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We propose and analyze a distributed asynchronous subgradient method for minimiz-
ing a convex function that consists of the sum of a large number of component functions.
This type of minimization arises in a dual context from Lagrangian relaxation of the
coupling constraints of large scale separable problems. The idea is to distribute the com-
putation of the component subgradients among a set of processors, which communicate
only with a coordinator. The coordinator performs the subgradient iteration incremen-
tally and asynchronously, by taking steps along the subgradients of the component func-
tions that are available at the update time. The incremental approach has performed
very well in centralized computation, and the parallel implementation should improve
its performance substantially, particularly for typical problems where computation of the
component subgradients is relatively costly.

1. Introduction

We focus on the problem

minimize  f(z) = fi(z) + ... + f(2)
subject to  x € X, (1)

where f; : R” — R are convex functions and X is a nonempty, closed, and convex subset
of R™. We are primarily concerned with the case where f is nondifferentiable. A special
case of particular interest arises in Lagrangian relaxation where f is the dual function of
a primal separable combinatorial problem that is solved by decomposition. Within this
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context, x is a vector of Lagrange multipliers corresponding to coupling constraints, and
the component functions f;(z) are obtained by solving subproblems corresponding to the
separable terms in the cost function and the constraints.

In this paper, we consider the solution of problem (1) using distributed asynchronous
versions of the classical subgradient iteration

m

r(t+1) = Px |z(t) — a(t) D gi(t)| - (2)

=1

Here g;(t) is a subgradient of f; at x(t), «(t) is a positive stepsize, and Py denotes the
projection on the set X C R".

The most straightforward way to parallelize the above iteration is to use multiple
processors to compute in parallel the component subgradients g;(¢). Once all of these
components have been computed, they can be collected at a single processor, called the
updating processor, who will execute the update of the vector x(¢) using iteration (2). The
updating processor will then distribute/broadcast in some way the new iterate z(t+1) to
the subgradient-computing processors who will collectively compute the new subgradients
for the subsequent iteration. This parallelization approach is quite efficient as long as the
computation of the subgradients (which is parallelized) takes much more time than their
addition and the execution of the iteration (2) (which are performed serially). Fortu-
nately, this is typically the case in the principal context of interest to us, i.e., duality and
Lagrangian relaxation.

The parallel algorithm just described is mathematically equivalent to the serial iter-
ation (2). It can be termed synchronous, in the sense that there is clear division between
the computations of successive iterations, i.e., all computation relating to iteration ¢ must
be completed before iteration ¢ + 1 can begin. In this paper we are interested in asyn-
chronous versions of the subgradient method (2), where the subgradient components at a
given iteration do not necessarily correspond to the same value of x. An example of such
a method is

m

w(t+1) =Px |z(t) — o) D_gi(n(t))] . (3)

=1

where for all i, we have 7;(t) < t and the difference ¢ — 7;(t) may be viewed as a “de-
lay.” Such an iteration may be useful if for some reason (e.g., excessive computation or
communication delay) some subgradient components g¢;(¢) are not available at time ¢,
and to avoid further delay in executing the update of x(¢), the most recently computed
components ¢;(7;(t)) are used in (3) in place of the missing components g;(t).

A more general version of the asynchronous iteration (3) is given by
z(t+1) =Px [95(75) —aft) Y gi(Ti(t))-I ; (4)
[ i€l(t) J

where I(t) is a nonempty subset of the index set {1,...,m}, 7;(¢) satisfies 7;(¢) < ¢ for
all t and i, g;(;(t)) is a subgradient of f; computed at x(7;(¢)), and 2(0) € X is an initial



point. To visualize the execution of this iteration, it is useful to think of the computing
system as consisting of two parts: the updating system (US for short), and the subgradient
computing system (GCS for short) (see Fig. 1).
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Figure 1. Visualization of the implementation of the asynchronous distributed iteration

z(t+1) = Px [w(t) —aft) Z gi(Ti(t))] .

i€I(t)

This iteration is executed by the updating system (US), using subgradients deposited in a
queue by the distributed subgradient computing system (GCS).

The US executes iteration (4) at each time ¢ and delivers the corresponding iterates x(t)
to the GCS. The GCS uses the values z(¢) obtained from the US, computes subgradient
components g;(7;(t)), and deposits them in a queue from where they can be accessed by
the US. There is no synchronization between the operations of the CS and the GCS.
Furthermore, while the GCS may involve multiple processors that compute subgradient
components in parallel, the characteristics of the GCS (e.g., shared memory, message
passing, communication architecture, number of processors, synchronization rules, etc.)
are not material to the description of our algorithm.

The motivation for considering iteration (4) rather than its special case (3) is twofold.
First, it makes sense to keep the US busy with updates while the GCS is computing
subgradient components. This is particularly so if the computation of g; is much more
time consuming for some ¢ than for others, thereby creating a synchronization bottleneck.

Second, it appears that updating the value of x(¢) as quickly as possible and using it
in the calculation of the component subgradients has a beneficial effect in the convergence
rate of the subgradient method. This is the main characteristic of incremental subgradient



methods, which we have studied in [19], and which may be viewed as the special case of
iteration (4) where 7;(t) = t for all i and ¢, and the set I(¢) consists of a single index.

We note that incremental methods for differentiable unconstrained problems have a
long tradition, most notably in the training of neural networks, where they are known
as backpropagation methods. They are related to the Widrow-Hoff algorithm [25] and to
stochastic gradient/stochastic approximation methods, and they are supported by several
recent convergence analyses Bertsekas [3], Bertsekas and Tsitsiklis [5]-[6], Gaivoronski [8],
Grippo [10], Luo [16], Luo and Tseng [17], Mangasarian and Solodov [18], Tseng [23]. It
has been experimentally observed that incremental gradient methods often converge much
faster than the steepest descent method when far from the eventual limit. However, near
convergence, they typically converge slowly because they require a diminishing stepsize
[e.g., ax = O(1/k)] for convergence. If o is instead taken to be a small enough constant,
“convergence” to a limit cycle occurs, as first shown by Luo [16].

The incremental subgradient method was studied first by Kibardin [12], and more
recently by Solodov and Zavriev [22], Nedi¢ and Bertsekas [19]-[21], and Ben-Tal, Margalit
and Nemirovski [1]; the incremental subgradient method of the form (3) is considered
by Zhao, Luh, and Wang [26], Kiwiel and Lindberg [13]; the incremental e-subgradient
method is analyzed by Kiwiel [14]; applications of incremental methods can be found
in Kaskavelis and Caramanis [11], Ben-Tal, Margalit and Nemirovski [1]. As we have
discussed in our papers [19] and [21], incremental subgradient methods exhibit a similar
behavior to incremental gradient methods. We believe that the incremental structure
that is inherent in our proposed parallel subgradient method (4) results in convergence
and rate of convergence characteristics that are similar to those of incremental gradient
and subgradient methods. In particular, we expect an enhanced convergence rate over
the nonincremental version given by Eq. (3).

In this paper, we will analyze the following version of iteration (4), given by

2t +1) = Px [o(t) — a(B)gi (r(1))] (5)

Here we assume for simplicity that the set I(t) consists of a single element denoted ().
For X = R", this simplification does not involve an essential loss of generality since an
iteration involving multiple component function subgradients may be broken down into
several iterations each involving a single component function subgradient. When X # R",
our analysis can be extended for the more general iteration (4).

The most important assumptions in our analysis are:

(a) The stepsize «(t) is either constant, or is diminishing to 0 and satisfies some
common technical conditions such as Y {°, a(t) = oo (see a more precise statement later).
In the case of a constant stepsize, we only show convergence to optimality within an error
which depends on the length of the stepsize.

(b) The “delay” t — 7(t) is bounded from above by some (unknown) positive integer
D, so that our algorithm belongs to the class of partially asynchronous methods, as defined
by Bertsekas and Tsitsiklis [4].

(c) All the component functions f; are used with the same “long-term frequency” by



the algorithm. Precise methods to enforce this assumption are given later, but basically
what we mean is that if n;(¢) is the number of times up to iteration ¢ where a subgra-
dient of the component f; is used by the algorithm, then the ratios n;(t)/t should all be
asymptotically equal to 1/m (as t — o0).

(d) The subgradients g;(7(t)) used in the method are bounded.

The restriction (c) can be easily enforced in a number of ways, by regulating the
frequency of the indices of subgradient components computed by the subgradient com-
puting system. We will consider one specific approach, whereby we first select a sequence
of indexes {j(t)} according to one of two rules:

(1) The cyclic rule where the sequence {j(t)} is obtained by a permutation of each
of the periodic blocks {1,2,...,m} in the periodic sequence {1,2,...,m,1,2,...,m,...}.

(2) The random rule where {j(t)} is a sequence of independent identically distributed
random variables, each taking the values 1,2,...,m with equal probability 1/m.

Given a sequence {j(t)} obtained by the cyclic or the random rule, the sequence
{i(t)} used in iteration (5) is given by

i(t) = j(x (1)), (6)

where 7(-) is a permutation mapping that maps the set {0,1,...} into itself, such that
for some positive integer 1', we have

r(t) —t| <T, Vt=0,1,.... (7)

The permutation mapping 7(-) captures the asynchronous character of the algorithm,
whereby component function subgradients are offered to the updating system in the order
of {j(w(¢))}, which is different than the order of {j(¢)} in which their computation was
initiated within the subgradient computing system.

A version of the algorithm that does not work is when the component subgradients
gir)(7(t)) are normalized by multiplying with 1/|g;)(7(¢))||, which may be viewed as a
weight associated with the component f;;) at time ¢. Unless these weights are asymptot-
ically equal, this modification would effectively alter the effective “long-term frequency”
by which the components f; are selected, thereby violating a fundamental premise for the
validity of our algorithm.

We note that our proposed parallel algorithms (4) and (5) do not fit the framework
of the general algorithmic models of Chapters 6 and 7 of Bertsekas and Tsitsiklis [4], so
it is not covered by the line of analysis of that reference. In the latter models, at each
time ¢, only some of the components of = are updated using an equation that (within our
subgradient method context) would depend on all components f; (perhaps with commu-
nication delays). By contrast in the present paper, at each time ¢, all components of x are
updated using an equation that involves some of the components f;. While it is possible
to consider alternative asynchronous subgradient methods of the type given in Chapters
6 and 7 of Bertsekas and Tsitsiklis [4], we believe that these methods would not be as
well suited to typical subgradient optimization problems, which arise in the context of
Lagrangian relaxation and duality.



The proof ideas of the present paper are related to those of parallel asynchronous
deterministic and stochastic gradient methods as discussed in Tsitsiklis, Bertsekas, and
Athans [24], and Bertsekas and Tsitsiklis [4], as well as the proof ideas of incremental
deterministic and randomized subgradient methods as discussed in Nedi¢ and Bertsekas
[19]. In particular, the key proof idea is to view the parallel asynchronous method as an
iterative method with deterministic or stochastic errors, the effects of which are controlled
with an appropriate mechanism, such as stepsize selection. An alternative approach is
possible based on differential inclusions that extend the “ODE” approach for the analysis
of stochastic approximation algorithms (see Benveniste, Metivier, and Priouret [2], Borkar
[7], and Kushner and Yin [15]).

We note also that while a (nonparallel) incremental subgradient method with a di-
minishing stepsize can be viewed as an e-subgradient method (under some boundedness
assumptions) [20], for the algorithm of this paper, this connection is much harder to make
and has not been attempted. The reason is that with delays in the calculations of the
component subgradients, it is difficult to estimate the € parameter corresponding to the e-
subgradient method. Furthermore, for a different stepsize rule (e.g., a constant stepsize),
it is not possible to make any fruitful connection with an e-subgradient method.

The paper is structured as follows. In Section 2, we state and discuss our results for
the cyclic rule. In Section 3, we do the same for the random selection rule. In Sections
4 and 5, we give the proofs of the convergence results presented in Sections 2 and 3,
respectively.

2. Convergence Results for Cyclic Selection Rule

Throughout the paper, we use f* and X* to denote the optimal function value and the
optimal solution set for problem (1), respectively. In this section, we present convergence
results for the method with the cyclic selection rule, under the following assumption.

Assumption 2.1:
(a) There exists a positive constant C' such that for alli =1,...,m
loll<C,  Vgedfie(r(t) Uofi(z@), t=01...,
where Of;(x) denotes the set of subgradients of f; at a point z.
(b) There exists a positive integer D such that
t—r(t)<D, Vt=0,1,....
Note that if the components f; are polyhedral or if the set X is compact, then

Assumption 2.1(a) holds. Assumption 2.1(b) is natural, since our algorithm does not use
the value of the bound D.

We now give the convergence result for a constant stepsize.



Proposition 2.1:  Let Assumption 2.1 hold. Then, for the sequence {z(t)} generated
by the method with the cyclic selection rule and the stepsize fixed to some positive scalar «,
the following hold:

(a) If f* = —o0, then

liminf f(z(t)) = —cc.

t—00

(b) If f* is finite, then

1
lim inf f(2(1)) < f* + mC? (5 Y m+2D+ T) .

Next, we consider a diminishing stepsize that satisfies the following.
Assumption 2.2:  The stepsize «(t) is given by

To

a(t) = Tt

t:O'l,O'l—i-l,...,O'H_l—l, 120,1,

where g, 71, and ¢ are some positive scalars with 0 < ¢ < 1, and the sequence {o;} is
increasing and is such that o;,1 — oy < S for some positive integer S and all [.

For this stepsize we have the following convergence result.

Proposition 2.2:  Let Assumptions 2.1 and 2.2 hold. Then, for the sequence {z(¢)}
generated by the method with the cyclic selection rule, we have

litII_l)(i)glff(:L‘(t)) = f".

The result of Prop. 2.2 can be strengthened in the case where the optimal solution
set X* is nonempty, under a mild additional restriction on the stepsize. This stronger
convergence result is given in the next proposition.

Proposition 2.3:  Let Assumptions 2.1 and 2.2 hold, where % < ¢ < 1 in Assump-
tion 2.2. Also, let X* be nonempty. Then the sequence {z(t)} generated by the method
with the cyclic selection rule converges to an optimal solution.

3. Convergence Results for a Random Selection Rule

In this section, we present convergence results for the method with the random
selection rule. The initial point 2(0) € X and the stepsize a(t) are deterministic. In our
analysis we use the following assumption.

Assumption 3.1:

(a) Assumption 2.1 holds.



(b) Assumption 2.2 holds with the scalar ¢ satisfying 2 < ¢ < 1.

(c) The sequence {j(¢)} is a sequence of independent random variables each of which
is uniformly distributed over the set {1,...,m}. Furthermore, the sequence {j(¢)}
is independent of the sequence {z(t)}.

We now give the convergence result for a diminishing stepsize.

Proposition 3.1:  Let Assumption 3.1 hold. Then, for the sequence {z(t)} generated
by the method with the random selection rule, we have with probability 1

litrgglff(x(t)) = f*.

When the optimal solution set X* is nonempty, we can strengthen Prop. 3.1, as
shown in the following proposition.

Proposition 3.2:  Let Assumption 3.1 hold and let X* be nonempty. Then the se-
quence {z(t)} generated by the method with the random selection rule converges to some
optimal solution with probability 1.

Remark 3.1: If the underlying set X is compact, then it can be shown that Prop. 3.2
holds using a wider range of values for ¢ in the stepsize rule [cf. Assumption 3.1(b)]. In
particular, for % < q <1, the result of Prop. 3.2 is valid, which we discuss in more detail
in Section 5 (cf. Remark 5.1).

4. Convergence Proofs for Cyclic Selection Rule

In this section and the next one, for notational convenience, we define a(t) = «(0) for
t <0, and t;, = km and xy = x(t;) for all k. Here we give the proofs for the convergence
results of Section 2. The proofs are complicated, so we break them down in several steps.
We first provide some estimates of the progress of the method in terms of the distances
of the iterates to an arbitrary point in X and in terms of the objective function values.
These estimates are given in the subsequent Lemma 4.2. Some preliminary results needed
for the proof of Lemma 4.2 and Lemma 5.2 of Section 5 are given in the following lemma.

Lemma 4.1: Let Assumption 2.1 hold. Then, for the iterates x(t) generated by the
method, the following hold:

(a) For all y € X and ¢, we have

et +1) =yl < |[=(t) =yl = 20() (i (@(t) = fin (W)
+C?*(1 + 4D)a?(t — D)

m

+206(t) Z(éé'(t) - 52(,5)) (fl (:U(t)) - fl (y))7 (8)

=1

where §! is the Kronecker symbol (i.e., 6! = 1 if [ = i and &} = 0 otherwise).



(b) Forall y € X, and N and K with N > K, we have

g:%a ( _6§(t))(fl(x(t)) —fz(y)) < C°T ;{M(t-T)

+max{C, G(y }Z( at =T —at+T><CZ )+ ||mo — y||>
+e(y)(0*(K) + o(K) + o*(N +1=T) + fa(N +1-T))

" (a(mnx(ff) ol SN+ =DV +1) - y||2) , )

where (3 is an arbitrary positive scalar, and

G(y) = max{|lg|| | g € Ofi(y), [ =1,...,m}, (10)

c(y) = max {C’T2 (C + G(y)), %2(02 + GQ(y))} : (11)

Proof: (a) From the definition of x(t + 1) [cf. Eq. (5)], the nonexpansion property of
the projection, and the subgradient boundedness [cf. Assumption 2.1(a)], we have for all
ye X and ¢t

ot +1) = ylP < |la(t) = yl? = 20(t)gien (7 (t))( (t) — ) + C?a(t)
< () = yll? = 20() (fin (1) = fin (v))
+HACa(t)||x(t) - (T(t>>||+02 2() (12)

where in the last inequality we use
gy (T () (2(8) = y) = fip () = fieny(y) — 20 (2) — (7(8))]],

which can be obtained by using the fact z(t) = z(7(¢)) + (z(¢t) — z(7(¢))), the convexity
of fi), and the subgradient boundedness. Furthermore, from the relation

l2(t) — z(7)|| < C’ia(s), Vi >, (13)

and the facts t — D < 7(t) < t for all ¢, and a(r) < a(t — D) forr =t —D,...,t—1 and
all ¢, we obtain

||z (t) — N <c Z a(r) < CDa(t — D).

r=t—D
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By using this estimate and the fact a(t) < a(t — D) for all ¢ in Eq. (12), we have

ot + 1) — gl < [lat) — I — 20(0) (fiy (2(8)) — fio () + C*(1 + 4D)a?(t - D),
from which, by adding and subtracting 2c/(t) (fj(t) (x(t)) — fj(t)(y)), and by using the
Kronecker symbol, we obtain Eq. (8).

(b) We introduce the following sets:

My ={t € {K,...,N}|j(t) = i(p(t)) with p(t) € {K,..., N}},

Pry ={t € {K,...,N}|j(t) = i(p(t)) with p(t) < K or p(t) > N}, (14)
Qe = {t € {K,....N}|i(t) = j(n(t)) with 7(t) < K or n(t) > N}, (15)

where p(t) is the inverse of the permutation mapping 7 (t), i.e., p(t) = 7' (¢). Note that,
since |r(t) —t| < T for all ¢ [cf. Eq. (7)], for the inverse mapping p(t) we have

p(t) —t| <T, Vit=0,1,....

The set M y contains all t € {K,..., N} for which the subgradient g, of f;«) is used
in an update of x(t) at some time between K and N. Similarly, the set Pk y contains all
t € {K,...,N} for which the subgradient g; of fjy is used in an update x(t) at some
time before K or after N [i.e., j(t) = i(p(t)) € {i(K),...,i(N)}]. The set Qg n contains
allt € {K,..., N} for which the subgradient g;«) of fi) is used in an update x(t) at some
time between K and N, but the j(n(¢)) corresponding to i(t) does not belong to the set
{j(K),...,7(N)}. By using the above defined sets, we have

553 a3 - st () - 1) =
iﬂ; a(t) (8% — 8)) (1) — i)
+i2 a0 (F(0) - fi1)
—é%ﬂa(twm (fil(®) - £i(w)). (16)

Next we estimate each of the terms in the preceding relation. According to the definition
of Mg n, we have j(t) = i(p(t)) for all t € Mg n [i.e., gjq) is used at time p(t) with the
corresponding step a(p(t))], so that

S Y alt)(8hy — ) (i) — fily) =

I=1tEMp, N
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li > S ol () - A) - aole) (o)) - )]
=l§ > 80l (Ax(0) - (x(6(0))
+li 5 S (alt) ~ alp(t) (7(x(0) - i)

By using the convexity of each f;, the subgradient boundedness, the monotonicity of «(t),
and the facts |p(t) —¢| < T and Y}, 5§.(t) = 1 for all ¢, from the preceding relation we
obtain

lﬁ 5 alt)(8 — dh) (@) = 10) < € 3 ot =T jx(t) = (o(0))
max{C, G} Y (alt ~ 1) — alt-+ 1)) fa(t) ~ o,

where G(y) is given by Eq. (10). Furthermore, we have

|lx(t) — z(p(®)]| < CTa(t =T),
||x(2) —y|I<CZ r) + |lzo — yll,

where in the first relation we use the monotonicity of «(t) and the fact |p(t) —t| < T,
and in the second relation we use Eq. (13). By substituting the last two relations in the
preceding inequality, we have

S Y al) (%5 = 0%) (Alx(®) = £iw)) < C°T 3 0*(t = T)

I=1tEMg N

+max{C, G(y }2}){( alt—T —at+T)<CZ +||x0—y||> (17)

Now we consider the second term on the right hand side of Eq. (16). Fort = K,..., N
we may have j(t) € {i(K),...,i(N)} possibly at times t = K,..., K +T — 1 and t =
N+1-T,...,N. Therefore, from the convexity of each f;, the subgradient boundedness,
and the fact Y72, 6%, = 1 for all ¢, we obtain

D o(t)ol ) (Filz(t) = fily)) < Z Olz@) —yll+C > a)lzt) - yll.

I=1tePk N t=K t=N+1-T
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By using Eq. (13), the triangle inequality, and the monotonicity of «(t), we have

K-1+T K-1+T

¢ % aWlle@-ull < ¢ 3 o) (Nl (t) = (K| + [l=(K) = yll)
O K) + CTa(K)|[2(K) ~ |
< o) + P (o et - ).

N

IN

where in the last inequality we exploit the fact 2ab < a? + b? for any scalars a and b.
Similarly, it can be seen that

IN

C Y allat) -yl < ¢ X a@®)(let) - (N + DIl +[[«(N +1) —y]|)

t=N+1-T t=N+1-T

< C°T?*(N+1-T)+CTa(N+1-T)||z(N +1) -y
< C’T?*(N+1-T)
"D (e 4 Slla(v 1) - ).

where the last inequality follows from the fact 2ab < Ba? + %bQ for any scalars a,b, and 3
with # > 0. Therefore

S % il (7)) ~ i) < CT(@2(K) +a*(N +1-17)

+C?ﬂ@UQ+BMN+1—TD
iy (AUE) = yIP + Ja(N 4 1= D)o +1) o) 19

Finally, we estimate the last term in Eq. (16). For ¢ = K,..., N we may have i(t) ¢
{j(K),...,7(N)} possibly at times ¢t = K,...,. K +T — 1 and t=N+1-T,...,N.
Therefore, similar to the preceding analysis, it can be seen that

- i > alt)dyy, (fl(x(t)) - fz(y)) < G(?J)CTQ(QQ(K) +a?(N+1-— T))

I=1teQk N
+% (a(K) + Ba(N +1-1))
= (a<K>||x<K> — gl + S0V + 1= T)a(V +1) - y||2) (19)

where G(y) is given by Eq. (10). By substituting Eqs. (17)-(19) in the relation (16), and
by using the definition of ¢(y) [cf. Eq. (11)], we obtain Eq. (9).  Q.E.D.

Lemma 4.2: Let Assumption 2.1 hold. Then, for the iterates x(t) generated by the
method, the following hold:
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(a) For all y € X, and kq and k with k > ko, we have

(1 -2 ot - W)) e — ol < (14 20(t6,)) o — 911

—22 (te) (f (= )+2CZ (ty — W

k}ko kko

+2K (y) 2_: (Oz(tk - W) —a(tp + W ) (C f:l ) + [|wo — y||)

+20(y) (0%(t) + alti,) + 02 (t — W) + Balty — W), (20)

where W = max{T, D}, ( is an arbitrary positive scalar,

K(y) = mC + mmax{C,G(y)},
C = mC’2<2+m+2D+T> (21)

and G(y) and c¢(y) are defined by Eqgs. (10) and (11), respectively.

(b) For for all y € X and k > 1, we have

Shbatf ) o, (0200l =yl -5 ot - W)
Ei;(l) alty) 2219 o () Zk o (1)

ShZb (alte = W) = altegn + W) (C TG a(r) + |luo — yl)

+K(y) ST o)

+oly) (02(0) + a(0) + 02(t; — W) + Ba(ty — W) | 2)
Ek o o(ty)

where 5 > 2a/(0).

Proof: (a) By using the convexity of each f;(, the subgradient boundedness, the mono-
tonicity of «(t), and the following relation [cf. Eq. (13)]

t—1
la(t) =2 < CDals), Vi t>4
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we have for any ¢t € {ty,... txr1 — 1}

Fioy@(®) > Fiw (@) + gioy () (2() = 2x) > Fi (r) — mC?a(ty),

where g;)(tx) is a subgradient of fj) at x. By substituting this relation in Eq. (8) [cf.

Lemma 4.1] and by summing over ¢t = t,...,tx11 — 1, we obtain
tpy1—1
ok =yl < e —ullP =2 3 a®)(fim (@) — fiw )
t=ty,
+mC?(1 + 2m + 4D)a?(ty — D)
m tg41—1
+23° 3 a(t) (8l — ok ) (A(z() - Ay)), (23)
I=1 t=t}

where we also use a(t) < a(ty — D) and

tpp1—1 tpy1—1
> a*(t — D) < ma*(ty — D), > alt) < malty),
t=ty, t=ty,

which follow from the monotonicity of a(t) and the fact t;1 — t;, = m for all k.

Now we estimate the second term on the right hand side in the inequality (23). For
this we define

IF(y) = {t € {tes - terr = 1} | fi(an) = Fin(y) > 0},

Iy (y) = {tr, - ters — LI\ I ().

Since a(ty) > a(t) > a(tpyq) for all ¢ with ¢, <t < 3, we have for ¢ € I} (y)
o) (Fiw(@x) = Fiw @) = alter) (fiw (@) — i),

and for t € I (y)

a()(fiw(@e) = fFiw®) = alt) (fiw (@) = fiwn®).

Hence for all ¢ with ¢ <t <{p1y

tegpr—1

> a)(fiwl) = Finw) > atew) X (Fiole) = fio))
t=t}, ter (y)
+a(ty) (fj(t) (zx) — fiq (y))
tel, (y)
= oty) kgt: (fj(t)(ka) — fj(t)(y))

— (O[(tk) — a(tk+1)) Z (fg(t)(xk) - fj(t)(y)) (24)

tent (y)
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Furthermore, by using the convexity of each f), the subgradient boundedness, and Eq.
(13), we can see that

123
fiw(@r) = fim(y) < C(||ka — ol | + [|zo — y||) <C (CZ )+ [lzo — ?/||> :
r=0
and, since the cardinality of I, (y) is at most m, we obtain
123
5 (fiote) - ) <m¢ (€S at) + e =)
tGI:(y) r=0
For the cyclic rule we have {j(t),...,j(tgr1 — 1)} = {1,...,m}, so that
tepr—1
> (fiwl) = fio®) = flaw) - f).
t=ty

By using the last two relations in Eq. (24), we obtain

b1 —1

2 o (fiw(@) ~ o) 2 ot (fw) - f)
—mC (a(ty) = altrs1)) (cz ) + ||z — y||>,
which when substituted in Eq. (23) yields for all y € X and &

lzesn =yl < e =yl = 20(te) (f (@) = f(y)) +mC*(1 4+ 2m + 4D)a®(tx — D)

$2m0 (ot —a(s.) (€ 35000 + o ]

m ter1—1
+2) > at) (5§'(t) - 52@)) (fl(x(t)) — fz(y))-
=1 t=ty
By summing these inequalities over k = ko, ... ,l;: — 1, and by using the facts t; < tx11,

a(ty) < alty = W), a(ty) > alty + W), o?(t, — D) < o?(t — W), we obtain

o= yll? < llow —ylP =2 3 alte) (f@) - £(1)

+mC?(1 + 2m + 4D) kz_:l o?(ty — W)
+2mC’Z( tk—W)—a(tk+1+W)(C§ —|—||gj0—y||)
23S alt)(dhy - o) (Fa®) — ), (25)

k=ko =1 t=ty
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with W = max{D,T}. Note that the last term in the preceding relation can be written
as the sum over [ = 1,...,m and over ¢t = ty,,...,t; — 1, so that by using Eq. (9) of
Lemma 4.1 where K = t;, and N =t; — 1, and the monotonicity of a(t), we have

lin:g: a() (8 — i) (filz(®) = fily)) < C2T§; Q2(t— )

ts

+max{C,G(y)} i (a(t — W) — alt+ W)) (o > a(r) + ||z — y||>

t:tko r=0

+c(y) (OzZ(tkO) + aty,) + o (t, — W) + Balt;, — W))

; (a(tkow(tko) — P+ Salt — Wl - y||2) . (26)

Furthermore, by the monotonicity of a(t), it follows that

tp—1 k=1 tp41—1 k-1
> o =2 > a(t=W)<m ) o't — W),
t=t, k=ko t=t k=ko

t-

S (aft — W) — alt + W) (cza(r>+||xo—y||) <

t:tko r=0

mZ( (te — W —a(tk+1+W)(Ck§:l )+ ||zo — y||).

k=ko

The desired relation (20) follows by substituting the last two inequalities in Eq. (26) and
by using the resulting relation in Eq. (25).

(b) The desired relation (22) follows from Eq. (20), by setting ko = 0, by dividing with
2 Zk s a(ty), and by using the fact 8 > 2a(0) > 2a(t) for all t. Q.E.D.

Now we prove Prop. 2.1.

Proof of Prop. 2.1:  We prove (a) and (b) simultaneously. Since a(t) = « for ¢ €
(—00,00) [recall that we defined a(t) = a(0) for ¢+ < 0], from Lemma 4.2(b), we obtain
forally e X and £ > 1

1 k1 14+ 2a)||zg — 9|2 =~ 1420 +
IS pon) < £y + B2 =wll |, 4 oy 220 H0
k .—o 20k ok
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By letting k — 0o and by using the following inequality
-1

1
liminf f(z;) < liminf - ;i Z I (),

k—oo k—oo
we have for all y € X

liminf f(z;) < f(y) + Ca,

k—o00
from which the results (a) and (b) follow by taking the minimum over y € X. Q.E.D.
In the proofs of Props. 2.2 and 2.3 we use properties of the stepsize given in the
following lemma.

Lemma 4.3:  Let the stepsize «(t) satisfy Assumption 2.2. Then we have

2(ty, — ty — W) — alt ol
lim (b = V) =0, lim alty = W) = ot + W) > alt) =0,
k—o00 O{(tk) k—o00 O{(tk) —0
> alty) = oo, Z(a(tk — W) — altgsr + W)) < oo
k=0 k=0

where t, = mk and W is a nonnegative integer. In addition, for % < g <1 we have

i ?(ty — W) < o0, i(a(tk — W) — a(tpsr + W)) kiéa(t) < 0.

Proof: Let 0 < g <1. The stepsize «(t) is smallest when S = 1, so that

Z tk >7"02 ]{;m—|—7“1) = OQ.

k=0

Let {lx} be a sequence of nonnegative integers such that for all k

To

&(tk - W) = m

(27)
Note that I, — oo as kK — oo. Given the value of a(t, — W), the values of a(t;) and

a(tyy1 + W) are smallest if we decrease the stepsize a(t) at each time ¢ for ¢ > ¢, — W.
Therefore

&(tk) Z

To

Iy + W +1r)7’

(28)

To

teyr +W
ollir + W) 2 (e +m+2W +ry)d’

(29)
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where in the last inequality above we use the fact ¢, = mk. By combining Eqgs. (27) and
(28), we see that

2 _
lim &%~ W) (tx = W)

=0.
k—o0 a(tk)

Next from Eqs. (27) and (29) we obtain

(le +m+2W +711)? — (I + 1)1

(lg + 7)1l +m + 2W +1p)0
roq(m + 2W)

(I + )l + W +1)0

alty—=W) —a(tgrn +W) = ng

(30)

where in the last inequality above we exploit the facts [, +m +2W +ri > [, + W +1r;
and

bq—aq:q/b dr 4 /bdeQ(b_“)
a a l=q 7

rl-a = gl-¢ a

for all b and a with b > a > 0, and 0 < ¢ < 1. In particular, the relation (30) implies that

roq(m + 2W)

a(tk - W) - a(tk-l-l + W) < (lk 4 T1)1+q

, (31)

so that Y72, (a(tk — W) —atps + W)) < 00. Furthermore, by combining Eqgs. (28) and
(30), we obtain for all &

a(ty = W) — altgrr + W) < q(m + 2W).

a(ty) Iy + 11 (32)

Now we estimate ;4" a(t). By using the definition and the monotonicity of a(t),

and Eq. (27) we have for all k large enough (so that ¢, — W > 0)

kia(t) < kz:% at)+ (1 +m+W)a(t, —W) Si%+(1+m+W)a(tk—W).

Since

L 1 % +1In(ly+r) ifqg=1,

Z (l + q < 1 (lgt+r)t— if 0 1 (33)
1=0 Tl) rd + 1—q 1 <g¢<li

from the preceding relation we obtain

tet1

> a(t) < ug, (34)

t=0
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where

O(ln(l +m)) ifq=1,
O((l,~C + rl)lf‘f) if0<qg<1.

U =

This together with Eq. (32) implies that

lim a(ty — W)a_(tj)(tkﬂ +W) ki:l at) = 0.

t=0

Now, let # < ¢ < 1. Then, by using the definition of a(t), we have for K large
enough (so that ty — W > 0)

o0

Z (tr, — )SiaQ(t—W)gi]QQ

= t=K

Srl
(I + 1)

ng

implying that Y32, (¢ — W) is finite. Furthermore, by combining Eqgs. (31), (34), and
(35), we obtain

tet1
alty = W) —a(tesr + W) D a(t) < v,
t=0
where
In(lp+7r1) . .
=19 () ifa=1,
O(m) if 0 <q<1.

Hence 0, a(ty — W) — a(tepr + W) X5 at) is finite.  Q.E.D.

We are now ready to prove Props. 2.2 and 2.3.

Proof of Prop. 2.2: It suffices to show that liminfy_, ., f(xx) = f*. For this we need
the following two relations

b
lin inf by < lin inf 250 ek = f’“ £ (36)
N—oo N—oo Zk) o Ck
lim su Zk 0 <l b
P — 1 im sup by, (37)
N—o0 Zk o Ck N—oco

which hold for any two scalar sequences {by.} and {cx} with ¢, > 0 for all k and Y32, ¢, =
oo (see Lemma 2.1 of Kiwiel [14]). By letting £ — oo in Eq. (22) of Lemma 4.2, by using
Lemma 4.3 and the relation (37), where ¢, = a(t)) and

Co(ty — W) oty — W) — a(tpsy + W) %2 .
oty ) at) 2 l0)

t=0

b, =
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from Eq. (22) it can be seen that for all y € X

VAL

By using the relation (36) with ¢, = a(tx) and b, = f(zy), from the preceding relation
we obtain for all y € X

liminf f(x;) < f(y),

k— o0

from which the result follows by taking the minimum over y € X. Q.E.D.

Proof of Prop. 2.3: By letting § =1 and y = z* for some z* € X*, and by dropping
the nonpositive term involving f(zy) — f*, from Eq. (20) of Lemma 4.2, we obtain for all
¥ e X* and k > kg

k-1

(1= 20t = W) llzg — 2*|* < (1 + 20(th,) ) |2k, — 27|17 + 20}; (te — W)
K 3 (alte = W) = altsr + W) (c S a(r) + |70 — o ||>
+2¢(x") (0P(th,) + a(thy) + &2 (t; = W) + alty — W), (38)

As k — 00, by applying Lemma, 4.3, from the preceding relation it follows that

limsup ||z; — z*|| < o0,
k—o00

i.e., {xx} is bounded. Furthermore, according to Prop. 2.2, we have
hlglogff(xk) = f,

which, by the continuity of f and the boundedness of {z}}, implies the existence of a
subsequence {z,} C {x} and a point & € X* such that

lim [z, — | = 0.
Next, in Eq. (38) we let 2* = 2 and ko = k; for some j. Then by first letting k — 0o and
then j — oo, and by using Lemma 4.3 and the fact xy; — &, we obtain

limsup||z; — z|| = 0.
k— o0

Q.E.D.
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5. Convergence Proofs for Random Selection Rule

In this section we give proofs of Props. 3.1 and 3.2. The proofs rely on the martingale
convergence theorem, as stated for example in Gallager [9], p. 256.

Theorem 5.1:  (Martingale Convergence Theorem) Let {Z; : k = 0,1,...} be a mar-
tingale and assume that there is some positive scalar M such that E{Z,%} < M for all
k. Then there is a random variable Z such that, for all sample sequences except a set of
probability 0, we have

lim 7, = Z.

k— 00

In the proofs we also use some properties of a(t) and xz(t) that are given, respectively,
in Lemmas 5.1 and 5.2 below.

Lemma 5.1:  Let Assumption 2.2 hold with % < q < 1. Then we have

iaQ(t — W) < oo, iﬂA(t) < 00, io:oa(t) = o0,

iA(t) Z a(r) < oo, iaQ(t) (Z a(r)) < 00, (39)

where A(t) = a(t —T) — a(t+ T) and W is a nonnegative integer.

Proof: We show the last relation in Eq. (39). The rest can be shown similar to the
proof of Lemma 4.3. Note that «(¢) is largest when we change the step every S iterations,
i.e., o1 —op =S for all [, so that

To

at) < m,

teflS,....,0+1)S—1}, 1=01,...,

and consequently [cf. Eq. (33)]

¢ ! 1 Sro (L +In(l+r ifg=1,
ZO&(?") S 57"[] Z T S ’ (7"11 (Z—Erl)l_ql)) . 1
r=0 k=0 (k + Tl)q Sto (W + 17_(]) if g <1.

Therefore a?(t) (Zf«:o a(r))2 <y fort € {IS,...,(I+1)S — 1}, where wy is of the order

2
% for ¢ = 1 and of the order W for ¢ < 1. Hence 392, o (¢) (Zf«:o a(r)) is

finite for ¢ > %. Q.E.D.

Lemma 5.2: Let Assumption 3.1 hold.
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(a) For all y € X and ¢, we have

e+ ) —yl? < o)~ vl 222 () - £@) + 250 — - 1)

+C?(1 +4D)a?(t — D)
+20(t) Y- (8 = O ) (ful2(®) = fi(w), (40)

=1

where 8! is the Kronecker symbol, z,(—1) = 0, and for ¢ > 0

0 =3 o) ( (70D = 1)~ (i (00 = Fio)))- (41)
(b) For ally € X, and N and K with N > K, we have
eV + 1)l < le(B) — ol ~ = 3 a) (1) ~ F)

t=K

+2(2(N) = 2 (K - 1))

N
+C?(1+4D +2T) Y o?(t -
t=K

+2 max{G(y ,C’}Z ( Z r) + |]z(0 —y||>

+2¢(y) (o? (K) + a(K) (N + 1-T)+a(N+1-1))

+2(a(K)[Je(K) = ylI* + (N +1 = T)[]z(N + 1) = y[[*),
where W = max{D, T}, G(y) and ¢(y) are given by Egs. (10) and (11), respectively,
and A(t)=a(t—T)— a(t+T) for all ¢.

¢) For all y € X, the sequence {z,(t)} defined by Eq. (41) is a convergent martingale.
(c) y€ X, q y y Eq g g

Proof: (a) The relation (40) follows from Eq. (8) of Lemma 4.1 by adding and subtract-
ing 20‘—(”(1"(@3) - f(y)), and by using the definition of z,(¢) [cf. Eq. (41)].

m

(b) Summing the inequalities (40) over ¢t = K, ..., N yields for all y € X

2V + 1) =yl < la(K) =yl = — 3 a®)(f(a(t) - ()

t=K

+2(2(N) = 2,(K — 1)) + C*(1 + 4D) fja

123 5" a(t) (8 — 0l) (A=) — £)).

i
=
S
I

0

The desired relation follows from the preceding relation, by using Eq. (9) of Lemma 4.1
with =1 and 2y = z(0).
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(c) Let y € X be fixed. First, we show that the sequence {z,(¢)} is a martingale. By
using the definition of z,(¢) [cf. Eq. (41)], we have

E{a(t) |5t -1} = 2t-1)
a0 (£0) - £6) - (@) - fio))

= z,(t—1),
where in the last equality we use the iterated expectation rule and

B{=(560) — 1)) = (fio0) = o @)] =)} =0

m

which follows from the properties of {j(¢)} [cf. Assumption 3.1(c)]. Hence z,(¢) is indeed
a martingale.

To apply the martingale convergence theorem, which guarantees the convergence of
zy(t), we have to prove that E{zz (t)} is bounded. From the definition of z,(t) [cf. Eq.
(41)] it follows that

Bz} = X o E { (= (F60) ~ 1) = (5 @) = fin(@)) } - (42)

m

This is because the expected values of the cross terms appearing in Z; (t) are equal to 0,

which can be seen by using the iterated expectation rule [i.e., by conditioning on the values
z(s) and z(r) for s, < t] and by exploiting the properties of j(r) [cf. Assumption 3.1(c)].
Furthermore, by using convexity of each f;, the triangle inequality, and the following
relation [cf. Eq. (13)]

t—1
lo(t) — 2D <C als), Vi t>4

for every r we have

(L (s ~ 1) - (fiolee) - o))

m

2
m

2

| /\

= (F@) = 1)+ 2(fim @) — fin ()

< 4(max{G(y), C}) llz(r) — yI?

<a{mx(10), )" (€S + 0 -l

< 8(max{G(y),C})’

c? (Z a(s>>2 +112(0) - y||2] .

s=0
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By using this inequality and Lemma 5.1 in Eq. (42), we see that E{zz(t)} is bounded.

Thus, according to the martingale convergence theorem, as t — oo, the sequence {z,(t)}
converges to some random variable with probability 1. Q.E.D.

Next we prove Prop. 3.1.

Proof of Prop. 3.1:  First we consider the case where f* is finite. Let € > 0 be
arbitrary and let § € X be such that

f@) < f+e

Fix a sample path, denoted by P, for which the martingale {2;(¢)} is convergent [cf.
Lemma 5.2(c)]. From Lemma 5.2(b), where K = 0 and y = ¢, we have for the path P
and sufficiently large N

S a®)(f@1) - @) < (14 20(0))]2(0) — §|[* + 225(N)

2
m ;-

+02(1+4D+2T)Za (t—W)
+2max{C,G(y }tzo ( z% )+ ||z(0 —?J||>

+2¢() (a?(0) + a(0) + @*(N +1 = T) + a(N + 1 = T)),
0

where we use the fact z;(—1) = 0 and we take N > kg with kg such that 1— 2ma(k T) >
for all k > ko. Since z;(N) converges, by dividing the above inequality with 2 YV a(t),
by letting N — oo, and by using Lemma 5.1, we obtain

i i S0 00 (1)
N—o0 Ei\io (0% (t)

By using the facts f(7) < f* + € and

< f(®).

liNIIi)inff(a:(N +1)) < hNHLinf Siso o(t)f(x())

Y alt)
[cf. Eq. (36)], we have for the path P
liminf f(z(N +1)) < f* +e.
N—o0

Thus liminfy , f(z(t)) < f* + € with probability 1, and since € is arbitrary, it follows
that

li)ﬁrg(i)gff(x(t)) = f*.

In the case where f* = —o0, we choose an arbitrarily large positive integer M and a point
y € X such that f(y) < —M, and use the same line of analysis as in the preceding case.
Q.E.D.
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Now we present a proof of Prop. 3.2

Proof of Prop. 3.2: Let d be the dimension of X*. Then there exist d + 1 distinct

points v, ...,yqs € X* that are in general position, i.e., they are such that the vectors
Y1 — Yo, -- -, Ya — Yo are linearly independent. According to Lemma 5.2(c), for each s =
0,...,d the martingale z,(t) = 2,, (t) converges, as t — 00, to some random variable with

probability 1.
Now, fix a sample path, denoted by P, for which

lim inf f(2(2)) = f (43)
(cf. Prop. 3.1) and every martingale z,(t) is convergent. Furthermore, fix an s € {0, ..., d}.

Let Ky be a positive integer large enough so that
1 —-2a(K—-T) >0, vV K > K.

By using Lemma 5.2(b) with y = y; and N > K > Ky, and by dropping the nonnegative
term involving f(z(t)) — f(ys), we obtain

(1=20(N +1=D))|a(N +1) = gl * < (1 + 20(K)) ||2(K) =y

+2(2(N) = z(K — 1)) + C*(1+ 4D + 2T) fj o?(t —

t=K

+2max{G(ys),C} Z (C’Z ) + [|z(0) — ys||>

+2¢(ys) (a*(K) + a(K) + 0*(N + 1= T) + (N +1-T)).
By using Lemma 5.1 and the convergence of {z,(t)}, from the preceding relation we obtain

lim sup [|2(N +1) — ;| [* < lim inf ||2(K) — y4|*
—00

N—0

Hence lim;_,, ||z(t) — ys||* exists for the path P and all s =0, ...,d.
Let us define for s =0,...,d

3, = Jim [J2(6) = y.||. (449)
Because 1, ..., yq are distinct points, at most one (3 can be zero, in which case for the
path P we have lim;_, ||2(t) — ys|| = 0, and we are done. Now, let all the scalars 35 be

positive. Without loss of generality, we may assume that all 3, are equal, for otherwise
we can use a linear transformation of the space R™ such that in the transformed space
the values Bg, ceny Bd corresponding to (3, ..., (4, respectively, are all equal. Therefore we
set Oy = [ for all s, so that every limit point of {x(¢)} is at the same distance 3 from
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each of the points yg,...,y4. Let M, be the d-dimensional linear manifold containing
X*. Because vy, ...,yq are in general position, the set of all points that are at the same
distance from each y; is an n — d-dimensional linear manifold M,,_4. Hence all limit
points of {z(¢)} lie in the manifold M,, 4.

In view of Eqgs. (43) and (44), {z(¢)} must have a limit point Z for which f(z) = f*.
Therefore £ € X* implying that £ € My;N M, _4, and since My is orthogonal to M,,_g4,
T is the unique limit point of {z(¢)} for the path P. Hence {x(t)} converges to some
optimal solution with probability 1. Q.E.D.

Remark 5.1: If the set X is compact, then it can be shown that

B{z(1)} < 4(max{G(y). C}) sup |l —vl[* 3 a’(r).

r=0

In this case, the martingale {z,(¢)} is convergent for 3 < ¢ < 1 in Assumption 3.1(b),
so that the result of Prop. 3.2 holds under Assumption 3.1(b) with % < g < 1 instead of

3
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