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PARTIAL PROXIMAL MINIMIZATION ALGORITHMS FOR
CONVEX PROGRAMMING*

DIMITRI P. BERTSEKAS AND PAUL TSENG$

Abstract. An extension of the proximal minimization algorithm is considered where only some
of the minimization variables appear in the quadratic proximal term. The resulting iterates are
interpreted in terms of the iterates of the standard algorithm, and a uniform descent property is
shown that holds independently of the proximal terms used. This property is used to give simple
convergence proofs of parallel algorithms where multiple processors simultaneously execute proximal
iterations using different partial proximal terms. It is also shown that partial proximal minimization
algorithms are dual to multiplier methods with partial elimination of constraints, and a relation is
established between parallel proximal minimization algorithms and parallel constraint distribution
algorithms.
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1. Introduction. Let us consider the proximal minimization algorithm defined

(1) xk+l argemin f(x) + -cllX Xk[12

Here c is a positive constant, I1" II denotes the standard Euclidean norm on n, and
f is a closed proper convex function in Rn [RocT0], that is, an extended-real-valued,
lower semicontinuous convex function on n, which is not identically +cx. It is well
known that, starting from an arbitrary x E Rn, the sequence {xk} converges to a
minimizer of f if there exists at least one minimizer and diverges otherwise.

The algorithm, originally proposed by Martinet [Mar70], [Mar72] and further re-
fined and extended by Rockafellar [Roc76], is useful for "regularizing" the minimiza-
tion of f through the addition of the strongly convex term [Ix xk []2. The algorithm
is also useful in a dual context, where f is the dual function of a constrained non-
linear programming problem and x is a vector of Lagrange multipliers. Then, by
using the Fenchel duality theorem, the proximal iteration (1) can be interpreted as
an augmented Lagrangian iteration, that is, a minimization of a quadratic augmented
Lagrangian function associated with the primal problem followed by a Lagrange mul-
tiplier update. This interpretation, first given by Rockafellar [Roc73], can be found in
several sources, e.g., [Ber82], [BeW89].

In this paper we focus on a variation where the vector x is. partitioned in two
subvectors xl and x2
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with xl E nl, X2 E n2, nl / n2 --n, and the proximal term IIx- xkll 2 is replaced
by the portion involving only the subvector x, that is,

{ 1 }(2) (Xlk+l x2k+) e arg min f(xl,x2) + IlXl Xklll 2(,2)e

We call this the partial proximal minimization algorithm, but hasten to observe that
it can be viewed as a special case of the ordinary algorithm (1) with f(x,x2) replaced
by

fl(Xl)- min f(xl,x2),

assuming that the minimum of f above is attained for all x2 n2. Thus, the sequence
{x} is in effect generated by applying the ordinary algorithm to the function f, while

x2k is obtained by minimizing f(xk, x2) with respect to x2, after xk has been computed.
It follows that the convergence properties of the partial algorithm can be inferred from
those of the ordinary one; in fact this has been demonstrated by Ha [Ha90]. The partial
algorithm, however, allows a choice between several partial proximal terms, and also
allows the simultaneous use of several different proximal terms in a parallel computing
context. When such possibilities are considered, the theory of the ordinary algorithm
is not directly applicable and a new analysis is needed. Our main purpose in this
paper is to provide such an analysis.

Our interest in the partial algorithm stems from recent work by Ferris and Man-
gasarian [FeM91] and Ferris [Fer91a] on parallel constraint distribution. Parallel con-
straint distribution is an augmented Lagrangian type algorithm for convex program-
ming whereby at each iteration the constraints are partitioned into subsets and, for
each subset, an augmented Lagrangian subproblem in which constraints not of the
subset appear in the augmented Lagrangian, is solved; the multipliers obtained from
each of the subproblems are then combined in some simple fashion to yield a new
set of multipliers. This algorithm has the advantage that each subproblem has fewer
constraints than the original problem and the subproblems can be solved in parallel.
Numerical test results reported in [FeM91] and [Fer91a,b] indicate that the algorithm
is quite promising for practical computation, especially when implemented in parallel.
One of our purposes in this paper is to show that parallel constraint distribution is
closely related to proximal minimization and particularly to a parallel implementation
of the partial proximal iteration (2) (see 5).

A central observation of the present paper is that the partial proximal iteration

(2) can be decomposed into the following sequence of two steps as shown in Fig. 1.

(a) A (block) coordinate descent iteration for the function Fc defined by

{ 1 }Fc(x) min f(y) + IlY x]l 2
y C

This iteration is done with respect to the second coordinate subvector x2 of the vector
x (xl,x2); it starts at the current vector (x,x), and yields a vector (x,x2+).

(b) An iteration of the ordinary proximal algorithm starting at the vector
(x, x2k+) obtained from the preceding coordinate descent iteration; this can be inter-
preted as a gradient iteration with stepsize equal to c for minimizing the same function
F (see, e.g., [BETS9, p. 234]).

By contrast, the ordinary proximal iteration performs only step (b) above. Thus
the partial iteration differs from the ordinary one only in that it executes an extra
coordinate descent step prior to each ordinary proximal iteration. Note here that Fc
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Ordinary Proximal Step

Contours

Partial Proximal Step

of the function

F(Y) minx {f(x) +ccllX yllZ}
Yl

FIG. 1. An illustration of the ordinary and the partial proximal iterations starting at the vector
xk (xk,xk2). Both iterations involve a gradient step on the function Fc with stepsize c. However,
the partial proximal iteration precedes the gradient step with a coordinate descent step along the
subvector x2.

is continuously differentiable and has the same minimizers and minimum value as f;
see e.g., [BET89, 3.4.3]. Thus steps (a) and (b) above are both aimed at approaching
an optimal solution.

A consequence of the preceding observation is that the value of the function Fc
provides a uniform criterion of merit, which is improved by all partial proximal itera-
tions, independently of the partition (xl, x2). We use this fact in 3 to provide a short
convergence proof for a parallel algorithm that involves execution of different partial
proximal iterations by different processors. In 4, we derive the rate of convergence
of this algorithm. In 5, we show that partial proximal minimization algorithms are
intimately related to augmented Lagrangian algorithms with partial elimination of
constraints. When specialized within the augmented Lagrangian context, the parallel
algorithm of 3 becomes similar to the parallel constraint distribution algorithms of
Ferris and Mangasarian [FeM91], [Fer91a]; however, our convergence proofs are less
complicated than those in [FeM91] and [Fer91a], and require less restrictive assump-
tions. In particular, the convergence analysis of Ferris and Mangasarian [FeM91],
[Fer91a] assumes that the cost function is positive definite quadratic and the con-
straints are linear, while we assume general convex cost and constraint functions.
Most of our analysis carries through to partial proximal minimization algorithms with
nonquadratic proximal terms [Ber82], [CeZ92], [ChW93], lEek93], [KoB76], [GoW79],
[Luq84], [TsB93]. We thus take these more general methods as our starting point and
specialize our results to the case of quadratic proximal terms whenever the results for
this case are stronger. On the other hand, our analysis assumes that the proximal
term contains the origin in its interior, and thus does not apply to methods using
logarithmic/entropy proximal terms [Ber82], [CeZ92], [ChT93], lEek93], and the cor-
responding augmented Lagrangian methods that use the exponential penalty function
[KoB72], [Ber82], [WsS93].

2. A uniform descent property. In this section we introduce the notion of
partial proximal minimization and analyze its descent properties. These descent prop-
erties will be used later to establish the convergence of algorithms based on successive
applications of partial proximal minimization.

We first define partial proximal minimization in the general context of non-
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quadratic proximal terms. Consider the class of strictly convex, continuously dif-
ferentiable functions - such that

(0) O, re(O) O, lim re(t) -, lim re(t) .
This class was introduced in [KoB76] within the dual context of nonquadratic aug-
mented Lagrangian methods, together with the generalization of the proximal min-
imization algorithm obtained by replacing "1" 12/2" with "(.)." For an extensive
discussion of the subject, see [Ber82, Chap. 5]. A prominent example in the class is
the power function: (t) (1//)[tl with /> 1. For /= 2 we obtain the quadratic
function used earlier.

For each c > 0, let Fc be the real-valued convex function on Nn defined by

(3) Fc(x) ye=min {f(y)+ (y-x))
where (I) :Nn _, N is the function

n

(t,,...
i--1

We remark that we can have different ’s for different coordinate indices but, for
simplicity, we do not consider this more general case. We also note that the gradient
mapping V(I) Nn _, Nn has an inverse V(I)-1 Nn

_
Nn because of the nature

of the defining properties of the function (I). We have the following proposition that
formalizes the interpretation of the partial proximal iteration as a block coordinate
descent step followed by an ordinary proximal step (compare with Fig. 1).

PROPOSITION 1. Let c > 0 and a subset I of the index set {1,...,n} be given.
For any x E Nn, consider a vector x satisfying

{ 1 }(4) x’eargmin f(Y)+-Z(Yi-Xi)yE C
iEI

and let x’ be the vector with components

. xi I,
[ v ix

Then

x’ x" + V,- (-cVF(x")) arg min y(y) + -(y x")

(7) x" arg min Fc(y),

where Fc Nn __, is the convex function defined by (3). Conversely if x’ and x"
satisfy (6) and (7), then they also satisfy (4) and (5).

Proof. Fix any x Nn. Let x be a vector satisfying (4) and let x" be given by
(5). We will show that (6) and (7) hold. Indeed, from the definition of x", the vector
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(Yi xi) but also iz x ), implyingx’ minimizes not only f(y)
(y-xPt). This proves the second equalitythat x minimizes the sum, which is f(y)

in (6). The first equality in (6) is due to the invertibility of V (since (.) is strictly
convex) and the following consequence of Proposition 5.5(c) in [Ber82]"

(Actually, Proposition 5.5(c) of Bertsekas [Ber82] addresses the dual context of non-
quadratic augmented Lagrangian methods, and thus considers (dual) functions f with
f(x) oo for all x outside the nonnegative orthant. The proof given in [Ber82],
however, applies verbatim to the more general convex function f considered here.)

To prove (7), note that for all vectors z E n with zi xi for all i E I, we have

where the last inequality follows from the definitions of x" and Fc. This proves (7).
Conversely, suppose that x’ and x" satisfy (6) and (7). We will show that (4) and

" for all i I, and that OFc(x")/Oxi 0 for(5) hold. Indeed, (7) implies that x x
" for all I. Thus (5) holds. To show (4) weall I, so from (6) we have x x

argue by contradiction. Suppose that for some z we have

1 1
f(z) q- (zi xi) < f(x’) + (x xi).

c c
iI iI

Then the directional derivative of the function y f(Y)+-i eI(y-x) at x’ along
the direction z- x is negative. This directional derivative is equal to the directionM
derivative of the function y - f(y) + -x(Y x) + tx(Y-x) at x along
the direction z- x. The latter directional derivative, however, is nonnegative in view
of (5) and (6), arriving at a contradiction. This proves (4). D

By using Proposition 1 and the special structure of Fc, we obtain the following
key descent property for Fc under the partial proximal iteration. This property will
be used in the subsequent convergence analysis.

LEMMA 1. Let c > 0 and a subset I of {1,..., n} be given. Let Fc n be
the continuously differentiable convex function given by (3).

(a) For any x e n, the vector x’ given by (4) satisfies

<_
c

where x is the vector given by (5).
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(b) Let (.) 1/21" 12 (so that (.) is the quadratic function 1/2]]. l]2). Thn, fo
any x E n, the vector x given by (4) satisfies

F(’) F() <_ -IIVF()I
Proof. (a). Fix any x E n and let x’ and x" be given by (4) and (5), respectively.

By Proposition 1, x and x" satisfy (6), and so the definition of Fc yields

.(,,) f(x,) + (x,
It is also easily seen from the definition of Fc that Fc(x’) < f(x’) which, together with
the above equality, implies the result.

(b) We first establish some basic inequalities satisfied by the function Fc and its
gradient. For any x, y n, let

{ 1
arg min f(z) + IIz-ll ( 1

9=arge-min f(z)+cc[Iz-y112

Then,

(x- c) e
c

and, moreover, by (6) and (I)(.)= 1/211" 2,

x c cVF(z), y f cVF(y).

Combining these three relations and using the convexity of f, we obtain

(8)

F(U) F() (VF(), U )
1

2
1 1

f(9) / 119 yl f() tl xll 2 -<x , y x)
1
(x x, y S) + 119 Y ( x)l

2c

1(-(1 v , e .
Let us now fix x n and let x’ and x" be given by (4) and (5), respectively.

By Proposition 1, x’ and x" satisfy (6), so the assumption O(.) 1/21]" ]]2 implies
x’ x" cVFc(x’). Then part (a) yields

1 c
(x" 12.F(’) F(z") <_ -11’- "11 -711VF )1

Relation (7) implies (VFc(x’), x’- x) 0 so, by invoking (8), we also obtain

c
711VF(x) VF(x")ll < F(x)- F(x,,).

Adding the above two relations and rearranging terms yields

c (llVG(x)- VG(x")ll + IIVG(x")l[) < F(x)- F(x’),
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so, by using the following easily verifiable inequality

the result follows. [:]

The following proposition provides some additional inequalities that compare the
iterates of the ordinary and the partial proximal algorithms and that are useful for
the convergence analysis of the latter (see the proof of Proposition 2).

LEMMA 2. Let c > 0 and a subset I of {1,..., n} be given. For any x E n, the
vector x given by (4) satisfies

f(x’)

_
Fc(x)

_
f(x),

where Fc --, is the convex function defined by (3).
Proof. We have

Since the expression in the right-hand side of the second inequality is equal to Fc(x),
the result follows.

Note an important consequence of Lemma 2: If f is bounded below and if {xk}
is a sequence generated by the partial proximal minimization iteration (2), then both
{f(xk)} and {Fc(xk)} converge monotonically to the same value regardless of the
particular partition used. It is possible to change the partition from one iteration to
the next if this can improve convergence. Furthermore, if (I) is a quadratic function, we
have from Lemma l(b) that VFc(xk) -- O, so that all cluster points of {xk } minimize
Fc and hence also f. This result is extended in the next section when we consider
parallel versions of the partial proximal minimization algorithm.

3. Parallel algorithms. We now consider the following extension of the partial
proximal minimization algorithm. At the start of the kth iteration we have the current
iterate xk. We construct all distinct partitions of xk into two subvectors, and we
execute the partial proximal iteration corresponding to each partition and to a chosen
scalar ck. The next iterate xk+l is an arbitrary convex combination of the different
vectors thus obtained. We describe below this algorithm, which we call the parallel
partial proximal minimization algorithm (parallel PPM algorithm).

Let C denote the set of all subsets of (1,...,n}. Beginning with an arbitrary
x0 E n, we generate a sequence xk) as follows: Given xk, we choose a scalar ck > 0
and, for every subset I C, let &/k be given by

(9) &/k e arg min y(y) + (y,
YEn - iEI
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we define xk+z to be an arbitrary convex combination of the vectors &/k; that is,

0iXI

where a/k, I E (, are any scalars satisfying

(11) Ec/k=l’ c/k>_0 VIEC.

(Note that an ix/ may be zero, so we need only to compute the vectors / with a/ > 0.)
For the parallel PPM algorithm to be well defined, we assume that the minimum

in each partial proximal iteration (cf. (9)) is attained. Note that the multiple par-
tial proximal iterations involved in (10)-(11) can be executed in parallel by multiple
processors. The next proposition shows the validity of the algorithm by combining
the inequalities of Lemmas 1 and 2, and by using a modification of the .convergence
arguments for the ordinary proximal minimization algorithm (see [BET89, p. 240]).

PROPOSITION 2. Let {xk} be a sequence generated by the parallel PPM algorithm
with {ck} monotonically nondecreasing.

(a) /f the set of minimizers off is nonempty and compact, then {zk} is bounded,
each of its cluster points is a minimizer of f, and limk--,o f(xk) minx f(z).

(b) Assume that f is bounded below and let (.) 1/21" 12 (so (.) is the quadratic
function 1/211" 112) Both {f(xk)} and {Fck(xk)} are monotonically nonincreasing and
limk_, VFck(X) O, where Fc n __, is the function given by (3).

Proof. (a) For each k and I C, we have by applying Lemma 2 with x xk,
c ck, and x &/k that

f(c) <_ Fc(xk) <_ f(xk).
This together with (10)-(11) and the convexity of f yields

f(xk+z)

_
f(kI)

_
f(xk).

Thus, {f(xk) } is monotonically nonincreasing.
For each k and I , since &k is given by (9), we have from Proposition 1 that

(12) 5k arg yet-min {f(y)+-((y--2/)}
where is the vector in n whose ith component is the ith component of xk if I
and, otherwise, is the ith component of k. We also have from (7) that, for each k
and I (:,

Fc(&) <_ Fck(xk),
and from Lemma l(a) that

1 (/k 2/k)

Combining the above two relations and using (10)-(11) and the convexity of Fck yields

1<_
IC
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Since Fc+,(xk+l) _< Fc(x+) (cf. ck+ >_ ck and (3)), this shows that {Fc(xk)} is
monotonically nonincreasing and that

(13) lim
1(-1=0.

Also, the compactness of the set of minimizers of f implies that all the level sets of f
are compact [RocT0, Cor. 8.7.1] and that, for k >_ 1 and I e , xk and &/k are contained
in the level set {x If(x) <_ f(x)} (cf. Lemma 2). It follows that the sequences (xk}
and (&} are bounded. Since each component of &/ is either a component of xk or of
/, it follows that the sequence (&} is also bounded.

Fix any minimizer x* of f. Using (12) and the convexity of f, we have for each
E (0, 1) and I E C that

1 1
f() + ,I,( ) < f(x* + (1 )) + -,I,(: + (x* ))

1

Rearranging terms and dividing both sides by gives

f(/k) <_ f(x,)+ c ( +(* ))

which together with (10)-(11) and the convexity of f yields

1
f(xk+l) <_ .f(x*) + - ,(c + (x* ))

1_< S(x*) + [( ) +(v( + (x, 1), x, >],

where the second inequality follows from the convexity of (I). By taking the limit
supremum as k - 0 and using (13), we obtain

limsup f(xk+l) < f(x*) + limsup
1 (v( +(, )),,

Finally, we take the limit of both sides as 0. Since the sequences {&/k }, {&k }, and
{1/ck} are all bounded, we can pass this limit through the limit supremum on the
right-hand side to obtain

(14)
1

lim sup f(x+) < f(x*) + lim sup a/(VO(&/ /), x* &/).
k--*(x) k--*o IC

Assume first that ck -- oo. Since both sequences {&} and {&/k} are bounded, it
follows from (14) that limsuPkoof(xk+l) <_ f(x*). Since x* minimizes f, {f(xk)}
must converge to f(x*).

Assume now that ck --, E < oc. Let L: be an infinite subsequence of the set of
positive integers such that for every I (3, {cz/k}keC converges (to either a positive
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number or zero) with limk-o, kec a/ > 0 for at least one I E C; since C is a fi-
nite set, such a subsequence exists. From (13) we see that for all I E C such that
limk--.o, ke: ak > 0, we have

lim (i)(&k &/k) 0

and hence also limk-,o, ketc {&/k &} 0, implying that

lim V(I)(& &k) 0.
k--.x), keK:

Using the above equation in (14), we obtain limsupk_o keg f(xk+l) <-- f(x*). Since
x* minimizes f, {f(xk)}keC must converge to f(x*). Since {f(xk)} is monotonically
nonincreasing, it too must converge to f(x*).

(b) Fix any k. For each I C, we have upon applying Lemma l(b) with x xk,
c ck, and x equal to the vector &/k given by (9) that

Combining this with (10)-(11) and the convexity of Fc, we obtain

Since Fc+l (xk+l) <_ Fc (xk+) (cf. ck+ >_ ck and (3)), and Fc is bounded below by
infxe f(x) for every k, the preceding relation implies that (Fc (xk)} is monotonically
nonincreasing and that

lim ckllVFc:(xk)ll2 O.

Since {ck} is bounded below by co > 0, this proves that limk-.o VFc(xk) -O.
For each I C, we have upon applying Lemma 2 with x xk, c- ck, and (cf.

(9)) x’--cki that
f(Sc) <_ Fc,o(xk) <_

This together with (10)-(11) and the convexity of f yields

f(xk+)

_
zklf(ckI)

_
Fc(xk)

_
f(xk).

Thus, (f(xk)} is monotonically nonincreasing.
It can be seen from the above proof that the monotonicity property of (ck} is

not crucial for Proposition 2 to hold. Instead, it suffices that (Fc(xk)} is maintained
nonincreasing and (ck } is bounded away from zero.

The parallel PPM algorithm can be generalized and implemented in a flexible and
asynchronous manner. One can envision multiple processors executing asynchronously
different partial proximal iterations starting from the vector that is currently best in
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terms of some uniform merit criterion, such as the value of f or Ft. The results
from several processors can be combined via a convex combination, but the convex
combination should be accepted only if the uniform merit criterion is improved.

It should be noted that the above convergence results for the parallel PPM al-
gorithm are considerably weaker than those available for the proximal minimization
algorithm (see [BET89, 3.4.3], [ChT93], [EcB92], [Fer91b], [GoT79], [Gul91], [Luq86],
[MarT0], [Roc76]). One difficulty is that the extra coordinate descent step of (7) de-
stroys certain monotonicity properties of the iterates that are essential to proving the
strong convergence properties of the proximal minimization algorithm.

Finally, we note that the choice of the coefficients a/, I E can have a significant
effect on the convergence rate of the parallel PPM algorithm. To illustrate, consider
applying the parallel PPM algorithm with (.) 1/21.12 to minimize the two-dimensional
convex differentiable function

1
(max(O,x)2 max(O, )2f(xl,x2) 5 -}- x2 ).

Suppose furthermore that x > 0 and x2 > 0 and that ck c > 0 for all k. If we
set 1} 1 (so 2} 1,2} 0) for all k, then it is not difficult to see that one

possible sequence is given by xk x/(1 / c)k and x2
k (-1)k 1 for all k, so the

cost converges at a linear rate, but the iterates themselves do not converge. On the
other hand, if we set al} to alternate between 1 and 0 with the corresponding values

of 2} alternating between 0 and 1, while c1,2 0, then it can be seen that a
minimizer of f is obtained after only two iterations.

4. Rate of convergence. We now turn to the analysis of the convergence rate
of the parallel PPM algorithm. To establish some terminology, consider a real sequence
(sk} that converges to a real number s*. We say that {sk} converges finitely if there
exists k such that sk s* for all k >_ k; superlinearly with order p, where p > 1, if

8k-t-1 8"1lim sup
k-.o Isk-- s*lP

superlinearly if

lim Isk+l s*l O;

and linearly if there exist E (0, 1) and such that

8k+l 8*

8k 8*
<_ fl

Following [OrRT0], we say that (sk} converges R-linearly if there exist scalars q > 0
and [0, 1) such that Isk- s*l <_ qk for all k. Note that (sk} converges R-linearly
if Isk s* <_ tk for all k where {tk} is some sequence converging linearly to zero.

The convergence rate of the ordinary proximal minimization algorithm depends on
the growth properties of the minimized function f as well as on the growth properties
.of the proximal term used. The following key assumption was first introduced in
[KoB76] (see also [Ber82, p. 342]) and was used to analyze the convergence rate of the
proximal minimization algorithm, for quadratic as well as certain types of nonquadratic
proximal terms.
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Assumption A. The set of minimizers of f, denoted X*, is nonempty and compact.
Furthermore, there exist scalars a >_ 1,/ > 0, and 5 > 0 such that

(15) i(p(x;X*)) a < f(x)- min f(y) with p(x; X* <_ ,
where p(x; X*) is the distance from x to X* given by

min [Ix- x*[[.(16) p(x;X*)
*ex*

The ordinary proximal minimization algorithm has finite, superlinear, or linear
convergence rate depending on whether a 1, 1 < a < 2, or a 2, respectively;
see lEon76] and also [Ber75] (which deals with the case 1), and [Ber82, Chap. 5]
(that provides a comprehensive analysis). The convergence rate is also superlinear if
a 2 and ck --. cx. If a > 2, the convergence rate is slower than linear, that is, some
of the generated sequences do not converge linearly. In the case where the proximal
term has a growth rate 7 > 1 other than quadratic (7 - 2), the convergence rate is
influenced by 7 (it is superlinear if I < a < 7 even in the case where >_ 2).

The following proposition provides corresponding, although slightly weaker, re-
sults for the parallel PPM algorithm.

PROPOSITION 3. Let Assumption A hold, let f* minue f(y), and let (xk} be
a sequence generated by the parallel PPM algorithm with (ck} monotonically nonde-
creasing.

(a) If a 1 and there exists a scalar"5 > 0 such that

(17) ai >"5 V k and I e C such that akz >0,

{f()} oa o , i.
(b) Assume that .for some scalars M > 0 and 7 >- we have

(8) O(x) <_ M[Ixl[ V x with Ilxl[ <_ 5.

If 1 < a < 7, then {f(xk)} converges to f* superlinearly with order 7/a. Also, if
1 < a 7 and ck oc, then { f(xk) } converges to f* superlinearly.

(c) Let (.) 1/2[. [ (so (.) is the quadratic function 1/211" 112) If 2 and
ck -d < oc, then {f(xk) } converges to f* R-linearly.

Proof. By Proposition 2(a), we have f(xk) f* and, by using also Lemma 2, we
have f(&/k) f, for all I E C. Since X* is compact, it follows that for all k sufficiently
large, we have

p(x; x,) < , p(; x,) < v z c.
Without loss of generality we assume that the above relation holds for all k.

(a) For each k and I E (, we have from Proposition 1 that minimizes f(y) +
1(i)(y &/k) over y, where /k is the vector in n whose ith component is the ith
component of xk if i I and, otherwise, is the ith component of /. Thus

() +v( ,) 0,

where g/ is a subgradient of f at &/. Let us denote by 5/ the vector of X*, which is
at minimum distance from &, that is,

p(/k;x.)=llSkz_ll and f(5)=f*.
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Since p(/k; X*) <_ 6, from (15) with a 1 and using the convexity of f, we have

_<
<_ IIg ll w ll

Ila ll x*).

Thus for all k and I E C we have

(20)

If ck ---, oc, then from (19) and the boundedness of {&/k i/k}, we have g --, 0
for all I E (7, and (20) implies that for sufficiently large k, we have p(&; X*) 0 or
equivalently &/ X*, for all I t7. This implies that xk+l X* for all sufficiently
large k, so the algorithm terminates finitely.

If ck --. < oc, let K be an infinite subsequence of the set of positive integers
such that for every I , either a > 0 for all k E ]C or ak 0 for all k ; since (

is a finite set, such a subsequence exists. Let C be the subset of index sets I C such
that a/ > 0 for all k K:. Using the assumption (17), we have

and Ie, a/k=0 VkeK: and

Then from (13) we obtain

lim E (I)(&/k i/k) 0,
k--*o, kEK:

implying
lim (I) (:/k :Zk) 0 V I g.

k---*cx:), kEK:

Therefore, we have
lim V(I)(& &/k) 0 V I ,

k--c,

or equivalently, in view of (19),

lim gk=0 VI.
k--*cx),

It follows from (20) that for all I E (7 and all k K: sufficiently large we have
p(5:k; X*) 0. Using the definition xk+l EiC k ~k

aixi and the fact a/k 0 for
all I and k K:, we obtain xk+l X* for all k K: sufficiently large. Since the
choice of the subsequence K: was arbitrary and a finite number of such subsequences
comprise all integers beyond some index, this shows that the algorithm terminates
finitely.

(b) For each k, let us denote by 5k the vector of X*, which is at minimum distance
from xk, that is,

x*) k xkll and f(Sk) f,.
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We have from (9) that for each

where the third inequality follows from (18) and the last inequality follows from (15)
and p(xk); X*) <_ 5. By using the convexity of f and the definition xk+l "]Iec klXkI,
we obtain for all k that

(21)

This proves the result.

f(xk+l)- f* M

(c) Using the compactness of X*, we have that there exists 5’ > 0 such that
p(x;X*) <_ for all x such that f(x)-f* <_ 5’. Given x E n such that f(x)-f* <_ ’,
c > 0, and a subset I C (1,..., n}, let x’ and x" be given by (4) and (5), respectively.
By Proposition 1, x’ satisfies (6) so

1
f(x’) -I- -<x’ x", y- x’> <_ f(y) V y.

Let x* be the element of X* for which IIx’- x*ll (x,; x,), Setting y x* into the
above relation and rearranging terms, we obtain

1 Ix"- IIIIx* x’ll.f(x’)- f* <_ 1-(x"--c x’,x*--x’> <_ l x’

By Lemma 2 and the assumption f(x) f* < ’, we have f(x’) f* < ’, so that
p(x’;X*) < 6 nd (15) with ( 2 yields

llx* x’ll2 <_ f(x,) f, <_ lllx’, x’llllx* x’ll

or, equivalently,

l
12 f,Fc(x’) f*

_
f(x*) -t- llx* x’l

1

2c(c)2 IIx" x’ll 2,

On the other hand, we have from the proof of Lemma l(b) that

1
x,,l12F(x’) F(x")- llx’-



PARTIAL PROXIMAL MINIMIZATION 565

which together with the above relation yields

Fc(x’)- f*
1 (Fc(x")- Fc(x’))()

Rearranging terms and using the fact (cf. (7)) Fc(x") g Fc(x), we finally obtain

1
(22) Fc(x’) f* (C)2 -{- 1 (Fc(x)- f*).

Consider now a sequence (xk} generated by the parallel PPM algorithm with
(ck) monotonically nondecreasing. Since X* is compact, by Proposition 2(a), we
have f(xk) .--+ f* so that f(x,) f* <_ ’ for all k large enough. Fix any such k. By
(9), we can apply (22) with x xk, c ck, and x’ 5ci for every I E C and obtain

1
Fck (/k)- f* - (ck)2 + 1 (Fck(xk)- f*) VIEC.

Then, using the definition (10)-(11) of xk+l and the convexity of Fc, we obtain

1
F(z+)- f, <

(Z) + (F()- f,)

Since Fc+l(xk+l) <_ Fc (xk+1) (cf. ck+l >_ ck and (3)), this implies

1
Fa+,(xk-+-l) f*

_
(Fc(xk) f*).() + 1

We have that (ck} is bounded below by c, so it follows that (Fck(xk)} converges
linearly. Since f(xk+l) <_ Fc(xk) for all k, we obtain that (f(xk)} converges R-
linearly and part (c) is proven. [3

The preceding proof also shows that if / and c -5 (/M, oc), then
(f(xk) converges linearly rather than R-linearly (see (21)).

The preceding analysis assumes that the set of minimizers of f is bounded. We
show below that this assumption can be removed if the minimized function f is dif-
ferentiable on its effective domain and has a growth property similar to that given by
(15) with 2. This result will be useful when we analyze dual applications of the
partial proximal algorithm in 5, for which the set of minimizers of f is frequently
unbounded (see Proposition 7).

Assumption B..The set of minimizers of f, denoted X*, is nonempty and f has
the special form:

f g(x) ifxeC,(ca) I(x) oo otherwise,

where C is a nonempty closed convex set in n and g n _, is a convex differen-
tiable function. Furthermore, there exist scalars > 0 and 5 > 0 such that

(24) p(x; x,) <_ IIx- Pc[x- Vg(x)]ll v x e c with IIx- Pc[x- Vg(x)]ll _< 5,

where Pc[’] denotes the orthogonal projection onto C and p(x;X*) is the distance
from x to X* defined by (16).
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The growth condition (24) differs from the growth condition (15) (with ( 2)
mainly in that the cost difference f(x) f* is approximated by the norm of a certain
residual function squared. This difference is nonetheless significant for it turns out that
the partial proximal algorithm drives the latter to zero even when X* is unbounded
(see the proof below). In general, verifying that condition (24) holds is not easy.
However, it is known that this condition holds when g is strongly convex [Pan87] or
when C is a polyhedral set and g is the composition of a strongly convex function
with an affine mapping [LuW92]. (See [LuW93] and 5 for additional discussions of
this condition.)

PROPOSITION 4. Let Assumption B hold and let (xk} be a sequence generated by
the parallel PPM algorithm (9)-(11) with {ck} monotonically nondecreasing, bounded
above, and with (.)-- 1/21" 12. Then (f(xk)} converges to minx f(x) R-linearly.

Proof. First, we show that, for any c > 0, the function Fc inherits from f a
property similar to the growth condition (24). Fix any x E n and let

{ 1 }5: arg min f(y) 4- IlY- xll 2yE aa
Then, by (6) and (I)(.)- 1/2[1" 2, we have x- 5:--CVFc(X) and, by using (23), we also
have that 5: is a minimizer of the function y g(y) 4- 2 IlY xll 2 over C, so that

5: Pc[x

Thus,

115: Pc[5: cVg(5:)]ll IIPc[x cVg(5:)] Pc[5: cVg(5:)]ll <_ IIx 5:11,

where the second inequality follows from the nonexpansive property of the projection
operator Pc[’]. Since 115:- Pc[5:- cd]ll >_ 115:- Pc[5:- dill for any d e n, where- min{1, c} (see Lemma 1 in [GAB84]), this implies

Then, it readily follows from (24) that

p(5:; X* <_ lx 5:11 whenever

Since x 5: cVFc(x) and, by the triangle inequality, p(x; X*) <_ IIx 5:11 4- p(5:; X*),
this shows that

Zp(x;X,) <_ (cZ + c/)llVF(x)ll whenever IIVF(x)I] _< 5c/e.

Also, denoting f* miny f(y), we have from (3) and (I)(-) 1/211" II 2 that

1
f.

1
F(x) f() + 11 xll 2 < / llx* xil 2

x X*)2.so that Fc(x) <_ f* 4- p( Combining this with the previous relation yields

(25)
1

(c + cl(a)P(x) < f, + IIV(x)lle V x with llV(x)ll _< /.
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Consider now a sequence {xk} generated by the parallel PPM algorithm with
{ck} monotonically nondecreasing and bounded above. By Proposition 2(b), we have
VFc(xk) --, O, so that IIVFc(xk)ll

_
5k/ck for all k sufficiently large, where 5k

min{1, Ck}. For any such k we have from (25) that

1<_ f, / /

In addition, by following the proof of Proposition 2(b), we see that

ck<

Combining the above two relations and rearranging terms yields

< } (Fc(xk) f*)2(kD / 1)2 /

We have that {bk} is bounded below by 50, so it follows that {Fc(xk)} converges
linearly to f*. Since f(xk+l)

_
Fc(xk) for all k, we obtain that {f(xk)} converges

R-linearly to f*. [:!

5. Relation to multiplier methods. We assume throughout this section that
(’) 1/21" 12 (so that (I)(.) is the quadratic function 1/211" 112), and we show that partial
proximal iterations correspond to augmented Lagrangian iterations with partial elim-
ination of constraints. This indicates a possible application area of the parallel PPM
algorithm of 3 and establishes its relation to the constraint distribution method of
Ferris and Mangasarian [FeM91]. In addition, by applying the convergence results of
4, we analyze the rate of convergence of these augmented Lagangian iterations under
much weaker assumptions than those given in [FeM91]. For example, we establish
linear rate of convergence for the cost of the iterates, assuming that the constraint
functions are affine and the cost function is the sum of the indicator function for a
polyhedral set and a strongly convex differentiable function with Lipschitz continu-
ous gradient (see Proposition 7). In contrast, the linear rate of convergence result in

[FeM91] in addition assumes that the cost function is quadratic. (On the other hand,
the analysis in [FeM91] establishes the stronger result of linear rate of convergence of
the iterates.)

Consider the following convex program

(26a)
(26b)

minimize ho (z)
subject to h(z) <_ O,...,hn(z) <_ O,

where h0,..., ha are closed proper convex functions in Nm (m _> 1). We can also
allow for linear equality constraints in the above problem but, for simplicity, we do
not consider this more general case.

For any convex function g, we denote by dom g the effective domain of g, i.e.,
dom g { z [g(z) < q-oc }. For any convex set C, we denote by Jut(C) and ri(C),
respectively, the interior and the relative interior of C. We make the following standing
assumptions regarding the convex program (26).

Assumption C. (a) There exists a 2 E ri(dom h0) satisfying hi(2) <_ 0 for all i,
with strict inequality holding whenever hi is not affine.
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(b) The level sets of the program (26), namely, sets of the form

{ _< _< o,..., _< o )

with E , are bounded.
Note that by part (a) of Assumption C, program (26) has at least one feasible

solution. This, together with part (b) of Assumption C, implies that the set of optimal
solutions for (26) is nonempty and compact.

By associating a Lagrange multiplier xi with the constraint hi(z) <_ 0 for every i,
we obtain the following dual function:

(27) f(x) { supz{-(x’h(z)) h0(z)} if x >_ 0,
+o otherwise,

where we denote by h(z) the vector in n whose ith component is hi(z) and by x the
vector in n whose ith component is xi. It is well known that f is a closed proper
convex function.

It is known that when Assumption C holds, the set of Kuhn-Tucker vectors for
the convex program (26) is nonempty and equals the set of minimizers of f (see
[Roc70, Thm. 28.2]). Moreover, strong duality holds in the sense that the optimal
value of problem (26) equals the negative of the minimum value of f. Thus, we can
consider solving problem (26) by minimizing the dual function f of (27) and, for this
purpose, we can use the parallel PPM algorithm (9)-(11). We show below that, for
(’) 1/21" 12, the proximal minimization step (9) in this algorithm is well defined and
can be implemented with the use of quadratic augmented Lagrangian functions. Fix
any nonempty subset I of {1,..., n}, any x E n, and any scalar c > 0. Consider the
following convex program associated with I, x and c:

(28a)

(28b)

1
minimize ho(z) + -c E[xi + chi(z)]

s.t. hi(z) <_ O, I,

where, for any number a, we denote by [a]+ the positive part of a, i.e., [a]+
max{0, a}. This program has at least one feasible solution (namely, 2) and its level
sets are bounded (since any direction of unboundedness for this program would also
be a direction of unboundedness for the program (26)), so it has at least one optimal
solution. Let z be any such optimal solution. Notice that the program (28) has a
feasible solution (namely, 2), which is in the relative interior of the effective domain
of its cost function and satisfies with strict inequality all constraints for which hi is
not affine. Then, by Theorem 28.2 in [Roc70], the program (28) has a Kuhn-Tucker

t I, denote its component asso-vector. Fix any such Kuhn-Tucker vector and let xi,
ciated with the constraint hi(z) <_ O. Let x be the vector in n whose ith component

for all t I and, otherwise, isis x

(29) xi=[xi+chi(z’)]+ ViEI.

We claim that x is a minimizer of the function
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To see this, notice from the Kuhn-Tucker conditions for program (28) that

’-- chi(z’)]+ V I(31) xi [x +

and
o e + + +

This equation together with (29) yields

n

0 e

implying

(32) z’= arg min {(x’,h(z)} + h0(z)}.

Let us write (29) and (31) equivalently as

O E Ti hi(z’) + xi xi V e I, O Ti hi(z’) Viii,
c

0 and otherwise is just the origin {0}. Fromwhere Ti is the interval [0, +x) if xi
(32) and the definition of f (cf. (27)), we see that the Cartesian product (Tl-hl(z))x

x (Tn hn(z)) is precisely Of(x). This together with the above relation shows
that x is a minimizer of the function given by (30).

The above discussion shows that the parallel PPM algorithm with quadratic prox-
imal term, applied to minimizing the dual function f of (27), is well defined and that
each partial proximal minimization (9) can be achieved by solving a convex program
of the form (28). A key feature of the program (28) is that only a subset of the
constraints are eliminated. By carefully choosing the subsets to eliminate, one can
preserve special structures of the cost function and perhaps also attain a faster rate
of convergence; see [Ber82, 2.4], [Dun89], and [Alj90] for discussions of augmented
Lagrangian methods of this type.

The above dual application of the parallel PPM algorithm is closely related to
the parallel constraint distribution algorithm of Ferris and Mangasarian [FeM91]. In
particular, by noting that the program (28) is identical in form to that appearing in
Theorem 3.2 in [FeM91], we see that the two algorithms differ only in that the latter
requires the subsets I effectively used at each iteration to form a partition of { 1,..., n}
and that, instead of taking a convex combination of the &/k’s, it extracts the coordinates
indexed by I from &/k to form xk+l. Thus, the parallel PPM algorithm updates in
a manner reminiscent of Cimmino’s method [Cim38], while the parallel constraint
distribution algorithm updates in a manner reminiscent of a Jacobi method. The
subsequent paper [Fer91a] uses updates similar to the ones of the present paper and
presents computational results showing an improved performance over the algorithm
of [FeM91].

Under a strong regularity assumption that guarantees boundedness of the set
of Kuhn-Tucker vectors for the convex program (26), we immediately obtain as a
consequence of Proposition 2(a) the following convergence result for the parallel PPM
algorithm.
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PROPOSITION 5. Assume that there is a point in dom ho satisfying all the con-
straints in (26b) with strict inequality. Consider the parallel PPM algorithm (9)-(11)
with (ck} monotonically nondecreasing and with (.) 1/21" 12, applied to minimize f
given by (27). Then a sequence {xk} generated by the algorithm is bounded, each of
its cluster points is a minimizer of f, and (--f(xk)} converges to the optimal value of
the program (26).

Proof. By the given hypothesis, the convex program (26) is strictly consistent in
the terminology of [RocT0, p. 300]. Since the optimal value of problem (26) is finite,
it follows from Corollary 29.1.5 in [RocT0] that the Kuhn-Tucker vectors for problem
(26) form a nonempty compact convex subset of n. Since these Kuhn-Tucker vectors
are precisely the minimizers of f, the hypothesis of Proposition 2(a) holds, and the
result follows from that proposition. B

By translating the growth conditions (15) and (24) on f into conditions on h0
and hi,..., hm, and then applying Propositions 3 and 4, we analogously obtain the
following two rate of convergence results for the parallel PPM algorithm.

PROPOSITION 6. Assume that there is a point in dom ho satisfying all the con-
straints in (26b) with strict inequality. Furthermore, assume that there exist scalars
c > 1, > 0, and b > O such that

p(u)-p(O)-(u,x*) <_ (o-l) ( I._! V x* e Op(O) and u with I111 -< Zb"-’

where p n (-oc, +cx)] is the perturbation/unction given by

p(u) min{ ho(z) h(z) <_ u }.

Let (xk} be a sequence generated by the parallel PPM algorithm (9)-(11) with (ck}
monotonically nondecreasing and with (.) 1/21" 12, applied to minimize f given by
(27). Let f* minx f(x) -p(O).

(a) If 1 < c < 2, then (f(x) } converges to f* superlinearly with order 2/c.
(b) If c 2 and c -- o, then ( f(xk) } converges to f* superlinearly.
(c) If ( 2 and ck -5 < cx), then ( f(xk) } converges to f* R-linearly.
Proof. As was shown in the proof of Proposition 5, the set X* is nonempty and

compact. We show below that f satisfies (15) with ,,5 as given, so the claim
immediately follows from Proposition 3(b), (c).

Fix any x E n with p(x; X*)

_ . First assume that x t X*. Let x* be the
minimizer of f nearest to x, i.e., p(x; X*) --IIx- x*ll. Also let

It is well known that p is the conjugate function of f, so that, by [RocT0, Thm. 23.5],
, e Op(O).

Also, direct calculation finds that lull _< Zb"-’ and

+ (u, ,) (, x) ,1 I * I1".

Thus, the hypothesis on p yields

p(u) p(o) <_ (u, ) Zll :*11 ‘.
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Also, we have

p(u) sup{(u,y) f(y)} _> (u,x) f(x),
y

which together with the above inequality yields

Rearranging terms and using p(x; X*) IIx- x*ll, we obtain

p(x; X* <_ f(x) f*.

Now assume that x E X*. Then the above relation holds trivially. D
As is shown by the preceding proof, the growth condition in Proposition 6 can

alternatively be replaced by the growth condition (15) on the dual function f. De-
pending on the problem structure, one condition may be easier to verify than the
other.

PROPOSITION 7. Assume that the cost function ho is the sum of the indicator
function of a polyhedral set and a strongly convex differentiable function whose gra-
dient is Lipschitz continuous everywhere. Also assume that the constraint functions
hi,... ,hE are a]fine. Let {xk} be a sequence generated by the parallel PPM algorithm
(9)-(11) with {ck} monotonically nondecreasing and with (.) 1/21" 12, applied to min-
imize the dual function f given by (27). Then {--f(xk)} converges R-linearly to the
optimal value of the convex program (26).

Proof. It can be seen that, in this case, the convex program (26) is a special case
of the convex program (2.2) studied in [LuT93] and that Assumptions A and B therein
hold. Then, by Theorem 4.1 in [LuT93], f satisfies Assumption B when restricted to
the level set { x Ix

_
O, f(x)

_
f(x) }. Since, by Proposition 2(b), {f(xk)} is

monotonically nonincreasing so the sequence {xk} lies in this level set, we can invoke
Proposition 4 to conclude that {f(xk)} converges to minx f(x) R-linearly. D

We remark that Proposition 7 is similar to the rate of convergence results obtained
in [FeM91] and [Fer91a], but these references treat only the case where h0 is strongly
convex quadratic and h1,..., hn are affine.
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