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Abstract

In this paper we discuss the parallel asynchronous implementation of the classical primal-
dual method for solving the linear minimum cost network flow problem. Multiple augmentations
and price rises are simultaneously attempted starting from several nodes with possibly outdated
price and flow information. The results are then merged asynchronously subject to rather weak
compatibility conditions. We show that this algorithm is valid, terminating finitely to an optimal
solution. We also present computational results using an Encore Multimax that illustrate the
speedup that can be obtained by parallel implementation.
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1. Introduction

1. INTRODUCTION

Consider a directed graph with node set N and arc set A. Each arc (i, j) has a cost coefficient

aij . We denote by fij the flow of an arc (i, j). The minimum cost flow (or transshipment) problem

is

minimize
∑

(i,j)∈A
aijfij (LNF )

subject to ∑
{j|(i,j)∈A}

fij −
∑

{j|(j,i)∈A}
fji = si, ∀ i ∈ N , (1)

bij ≤ fij ≤ cij , ∀ (i, j) ∈ A, (2)

where aij , bij , cij , and si are given integers. We assume that there exists at most one arc in each

direction between any pair of nodes, but this assumption is made for notational convenience and

can be easily dispensed with.

A classical and still frequently used method for solving this problem is the primal-dual

method due to Ford and Fulkerson [FoF57], [FoF62]. The basic idea is to maintain a price

for each node and a flow for each arc, which satisfy complementary slackness. The method

makes progress towards primal feasibility by successive augmentations along paths with certain

properties and by making price changes to facilitate the creation of paths with such properties

(see the description in the next section). The paths and the corresponding price adjustments

can also be obtained by a shortest path computation (see the next section). The search for the

augmenting path may be initiated from a single node or from multiple (or all) nodes with positive

surplus [AMO89], [Ber91]. The mehod is also known as the “sequential shortest path method”,

and it is also closely related to an algorithm of Busaker and Gowen [BuG61], which also involves

augmentations along certain shortest paths.

In this paper we propose parallel asynchronous versions of the primal-dual method where

several augmenting paths are simultaneously constructed, each starting from a different node.

This is the first proposal for a parallel (synchronous or asynchronous) primal-dual method for

the transshipment problem (other than the obvious suggestions of parallelizing the algebra of the

serial version; see [BCE91] for a recent survey of parallel algorithms for network optimization,

which contains an extensive reference list). Our proposal has been motivated by the synchronous

parallel sequential shortest path algorithm introduced by Balas, Miller, Pekny, and Toth [BMP91]

for the case of an assignment problem. They have shown that if the augmenting paths are

pairwise disjoint, they can all be used to modify the current flow; to preserve complementary
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2. The Parallel Asynchronous Primal-Dual Method

slackness, the node prices should be modified according to the “max-rule”, that is, they should

be raised to the maximum of the levels that would result from each individual shortest path

calculation. In [BeC90], we have shown the validity of an asynchronous parallel implementation

of the Hungarian method, which is an extension of the synchronous parallel Hungarian method

of Balas et al. The potential advantage of asynchronous algorithms is that they often work

faster than their synchronous counterparts because they are not penalized by synchronization

delays (see [BeT89] for an extensive discussion of related issues). In particular, computational

experiments with assignment problems on the Encore Multimax shared memory multiprocessor

[BeC90] show that asynchronism often results in faster execution.

In addition to showing the finite termination of our parallel asynchronous primal-dual

method to an optimal solution, we discuss combinations of the primal-dual method with sin-

gle node relaxation (coordinate ascent) iterations, and we similarly show that the combined

algorithms work correctly in a parallel asynchronous context. Our results can be used to de-

velop parallel versions of efficient minimum cost network optimization codes such as the RELAX

algorithm of [BeT88].

Note that it is by no means obvious why the max-rule works in a synchronous setting

and, a fortiori , in an asynchronous setting. For this reason the proofs of algorithmic validity

of [BMP91] and [BeC90] for the case of the assignment problem have been challenging and

complicated. Similarly, our finite termination proof for the minimum cost flow problem is long

and nontrivial.

In the next section we describe synchronous and asynchronous parallel versions of the

primal-dual algorithm and in Section 3 we prove their validity. The primal-dual method can

be substantially accelerated by combining it with single node relaxation iterations of the type

introduced in [Ber85]. In Section 4 we show how such combinations can be implemented in

a parallel asynchronous setting. Finally, in Section 5 we briefly discuss both synchronous and

asynchronous implementations on shared-memory architectures, and discuss computational re-

sults obtained on an Encore MULTIMAX. The results illustrate the potential advantages of

asynchronous computation for these methods.

2. THE PARALLEL ASYNCHRONOUS PRIMAL-DUAL METHOD

We introduce some terminology and notation. We denote by f the vector with elements

fij , (i, j) ∈ A. We refer to bij and cij , and the interval [bij , cij ] as the flow bounds and the
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2. The Parallel Asynchronous Primal-Dual Method

feasible flow range of arc (i, j), respectively. We refer to si as the supply of node i. We refer to

the constraints (1) and (2) as the conservation of flow constraints and the capacity constraints,

respectively. A flow vector satisfying both of these constraints is called feasible, and if it satisfies

just the capacity constraints, it is called capacity-feasible. If there exists at least one feasible flow

vector, problem (LNF) is called feasible and otherwise it is called infeasible. For a given flow

vector f , we define the surplus of node i by

gi =
∑

{j|(j,i)∈A}
fji −

∑
{j|(i,j)∈A}

fij + si. (3)

We introduce a dual variable pi for each node i, also referred to as the price of node i.

A flow-price vector pair (f, p) is said to satisfy the complementary slackness conditions (CS for

short) if f is capacity-feasible and

fij < cij ⇒ pi ≤ aij + pj ∀ (i, j) ∈ A, (4a)

bij < fij ⇒ pi ≥ aij + pj ∀ (i, j) ∈ A. (4b)

For a pair (f, p), feasibility of f and CS are the necessary and sufficient conditions for f to be

optimal and p to be an optimal solution of a certain dual problem (see e.g. [Roc84] or [BeT89]).

The primal-dual method maintains a pair (f, p) satisfying CS, such that f is capacity-

feasible. The method makes progress towards optimality by reducing the total absolute surplus∑
i∈N |gi| by an integer amount at each iteration, as we now describe.

For a given capacity-feasible f , an unblocked path P (with respect to f) is a path (i1, i2, . . . , ik)

such that for each m = 1, . . . , k − 1, either (im, im+1) is an arc with fimim+1 < cimim+1 (called a

forward arc) or (im+1, im) is an arc with bim+1im < fim+1im (called a backward arc). We denote

by P+ and P− the sets of forward and backward arcs of P , respectively. The unblocked path P

is said to be an augmenting path if

gi1 > 0, gik < 0.

An augmentation along an augmenting path P consists of increasing the flow of the arcs in P+

and decreasing the flow of the arcs in P− by the common positive increment δ given by

δ = min
{

gi1 ,−gik ,
{
cmn − fmn | (m, n) ∈ P+

}
,
{
fmn − bmn | (m, n) ∈ P−

}}
. (5)

Given a price vector p, the reduced cost of arc (i, j) is given by

rij = aij + pj − pi. (6)
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2. The Parallel Asynchronous Primal-Dual Method

If (f, p) is a pair satisfying the CS condition (4) and P is an unblocked path with respect to f ,

the cost length of P is defined by

C(P ) =
∑

(i,j)∈P+

aij −
∑

(i,j)∈P−
aij (7)

and the reduced cost length of P is defined by

R(p, P ) =
∑

(i,j)∈P+

rij −
∑

(i,j)∈P−
rij . (8)

Note that by CS, we have rij ≥ 0 for all (i, j) ∈ P+ and rij ≤ 0 for all (i, j) ∈ P−, so R(p, P ) ≥ 0.

For a pair of nodes i and j, let Pij(f) be the set of unblocked paths starting at i and ending at

j, and let

vij(f, p) =
{

minP∈Pij(f) R(p, P ) if Pij(f) is nonempty

∞ otherwise.
(9)

If there exists at least one node j with gj < 0, the distance of i is defined by

di =

{
min{j|gj<0} vij(f, p) if gi ≥ 0

0 otherwise,
(10)

and, otherwise, the distance di is defined to be ∞. It is well known that if the problem is feasible,

we have di < ∞ for all i with gi > 0, that is, there exists an augmenting path starting at each

node that has positive surplus.

The typical primal-dual iteration starts with a pair (f, p) satisfying CS and generates an-

other pair (f̄ , p̄) satisfying CS as follows:

Typical Iteration of the Serial Primal-Dual Method:

Choose a node i with gi > 0. [If no such node can be found, the algorithm terminates. There are

then two possibilities: (1) gi = 0 for all i, in which case f is optimal since it is feasible and satisfies

CS together with p; (2) gi < 0 for some i, in which case problem (LNF) is infeasible.] If di = ∞ the

algorithm terminates, since then there is no augmenting path from the positive surplus node i to

any negative surplus node, and the problem is infeasible. If di < ∞, let j̄ and P̄ be the minimizing

node with gj̄ < 0 and corresponding augmenting path in the definition of the distance di [cf. Eqs.

(9), (10)], that is,

j̄ = arg min
{j|gj<0}

vij(f, p), (11)

P̄ = arg min
P∈Pij̄(f)

R(p, P ). (12)

Change the node prices according to

p̄j = pj + max
{
0, di − vij(f, p)

}
, ∀ j ∈ N , (13)
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2. The Parallel Asynchronous Primal-Dual Method

and perform an augmentation along the path P̄ , obtaining a new flow vector f̄ .

We note that the primal-dual iteration can be executed by a shortest path computation. To

see this, consider the residual graph, obtained from the original by assigning length rij to each

arc (i, j) with fij < cij , by replacing each arc (i, j) with fij = cij by an arc (j, i) with length

−rij , and by replacing each arc (i, j) with bij < fij < cij with two arcs (i, j) and (j, i) with

length zero [the reduced cost of (i, j), cf. the CS condition (4)]. Then the augmenting path P̄ is

a shortest path in the residual graph, over all paths starting at the node i and ending at a node

j with gj < 0. Note that by the CS condition, all arc lengths are nonnegative in the residual

graph, so Dijkstra’s method can be used for the shortest path computation.

The results of the following proposition are well known (see e.g. [AMO89], [Ber91], [PaS82],

[Roc84]) and will be used in what follows:

Proposition 1: If problem (LNF) is feasible, then a node j̄ and an augmenting path P̄

satisfying Eqs. (11) and (12) exist. Furthermore, if (f̄ , p̄) is a pair obtained by executing a

primal-dual iteration on a pair (f, p) satisfying CS, the following hold:

(a) If f consists of integer flows, the same is true for f̄ .

(b) (f, p̄) and (f̄ , p̄) satisfy CS.

(c) Let P̄ be the augmenting path of the iteration. Then

R(p̄, P̄ ) = 0,

that is, all arcs of P̄ have zero reduced cost with respect to p̄.

(d) p̄j = pj for all j with gj < 0.

By Prop. 1, if initially f is integer and the pair (f, p) satisfies CS, the same is true after all

subsequent iterations. Then at each iteration, the total absolute surplus
∑

i∈N |gi| will be reduced

by the positive integer 2δ, where δ is the augmentation increment given by Eq. (5). Thus only a

finite number of reductions of
∑

i∈N |gi| can occur, implying that the algorithm must terminate

in a finite number of iterations if the problem is feasible.

We now introduce a parallel synchronous version of the primal-dual algorithm. To simplify

the statement of this and the subsequent asynchronous algorithm, we assume that the problem

is feasible; as in the serial version, infeasibility can be detected when no augmenting path can

be constructed starting at some positive surplus node, or when there is no node with positive

surplus, but there is a node with negative surplus.
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2. The Parallel Asynchronous Primal-Dual Method

The algorithm terminates when all nodes have zero surplus. Each iteration starts with a pair

(f, p) satisfying CS. Several augmenting paths are constructed in parallel, and these paths are

used to generate another pair (f̄ , p̄) as follows:

Typical Iteration of Parallel Synchronous Primal-Dual Method:

Choose a subset I = {i1, . . . , im} of nodes with positive surplus. For each in, n = 1, . . . , m, let p̄(n) and

P̄ (n) be the price vector and augmenting path obtained by executing a primal-dual iteration starting

at in, and using the pair (f, p). Then generate sequentially the pairs
(
f(n), p(n)

)
, n = 1, . . . , m, as

follows, starting with
(
f(0), p(0)

)
= (f, p):

For n = 0, . . . , m − 1, if P̄ (n + 1) is an augmenting path with respect to f(n), obtain f(n + 1) by

augmenting f(n) along P̄ (n + 1), and set

pj(n + 1) = max
{
pj(n), p̄j(n)

}
, ∀ j ∈ N .

Otherwise set

f(n + 1) = f(n), p(n + 1) = p(n).

The pair (f̄ , p̄) generated by the iteration is

f̄ = f(m), p̄ = p(m).

The preceding algorithm can be parallelized by using multiple processors to compute the

augmenting paths of an iteration in parallel. On the other hand the algorithm is synchronous in

that iterations have clear “boundaries”. In particular, all augmenting paths generated in the same

iteration are computed on the basis of the same pair (f, p). Thus, it is necessary to synchronize

the parallel processors at the beginning of each iteration, with an attendant synchronization

penalty.

The parallel asynchronous primal-dual algorithm tries to reduce the synchronization penalty by

“blurring” the boundaries between iterations and by allowing processors to compute augmenting

paths using pairs (f, p) which are out-of-date.

To describe the parallel asynchronous algorithm, let us denote the flow-price pair at the times

k = 1, 2, 3, . . .

by
(
f(k), p(k)

)
. [In a practical setting, the times k represent “event times”, that is, times at

which an attempt is made to modify the pair (f, p) through an iteration.] We require that the

initial pair
(
f(1), p(1)

)
satisfies CS. The algorithm terminates when during an iteration, a feasible

flow is obtained.
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2. The Parallel Asynchronous Primal-Dual Method

kth Iteration of Parallel Asynchronous Primal-Dual Method:

A primal-dual iteration is performed on a pair
(
f(τk), p(τk)

)
, where τk is a positive integer with

τk ≤ k, to produce a pair
(
f̄(k), p̄(k)

)
and an augmenting path P̄k. The iteration (and the path P̄k)

is said to be incompatible if P̄k is not an augmenting path with respect to f(k); in this case we discard

the results of the iteration, that is, we set

f(k + 1) = f(k), p(k + 1) = p(k).

Otherwise, we say that the iteration (and the path P̄k) is compatible, we obtain f(k + 1) from f(k)

by augmenting f(k) along P̄k, and we set

pj(k + 1) = max
{
pj(k), p̄j(k)

}
, ∀ j ∈ N . (14)

We note that the definition of the asynchronous algorithm is not yet rigorous, because we

have not yet proved that
(
f(k), p(k)

)
satisfies CS at all times prior to termination, so that a

primal-dual iteration can be performed. This will be shown in the next section.

The implementation of the asynchronous algorithm in a parallel shared memory machine is

quite straightforward. The main idea is to maintain a “master” copy of the current flow-price

pair in the shared memory; this is the pair
(
f(k), p(k)

)
in the preceding mathematical description

of the algorithm. To execute an iteration, a processor copies from the shared memory the current

master flow-price pair; at the start of this copy operation the master pair is locked, so no other

processor can modify it, and at the end of the iteration the master pair is unlocked. The processor

performs a primal-dual iteration using the copy obtained, and then locks again the master pair

(which may by now differ from the copy obtained earlier). The processor checks if the iteration

is compatible, and if so it modifies accordingly the master flow-price pair. The processor then

unlocks the master pair, possibly after retaining a copy to use at a subsequent iteration. The

times when the master pair is copied and modified by processors correspond to the indexes τk

and k of the asynchronous algorithm, respectively, as illustrated in Fig. 1. This implementation is

similar to the one of our asynchronous Hungarian algorithm for the assignment problem described

in [BeC90].

We finally note that any sequence of flow-price pairs generated by the synchronous parallel

algorithm can also be viewed as a sequence
(
f(k), p(k)

)
generated by the asynchronous version. In

particular, in a synchronous algorithm, suppose that m processors participate in a given iteration,

copy the current flow-price pair (f, p) at a common time corresponding to a synchronization

point, and update the master copy of the flow-price pair to (f, p) at a subsequent common time

corresponding to another synchronization point. Let
(
f(k + n), p(k + n)

)
, n = 1, . . . , m, be the

successive updates of the master copy resulting from this synchronous iteration. We may view
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Processor 1
copies the 
master pair (f,p)

Processor 1 executes
a generic iteration based
on the copied pair

Processor 1
modifies the
master pair 
(f,p)

Times when processors 2, 3, ...
modify the master pair (f,p)

τ k k

3. Validity of the Asynchronous Algorithm

Figure 1: Operation of the asynchronous algorithm in a shared memory ma-

chine. A processor copies the master flow-price pair at time τk, executes between

times τk and k a generic iteration using the copy, and modifies accordingly the

master flow-price pair at time k. Other processors may have modified unpre-

dictably the master pair between times τk and k.

these updates as also generated by the asynchronous algorithm, with

(
f(k), p(k)

)
= (f, p),

(
f(k + m), p(k + m)

)
= (f, p)

τk+n = k, ∀ n = 0, . . . , m − 1.

Thus, our subsequent proof of validity of the asynchronous algorithm applies also to the syn-

chronous version.

3. VALIDITY OF THE ASYNCHRONOUS ALGORITHM

We want to show that the asynchronous algorithm maintains CS throughout its course. We

first introduce some definitions and then we break down the main argument of the proof in a few

lemmas.

Lemma 1: Assume that (f, p) satisfies CS. Let P = (i1, i2, . . . , ik) be an unblocked path with

respect to f . Then

pik = pi1 + R(p, P ) − C(P ).
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3. Validity of the Asynchronous Algorithm

Proof: Using Eqs. (7) and (8), we have

R(p, P ) =
∑

(im,im+1)∈P+

(
aimim+1 + pim+1 − pim

)
−

∑
(im+1,im)∈P−

(
aim+1im + pim − pim+1

)

= C(P ) +
k−1∑
m=1

(
pim+1 − pim

)
= C(P ) + pik − pi1 ,

which yields the desired result. Q.E.D.

Lemma 2: Let gj(k) denote the surplus of node j corresponding to f(k). For all nodes j such

that gj(k) < 0, we have pj(k + 1) = pj(t) for all t ≤ k.

Proof: By the nature of augmentations, we have gj(t) ≤ gj(t + 1) ≤ 0 if gj(t) < 0. Therefore,

the hypothesis implies that gj(t) < 0 for all t ≤ k and the result follows from Eq. (14) and Prop.

1(d). Q.E.D.

Lemma 3: Let k ≥ 1 be given and assume that
(
f(t), p(t)

)
satisfies CS for all t ≤ k. Then:

(a) For all nodes j and all t ≤ k, there holds

p̄j(t) ≤ pj(τt) + dj(τt). (15)

(b) For t ≤ k, if f(t+1) �= f(t) (i.e., iteration t is compatible), and j is a node which belongs

to the corresponding augmenting path, then we have

pj(t) + dj(t) = p̄j(t) = pj(t + 1). (16)

(c) For all nodes j and all t ≤ k − 1, there holds

pj(t) + dj(t) ≤ pj(t + 1) + dj(t + 1). (17)

Proof: (a) If j is such that gj(τt) < 0, by Prop. 1(d), we have p̄j(t) = pj(τt) and dj(t) = 0, so

the result holds. Thus, assume that gj(τt) ≥ 0. Consider any unblocked path P [with respect to

f(τt)] from j to a node j with gj(τt) < 0. By Lemma 1, we have

pj(τt) = pj(τt) + R
(
p(τt), P

)
− C(P ),

p̄j(t) = p̄j(t) + R
(
p̄(t), P

)
− C(P ),
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3. Validity of the Asynchronous Algorithm

where the second equality holds because by Prop. 1(b), the pair
(
f(τt), p̄

)
satisfies CS and Lemma

1 applies. Since gj(τt) < 0, we have pj(τt) = p̄j(t) and it follows that

p̄j(t) = pj(τt) + R
(
p(τt), P

)
− R

(
p̄(t), P

)
≤ pj(τt) + R

(
p(τt), P

)
.

Taking the minimum of R
(
p(τt), P

)
over all unblocked paths P , starting at j and ending at nodes

j with gj(τt) < 0, the result follows.

(b), (c) We prove parts (b) and (c) simultaneously, by first proving a weaker version of part

(b) [see Eq. (18) below], then proving part (c), and then completing the proof of part (b).

Specifically, we will first show that for t ≤ k, if f(t + 1) �= f(t) and j is a node which belongs to

the corresponding augmenting path, then we have

pj(t) + dj(t) ≤ p̄j(t) = pj(t + 1). (18)

Indeed, if gj(t) < 0, Eq. (18) holds since, by Lemma 2, we have pj(t) = p̄j(t) and dj(t) = 0.

Assume that gj(t) ≥ 0. Let the augmenting path of iteration t end at node j, and let P be the

portion of this path that starts at j and ends at j. We have, using Lemma 1, and Props. 1(b)

and 1(c),

p̄j(t) = p̄j(t) − C(P ),

pj(t) = pj(t) − C(P ) + R
(
p(t), P

)
.

Since gj(t) < 0, by Lemma 2, we have p̄j(t) = pj(t), and we obtain

p̄j(t) = pj(t) + R
(
p(t), P

)
≥ pj(t) + dj(t),

showing the left hand side of Eq. (18). Since dj(t) ≥ 0, this yields pj(t) ≤ p̄j(t), so p̄j(t) =

max{pj(t), p̄j(t)} = pj(t + 1), completing the proof of Eq. (18).

We now prove part (c), making use of Eq. (18). Let us fix node j and assume without

loss of generality that iteration t is compatible [otherwise Eqs. (16) and (17) hold trivially]. If

gj(t + 1) < 0, we have pj(t) = pj(t + 1) and dj(t) = dj(t + 1) = 0, so the desired relation (17)

holds. Thus, assume that gj(t + 1) ≥ 0, and let P = (j, j1, . . . , jk, j) be an unblocked path with

respect to f(t + 1), which is such that gj(t + 1) < 0 and

R
(
p(t + 1), P

)
= dj(t + 1).

Let P denote the augmenting path of iteration t. Then there are three possibilities: (1) P∩P = ∅.
(2) j ∈ P . (3) P ∩ P �= ∅ and j /∈ P . We prove Eq. (17) separately for each of these cases:

(1) In this case, the nodes j, j1, . . . , jk do not belong to P , and the path P is also unblocked

with respect to f(t). By using Lemma 1, it follows that

pj(t + 1) = pj(t + 1) − C(P ) + R
(
p(t + 1), P

)
,
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and

pj(t) = pj(t) − C(P ) + R
(
p(t), P

)
.

Since gj(t + 1) < 0, we have pj(t + 1) = pj(t), so the preceding equations yield

pj(t + 1) + R
(
p(t + 1), P

)
= pj(t) + R

(
p(t), P

)
.

Since R
(
p(t + 1), P

)
= dj(t + 1) and R

(
p(t), P

)
≥ dj(t), we obtain

pj(t) + dj(t) ≤ pj(t + 1) + dj(t + 1),

and Eq. (17) is proved.

(2) In this case, by Eq. (18), we have

pj(t) + dj(t) ≤ pj(t + 1) ≤ pj(t + 1) + dj(t + 1),

and Eq. (17) is proved.

(3) In this case, there is a node jm, m ∈ {1, . . . , k}, which belongs to P , and is such that j

and j1, . . . , jm−1 do not belong to P . Consider the following paths, which are unblocked

with respect to f(t + 1):

P ′ = (j, j1, . . . , jm−1, jm),

P ′′ = (jm, jm+1, . . . , jk, j).

By using Lemma 1, we have

R
(
p(t + 1), P ′

)
+ pj(t + 1) = R

(
p(t), P ′

)
+ pj(t) + pjm(t + 1) − pjm(t),

and since by Eq. (18), pjm(t + 1) − pjm(t) ≥ djm(t), we obtain

R
(
p(t + 1), P ′

)
+ pj(t + 1) ≥ R

(
p(t), P ′

)
+ pj(t) + djm(t). (19)

On the other hand, we have

R
(
p(t + 1), P

)
= R

(
p(t + 1), P ′

)
+ R

(
p(t + 1), P ′′

)
and since R

(
p(t + 1), P ′′

)
≥ 0, we obtain

R
(
p(t + 1), P

)
≥ R

(
p(t + 1), P ′

)
. (20)

Combining Eqs. (19) and (20), we see that

R
(
p(t + 1), P

)
+ pj(t + 1) ≥ R

(
p(t), P ′

)
+ pj(t) + djm(t).
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3. Validity of the Asynchronous Algorithm

We have R
(
p(t), P ′

)
+ djm(t) ≥ dj(t), and R

(
p(t + 1), P

)
= dj(t + 1), so it follows that

pj(t + 1) + dj(t + 1) ≥ pj(t) + dj(t),

and the proof of Eq. (17) is complete.

To complete the proof of part (b), we note that by using Eqs. (15) and (17), we obtain

p̄j(t) ≤ pj(τt) + dj(τt) ≤ pj(t) + dj(t),

which combined with Eq. (18) yields the desired Eq. (16). Q.E.D.

We can now prove that the asynchronous algorithm preserves CS.

Proposition 2: All pairs
(
f(k), p(k)

)
generated by the asynchronous algorithm satisfy CS.

Proof: By induction. Suppose all iterations up to the kth maintain CS, let the kth iteration

be compatible, and let P̄k be the corresponding augmenting path. We will show that the pair(
f(k + 1), p(k + 1)

)
satisfies CS. For any arc (i, j) there are four possibilities:

(1) fij(k +1) �= fij(k). In this case by Prop. 1(c), we have p̄i(k) = aij + p̄j(k). Since i and j

belong to P̄k, by Lemma 3(b), we have pi(k +1) = p̄i(k) and pj(k +1) = p̄j(k), implying

that pi(k + 1) = aij + pj(k + 1), so the CS condition is satisfied for arc (i, j).

(2) fij(k +1) = fij(k) < cij . In this case, by the CS property (cf. the induction hypothesis),

we have pi(k) ≤ aij + pj(k). If pi(k) ≥ p̄i(k), it follows from Eq. (14) that

pi(k + 1) = pi(k) ≤ aij + pj(k) ≤ aij + pj(k + 1),

so the CS condition is satisfied for arc (i, j). Assume therefore that pi(k) < p̄i(k). If

fij(τk) < cij , then since by Prop. 1(b), (f, p̄) satisfies CS, we have p̄i(k) ≤ aij+p̄j(k), from

which pi(k+1) ≤ aij + p̄j(k) ≤ aij +pj(k+1), and again the CS condition is satisfied for

arc (i, j). The last remaining possibility [under the assumption fij(k +1) = fij(k) < cij ]

is that fij(τk) = cij and pi(k) < p̄i(k). We will show that this can’t happen by assuming

that it does and then arriving at a contradiction. Let t1 be the first time index such that

τk < t1 ≤ k and fij(t1) < cij . Then by Lemmas 3(a) and 3(c), we have

p̄i(k) ≤ pi(τk) + di(τk) ≤ pi(t1 − 1) + di(t1 − 1),

while from Lemma 3(b),

pi(t1 − 1) + di(t1 − 1) = pi(t1) ≤ pi(k),

13



4. Combination with Single Node Relaxation Iterations

[since fij(t1) �= fij(t1−1) and node i belongs to the augmenting path of iteration t1−1].

It follows that p̄i(k) ≤ pi(k), which contradicts the assumption pi(k) < p̄i(k), as desired.

We have thus shown that the CS condition holds for arc (i, j) in case (2).

(3) fij(k + 1) = fij(k) > bij . The proof that the CS condition is satisfied for arc (i, j) is

similar as for the preceding case (2).

(4) fij(k + 1) = fij(k) = bij = cij . In this case, the CS conditions (4) are trivially satisfied.

Q.E.D.

Proposition 2 shows that if the asynchronous algorithm terminates, the flow-price pair obtained

satisfies CS. Since the flow obtained at termination is feasible, it must be optimal. To guarantee

that the algorithm terminates, we impose the condition

lim
k→∞

τk = ∞.

This is a natural and essential condition, stating that the algorithm iterates with increasingly

more recent information.

Proposition 3: If limk→∞ τk = ∞, the asynchronous algorithm terminates. If the problem is

feasible, the flow obtained at termination is optimal.

Proof: There can be at most a finite number of compatible iterations, so if the algorithm does

not terminate, all iterations after some index k̄ are incompatible, and f(k) = f(k̄) for all k ≥ k̄.

On the other hand, since limk→∞ τk = ∞, we have that τk ≥ k̄ for all k sufficiently large, so

that f(τk) = f(k) for all k with τk ≥ k̄. This contradicts the incompatibility of the kth iteration.

Q.E.D.

4. COMBINATION WITH SINGLE NODE RELAXATION ITERATIONS

Computational experiments show that in a serial setting, primal-dual methods are greatly

speeded up by mixing shortest path augmentations with single node relaxation (or coordinate

ascent) iterations of the type introduced in [Ber85]. The typical single node iteration starts with

a pair (f, p) satisfying CS and produces another pair (f̄ , p̄) satisfying CS. It has the following

form.

14



4. Combination with Single Node Relaxation Iterations

Single Node Relaxation Iteration:

Choose a node i with gi > 0 (if no such node can be found, the algorithm terminates). Let

B+
i = {j | (i, j) ∈ A, rij = 0, fij < cij}, (21)

B−
i = {j | (j, i) ∈ A, rji = 0, fji > bji}. (22)

Step 1: If

gi ≥
∑

j∈B+
i

(cij − fij) +
∑

j∈B−
i

(fji − bji),

go to Step 4. Otherwise, if gi > 0, choose a node j ∈ B+
i with gj < 0 and go to Step 2, or choose a

node j ∈ B−
i with gj < 0 and go to Step 3; if no such node can be found or if gi = 0, set f̄ = f and

p̄ = p, and go to the next iteration.

Step 2: (Flow Adjustment on Outgoing Arc) Let

δ = min{gi,−gj , cij − fij}.

Set

fij := fij + δ, gi := gi − δ, gj := gj + δ

delete j from B+
i , and go to Step 1.

Step 3: (Flow Adjustment on Incoming Arc) Let

δ = min{gi,−gj , fji − bji}.

Set

fji := fji − δ, gi := gi − δ, gj := gj + δ

delete j from B−
i , and go to Step 1.

Step 4: (Increase Price of i) Set

gi := gi −
∑

j∈B+
i

(cij − fij) −
∑

j∈B−
i

(fji − bji),

fij = cij , ∀ j ∈ B+
i ,

fji = bji, ∀ j ∈ B−
i ,

pi := min
{
min{pj + aij | (i, j) ∈ A, pi < pj + aij}, min{pj − aji | (j, i) ∈ A, pi < pj − aji}

}
. (23)

If following these changes, gi > 0, recalculate the sets B+
i and B+

i using Eqs. (21) and (22), and go to

Step 1; else, set f̄ = f and p̄ = p, and go to the next iteration. [Note: If the set of arcs over which the

minimum in Eq. (23) is calculated is empty, there are two possibilities: (a) gi > 0, in which case it can

be shown that the dual cost increases without bound along pi, and the primal problem is infeasible,

or (b) gi = 0, in which case the cost stays constant along pi; in this case, we set f̄ = f , p̄ = p, and go

to the next iteration.]
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5. Computational Results

It can be seen that the flow changes of the above iteration are such that the condition gi ≥ 0 is

maintained. Furthermore, it can be shown that the pair (f̄ , p̄) generated by the iteration satisfies

CS. To see this, first note that Steps 2 and 3 can only change flows of arcs with zero reduced

cost; then observe that the flow changes in Step 4 are designed to maintain CS of the arcs whose

reduced cost changes from zero to nonzero, and the price change is such that the sign of the

reduced costs of all other arcs does not change from positive to negative or reversely.

A combined primal-dual/single node relaxation iteration can now be constructed. It starts

with a pair (f, p) satisfying CS and produces another pair (f̄ , p̄) as follows:

Combined Primal-Dual/Relaxation Iteration:
Choose a node i with gi > 0 (if no such node can be found, stop the algorithm). Perform a single

node relaxation iteration. If as a result (f, p) is changed, terminate the iteration; otherwise, perform

a primal-dual iteration starting from (f, p).

A synchronous parallel combined method can be constructed based on the above iteration. To

this end, we must modify the definition of compatibility for the case where the pair
(
f̄(n), p̄(n)

)
(refer to the description of the synchronous parallel iteration in Section 2) is produced by the

single node relaxation iteration. In this case, we discard the results of the iteration if

p̄in(n) < pin(n),

where in is the node i used in the single node iteration. Otherwise, we say that the iteration is

compatible, we set

pi(n + 1) =

{
p̄in if i = in,

pi(n) otherwise,

and for all arcs (i, j), we set

fij(n + 1) =




fij(n) if i �= in and j �= in,

f̄ij(n) if i = in or j = in, and rij(n + 1) = 0,

bij if i = in or j = in, and rij(n + 1) > 0,

cij if i = in or j = in, and rij(n + 1) < 0,
where rij(n + 1) is the reduced cost of arc (i, j) with respect to the price vector p(n + 1).

The definition of compatibility is such that the above synchronous parallel iteration preserves

CS. Using this property and the monotonic increase of the node prices, it can be seen that the

associated algorithm terminates finitely, assuming the problem is feasible (see [Ber85]). A similar

result can be shown for the corresponding asynchronous version of the parallel iteration.

5. COMPUTATIONAL RESULTS
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5. Computational Results

In order to illustrate the expected performance of the above parallel primal dual minimum cost

network flow algorithms, we designed a synchronous and two asynchronous parallel versions of

one of the primal-dual codes developed by Bertsekas and Tseng for comparison with the RELAX

code (see [BeT88] for a description). We implemented these parallel primal-dual algorithms

on a shared-memory Encore MULTIMAX and evaluated the parallel computation time for two

transshipment problems as a function of the number of processors used. In this section, we briefly

overview the parallel implementations and discuss the numerical results obtained.

The synchronous algorithm (SPD) operates as follows: The current flow-price pair (f, p) sat-

isfying CS is kept in shared memory. Each iteration starts synchronously with each processor

copying the current set of node prices into local memory. Each processor n = 1, . . . , m selects

a different node in with positive surplus, and performs a primal-dual iteration to compute a

shortest augmenting path (in terms of the reduced cost lengths) from node in to the set of nodes

with negative surplus. Let p̄(n) and P̄ (n) be the modified price vector (in local memory) and

augmenting path obtained by processor n.

Assume without loss of generality that the m processors find their shortest augmenting paths in

the order n = 1, . . . , m, and let
(
f(n), p(n)

)
denote the flow-price pair resulting from incorporation

of the results of the processor n [note that
(
f(0), p(0)

)
= (f, p)]. As described in Section 2, once

a processor computes p̄(n) and P̄ (n), it checks to see whether P̄ (n) is a compatible augmentation

based on the most recent network prices and flows
(
f(n − 1), p(n − 1)

)
. During this operation,

the network is locked so that only one processor (at a time) can verify the compatibility of an

augmentation or modify the flow-price pair. If the augmentation is compatible, the arc flows are

modified accordingly and the node prices are adjusted as described in Section 2. The processor

then waits for all other processors to complete their computations before starting the next cycle

of augmentations.

In our implementation on the Encore MULTIMAX, the most recent flow-price pair
(
f(n), p(n)

)
is also kept in shared memory. The set of nodes with positive surplus is maintained in a queue

in shared memory; a lock on this queue is used in order to guarantee that a given node can

be selected by only one processor. A synchronization lock on the flow-price pair
(
f(n), p(n)

)
is

used to restrict modifications of flows of prices by more than one processor simultaneously, and

a synchronization barrier is used at the end of each iteration to synchronize the next iteration.

The principal drawback of our implementation of the synchronous algorithm is the idle time

spent by the processors waiting while other processors are still computing augmenting paths or

modifying the pair
(
f(n), p(n)

)
that is kept in shared memory. Figure 2 illustrates the processor

idle times in a typical iteration.

In order to reduce the idle time spent by the processors, asynchronous algorithms allow pro-

17



Copy
(f, p) Shortest Path

computations

Update
(f, p) Idle time

at barrier

Idle time
waiting for
(f, p)  lock

Copy
(f, p)

Shortest Path
computations

Update
(f, p)

Update
(f, p)

Update
(f, p)

Start of 
Iteration

End of
Iteration

Proc. 1

Proc. 2

Proc. 3

Proc. 4

Time

Part I Part 2 Part 3

5. Computational Results

Figure 2: Timing diagram of an iteration. The computation of each proces-

sor consists of three parts, possibly separated by idle time. In the first part, all

processors copy (in parallel) the master pair (f, p). In the second part, the pro-

cessors calculate (in parallel) their shortest augmenting paths. In the third part,

the processors update (one-at-a-time) the master pair (f, p). The next iteration

does not begin until all processors have finished all three parts.

cessors which have finished their computations to proceed with further computation. In our

asynchronous algorithms, the current flow-price pair (f, p) satisfying CS and a queue of nodes

with positive surplus are also kept in shared memory. The first asynchronous algorithm (ASPD1)

operates as follows: Each processor starts its computation by extracting a node from the queue

of nodes with positive surplus. It then copies the flow-price pair (f, p) into local memory, and

performs a primal-dual iteration to compute a shortest augmenting path and modified price vec-

tor P̄ and p̄. The node then checks whether this augmentation is compatible with the possibly

modified flow-price pair (f, p). If the augmentation is compatible, the flows and prices are mod-

ified as described in Section 2. The processor then repeats the cycle without waiting for other

processors to complete their computations.

In our implementation of ASPD1 on the Encore MULTIMAX, a lock is used to allow only one

processor to either read or modify the flow-price pair (f, p) at a time. A second lock is used to

allow only one processor to access the queue of positive surplus nodes at a time. The first lock

can create a critical slowdown when several processors are used because a processor must wait

until another processor has completely copied (f, p) before it can begin its own copy. In order to
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5. Computational Results

reduce this potential bottleneck, we developed a different asynchronous implementation ASPD2

using a monitor [BBD87] instead of locks to allow several processors to copy (f, p) simultaneously,

but to exclude any processors from either reading or writing (f, p) whenever another processor is

currently modifying (f, p).

Table 1 shows the performance of the algorithm on the Encore MULTIMAX for two uncapac-

itated transshipment problems generated using the widely used NETGEN program of [KNS74];

these problems correspond to problems NG31 and NG35 in [KNS74]. Problem NG31 has 1000

nodes and 4800 arcs, with 50 sources and 50 sinks, while problem NG35 has 1500 nodes and 5730

arcs, with 75 sources and 75 sinks. The Encore MULTIMAX’s individual processors are rated

at roughly 1 MIPS each. The table contains the average time obtained over 11 different runs, as

a function of the number of processors used; the standard deviation is enclosed in parenthesis.

The variability of the run times for different runs is due to randomness in the order of comple-

tion of the computations of the individual processors, which can lead to differences as to which

augmentations are found compatible.

Table 1 clearly illustrates the superiority of the asynchronous implementations over the syn-

chronous implementations, even on a shared-memory multiprocessor where synchronization is

easily achieved. The ASPD2 implementation is superior for a larger number of processors be-

cause it allows simultaneous reading of the flow-price pair (f, p); for a small number of processors,

the ASPD1 algorithm is slightly faster because of its simpler synchronization logic. Note also that

the speedups achieved are larger for the larger NG35 problem, because of the greater difficulty in

computing augmenting paths, which increases the ratio of computation time to synchronization

overhead.

The results of Table 1 also indicate that the speedups achieved are limited as the number

of processors increase. There are two primary reasons for this: Even in the asynchronous algo-

rithm, there is some synchronization overhead associated with maintaining the integrity of the

queue of positive surplus nodes and the flow-price pair (f, p); this overhead increases with the

number of processors. Furthermore, when the algorithms are near convergence, there are very

few nodes with positive surplus, so that there isn’t enough parallel work for the available proces-

sors. These last few iterations are nearly sequential, and often consist of the longest augmenting

paths. Similar limitations were observed in [BeC90] in the context of parallel Hungarian algo-

rithms for assignment problems. For a more detailed discussion of these limiting factors, the

reader is referred to [BeC90], which reports extensive numerical experiments quantifying both

the synchronization overhead and the sequential part of the computation.

Alternative parallel algorithms which significantly reduce the synchronization overhead can be

designed using the theory described in Sections 2 and 3. One approach is to have each processor
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Problem # Processors SPD ASPD1 ASPD2

NG31 1 23.51 (0.16) 23.15 (0.15) 24.00 (0.22)

2 16.20 (0.15) 14.84 (o.28) 15.24 (0.66)

3 13.94 (0.86) 13.11 (0.66) 13.45 (0.68)

4 14.07 (0.57) 11.59 (0.50) 11.81 (0.55)

5 14.15 (0.56) 11.74 (0.96) 11.29 (0.49)

6 14.79 (0.92) 11.00 (0.75) 11.38 (0.36)

7 13.35 (0.79) 11.54 (0.60) 10.19 (0.85)

8 14.74 (0.40) 11.76 (0.60) 9.65 (0.53)

NG35 1 55.90 (0.50) 54.23 (0.71) 55.64 (0.65)

2 40.45 (1.30) 33.15 (1.83) 33.72 (1.00)

3 33.72 (1.56) 26.96 (0.95) 28.05 (1.56)

4 32.21 (1.87) 24.52 (1.33) 24.29 (1.09)

5 25.45 (1.39) 22.64 (1.22) 21.82 (0.94)

6 25.34 (2.19) 21.46 (1.64) 20.22 (1.74)

7 26.86 (2.03) 20.97 (0.86) 19.16 (1.34)

8 23.70 (2.13) 20.48 (1.82) 18.40 (1.59)

Table 1: Average run times and standard deviations (in parenthesis) in seconds over 11 runs on

the Encore Multimax for problems NG31 and NG35 of [KNS74]. SPD is a synchronous version,

while ASPD1 and ASPD2 are asynchronous versions.

search for multiple augmenting paths (from different starting nodes with positive surplus) during

each iteration. In this manner, the number of iterations is considerably reduced, thereby reducing

the overall synchronization overhead. To make this approach efficient, the assignment of positive

surplus nodes to each processor should be adaptive, depending on the time required to find the

previous augmentations. Such an algorithm was implemented and evaluated in [BeC90] in the

context of assignment problem, yielding significant reductions in synchronization overhead.
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