
July 31, 2002 To appear in J. of DEDS

LEAST SQUARES POLICY EVALUATION ALGORITHMS

WITH LINEAR FUNCTION APPROXIMATION1

by

A. Nedić and D. P. Bertsekas2

Abstract

We consider policy evaluation algorithms within the context of infinite-horizon dynamic
programming problems with discounted cost. We focus on discrete-time dynamic systems with
a large number of states, and we discuss two methods, which use simulation, temporal differ-
ences, and linear cost function approximation. The first method is a new gradient-like algorithm
involving least-squares subproblems and a diminishing stepsize, which is based on the λ-policy
iteration method of Bertsekas and Ioffe. The second method is the LSTD(λ) algorithm recently
proposed by Boyan, which for λ = 0 coincides with the linear least-squares temporal-difference
algorithm of Bradtke and Barto. At present, there is only a convergence result by Bradtke and
Barto for the LSTD(0) algorithm. Here, we strengthen this result by showing the convergence of
LSTD(λ), with probability 1, for every λ ∈ [0, 1].

1 Research supported by NSF under Grant ACI-9873339.
2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA 02139.

1

1. 1. INTRODUCTION

In this paper, we analyze methods for approximate evaluation of the cost-to-go function of a fixed

stationary policy within the framework of infinite-horizon discounted dynamic programming. We

consider a stationary discrete-time dynamic system with states denoted by 1, . . . , n. Since the

policy is fixed, the system is a stationary Markov chain with transition probabilities denoted by

pij , i, j = 1, . . . , n. When a transition from state i to state j occurs at time t, an immediate

cost αtg(i, j) is incurred, where α is a discount factor with 0 < α < 1. We want to evaluate the

long-term expected cost corresponding to each initial state i, given by

J(i) = E

[∞∑
t=0

αtg(it, it+1)
∣∣∣ i0 = i

]
, ∀ i = 1, . . . , n,

where it denotes the state of the system at time t. This problem arises as a subproblem in the

policy iteration method and its variations, such as optimistic policy iteration, λ-policy iteration,

and optimistic λ-policy iteration (see Bertsekas and Tsitsiklis [BeT96] for an extensive discussion

of these methods).

It is possible to calculate exactly the cost-to-go vector J , i.e., the vector whose components

are J(i), i = 1, . . . , n, by solving a system of linear equations (see e.g., Bertsekas [Ber01] or

Puterman [Put94]). However, in many practical problems where the transition probabilities

pij are not known and/or the number of states is large, an approximation approach based on

simulation and cost function approximation may be preferable. A popular method of this type

is the TD(λ) algorithm, which has been analyzed in several papers, starting with Sutton [Sut88],

and followed by Dayan and Sejnowski [DaS94], Jaakkola, Jordan, and Singh [JJS94], Gurvits,

Lin, and Hanson [GLH94], Tsitsiklis and Van Roy [TsV97], and Tadić [Tad01]. An extensive

account of the work on TD(λ) can be found in the book by Bertsekas and Tsitsiklis [BeT96].

We will discuss two different algorithms for calculating approximately the cost-to-go vector

J . Both algorithms are based on simulation, and use temporal differences and least squares, in

conjunction with a linear approximation architecture, whereby the costs J(i) are approximated

by a weighted sum of a set of features (the basis of the linear architecture). The first algorithm,

called λ-least-squares policy evaluation (λ-LSPE for short), is related to the λ-policy iteration

method proposed by Bertsekas and Ioffe [BeI96] (see also Bertsekas and Tsitsiklis [BeT96], Section

2.3.1, and Section 8.3), and may be viewed as simulation-based implementation of that method

that uses function approximation. We prove that λ-LSPE is convergent, thus providing the first

convergence result for a variant of the λ-policy iteration method that uses function approximation.

The second algorithm of this paper is the LSTD(λ) method proposed by Boyan [Boy02], a

generalization of the linear least-squares temporal-difference algorithm due to Bradtke and Barto

2

[BrB96]. The LSTD(λ) method tries to solve directly the system of equations that characterizes

the convergence limit of TD(λ), using all the information available from simulations. At present,

the convergence of this method is known only for the case λ = 0 (Bradtke and Barto [BrB96]).

Here, we extend this convergence result by proving convergence for any λ ∈ [0, 1].

The two algorithms of the present paper share some important characteristics, such as the

implicit or explicit use of least-squares subproblems, and Kalman filter-like recursive computa-

tions. Conceptually, the methods are related to the Gauss-Newton method similar to the relation

of the TD(λ) algorithm and the incremental gradient-LMS method for least squares problems

(see Bertsekas and Tsitsiklis [BeT96] or Bertsekas [Ber99] for discussions of the Gauss-Newton

and incremental gradient methods). Computational experiments by Bertsekas and Ioffe [BeI96]

(see also [BeT96]), and by Boyan [Boy02] suggest that the methods of the present paper can

perform much better than the TD(λ) algorithm. It is difficult to compare the performance of

the two methods of this paper to each other. The first method performs incremental changes of

the weights, and consequently can take advantage of a good initial choice of weights, while the

second method cannot, at least in the form presented here. Both methods converge to the same

limit, which is also the limit to which TD(λ) converges.

The paper is organized as follows. In Section 2, we present the λ-LSPE algorithm, and

we state a convergence result under the assumptions used by Tsitsiklis and Van Roy [TsV97] to

prove convergence of TD(λ). These assumptions include the use of a diminishing stepsize. It

appears, however, that the λ-LSPE method typically converges with a stepsize that is constant

and equal to 1. This fact has not been rigorously established, except in the case where λ = 1,

but it can be very important in practice, as it may greatly facilitate the stepsize selection and

result in accelerated convergence. In Section 3, we similarly present the LSTD(λ) method and

state the corresponding convergence result. In Sections 4 and 5, we prove the convergence results

stated in Sections 2 and 3, respectively.

2. 2. THE λ-LSPE METHOD

In this section, we give a new method for approximate policy evaluation, which is motivated by

the ideas of Bertsekas and Ioffe [BeI96]. The cost-to-go vector J is approximated by a linear

function of the form

J̃(i, r) = φ(i)′r, ∀ i = 1, . . . , n,

where φ(i) is a K-dimensional feature vector associated with the state i that has components

3

φ1(i), . . . , φK(i), while r is a weight vector with components r(1), . . . , r(K). Note that, through-

out the paper, we view every vector as a column vector, and that a prime denotes transpose.

We assume that an infinitely long trajectory is generated using a simulator of the system.

The trajectory starts with an initial state i0, which is chosen according to some initial probability

distribution. The states i0, i1, . . . that comprise the trajectory are generated according to the

transition probabilities pij . At time t, we have the current weight vector rt, and as soon as we

observe the transition from state it to it+1, we solve the least-squares problem

min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt −

t∑
k=m

(αλ)k−mdt(ik, ik+1)

)2

, (2.1)

where

dt(ik, ik+1) = g(ik, ik+1) +
(
αφ(ik+1) − φ(ik)

)′
rt, ∀ k, t. (2.2)

Let r̂t be a solution of this problem, i.e.,

r̂t = arg min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt −

t∑
k=m

(αλ)k−mdt(ik, ik+1)

)2

. (2.3)

We then compute the new weight vector rt+1 according to

rt+1 = rt + γt(r̂t − rt), (2.4)

where r0 is an initial weight vector and γt is a positive deterministic stepsize. Both r0 and γt are

chosen independently of the trajectory {i0, i1, . . .}.

2.1 Interpretations

To interpret the λ-LSPE method (2.3)-(2.4), let us introduce the variables

χm(i) =

{
1 if i = im,

0 otherwise,
∀ m, i.

Then, the least-squares solution r̂t of Eq. (2.3) can be equivalently written as

r̂t = arg min
r

t∑
m=0

n∑
i=1

χm(i)
(
φ(i)′r − J̃mt(i)

)2
,

where

J̃mt(i) = φ(i)′rt +
t∑

k=m

(αλ)k−mdt(ik, ik+1), with im = i.

Thus, the λ-LSPE method can be viewed as an incremental method for minimizing the cost

function
∞∑

m=0

n∑
i=1

χm(i)
(
φ(i)′r − J̃mt(i)

)2
, (2.5)

4

whereby at each time t, we use the vector r̂t that minimizes the partial sum

t∑
m=0

n∑
i=1

χm(i)
(
φ(i)′r − J̃mt(i)

)2
.

Assuming that the underlying Markov chain is ergodic, we have, with probability 1,

lim
t→∞

1
t + 1

t∑
m=0

χm(i) = π(i), ∀ i = 1, . . . , n,

where π(i) denotes the steady-state probability of state i. By using this relation, we see that by

minimizing the cost function

1
t + 1

t∑
m=0

n∑
i=1

χm(i)
(
φ(i)′r − J̃mt(i)

)2
,

the method attempts to minimize approximately

n∑
i=1

π(i)

(
φ(i)′r − φ(i)′rt −

∞∑
k=0

(αλ)kE
[
dt(ik, ik+1) | i0 = i

])2

.

Thus, when γt = 1 (in which case rt+1 = r̂t) the λ-LSPE method is an approximate version of

the iteration

Jt+1(i) = Jt(i) +
∞∑

k=0

(αλ)kE
[
dt(ik, ik+1) | i0 = i

]
, i = 1, . . . , n, (2.6)

which is the λ-policy iteration method of Bertsekas and Ioffe [BeI96]. This latter method has the

convergence property

lim
t→∞

Jt(i) = J(i), i = 1, . . . , n,

for an arbitrary initial choice J0 (see Bertsekas and Tsitsiklis [BeT96], Section 2.3.1).

There are two sources of approximation between the λ-LSPE method (2.3)-(2.4) (with

γt = 1 for all t) and the λ-policy iteration method (2.6). First, the cost function iterates Jt(i) in

Eq. (2.6) are approximated by φ(i)′rt, and consequently the exact formula (2.6) is approximated

by the least squares minimization of Eq. (2.3). Second, the expression

∞∑
k=0

(αλ)kE
[
dt(ik, ik+1) | i0 = i

]

[see Eq. (2.6)] is approximated using the finite collection of the finite sums

t∑
k=m

(αλ)k−mdt(ik, ik+1), ∀ m such that im = i,

obtained from the simulation [see Eq. (2.1)].

5

For another interpretation, note that when λ = 1, it can be seen that J̃mt(i) is the (t−m)-

stage sample cost starting from state i, i.e.,

J̃mt(i) =
t∑

k=m

αk−mg(ik, ik+1) + αt+1−mφ(it+1)′rt, with im = i.

In this case, if in Eq. (2.4) we use γt = 1 for all t, the method reduces to

rt+1 = arg min
r

t∑
m=0

n∑
i=1

χm(i)

(
φ(i)′r −

(
t∑

k=m

αk−mg(ik, ik+1) + αt+1−mφ(it+1)′rt

))2

,

which bears resemblance to the Kalman filtering algorithm for least-squares parameter identifi-

cation.

The preceding interpretations suggest that the use of a stepsize that is constant and equal

to 1 may work well in practice. Unfortunately, there is no proof of this, except in the case

where λ = 1. As a practical matter, however, one may consider operating the λ-LSPE method by

starting with γ0 = 1, and by subsequently reducing γt very slowly. This type of implementation of

the λ-LSPE algorithm appears to have potential for faster and more reliable practical convergence

than the TD(λ) algorithm.

The λ-LSPE algorithm also bears some resemblance to the TD(λ) algorithm, which has the

form

rt+1 = rt + γt

(
t∑

m=0

(αλ)t−mφ(im)

)
dt(it, it+1)

(cf. Sutton [Sut88]). In particular, if the least-squares problem (2.3) in the least-squares λ-policy

evaluation algorithm were to be solved approximately by using a single gradient iteration, then

the algorithm would take the form

rt+1 = rt + γt

(
t∑

m=0

(αλ)t−mφ(im)

)
dt(it, it+1) + γt

t−1∑
k=0

(
k∑

m=0

(αλ)k−mφ(im)

)
dt(ik, ik+1),

which resembles the TD(λ) iteration, the difference being the additional last term in the right-

hand side above.

2.2 An Efficient Implementation

We now discuss an efficient implementation of the λ-LSPE method, whereby the least-squares

problem

min
r

t∑
m=0

(
φ(im)′r − φ(im)′rt −

t∑
k=m

(αλ)k−mdt(ik, ik+1)

)2

6

to be solved at iteration t is solved quickly by using data obtained from the solution of the

preceding least-squares problems. Indeed, by setting the gradient of the quadratic cost function

of the above minimization to zero, we see that r̂t satisfies the equation

(
t∑

m=0

φ(im)φ(im)′
)

(r̂t − rt) =
t∑

m=0

φ(im)
t∑

k=m

(αλ)k−mdt(ik, ik+1).

If the matrix
∑t

m=0 φ(im)φ(im)′ is invertible, we can uniquely determine r̂t. This matrix may

not be invertible initially, in which case we can determine r̂t by solving a perturbed least-squares

problem. In particular, we can set

r̂t = arg min
r

δ‖r − rt‖2 +

t∑
m=0

(
φ(im)′r − φ(im)′rt −

t∑
k=m

(αλ)k−mdt(ik, ik+1)

)2

 ,

where δ is a positive scalar and ‖ · ‖ is the standard Euclidean norm. In this case, we have

r̂t = rt +

(
δI +

t∑
m=0

φ(im)φ(im)′
)−1 t∑

k=0

(
k∑

m=0

(αλ)k−mφ(im)

)
dt(ik, ik+1), ∀ t.

Regardless of whether δ = 0 or δ > 0 in this formula, by using the definition of the temporal

differences dt(ik, ik+1) [cf. Eq. (2.2)], the update formula (2.4) for rt can be compactly written as

rt+1 = rt + γtB
−1
t (Atrt + bt), ∀ t, (2.7)

where

Bt = δI +
t∑

m=0

φ(im)φ(im)′, At =
t∑

k=0

zk

(
αφ(ik+1)′ − φ(ik)′

)
, (2.8)

bt =
t∑

k=0

zkg(ik, ik+1), zk =
k∑

m=0

(αλ)k−mφ(im). (2.9)

This form of the method is well suited for practical implementation since the matrices B−1
t

and At, and the vector bt can be updated recursively. More specifically, at iteration t, we have

the matrices B−1
t and At, and the vectors bt and zt. At iteration t + 1, as soon as the transition

from it+1 to it+2 takes place, we can compute B−1
t+1 by applying the Sherman-Morisson formula

(H + uv′)−1 = H−1 − H−1uv′H−1

1 + v′H−1u
,

which is valid for any invertible matrix H, and vectors u and v of compatible dimensions (see

Golub and Van Loan [GoV96], p. 3). Hence, we have

B−1
t+1 = B−1

t − B−1
t φ(it+1)φ(it+1)′B−1

t

1 + φ(it+1)′B−1
t φ(it+1)

.

7

Then, we compute the vector zt+1,

zt+1 = αλzt + φ(it+1),

which we use to compute At+1 and bt+1 as follows

At+1 = At + zt+1

(
αφ(it+2)′ − φ(it+1)′

)
,

bt+1 = bt + zt+1g(it+1, it+2).

It can be seen from these recursive formulas that the iteration (2.7)-(2.9) is not computa-

tionally expensive. It is also possible to compute the inverse of Bt+1 by using the Singular Value

Decomposition, which has more overhead per iteration but can have better numerical stability

properties. Regarding the memory space required per iteration, note that B−1
t and At are ma-

trices of dimension K ×K, and zt and bt are vectors of dimension K, where K is the number of

feature vectors. Thus, the iteration (2.7)-(2.9) can be implemented efficiently.

2.3 Convergence Properties

We now discuss the convergence properties of the λ-LSPE method (2.7)-(2.9). We will use the

following assumption.

Assumption 2.1:

(a) The Markov chain has steady-state probabilities π(1), . . . , π(n) which are positive, i.e.,

lim
t→∞

P [it = j | i0 = i] = π(j) > 0, ∀ i, j.

(b) The matrix Φ given by

Φ =

− φ(1)′ −
...

− φ(n)′ −

has full column rank.

For convergence of the λ-LSPE method, the following additional assumption is required for

the stepsize γt. This assumption is typical for stochastic iterative methods using a diminishing

stepsize.

Assumption 2.2: The stepsize γt is deterministic and satisfies

∞∑
t=0

γt = ∞,

∞∑
t=0

γ2
t < ∞.

8

By Assumption 2.1(a), the underlying Markov chain is ergodic, and all states are visited

an infinite number of times by the simulated trajectory. By Assumption 2.1(b), the number of

features can be smaller than the number of states, which is important for large-scale problems.

Under Assumption 2.1, Tsitsiklis and Van Roy [TsV97] (see also [BeT96]) have considered

the linear system of equations

Ar + b = 0,

where A and b are given by

A = Φ′D(αP − I)
∞∑

s=0

(αλP)sΦ, b = Φ′D
∞∑

s=0

(αλP)sḡ, (2.10)

P is the transition probability matrix of the Markov chain, and ḡ is the vector with components

ḡ(i) =
∑n

j=1 pijg(i, j). They have shown that A is a negative definite matrix, so that the system

Ar + b = 0 has a unique solution denoted r∗:

r∗ = A−1b.

Furthermore, r∗ satisfies the following error bound

‖Φr∗ − J‖D ≤ 1 − αλ

1 − α
‖ΠJ − J‖D,

where D is the diagonal matrix with diagonal entries π(i), ‖ · ‖D is the norm induced by the

matrix D
(
i.e., ‖x‖D =

√
x′Dx

)
, and Π is the matrix given by Π = Φ(Φ′DΦ)−1Φ′D. Note

that as λ decreases, the error bound deteriorates, which indicates that from the point of view

of approximation accuracy it is better to use λ = 1. Indeed, this is confirmed by examples in

Bertsekas [Ber95]. On the other hand, as λ decreases, the detrimental effects of simulation noise

seem to be ameliorated, and in practice a value of λ that is less than 1 may be overall preferable.

Under Assumptions 2.1 and 2.2, Tsitsiklis and Van Roy [TsV97] have shown that TD(λ)

converges to r∗. The λ-LSPE method will also be shown to converge to r∗ under the same

assumptions, as stated in the following proposition.

Proposition 2.1: Let Assumptions 2.1 and 2.2 hold, and let the sequence {rt} be generated

by the λ-LSPE method (2.7)-(2.9). Then for any λ ∈ [0, 1], the sequence {rt} converges to r∗

with probability 1.

3. 3. THE LSTD(λ) METHOD

In this section, we describe the LSTD(λ) method due to Boyan [Boy02]. Similar to the λ-LSPE

method, we assume that an infinitely long trajectory is generated, starting at an initial state i0,

9

which is chosen according to some initial probability distribution. At each time t, we compute

the weight vector rt:

rt = −A−1
t bt, (3.1)

where the matrix At and the vector bt are as in Eqs. (2.8) and (2.9). By writing

rt = −
(

At

t + 1

)−1
bt

t + 1
,

we see that the LSTD(λ) method attempts to find the solution r∗ = A−1b of the system Ar+b = 0

by separately approximating A and b with their simulation-based approximations At/(t + 1) and

bt/(t + 1), respectively. Note that in the LSTD(λ) method, we only choose the parameter λ and

the initial probability distribution for state i0. Once this is done, we cannot control the method

any further. In particular, there is no provision to take advantage of a good initial guess of the

vector r.

We now show how to implement the LSTD(λ) method recursively. We first note that the

computation of rt in Eq. (3.1) requires the inverse of At, which may not exist initially. To ensure

invertibility of At for all t, instead of A0 = φ(i0)
(
αφ(i1)′ − φ(i0)′

)
, we can use

A0 = δI + φ(i0)
(
αφ(i1)′ − φ(i0)′

)
, (3.2)

where δ is a positive scalar. Furthermore, by using the definition of At in Eq. (2.8) and by

applying the Sherman-Morisson formula, we can recursively compute the inverse of At:

A−1
t =

(
At−1 + zt

(
αφ(it+1)′ − φ(it)′

))−1

= A−1
t−1 −

A−1
t−1zt

(
αφ(it+1)′ − φ(it)′

)
A−1

t−1

1 +
(
αφ(it+1)′ − φ(it)′

)
A−1

t−1zt

.

This provides an efficient recursive implementation of the method.

The following convergence result applies to both cases where δ = 0 and δ > 0.

Proposition 3.1: Let Assumption 2.1 hold, and let the sequence {rt} be generated by the

LSTD(λ) method (3.1). Then for any λ ∈ [0, 1], the sequence {rt} converges to r∗ with proba-

bility 1.

4. 4. CONVERGENCE PROOF FOR THE λ-LSPE METHOD

In this section, we give a proof of Proposition 2.1. The proof is long, so we break it down into

two major steps. The first step is to view the method as a special case of a more general method

of the form

xt+1 = xt + γt(ht + et),

10

where ht is a descent direction of a cost function f , while et is a noise term. We establish sufficient

conditions for convergence of this method in Proposition 4.1 below. The second step is to show

that, for an appropriate choice of ht, et, and f , Proposition 4.1 applies to the λ-LSPE method.

We first state two theorems needed in the proof of Proposition 4.1. Proofs of these theorems

can be found in Neveu [Nev75].

Theorem 4.1: (Supermartingale Convergence Theorem) Let {Xt}, {Yt}, and {Zt} be se-

quences of random variables, and let {Ft} be a sequence of sets of random variables such that

Ft ⊂ Ft+1 for all t. Suppose that:

(i) For each t, the random variables Xt, Yt, and Zt are nonnegative, and are functions of the

random variables in Ft.

(ii) For each t, we have E[Xt+1 | Ft] ≤ Xt − Yt + Zt.

(iii) There holds
∑∞

t=0 Zt < ∞.

Then, with probability 1, the sequence {Xt} converges to a nonnegative random variable and∑∞
t=0 Yt < ∞.

Theorem 4.2: (Martingale Convergence Theorem) Let {Xt} be a sequence of random variables

and {Ft} be a sequence of sets of random variables such that Ft ⊂ Ft+1 for all t. Suppose that:

(i) For each t, the random variable Xt is a function of the random variables in Ft.

(ii) For each t, we have E[Xt+1 | Ft] = Xt.

(iii) There holds supt E
[
X2

t

]
< ∞.

Then, with probability 1, the sequence {Xt} converges to a random variable.

The following proposition is an extension of Proposition 4.1 of Bertsekas and Tsitsiklis

[BeT96] (see also Proposition 3 of Bertsekas and Tsitsiklis [BeT00]).

Proposition 4.1: Let f : �n 	→ � be a continuously differentiable function, and consider a

sequence {xt} generated by the method

xt+1 = xt + γt(ht + et),

where γt is a positive deterministic stepsize, ht is a direction, and et is a random noise vector.

Let Ft = {x0, x1, . . . , xt} for all t, and assume the following:

(i) The function f satisfies f(x) ≥ 0 for all x, and has a Lipschitz continuous gradient, i.e., for

11

some positive scalar L,

‖∇f(x) −∇f(x)‖ ≤ L‖x − x‖, ∀ x, x.

(ii) There exist positive scalars c1, c2, and c3 such that

∇f(xt)′E[ht | Ft] ≤ −c1‖∇f(xt)‖2, ∀ t,

∥∥E[et | Ft]
∥∥ ≤ c2εt

(
1 + ‖∇f(xt)‖

)
, ∀ t,

E
[
‖ht + et‖2 | Ft

]
≤ c3

(
1 + ‖∇f(xt)‖2

)
, ∀ t,

where εt is a positive deterministic scalar.

(iii) The deterministic sequences {γt} and {εt} satisfy

∞∑
t=0

γt = ∞,

∞∑
t=0

γ2
t < ∞,

∞∑
t=0

γtε2
t < ∞, lim

t→∞
εt = 0.

Then, with probability 1:

(a) The sequence
{
f(xt)

}
converges.

(b) The sequence
{
∇f(xt)

}
converges to zero.

(c) Every limit point of {xt} is a stationary point of f .

Proof: The idea of the proof is to use a second order Taylor’s series expansion to show that

E
[
f(rt+1) | Ft

]
≤ f(rt) − Yt + Zt, where Yt and Zt are nonnegative with

∑∞
t=0 Zt < ∞. The

convergence of f(rt) will then follow by the Supermartingale Convergence Theorem. The conver-

gence of ∇f(rt) to zero will be established by showing that the excursions of ∇f(rt) away from

zero are arbitrarily small with probability 1.

Since the gradient of f is Lipschitz continuous, it follows that

f(x) ≤ f(x) + ∇f(x)′(x − x) +
L

2
‖x − x‖2, ∀ x, x,

(cf. Bertsekas [Ber99], Proposition A.24), so that by using this inequality with x = xt+1 =

xt + γt(ht + et) and x = xt, we have

f(xt+1) ≤ f(xt) + γt∇f(xt)′(ht + et) +
L

2
γ2

t ‖ht + et‖2, ∀ t.

12

By taking the conditional expectation of both sides of this inequality, with respect to Ft =

{x0, x1, . . . , xt}, and by using assumption (ii), we obtain for all t,

E
[
f(xt+1) | Ft

]
≤ f(xt) + γt∇f(xt)′

(
E[ht | Ft] + E[et | Ft]

)
+

L

2
γ2

t E
[
‖ht + et‖2 | Ft

]
≤ f(xt) + γt∇f(xt)′E[ht | Ft] + γt‖∇f(xt)‖

∥∥E[et | Ft]
∥∥

+
L

2
γ2

t E
[
‖ht + et‖2 | Ft

]
≤ f(xt) − γt

(
c1 − c2εt −

Lc3

2
γt

)
‖∇f(xt)‖2 + c2γtεt‖∇f(xt)‖ +

Lc3

2
γ2

t .

Since

c2γtεt‖∇f(xt)‖ = γt

(
c2√
c1

εt

)√
c1‖∇f(xt)‖ ≤ γt

2

(
c2
2

c1
ε2

t + c1‖∇f(xt)‖2

)
,

it follows that for all t,

E
[
f(xt+1) | Ft

]
≤ f(xt) − γt

(
c1

2
− c2εt −

Lc3

2
γt

)
‖∇f(xt)‖2 +

c2
2

2c1
γtε2

t +
Lc3

2
γ2

t

≤ f(xt) − Yt + Zt,

where

Yt =

{
γt

(
c1
2 − c2εt − Lc3

2 γt

)
‖∇f(xt)‖2 if c1

2 ≥ c2εt + Lc3
2 γt,

0 otherwise,

Zt =

c22
2c1

γtε2
t + Lc3

2 γ2
t if c1

2 ≥ c2εt + Lc3
2 γt,

−γt

(
c1
2 − c2εt − Lc3

2 γt

)
‖∇f(xt)‖2 + c22

2c1
γtε2

t + Lc3
2 γ2

t otherwise.

Thus, Yt and Zt are nonnegative for all t, and because γt → 0 and εt → 0, after some finite time,

Yt and Zt are given by

Yt = γt

(
c1

2
− c2εt −

Lc3

2
γt

)
‖∇f(xt)‖2,

Zt =
c2
2

2c1
γtε2

t +
Lc3

2
γ2

t .

Since
∑∞

t=0 γ2
t < ∞ and

∑∞
t=0 γtε2

t < ∞, it follows that
∑∞

t=0 Zt < ∞, so by the Supermartingale

Convergence Theorem, the sequence
{
f(xt)

}
converges with probability 1, showing part (a). By

the same theorem, there holds
∑∞

t=0 Yt < ∞ with probability 1, and since after some finite time

Yt = γt

(
c1

2
− c2εt −

Lc3

2
γt

)
‖∇f(xt)‖2 ≥ c1

4
γt‖∇f(xt)‖2,

it follows that, with probability 1,
∞∑

t=0

γt‖∇f(xt)‖2 < ∞. (4.1)

We next show that lim supt→∞ ‖∇f(xt)‖ = 0 with probability 1, by studying the excursions

of ∇f(xt) away from zero. We fix a positive scalar ε and we say that the time interval {t, t +

1, . . . , t} is an upcrossing interval (from ε/2 to ε) if

‖∇f(xt)‖ ≤ ε

2
, ‖∇f(xt)‖ > ε,

ε

2
≤ ‖∇f(xτ)‖ ≤ ε, ∀ τ, t < τ < t.

13

We want to show that almost every sample path has a finite number of upcrossing intervals, and

to do so, we first prove a result (Lemma 4.1 below), which we use to bound the effects of the

noise et within an upcrossing interval.

Let

st = ht + et, st = E[st | Ft], wt = st − st, ∀ t. (4.2)

By using the definitions of st and st, and the relation E
[
‖st‖2 | Ft

]
≤ c3

(
1 + ‖∇f(xt)‖2

)
of

assumption (ii), since wt + st = st, we have

E
[
‖wt‖2 | Ft

]
+ ‖st‖2 = E

[
‖st‖2 | Ft

]
≤ c3

(
1 + ‖∇f(xt)‖2

)
, ∀ t. (4.3)

Define

ut =
t−1∑
τ=0

γτντwτ , ∀ t ≥ 1,

where wt is as in Eq. (4.2) and

νt =

{
1 if ‖∇f(xt)‖ ≤ ε,

0 otherwise,
∀ t.

We have the following lemma.

Lemma 4.1: The vector sequence {ut} converges with probability 1.

Proof: We will show that the vector sequence {ut} is a martingale such that supt E
[
‖ut‖2

]
< ∞,

and then we will apply (componentwise) the Martingale Convergence Theorem. We have

E[γtνtwt | Ft] = γtνtE[wt | Ft] = 0, ∀ t,

and by using the definition of ut, we obtain

E[ut+1 | Ft] = ut + E[γtνtwt | Ft] = ut, ∀ t,

showing that the sequence {ut} is a martingale.

If νt = 0, then ut+1 = ut, implying that

E
[
‖ut+1‖2

]
= E

[
‖ut‖2

]
.

If νt = 1, then ‖∇f(xt)‖ ≤ ε, so by using the relation E[wt | Ft] = 0 and Eq. (4.3), we obtain

E
[
‖ut+1‖2 | Ft

]
= ‖ut‖2 + 2u′

tγtE[wt | Ft] + γ2
t E

[
‖wt‖2 | Ft

]
≤ ‖ut‖2 + c3γ2

t (1 + ε2).

Hence, E
[
‖ut+1‖2

]
≤ E

[
‖ut‖2

]
+ c3γ2

t (1 + ε2) for all t, and therefore,

E
[
‖ut+1‖2

]
≤ c3(1 + ε2)

∞∑
τ=0

γ2
τ < ∞, ∀ t,

14

showing that supt E
[
‖ut‖2

]
< ∞. We can now apply (componentwise) the Martingale Conver-

gence Theorem to conclude that {ut} converges with probability 1. Q.E.D.

Let us now consider a sample path P such that the sequence {ut} converges. To arrive at

a contradiction, assume that the path P has an infinite number of upcrossing intervals and let

{tk, . . . , tk} be the kth such interval, so that

‖∇f(xtk)‖ ≤ ε

2
, ‖∇f(xtk

)‖ > ε,
ε

2
≤ ‖∇f(xt)‖ ≤ ε, ∀ t, tk < t < tk, ∀ k. (4.4)

By the definition of νt, we have νt = 1 for all t such that tk ≤ t < tk, and since {ut} converges,

it follows that

lim
k→∞

tk−1∑
t=tk

γtwt = 0. (4.5)

Using the Lipschitz continuity of ∇f , the relation xt+1 = xt + γt(ht + et), and Eq. (4.4),

we have for all k,

ε

2
≤ ‖∇f(xtk

)‖ − ‖∇f(xtk)‖ ≤ ‖∇f(xtk
) −∇f(xtk)‖ ≤ L‖xtk

− xtk‖ ≤ L

∥∥∥∥∥∥
tk−1∑
t=tk

γt(ht + et)

∥∥∥∥∥∥ ,

which in view of the relation ht + et = wt + st [cf. Eq. (4.2)], implies that

ε

2
≤ L

∥∥∥∥∥∥
tk−1∑
t=tk

γtwt

∥∥∥∥∥∥ + L

tk−1∑
t=tk

γt‖st‖, ∀ k.

Since ‖∇f(xt)‖ < ε for all t with tk ≤ t < tk [cf. Eq. (4.4)], in view of the relation (4.3), it follows

that ‖st‖ is bounded by
√

c3(1 + ε2) for all t with tk ≤ t < tk. Therefore,

tk−1∑
t=tk

γt ≥
ε

2Lc
− 1

c

∥∥∥∥∥∥
tk−1∑
t=tk

γtwt

∥∥∥∥∥∥ , ∀ k,

where c =
√

c3(1 + ε2). By taking the limit inferior as k → ∞ and by using Eq. (4.5), we obtain

lim inf
k→∞

tk−1∑
t=tk

γt ≥
ε

2Lc
,

and since γtk → 0, it follows that

lim inf
k→∞

tk−1∑
t=tk+1

γt = lim inf
k→∞

tk−1∑
t=tk

γt ≥
ε

2Lc
.

This relation, the inequality ε/2 ≤ ‖∇f(xt)‖ for all t with tk < t < tk and all k [cf. Eq. (4.4)],

and the assumption that the path P has an infinite number of upcrossing intervals imply that

∞∑
t=0

γt‖∇f(xt)‖2 ≥
∞∑

k=1

tk−1∑
t=tk+1

γt‖∇f(xt)‖2 > ∞,

15

contradicting Eq. (4.1). Hence, the path P must have a finite number of upcrossing intervals, so

that ‖∇f(xt)‖ can exceed ε only a finite number of times, and therefore lim supt→∞ ‖∇f(xt)‖ ≤ ε.

Since ε is arbitrary, it follows that lim supt→∞ ‖∇f(xt)‖ = 0 for the path P, showing part (b).

Finally, if x is a limit point of {xt}, then ∇f(x) is a limit point of
{
∇f(xt)

}
, and by part (b),

∇f(x) = 0, thus showing part (c) and completing the proof. Q.E.D.

We will now need a lemma relating to Markov chains. In what follows, we denote by κt(i)

the number of visits to state i up to time t.

Lemma 4.2: Let Assumption 2.1(a) hold. Then:

(a) With probability 1,

lim
t→∞

κt(i)
t + 1

= π(i), ∀ i = 1, . . . , n.

(b) For some positive scalar C,

E

[(
κt(i)
t + 1

− π(i)
)2

]
≤ C

t + 1
, ∀ i = 1, . . . , n, ∀ t.

(c) For some positive scalars ci,

lim
t→∞

(
E

[
κt(i)

]
− (t + 1)π(i)

)
= ci, ∀ i = 1, . . . , n.

For part (a) of the preceding lemma, see Theorem 1 on p. 145 in Gallager [Gal95] or Theorem

4.2.1 in Kemeny and Snell [KeS67]. For part (b), see the proof of Theorem 4.2.1 in Kemeny and

Snell [KeS67], while for part (c), see Theorem 4.3.4 in Kemeny and Snell [KeS67].

By using the preceding lemma, we next establish some relations for the matrices Bt and

At, and vectors bt, as defined in Eqs. (2.8) and (2.9).

Lemma 4.3: Let Assumption 2.1 hold. Then:

(a) There exist positive scalars C1, C2, and C3 such that with probability 1

∥∥∥∥∥
(

Bt

t + 1

)−1
∥∥∥∥∥ ≤ C1,

∥∥∥∥ At

t + 1

∥∥∥∥ ≤ C2,

∥∥∥∥ bt

t + 1

∥∥∥∥ ≤ C3, ∀ t.

(b) There exists a positive scalar C4 such that

E

[∥∥∥∥∥
(

Bt

t + 1

)−1

− (Φ′DΦ)−1

∥∥∥∥∥
]
≤ C4√

t + 1
, ∀ t.

16

(c) For all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′−φ(ik)′|im

]
=

n∑
i=1

κt(i)φ(i)
∞∑

s=0

[
(αP −I)(αλP)sΦ

]
i
−Vt,

Vt =
t∑

m=0

φ(im)
∞∑

k=t+1

[
(αP − I)(αλP)k−mΦ

]
im

,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]
=

n∑
i=1

κt(i)φ(i)
∞∑

s=0

[
(αλP)sḡ](i) − vt,

vt =
t∑

m=0

φ(im)
∞∑

k=t+1

[
(αλP)k−mḡ

]
(im),

where
[
(αP − I)(αλP)sΦ

]
i

denotes the ith row vector of the matrix (αP − I)(αλP)sΦ,[
(αλP)sḡ](i) denotes the ith component of the vector (αλP)sḡ, and ḡ is a vector with

components ḡ(i) =
∑n

i=1 pijg(i, j).

(d) There exist positive scalars C5 and C6 such that∥∥∥∥E[At]
t + 1

− A

∥∥∥∥ ≤ C5

t + 1
,

∥∥∥∥E[bt]
t + 1

− b

∥∥∥∥ ≤ C6

t + 1
, ∀ t.

Proof: (a) By using Bt = δI +
∑t

m=0 φ(im)φ(im)′ [cf. Eq. (2.8)] and by writing

t∑
m=0

φ(im)φ(im)′ =
n∑

i=1

κt(i)φ(i)φ(i)′,

we see that

Bt = δI +
n∑

i=1

κt(i)φ(i)φ(i)′. (4.6)

By Lemma 4.2(a), it follows that Bt/(t + 1) converges to
∑n

i=1 π(i)φ(i)φ(i)′ with probability 1.

Thus, the inverse of Bt/(t + 1) converges with probability 1, thereby implying that the norm

of
(
Bt/(t + 1)

)−1 is bounded. The boundedness of At/(t + 1) and bt/(t + 1) follows from the

definitions of At and bt [cf. Eqs. (2.8) and (2.9)], and the relations

∥∥φ(ik)
∥∥ ≤ max

i

∥∥φ(i)
∥∥,

∣∣g(ik, ik+1)
∣∣ ≤ max

i,j

∣∣g(i, j)
∣∣, ∀ k.

(b) It can be seen that, for any two invertible matrices H and R, we have

H−1 − R−1 = H−1(R − H)R−1,

implying that

‖H−1 − R−1‖ ≤ ‖H−1‖ ‖R − H‖ ‖R−1‖.

17

By using this relation with H = Bt/(t + 1) and R = Φ′DΦ, which is invertible by Assumption

2.1(b), we obtain

∥∥∥∥∥
(

Bt

t + 1

)−1

− (Φ′DΦ)−1

∥∥∥∥∥ ≤ C1

∥∥∥∥ Bt

t + 1
− Φ′DΦ

∥∥∥∥∥∥(Φ′DΦ)−1
∥∥, ∀ t, (4.7)

where C1 is as in part (a). In view of Eq. (4.6) and the fact Φ′DΦ =
∑n

i=1 π(i)φ(i)φ(i)′, it follows

that ∥∥∥∥ Bt

t + 1
− Φ′DΦ

∥∥∥∥ ≤ δ‖I‖
t + 1

+

∥∥∥∥∥
n∑

i=1

κt(i)
t + 1

φ(i)φ(i)′ −
n∑

i=1

π(i)φ(i)φ(i)′
∥∥∥∥∥

≤ δ√
t + 1

+ max
l

‖φ(l)‖2

n∑
i=1

∣∣∣∣κt(i)
t + 1

− π(i)
∣∣∣∣ , ∀ t,

where we use 1/(t + 1) ≤ 1/
√

t + 1 for all t. By taking the expectation of both sides in the

preceding inequality, we obtain

E

[∥∥∥∥ Bt

t + 1
− Φ′DΦ

∥∥∥∥
]
≤ δ√

t + 1
+ max

l
‖φ(l)‖2

n∑
i=1

E

[∣∣∣∣κt(i)
t + 1

− π(i)
∣∣∣∣
]

, ∀ t. (4.8)

By Lemma 4.2(b), we have

E

[(
κt(i)
t + 1

− π(i)
)2

]
≤ C

t + 1
, ∀ t, ∀ i,

and by combining this relation with the inequality E[|x|] ≤
√

E[x2], we obtain

E

[∣∣∣∣κt(i)
t

− π(i)
∣∣∣∣
]
≤

√
C

t + 1
, ∀ t, ∀ i.

The preceding relation and Eq. (4.8) imply that

E

[∥∥∥∥ Bt

t + 1
− Φ′DΦ

∥∥∥∥
]
≤ δ√

t + 1
+ max

l
‖φ(l)‖2

n
√

C√
t + 1

, ∀ t,

which together with Eq. (4.7) yields

E

[∥∥∥∥∥
(

Bt

t + 1

)−1

− (Φ′DΦ)−1

∥∥∥∥∥
]
≤ C4√

t + 1
, ∀ t.

(c) For any m and k with m ≤ k, we have

E
[
αφ(ik+1)′ − φ(ik)′ | im

]
=

n∑
j=1

[P k−m]imj

(
E

[
αφ(ik+1)′ − φ(j)′ | ik = j

])

=
n∑

j=1

[P k−m]imj

(
α

n∑
l=1

[P]jlφ(l)′ − φ(j)′
)

,

18

where [P k−m]ij denotes the ijth component of the matrix P k−m. We further have

n∑
j=1

n∑
l=1

[P k−m]imj [P]jlφ(l)′ =
n∑

l=1

[P k+1−m]imlφ(l)′ = [P k+1−mΦ]im ,

n∑
j=1

[P k−m]imjφ(j)′ = [P k−mΦ]im ,

where [P k−mΦ]i denotes the ith row of the matrix P k−mΦ. Therefore,

E
[
αφ(ik+1)′ − φ(ik)′ | im

]
= [αP k+1−mΦ]im − [P k−mΦ]im =

[
(αP − I)P k−mΦ

]
im

,

implying that for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′ − φ(ik)′ | im

]
=

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)
[
(αP − I)P k−mΦ

]
im

.

(4.9)

By exchanging the order of summation, we see that for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)
[
(αP − I)P k−mΦ

]
im

=
t∑

m=0

φ(im)
t∑

k=m

[
(αP − I)(αλP)k−mΦ

]
im

.

Using

Vt =
t∑

m=0

φ(im)
∞∑

k=t+1

[
(αP − I)(αλP)k−mΦ

]
im

,

we further have for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)
[
(αP − I)P k−mΦ

]
im

=
t∑

m=0

φ(im)
∞∑

k=m

[
(αP − I)(αλP)k−mΦ

]
im

− Vt

=
t∑

m=0

φ(im)
∞∑

s=0

[
(αP − I)(αλP)sΦ

]
im

− Vt

=
n∑

i=1

κt(i)φ(i)
∞∑

s=0

[
(αP − I)(αλP)sΦ

]
i
− Vt.

This relation and Eq. (4.9) yield for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′ − φ(ik)′ | im

]
=

n∑
i=1

κt(i)φ(i)
∞∑

s=0

[
(αP − I)(αλP)sΦ

]
i
− Vt.

Similarly, for any m and k with m ≤ k, we have

E
[
g(ik, ik+1) | im

]
=

n∑
j=1

[P k−m]imjE
[
g(j, ik+1) | ik = j

]
=

n∑
j=1

[P k−m]imj ḡ(j) = [P k−mḡ](im),

19

where ḡ is a vector with components ḡ(i) =
∑n

i=1 pijg(i, j), and [P k−mḡ](i) denotes the ith

component of the vector P k−mḡ. Therefore, for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]
=

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)[P k−mḡ](im), (4.10)

and by exchanging the order of summation, we see that for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)[P k−mḡ](im) =
t∑

m=0

φ(im)
t∑

k=m

[
(αλP)k−mḡ

]
(im).

By using

vt =
t∑

m=0

φ(im)
∞∑

k=t+1

[
(αλP)k−mḡ

]
(im),

we obtain for all t,

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)[P k−mḡ](im) =
t∑

m=0

φ(im)
∞∑

k=m

[
(αλP)k−mḡ

]
(im) − vt

=
t∑

m=0

φ(im)
∞∑

s=0

[
(αλP)sḡ

]
(im) − vt

=
n∑

i=1

κt(i)φ(i)
∞∑

s=0

[
(αλP)sḡ

]
(i) − vt.

This relation and Eq. (4.10) show that

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]
=

n∑
i=1

κt(i)φ(i)
∞∑

s=0

[
(αλP)sḡ

]
(i) − vt, ∀ t.

(d) From the definition of At [cf. Eq. (2.8)], we have

E[At] = E

[
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)
(
αφ(ik+1)′ − φ(ik)′

)]
, ∀ t,

and by using the iterated expectation rule and part (c), we obtain

E[At] = E

[
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′ − φ(ik)′ | im

]]

=
n∑

i=1

E
[
κt(i)

]
φ(i)

∞∑
s=0

[
(αP − I)(αλP)sΦ

]
i
− E[Vt], ∀ t.

By writing the matrix A [cf. Eq. (2.10)] equivalently as

A =
n∑

i=1

π(i)φ(i)
∞∑

s=0

[
(αP − I)(αλP)sΦ

]
i
,

20

we have

E[At]
t + 1

− A =
n∑

i=1

(
E

[
κt(i)

]
t + 1

− π(i)

)
φ(i)

∞∑
s=0

[
(αP − I)(αλP)sΦ

]
i
− E[Vt]

t + 1
, ∀ t.

From the definition of Vt in part (c), we can see that ‖Vt‖ is bounded, while by Lemma 4.2(c),

we have that
∣∣E[κt(i)]/(t + 1)− π(i)

∣∣ is bounded by a constant multiple of 1/(t + 1) for all t and

i. Hence,
∥∥E[At]/(t + 1) − A

∥∥ is bounded by a constant multiple of 1/(t + 1) for all t.

Similarly, for bt as defined in Eq. (2.8), we have

E[bt] = E

[
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)g(ik, ik+1)

]
, ∀ t,

and by using the iterated expectation rule and part (c), we obtain

E[bt] = E

[
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]]

=
n∑

i=1

E
[
κt(i)

]
φ(i)

∞∑
s=0

[
(αλP)sḡ

]
(i) − E[vt], ∀ t.

Since we can write the vector b [cf. Eq. (2.10)] equivalently as

b =
n∑

i=1

π(i)φ(i)
∞∑

s=0

[
(αλP)sḡ

]
(i),

it follows that

E[bt]
t + 1

− b =
n∑

i=1

(
E

[
κt(i)

]
t + 1

− π(i)

)
φ(i)

∞∑
s=0

[
(αλP)sḡ

]
(i) − E[vt]

t + 1
, ∀ t.

Using the definition of vt in part (c), we can see that ‖vt‖ is bounded, while by Lemma 4.2(c), we

have that
∣∣E[κt(i)]/(t + 1) − π(i)

∣∣ is bounded by a constant multiple of 1/(t + 1) for all t and i.

Therefore,
∥∥E[bt]/(t + 1)− b

∥∥ is bounded by a constant multiple of 1/(t + 1) for all t. Q.E.D.

We are now ready to prove Proposition 2.1. In the proof, we use Proposition 4.1 and Lemma

4.3. We also use the negative definiteness of the matrix A [cf. Eq. (2.10)] , which was shown by

Tsitsiklis and Van Roy [TsV97].

Proof of Proposition 2.1: The idea of the proof is to write rt+1 = rt + γt(ht + et) with

appropriately chosen vectors ht and et, and to show that Proposition 4.1 applies for a suitable

choice of function f , which will imply the desired convergence of {rt}.

Let λ ∈ [0, 1] be arbitrary. We can rewrite the iteration rt+1 = rt + γtB
−1
t (Atrt + bt) as

rt+1 = rt + γt(ht + et),

21

where

ht = (Φ′DΦ)−1(Art + b),

et = B−1
t (Atrt + bt) − (Φ′DΦ)−1(Art + b),

with A and b as in Eq. (2.10). Let

f(r) =
1
2
(r − r∗)′Φ′DΦ(r − r∗), ∀ r, (4.11)

where r∗ is the solution of the system Ar∗ + b = 0. Then, clearly, f is nonnegative and has a

Lipschitz continuous gradient, so that assumption (i) of Proposition 4.1 is satisfied.

We next show that assumption (ii) of Proposition 4.1 holds. Let Ft = {r0, r1, . . . , rt} for

all t. Then, by using the definition of ht and the relation b = −Ar∗, we have

∇f(rt)′E[ht | Ft] = ∇f(rt)′(Φ′DΦ)−1A(rt − r∗), ∀ t.

By writing A = A(Φ′DΦ)−1Φ′DΦ and by using Φ′DΦ(rt − r∗) = ∇f(rt), we obtain

∇f(rt)′E[ht | Ft] = ∇f(rt)′(Φ′DΦ)−1A(Φ′DΦ)−1∇f(rt), ∀ t.

Since the matrix A is negative definite, the matrix (Φ′DΦ)−1A(Φ′DΦ)−1 is also negative definite,

thereby implying that for some positive scalar c1,

∇f(rt)′E[ht | Ft] ≤ −c1‖∇f(rt)‖2, ∀ t. (4.12)

We next consider
∥∥E[et | Ft]

∥∥. By writing

et = Θtrt + θt, ∀ t,

with

Θt = B−1
t At − (Φ′DΦ)−1A, θt = B−1

t bt − (Φ′DΦ)−1b, ∀ t,

we have

E[et | Ft] = E[Θt]rt + E[θt], ∀ t.

We will derive an estimate for
∥∥E[et | Ft]

∥∥, by estimating
∥∥E[Θt]

∥∥ and
∥∥E[θt]

∥∥.

We first consider Θt. For all t, the matrix Θt can be equivalently written as follows

Θt =
(

Bt

t + 1

)−1
At

t + 1
− (Φ′DΦ)−1A

=

((
Bt

t + 1

)−1

− (Φ′DΦ)−1

)
At

t + 1
+ (Φ′DΦ)−1

(
At

t + 1
− A

)
.

22

Therefore,

∥∥E[Θt]
∥∥ ≤

∥∥∥∥∥E

[((
Bt

t + 1

)−1

− (Φ′DΦ)−1

)
At

t + 1

]∥∥∥∥∥ +
∥∥(Φ′DΦ)−1

∥∥ ∥∥∥∥E[At]
t + 1

− A

∥∥∥∥ , ∀ t.

(4.13)

By using Lemma 4.3(a), we see that the first term on the right hand side of the preceding relation

is finite for all t. Thus, by using Jensen’s inequality (see, for example, Ash [Ash72], p. 287), and

Lemma 4.3 (a) and (b), we obtain for all t,∥∥∥∥∥E

[((
Bt

t + 1

)−1

− (Φ′DΦ)−1

)
At

t + 1

]∥∥∥∥∥ ≤ E

[∥∥∥∥∥
(

Bt

t + 1

)−1

− (Φ′DΦ)−1

∥∥∥∥∥
∥∥∥∥ At

t + 1

∥∥∥∥
]

≤ C4√
t + 1

C2, ∀ t.

Furthermore, by Lemma 4.3 (d), we have∥∥∥∥E[At]
t + 1

− A

∥∥∥∥ ≤ C5

t + 1
.

From the preceding two relations and Eq. (4.13), it follows that for some positive constant c̄1,

∥∥E[Θt]
∥∥ ≤ c̄1√

t + 1
, ∀ t.

Similar to the preceding analysis, where At and A are replaced respectively by bt and b, we can

show that for some positive constant c̄2,

∥∥E[θt]
∥∥ ≤ c̄2√

t + 1
, ∀ t.

In view of the relation E[et | Ft] = E[Θt]rt +E[θt], and the preceding estimates for
∥∥E[Θt]

∥∥
and

∥∥E[θt]
∥∥, it follows that

∥∥E[et | Ft]
∥∥ ≤ c̄1√

t + 1
‖rt‖ +

c̄2√
t + 1

, ∀ t.

Furthermore, we have

‖rt‖ ≤ ‖rt − r∗‖+ ‖r∗‖ ≤
∥∥(Φ′DΦ)−1

∥∥∥∥Φ′DΦ(rt − r∗)
∥∥ + ‖r∗‖ =

∥∥(Φ′DΦ)−1
∥∥ ‖∇f(rt)‖+ ‖r∗‖,

(4.14)

implying that for some positive constant c2,

∥∥E[et | Ft]
∥∥ ≤ c2√

t + 1

(
1 + ‖∇f(rt)‖

)
, ∀ t. (4.15)

Finally, we estimate E
[
‖ht + et‖2 | Ft

]
. From the definitions of ht and et, it follows that

ht + et = B−1
t (Atrt + bt) =

(
Bt

t + 1

)−1 (
At

t + 1
rt +

bt

t + 1

)
, ∀ t.

23

By using the boundedness of
(
Bt/(t + 1)

)−1, At/(t + 1), and bt/(t + 1) [cf. Lemma 4.3(a)], we

have that ‖ht + et‖ is bounded by a constant multiple of 1 + ‖rt‖ for all t. Then, by Eq. (4.14),

it can be seen that for a positive constant c3,

‖ht + et‖2 ≤ c3

(
1 + ‖∇f(rt)‖2

)
, ∀ t,

implying that

E
[
‖ht + et‖2 | Ft

]
= E

[
‖ht + et‖2 | rt

]
≤ c3

(
1 + ‖∇f(rt)‖2

)
, ∀ t. (4.16)

The relations (4.12), (4.15), and (4.16) show that assumption (ii) of Proposition 4.1 holds for the

function f as given in Eq. (4.11), the sequence {rt}, and the sequence {εt} given by εt = 1/
√

t + 1.

Furthermore, since
∑∞

t=0 γt = ∞ and
∑∞

t=0 γ2
t < ∞ (cf. Assumption 2.2), and since

∞∑
t=0

γtε2
t ≤ 1

2

∞∑
t=0

(
γ2

t + ε4
t

)
< ∞,

we see that γt and εt = 1/
√

t + 1 satisfy assumption (iii) of Proposition 4.1. Hence, all assump-

tions of Proposition 4.1 are satisfied, and therefore ∇f(rt) → 0 with probability 1, thus implying

that rt → r∗ with probability 1. Q.E.D.

5. 5. CONVERGENCE PROOF FOR THE LSTD(λ) METHOD

In this section, we prove Proposition 3.1. As discussed in Section 3, we have

rt = −
(

At

t + 1

)−1
bt

t + 1
, ∀ t.

The proof idea is to show, by using an appropriate law of large numbers, that the matrix

At/(t + 1) and the vector bt/(t + 1) converge with probability 1 to the matrix A and the vector

b [cf. Eq. (2.10)], respectively. The following is a law of large numbers that is suitable for our

purposes (see Parzen [Par62], Theorem 2B, p. 420).

Theorem 5.1: (Law of Large Numbers) Let {Xk} be a sequence of jointly distributed random

variables with zero mean and uniformly bounded variances, and let Zt be given by

Zt =
1

t + 1

t∑
k=0

Xk, ∀ t.

24

If there exist positive scalars C̄ and q such that

∣∣E[XtZt]
∣∣ ≤ C̄

(t + 1)q
, ∀ t,

then Zt converges to zero with probability 1.

We will apply this law (componentwise) to some appropriately chosen sequences of random

matrices Yk and vectors xk. In particular, we define

Yk =
k∑

m=0

(αλ)k−mUmk, ∀ k, (5.1)

Umk = φ(im)
(
αφ(ik+1)′ − φ(ik)′ − E

[
αφ(ik+1)′ − φ(ik)′ | im

])
, ∀ m, k, m ≤ k, (5.2)

xk =
k∑

m=0

(αλ)k−mwmk, ∀ k, (5.3)

wmk = φ(im)
(
g(ik, ik+1) − E

[
g(ik, ik+1) | im

])
, ∀ m, k, m ≤ k. (5.4)

The crucial property of the matrix sequence {Yk} and the vector sequence {xk} is that their

corresponding averaged sums converge to 0, with probability 1, as shown in the following lemma.

Lemma 5.1: For the sequences {Yk} and {xk} defined by Eqs. (5.1) and (5.3), we have, with

probability 1,

lim
t→∞

1
t + 1

t∑
k=0

Yk = 0, lim
t→∞

1
t + 1

t∑
k=0

xk = 0.

Proof: The idea of the proof is to apply the Law of Large Numbers to each component sequence

of {Yk} and {xk}. We first consider the sequence {Yk}. In what follows, we view a matrix as a

“big” vector (i.e., a vector obtained from the given matrix by placing its columns into a single

big column). Accordingly, we will use the Frobenius matrix norm, i.e., ‖H‖F =
√∑

ν,τ h2
ντ for a

matrix H with components hντ .

Because E[Umk] = 0 for all m and k [cf. Eq. (5.2)], it follows by the definition of Yk [cf. Eq.

(5.1)] that

E[Yk] = 0, ∀ k. (5.5)

Furthermore, since
{
φ(ik)

}
is bounded, it follows that for some positive scalar C̃,

‖Umk‖F ≤ C̃, ∀ m, k, m ≤ k, (5.6)

implying by the definition of Yk that

‖Yk‖F ≤ C̃

1 − αλ
, ∀ k. (5.7)

25

We next define

St =
1

t + 1

t∑
k=0

Yk, ∀ t,

for which we want to show that, for some positive scalar C̄, there holds

∥∥E[YtS′
t]
∥∥

F
≤ C̄

t + 1
, ∀ t.

By using the definition of St and boundedness of {Yk}, we obtain for all t ≥ 2,

∥∥E[YtS′
t]
∥∥

F
≤ 1

t + 1

t∑
k=0

∥∥E[YtY ′
k]

∥∥
F
≤ 1

t + 1

t−2∑
k=0

∥∥E[YtY ′
k]

∥∥
F

+
C̃1

t + 1
, (5.8)

where C̃1 is some positive scalar. Furthermore, by the definition of Yk [cf. Eq. (5.1)], we have for

all t ≥ 2 and k ≤ t − 2,

E[YtY ′
k] = E

[
t∑

s=0

(αλ)t−sUst

k∑
m=0

(αλ)k−mU ′
mk

]

= E

[
k+1∑
s=0

(αλ)t−sUst

k∑
m=0

(αλ)k−mU ′
mk

]
+ E

[
t∑

s=k+2

(αλ)t−sUst

k∑
m=0

(αλ)k−mU ′
mk

]
.

Since
∑t

s=k+2(αλ)t−sUst is a function of ik+2, . . . , it+1 and
∑k

m=0(αλ)k−mUmk is a function of

i0, . . . , ik+1, it follows that

E

[
t∑

s=k+2

(αλ)t−sUst

k∑
m=0

(αλ)k−mU ′
mk

]
= 0,

implying that for all t ≥ 2 and k ≤ t − 2,

E[YtY ′
k] =

k+1∑
s=0

(αλ)t−s

k∑
m=0

(αλ)k−mE[UstU ′
mk].

Using the boundedness of {Umk} [cf. Eq. (5.6)], it can be seen that
∥∥E[UstU ′

mk]
∥∥

F
is bounded

by some positive scalar C̃2, so that for all t ≥ 2 and k ≤ t − 2,

∥∥E[YtY ′
k]

∥∥
F
≤

k+1∑
s=0

(αλ)t−s

k∑
m=0

(αλ)k−mC̃2 ≤ C̃2

1 − αλ

k+1∑
s=0

(αλ)t−s ≤ C̃2

(1 − αλ)2
(αλ)t−k−1.

By substituting the preceding relation in Eq. (5.8), we obtain

∥∥E[YtS′
t]
∥∥

F
≤ 1

t + 1
C̃2

(1 − αλ)2

t−2∑
k=0

(αλ)t−k−1 +
C̃1

t + 1

≤ 1
t + 1

C̃2αλ

(1 − αλ)3
+

C̃1

t + 1
, ∀ t ≥ 2,

26

thus implying that for some positive scalar C̄, we have

∥∥E[YtS′
t]
∥∥

F
≤ C̄

t + 1
, ∀ t. (5.9)

We now fix any ν, τ ∈ {1, . . . , K}, and we consider the scalar sequence
{
[Yk]ντ

}
, where

[Y]ντ denotes the ντth component of a matrix Y . Since E[Yk] = 0 for all k [cf. Eq. (5.5)], it

follows that
{
[Yk]ντ

}
is a zero mean scalar sequence. Furthermore, in view of the boundedness

of {Yk} [cf. Eq. (5.7)], we have that
{
[Yk]ντ

}
is bounded, implying that

{
[Yk]ντ

}
is a sequence

of random variables with uniformly bounded variances. Finally, by our convention of viewing a

matrix as a big column vector, the relation (5.9) is equivalent to

√∑
κ,ρ

∑
s,l

(
E

[
[Yt]κρ[St]sl

])2

≤ C̄

t + 1
, ∀ t,

which implies that ∣∣∣E[
[Yt]ντ [St]ντ

]∣∣∣ ≤ C̄

t + 1
, ∀ t.

Thus, by the Law of Large Numbers (cf. Theorem 5.1), we have [St]ντ → 0 with probability 1.

Since ν, τ ∈ {1, . . . , K} are arbitrary, it follows that St → 0 with probability 1, thus showing that

with probability 1,

lim
t→∞

1
t + 1

t∑
k=0

Yk = 0.

A nearly identical proof, with xk in place of Yk, shows that with probability 1,

lim
t→∞

1
t + 1

t∑
k=0

xk = 0.

Q.E.D.

We now prove Proposition 3.1.

Proof of Proposition 3.1: We will show that At/(t + 1) → A and bt/(t + 1) → b with

probability 1. From Eq. (2.8), we have

At =
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)
(
αφ(ik+1)′ − φ(ik)′

)
, ∀ t.

In view of the definitions of Yk and Umk [cf. Eqs. (5.1) and (5.2)], it follows that

At =
t∑

k=0

Yk +
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′ − φ(ik)′ | im

]
.

27

By Lemma 5.1, we have that
(∑t

k=0 Yk

)
/(t + 1) → 0 with probability 1, implying that

lim
t→∞

At

t + 1
= lim

t→∞
1

t + 1

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′ − φ(ik)′ | im

]
, (5.10)

with probability 1, provided that the limit on the right-hand side of this relation exists, which

we show next by actually computing that limit.

By Lemma 4.3(c), for all t, we have

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
αφ(ik+1)′ − φ(ik)′ | im

]
=

n∑
i=1

κt(i)φ(i)
∞∑

s=0

[
(αP − I)(αλP)sΦ

]
i
− Vt,

(5.11)

with

Vt =
t∑

m=0

φ(im)
∞∑

k=t+1

[
(αP − I)(αλP)k−mΦ

]
im

, ∀ t.

By Lemma 4.2(a), we have that κt(i)/(t + 1) → π(i) for all i, with probability 1. Moreover,

from the definition of Vt, we can see that Vt is bounded, thus implying that Vt/(t + 1) → 0 with

probability 1. From this, together with Eqs. (5.10) and (5.11), it follows that with probability 1,

lim
t→∞

At

t + 1
=

n∑
i=1

π(i)φ(i)
∞∑

s=0

[
(αP − I)(αλP)sΦ

]
i
= Φ′D

∞∑
s=0

(αP − I)(αλP)sΦ = A.

Similarly, from Eq. (2.9) we have

bt =
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)g(ik, ik+1), ∀ t.

Using the definitions of xk and wmk [cf. Eqs. (5.3) and (5.4)], we can write

bt =
t∑

k=0

xk +
t∑

k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]
.

By Lemma 5.1,
(∑t

k=0 xk

)
/(t + 1) → 0 with probability 1, implying that with probability 1,

lim
t→∞

bt

t + 1
= lim

t→∞
1

t + 1

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]
. (5.12)

By Lemma 4.3(c), we have

t∑
k=0

k∑
m=0

(αλ)k−mφ(im)E
[
g(ik, ik+1) | im

]
=

n∑
i=1

κt(i)φ(i)
∞∑

s=0

[
(αλP)sḡ](i) − vt, ∀ t, (5.13)

where

vt =
t∑

m=0

φ(im)
∞∑

k=t+1

[
(αλP)k−mḡ

]
(im), ∀ t.

28

Furthermore, by Lemma 4.2(a), κt(i)/(t + 1) → π(i) for all i, with probability 1. Using the

definition of vt, we can see that vt is bounded, so that vt/(t + 1) → 0 with probability 1. From

this and Eqs. (5.12) and (5.13), we obtain

lim
t→∞

bt

t + 1
=

n∑
i=1

π(i)φ(i)
∞∑

s=0

[
(αλP)sḡ](i) = Φ′D

∞∑
s=0

(αλP)sḡ = b,

with probability 1. Q.E.D.

If we use the initial matrix

A0 = δI + φ(i0)
(
αφ(i1) + φ(i0)

)
,

for some positive scalar δ, then in the preceding analysis At is replaced by δI + At, so clearly we

have (δI + At)/(t + 1) → A. Thus, the method converges to r∗ in the case where δ > 0 as well.

6. REFERENCE

[Ash72] Ash, R. B., Real Analysis and Probability, Academic Press Inc., New York, 1972.

[Ber95] Bertsekas, D. P., “A Counterexample to Temporal Differences Learning,” Neural Com-

putation, Vol. 7, 1995, pp. 270–279.

[BeI96] Bertsekas, D. P., and Ioffe, S., “Temporal Differences-Based Policy Iteration and Applica-

tions in Neuro-Dynamic Programming,” Lab. for Info. and Decision Systems Report LIDS-P-2349,

MIT, Cambridge, MA, 1996.

[Ber99] Bertsekas, D. P., Nonlinear Programming, 2nd edition, Athena Scientific, Belmont, MA,

1999.

[Ber01] Bertsekas, D. P., Dynamic Programming and Optimal Control, 2nd edition, Athena

Scientific, Belmont, MA, 2001.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., Neuro-Dynamic Programming, Athena Scientific,

Belmont, MA, 1996.

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., “Gradient Convergence in Gradient Methods with

Errors,” SIAM J. Optim., 10, 2000, pp. 627–642.

[Boy02] Boyan, J. A., “Technical Update: Least-Squares Temporal Difference Learning,” to ap-

pear in Machine Learning, 49, 2002.

29

[BrB96] Bradtke, S. J., and Barto, A. G., “Linear Least-Squares Algorithms for Temporal Dif-

ference Learning,” Machine Learning, 22, 1996, pp. 33–57.

[DaS94] Dayan, P., and Sejnowski, T. J., “TD(λ) Converges with Probability 1,” Machine Learn-

ing, 14, 1994, pp. 295–301.

[Gal95] Gallager, R. G., Discrete Stochastic Processes, Kluwer Academic Publishers, Boston,

MA, 1995.

[GLH94] Gurvits, L., Lin, L., and Hanson, S. J., “Incremental Learning of Evaluation Functions

for Absorbing Markov Chains: New Methods and Theorems,” Working Paper, Siemens Corporate

Research, Princeton, NJ, 1994.

[GoV96] Golub, G. H., and Van Loan, C. F., Matrix Computations, 3rd edition, Johns Hopkins

University Press, Baltimore, MD, 1996.

[JJS94] Jaakkola, T., Jordan, M. I., and Singh S. P., “On the Convergence of Stochastic Iterative

Dynamic Programming Algorithms,” Neural Computation, 6, 1994, pp. 1185–1201.

[KeS67] Kemeny, J. G., and Snell, J. L., Finite Markov Chains, Van Nostrand Company, New

York, 1967.

[Nev75] Neveu, J., Discrete Parameter Martingales, North-Holland, Amsterdam, 1975.

[Par62] Parzen, E., Modern Probability Theory and Its Applications, John Wiley Inc., New York,

1962.

[Put94] Puterman, M. L., Markovian Decision Problems, John Wiley Inc., New York, 1994.

[Sut88] Sutton, R. S., “Learning to Predict by the Methods of Temporal Differences,” Machine

Learning, 3, 1988, pp. 9–44.

[Tad01] Tadić, V., “On the Convergence of Temporal-Difference Learning with Linear Function

Approximation,” Machine Learning, 42, 2001, pp. 241–267.

[TsV97] Tsitsiklis, J. N., and Van Roy, B., “An Analysis of Temporal-Difference Learning with

Function Approximation,” IEEE Transactions on Automatic Control, 42, 1997, pp. 674–690.

30

