 
-'Pi = aij q- -ff j .  Since di =-- -ff l - -Pi, it follows that di + ai.] --= Pl - P j < d j ,  where the last 
inequality follows from the CS property (la) and (lb) (the price differential between two 
nodes is a lower bound to the shortest distance between the two nodes). Hence the path Pj 
that consists of  a shortest path from 1 to i followed by arc (i, j )  is a shortest path from 1 to 
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m 

j .  But this is a contradiction, since for arc (i, j )  to be deleted, the path P j  consisting of a 
shortest path from 1 to the dominating node k of arc (i, j )  followed by arc (k, j )  must be 
shorter than Pj.  [] 

Let (i, j )  be a candidate-deleted arc. Following the deletion of  (i, j ) ,  node i may have 
become again the terminal node of P and have acquired a new candidate arc (i, l), which 
is also candidate-deleted. If  (i, l) is the first such arc to be deleted, we say that (i, l) is 
the candidate-deleted arc of  node i next to (i, j ) .  The following lemma establishes an 
important ordering property. 

LEMMA A.4. Let (i, j )  and (i, l) be candidate-deleted arcs of  node i with dominating 
nodes k and r, respectively. Suppose that (i, l) is the candidate-deleted arc of  node i next 
to (i, j ) .  Then i -< k -< j -< r -< l. 

PROOF. F r o m L e m m a A . 2 ,  we have i -< k -< j and/  -< r -< I. Also from LemmaA.3,  we 
have that j was a tree node when (i, 1) became a candidate and border arc, which in turn 
occurred prior to the time the dominating node r was first scanned and (i, l) was deleted. 
Hence j -< r. [] 

In the course of  the algorithm, as long as a node j is a border node, it has a unique 
incoming border arc. When this arc, call it (i, j ) ,  is deleted, it is replaced by arc (k, j ) ,  
where k is the dominating node of  (i, j ) .  Consider the sequence of all arcs that become 
incoming border arcs of j 

(il, j ) ,  (i2, j )  . . . . .  (ie, j ) ,  (A.1) 

where for q = 2 . . . . .  p, iq is the dominating node of  arc (iq-l,  j ) ,  and (ie, j )  is the arc that 
eventually becomes the unique tree arc that is incoming to j .  Given a candidate-deleted 
arc (iq, j )  from this sequence, we will define its succession pair. This is the pair [iq, i~], 
where ~ = p if (iq, j )  is the last candidate-deleted arc in the sequence, and otherwise ~ is 
the first integer ql with q < ql < p such that (iq,, j )  is candidate-deleted. 

LEMMA A.5. The following hold true: 

(a) For the succession pair [iq, i~] of a candidate-deleted arc (iq, j )  we have iq < i~ -< j .  
(b) Let (i, j )  and (i, l) be candidate-deleted arcs such that (i, l) is the candidate-deleted 

arc of  node i next to (i, j ) .  If[i, k] and [i, F] are the succession pairs corresponding to 
(i, j )  and (i, l), respectively, then i < -k -< j -< -f -< I. 

PROOF. (a) Consider the sequence (A.1) of border arcs that are incoming to node j .  By 
Lemma A.2 we have il ~ i2 -< . . .  -< ip -< j ,  and by using the definition of succession pair 
the result follows. 
(b) Let k and r be the dominating nodes of  (i, j )  and (i, 1), respectively. By Lemma A.4, 
we have i -< k -< j -< r -< l, while by the definition of  a succession pair, we have k -< j 
and k = k or k -< k. Therefore, i -< k < j .  Similarly, we have F < l and r = F or r ~< F, 
implying that j -< F -< I. [] 
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We now use the following lemma, which is stated in [6], p. 208. 

Combina tor ia l  Lemma:  Let N and M be positive integers. Consider a process that 
modifies a set S of  integer pairs [p, q l, which is a subset of the set { [p, q] ] 1 < p < q < N }. 
Initially S is either empty or else contains at most one pair [p, q] for every p. The process 
consists of M stages. During a stage some pairs may leave S and at its end some pairs may 
enter S. The leaving pairs constitute a chain of the form 

[Pl, P2], [P2, P3] . . . .  

Each entering pair [p, r] must satisfy the following two requirements: 

(1) No pair of  the form [p, q] is currently in S. 
(2) If a pair of the form [p, q] was earlier in S and left at the same stage as a pair [pr, qq, 

then q~ < r. 

Then the number of pairs that left S during the M stages is 

O ((M +N) Iog(M +N)) 
log(F- l) 

We apply the Combinatorial Lemma using the following associations. Each considered 
pair [i, k] is a succession pair, so N = n. In addition, the j th  stage corresponds to the first 
scanning of node j ,  so M = n too. Initially, the set S contains one successor pair [i, k] 
for each node i for which a succession pair exists; this is the pair for which k is smallest. 
Then, during the j t h  stage, for each candidate-deleted arc of the form (i, j ) ,  the associated 
succession pair [i, k] exits S and, at the end of the stage, the succession pair corresponding 
to the candidate-deleted arc of i next to (i, j )  enters S (if such an arc exists). 

LEMMA A.6. The number of candidate-deleted arcs is 0 (n log n). 

PROOF. Without loss of  generality, we will assume that the nodes of the graph became 
tree nodes in the order corresponding to their values, that is i -< j if the integer i is less 
than the integer j .  The proof consists of applying the Combinatorial Lemma using the 
associations described above. By Lemma A.5(a), the succession pairs leaving S during the 
j th  stage form a chain of the form [Pl, P2], [P2, P3] . . . . .  and all nodes p involved in the 
chain satisfy p < j .  Since, by Lemma A.5(b), for all pairs [p, q] entering S during the j th  
stage we have j < q, condition (2) of the Combinatorial Lemma is satisfied. For each node 
i, let [i, kl], [i, k2] . . . . .  [i, kp] be the succession pairs with first node i, ordered so that ka < 
k 2 < . . .  < k p .  Then the corresponding candidate-deleted arcs (i, j l ) ,  (i, j2) . . . . .  (i, j p )  

satisfy jl  < j2 < "'" < Jp, by Lemma A.5(b). By assumption, [i, kl] is initially in S, 
and for q = 1 . . . . .  p - 1, the succession pair [i, kq+l] will enter S at stage jq when its 
predecessor pair [i, kq] exits S. It follows that, for each i, only one pair of the form [i, k] 
can be in S at any stage, and condition (1) of the Combinatorial Lemma is satisfied. Thus all 
the hypotheses of  the Combinatorial Lemma hold and, since M = N = n, the conclusion 
is that the number of pairs leaving S is O(n log n). Furthermore, by construction, every 
succession pair will exit S exactly once, so that the number of candidate-deleted arcs is also 
O (n log n). [] 
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From Corollary A. 1 and Lemma A.6, it can be seen that the number of failed extension 
cycles is O(min{m, n logn}),  as claimed. 
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