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On the Minimax Reachability of Target Sets
and arget Tubes*

Sur la capacite minimax d'attein re des series de buts et des enveloppes de buts

Uber die Minimax-Erreichbar eit yon Zielmengen und Ziel-"Schlauchen"
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D. P. BER EKAS and I. B. RHODESt

Feedback control 0;( uncertain dYt amiC systems may be derived such that the system
state is guaranteed to lie in a sp cified region of .I'tate space in the presence of input
and observation disturbances.

Summary-This paper is concerned with the clo d-loop
control of discrete-time systems in the presence of un-
certainty. The uncertainty may arise as disturban in the
system dynamics, disturbances corrupting the output
measurements or incomplete knowledge of the init I state
of the system. In all cases, the uncertain quanti ies are
assumed unknown except that they lie in given sets. Atten-
tion is first given to the problem of driving the syst m state
at the final time into a prescribed target set under t e worst
possible combination of disturbances, This is then e tended
to the problem of keeping the entire state traject ry in a
given target "tube", Necessary and sufficient condit ons for
reachability of a target set and a target tube are iven in
the case where the system state can be measured exactly,
while sufficient conditions for reachability are give for the
case when only disturbance corrupted output meas ements
are available, An algorithm is given for the effici nt con-
struction of ellipsoidal approximations to the sets i volved,
and it is shown that this algorithm leads to linear control
laws, The application of the results in this paper to ursuit-
evasion games is also discussed.

I. INTRODUCTION

Two BASIC problems of deterministic control theory
are the controllability problem and the tacking
(servomechanism) problem. The contro ability
problem is concerned with transferring the tate of
a system from an initial state-time pair to a final
state-time pair. The tracking problem is co cerned
with keeping the state-trajectory of the system
"sufficiently close" to a prescribed target tra ectory.

In this paper we examine two analogs of these
problems that arise when there is uncertainty about
the system state. This uncertainty can arise because
the initial state of the system is not known exactly
and because the system dynamics and output
measurements are corrupted by "noise", The most
commonly used approach in such situations is to
model the initial state as a random vector and the
dynamics and measurement noises as additive
stochastic processes. Under these circumstances, a
possible analog to the controllability problem is to
reach a target set at the final time with a prescribed
probability or degree of certainty, while the usually-
adopted analog of the tracking problem is to take
an "on-the-average" approach and minimize the
expectation of a cost functional that depends quad-
ratically on the deviation between the system trajec-
tory and the target trajectory. If the system is
linear, the initial state is a Gaussian random vector,
the system and measurement noises are independent
white Gaussian processes, and the cost functional
also depends quadratically on the control, the
solution to this latter problem is given by the weU-
known "separation theorem" or "certainty equiva-

lence principle".
The approach adopted in this paper differs from

those outlined above in two ways. First, the un-
certainties aienot modelled as random vectors or
stochastic processes but instead are considered un-
known except for the fact that they belong to
prescribed, bounded sets. Secondly we adopt a
pessimistic "worst case" or "guaranteed per-
formance" approach rather than the usual "on the
average" approach. Thus we seek the controller
that achieves the desired objective or performs
"best" under the worst possible combination of
disturbances. Under these conditions, the most
natural analog of the deterministic controllability
problem is that of steering the system state into a
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laws. Sectioll 5 contains a discussion of some
relationships between the reachability problem and
the "unknown but bounded" state estimation
problem that has been examined in Refs. [1-5]. In
section 6 we consider the reachability problems for
the case where the controller has available only
imperfect measurements of the system output and
give some sufficient conditions for reachability that
make use of an estimator derived by the authors
[5]. Finally in section 7 we point out applications
of our results to pursuit evasion games.

2. REACHABILITY OF A TARGET SET

In this section we exarojne the reachability of a
target set when perfect measurements of the system
state are available to the controller at each time.

Problem 1. Consider the discrete-time dynamic
system

Xk+l =fk(Xk' Uk)+gk(Wk) (1)

where XkEX = R" (n-dimensional Euclidian space)
is the state vector, the control vector Uk is to be
selected from a prescribed set Uk C Rr, the dis-
turbance vector Wk is assumed to belong to a given
bounded set WkcRP, the initial state Xo is assumed
to be contained in a given set Xo C Rn, and the
functions £k: R" x Rr -+ Rr and gk: Rn -+ Rn are
known. Given a prescribed target set XNcR"*,
find, if it exists, a closed-loop control law u(', .)
mapping the pairs (Xk, k)into Uk, k=O, 1..., N-l,
with the property that at time N the state XN of the

closed-loop system

(2)Xk+l=fk(Xk' U(Xk' k))+gk(Wk)

desired final target set under all possible ombina-
tions of disturbances. In other words, we ould like
to design a controller in such a way as to uarantee
that the final state of the system will alw s lie in a
prescribed target set despite the presen e of un-
certainties. In a similar vein, a natural an log of the
tracking problem under these same condi ions is to
keep the entire state trajectory in a "tube contain-
ing the desired trajectory under all po sible dis-
turbances. We refer to these two proble s as those
of "reachability of a target set" and "re chability
of a target tube". Possible application of these
two problems can be expected in the ontrol of
systems under uncertainty where eit r a set
description of the uncertain quantities is more
readily available than a probabilistic one or where
specified tolerances must be met with certainty.
Such applications can be found in div rse areas
such as in chemical process control cases here the
state must stay in a specified region of the state
space, or equivalently avoid a critical egion, in
aerospace applications such as a spacecr ft reentry
problem, etc.

The modelling of uncertainties and di urbances
as quantities that are unknown except that they
belong to prescribed sets and the ado tion of a
"worst case" or "guaranteed performa "view-
point have both received attention be reo The
state estimation problem under these circ mstances
has recently been discussed in Refs. [-5]. The
reachability of target sets and target t. bes with
open-loop controls has been discussed i Ref. [6],
and certain aspects of the problem of he reach-
ability of a target set by a closed loop ontroller
using perfect measurements of the system tate have
been discussed in Refs. [1] and [7] in the f amework
of a more general problem. In this aper we
examine the reach ability of target sets nd target
tubes by closed-loop controllers u'. .g either
perfect measurements of the system st te or im-
perfect measurements of the system 0 tput. In
order to achieve the greatest transpare cy of the
ideas involved, we concentrate our att ntion on
discrete-time dynamic systems.

In section 1 we consider the reacha ility of a
target set by the state of a non-line r discrete
dynamic system using perfect measurem nts of the
state. We give a geometric necessary an sufficient
condition for existence of control laws t at achieve
reach ability, and characterize these co trol laws.
These results are extended in section 3 0 the case
of reachability of a target tube. In se 'on 4 we
consider the special case of a linear s stem and
obtain some additional results and ch racteriza.,
tions. We also give a polyhedral algorit m and an
ellipsoidal approximation algorithm fo construc.,
tion of sets required for the solution and show that
the ellipsoidal algorithm provides lin r control

is contained in XN for all possible disturbance
sequences WkEWk, k=O, 1, ..., N-1, and all pos-
sible initial states XoEXo.

Definition 1. The target set XN is reachable at
time N from the initial state set Xo at time 0 if there
exists at least one solution to Problem 1.

We remark that if we are to guarantee reach-
ability of the target set under all possible dis-
turbances, we must take the pessimistic yjewpoint
of attributing to "Nature" the role of an active
adversary who selects the disturbances at each
time in such a way as to try to prevent the system
from reaching the target set. Thus we may view the

.If an output target set Y N is to be reached where the
output is Yk=hk (Xk) we define the state target set

XN={XN: YN=hN(XN)' yeYN}

and reduce the problem to the same form as above.
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reachability problem as one in which there is the
following sequence of 2N + I "moves" aJte nating
between the Controller and Nature, each move
being made with full knowledge of the outco es of
prior selections: (1) Nature selects x. (2) Co troller
selects u. (3) Nature selects w. (4) Controller elects
U1, ...(2N) Controller selects UN-i, ( N + 1)
Nature selects WN-1. One can, in fact, conv rt this
problem to a sequential minimax control p oblem
defining by a cost function J to be the charac eristic
function of the complement of the set XN, i. .

from time 0 to time N -1. Repeated application of
the same procedure leads to a complete solution of
the problem of reachability of a target set. To this
end, define recursively the effective target set Ek+ 1
at the time k+l and the updated target set Tk at
time k by [c.f. equations (3) and (4)]

Ek+l={zeR": [Z+gk(Wk)]eTk+l, VWkeWk} (5)

Tk= {zeRn: fk(z, uk)eEk+l,

for some UkeUk} (6)

TN=XN, (7)

We then have by repeated application of statements
(2) or (3) above.

Proposition 1. The target set XN is reachable at
time N from all points of a given set Xk of states Xk
at time k if and only if Xk C T k where T k is defined
recursively by equations (5-7). In particular, the
target set XN is reachable from Xo at time 0 if and
only if Xo c To.

It is easily seen that, as long as the target set XN
is reachable at time N from at least one state at
time 0, the recursive relations (5-7) define two
"tubes" in RftxJN where IN={O, 1,2, ..., N} is
the (ordered) set of integers from 0 to N. These
tubes are the (updated) target tube T defined by

where the Controller attempts to minimize J and
Nature attempts to maximize it. This nimax
control problem can be solved by dynamic pr gram-
ming [7]; in fact, the results of this sectio con-
stitute a geometric solution to the dynam pro-
gramming algorithm, although we prefer t argue
directly rather than view the problem as ne of
finding min max J.

In order for xN=fN-I(XN-I' UN-I)+gN-I WN-I)
to be an element of XN for all WN-IEWN-I it is
clearly and trivially both necessary and su cient
that fN-I(XN-I, UN-I) belong to the effectiv target
set EN defined by

EN = { zeRn [Z+gN-t(WN-J]eXN, VWN-te}vN-t}
j (3) , N}

(8)
T= {(ZK' k)eRft xJN: %keTk, k=O, 1, 2,

which, in turn, will occur for some UN-1Ei N-1 if

and only if XN -1 is an element of the update target

set TN-1 defined by

and the effective target tube E defined by

E={(Zk,k)ER"xJN: zkEEk,k=1,2,...,N}. (9)

These two tubes can be viewed as the sequence
{To, Tl"'" TN-I' TN} of updated target sets and
the sequence {El' E2' ' ., , EN} of effective target
sets, Recalling that a necessary and sufficient for
XN to be reachable at time N from the state Xk' or
singleton set {Xk}' at time k is that XkETk' we see
that once the state Xk at time k is inside the target
tube T the -Controller can force the subsequent
states Xk+ l' Xk+2' ..., XN-l' XN to stay inside the
target tube, regardless of the subsequent dis-
turbances. Thus, in particular, the final state XN
will be inside the target set XN. The controller
accomplishes this by driving fk(Xk' Uk) inside Ek+ 1
so that Xk+ 1 =fk(Xk' Uk) + gk(Wk) will lie in T k+ 1 for
all possible disturbances WkEW k' This is illustrated
in Fig. 1. Conversely, if xklf;Tk, then Nature can
force the subsequent states Xk+ l' .., , XN-l, XN to
remain outside the target tube regardless of the
permissible control action taken by the controller,
and thus, in particular, the final state XN can be
forced to lie outside the target set XN.

TN-l= {zERo: fN-l(Z, uN-JeEN .I
for some uN-IeUN-lt. (4)

Thus, as a direct consequence of the definit ons of
EN and TN-l in (3) and (4), we have the fo owing
three equivalent statements:

(I) XNEXN for all WN-lEWN-l and some
UN-lEUN-l if and only if XN-IETN-l, whe XN-l
is the state at time N -1.

(2) XN is reachable at time N from all poi ts of a
given set XN-l of states XN-I at time N-l if and
only if XN -1 C TN -I'

(3) XN is reachable at time N from the s t Xo at
time 0 if and only if TN -1 is reachable at ti N -I

from Xo at time O.
It should be noted that the set EN and conse-

quently the set TN -1 may be empty in whi h case
the problem does not have a solution, i.e. th target
set XN is not reachable from any state XN -1 t time
N -I and hence from the initial condition t Xo.

The reachability problem from time 0 to time N
has thus been reduced to a reachability roblem
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FIG. 1. Sc, matic presentation of the action of the
controller ( ) to counteract disturbances (N) for

reachability of a target set.

We remark that by taking all of the sets Xk but
XN to be the entire space R", Problem 2 reduces
directly to Problem 1. The results in this section are
simply generalizations of those given in the pre-
ceding section in the sense that we now take into
account the requirement that Xk be in Xk for all k.

It was shown in the preceding section that a
necessary and sufficient condition for XN to be
contained in XN for all WN-1EWN-l and some
UN-1EUN-l is that XN-l lie in the updated target
set TN-l defined by equations (3) and (4). Thus in
order for XN to be contained in XN and for XN -1 to
be contained in XN -I' it is clearly both necessary
and sufficient that XN-l be contained in both TN-l
and XN-l' i.e. that XN-l be an element of the
modified target set X~-l at time N -1 defined by

It should be noted that both tube are pre-
computable and can in principle be sto ed by the
controller. By making additional assum tions such
as linearity of the system and convexity, losure or
compactness of the; sets Uk, W k and X , one can
obtain a better characterization of the ubes, and
devise algorithms for their construction. This will

be discussed in Section 4.

(10)X~-l =TN-lnXN-l

where n denotes set intersection. We therefore
have that the tube {Xl, X2, ..., XN-I' XN} is
reachable from Xo at time 0 if and only if the tube
{Xl, X2, ..., XN-2, X~-l} is reachable from Xo
at time O. In other words, the reachability of a
tube of length N has been reduced to the reach-
ability of a tube of length N -1. Repeated applica-
tion of this procedure leads to a complete solution
of the target tube reachability problem. To this
end we <1efine recursively the effective target set
E:+1 at time k+ 1, the updated target set T: at
time k and the modified target set X: at time k as
follows, c.f. equations (5-7) and (10).

3. REACHABILITY OF A TARGET TUBE

Consider now the extension of the pr blem con-
sidered in the preceding section where, "nstead of
being concerned only that the final st te of the
system lie in the prescribed target set, w desire to
keep the entire system trajectory withi a "tube"
in R" xJN. In other words, at ach time
K=O, I, ..., N, the system state is to be contained

in a given set Xk.

Problem 2. Consider the discrete-tint dynamic

system

(I)Xk + I = fk(Xk' Uk) + gk(Wk)

where, as in Problem I, XkER", kEU k C Rr,
W kEW k c RP and XoEXo. Given a prescr bed target
"tube" {(Xk, k): k=l, 2, ..., N}c X]N' find
(if it exists) a closed-loop control law u ., .) map-
ping the pairs (Xk, k) into Uk, k=O, 1,2, .., N-I,
with the property that at each time k= 1,2, ..., N,

the state Xk of the closed-loop system

(2)x.+ I =f.(x.. u(x.. k))+g.(w1)
E:+1 = {zeRft: [Z+gk(Wk)]eX:+1, VWkEWk} (11)

T:={zeRft: (k(Z, uk)eE:+1 for some UkeUk}

(12)

(13)

is contained in Xk for all possible l isturbance sequences WkEWk, k=O, 1,2, ..., N 1, and all

possible initial states XoEXo.

Definition 2. The target tube i x; =T:nXk
x~ = XN, N}cR"tJN{(Xk, k), k= 1,2,

We then have by repeated application of these
definitions, c.f. Proposition 1:

is reachable from the initial state set x1o at time 0
if there exists at least one solution to p~oblem 2.
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Proposition 2. The target tube

{(Xj,j); j=k+l,..,

It should be noted that, as is to be expected with
a dynamic programming type of procedure, Jhe
effective and modified target tubes E* and M must
be precalculated "backwards in time" and stored.
Exact and approximate procedures for doing this
efficiently are discussed in subsequent sections.

, N}

4. SOME RESULTS FOR LINEAR SYSTEMS

We now specialize the results of the past two
sections to the case of a linear system

is reachable from state Xk at time k if and ly if
XkET: ' In particular, the target tube {( j):
j = 1, 2, , , , , N} is reachable from Xo at ti 0 if
and only if Xo c T: '

In a manner analogous to the introduction f the
updated target tube and the effective target t be in
equations (8) and (9) of the preceding secti n, we
can view the recursive equations (11-14) as d ning
two tubes in R" xJN, These are the modified arget
tube M and the effective target tube E* defin d via

equations (11-14) by

Xk+ I =Akxk+ Bkuk+GkWk (17)

For such systems the updated target sets T*k can
be defined as the inverse image under Ak of the set
{E*k+ 1+(- BkUk)}, i.e.

, N} (15)M={(X:, k); k=I,2,

T:=Ak-I{E:+ 1 +(-BkUk)} (18)
E*={(E:, k); k=l, 2, .N} (16)

where +denotes the vector sum of the indicated
sets. Note that equation (18) involves set operations
only, and T: is defined even if the matrix Ak is not
invertible.

If X" is a convex set it is easy to prove that the
effective target set E~ defined by

E~={z: (Z+GN-IWN-I)eXN, VWN-leWN-I}

which, alternatively, may be viewed as the seq ences
{X!, Xi, ..., X~-l' XN} and {E!, E~, ..., E~}
of modified and effective target sets. 011 e the
system state lies inside the modified target t be M
the controller can force the remaining state rajec-
tory to lie in the desired target tube

{(Xk,k); k=I,2,...,N}

regardless of disturbances. The controller a com-
plishes this by choosing the control at each t me in
such a way that fk(Xk' Uk) lies inside E*k+ 1, that
xk+leX:+1 for all wkeWk. This is illustra ed in
Fig. 2. Conversely, if the initial state Xo do s not
lie in T:, then nature can select the disturba res in
such a way that at least part of the trajecto y lies
outside the desired target tube

{(Xk,k): k=I,2,...,N}.

is also convex. It is not necessary that the set W N- I
be convex. In fact, the set Et remains unchanged
if W N -1 is replaced by its convex hull. If UN -1 and
XN-l are also convex then the updated and modified
target sets Tt-l' and Xt-1 are convex since the
operations in equation (18) and set intersection
preserve convexity. It is also clear that if all given
sets are compact. the sets E*k+ I' T*k' and
Xk,k =0, 1,2, ..., N-I, are closed If, in,

FIG. 2. Schem:ic presentation of the action of the
controller (C) to counteract disturbances (N) for

re hability of a target tube.
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[10] and a class of optimal control problems
involving a quadratic cost functional [9]. Amongst
other effects, this duality is reflected in the fact that
in both cases the solution involves Riccati equa-
tions. In the estimation case the solution of the
Riccati equation is propagated forward in time,
while in the control case the solution is propagated
backwards in time. The state estimation problem
for linear discrete systems where all the uncertain
quantities are described by their membership in
given sets has been considered by several authors
[1-5]. The objective is to estimate the set of all
feasible states compatible with the measurements
received. Consider the case of the linear discrete
system:

Xk+ 1 =Fkxk+GkWk (19)

with measurements of the form

(20)zk=Hkxk+Vk

where XkERn with the initial condition Xo contained
in a given set XocRn, and the input disturbance Wk
and the measurement disturbance Vk are, at each
time k= 1, 2, ...N, contained in known sets
W k C RP and V k C Rm. Then it can be shown [1],
[2] that the set Skit of possible states Xk consistent
with a given set of measurements Zl, ..., Zk is
given recursively by the following equations

addition, Ak is invertible for all k=O, 1, ...1, N-I
and all given sets are compact, the sets E: l' Tk*,
X: are also compact. We summarize the a ove in
the following proposition:

Proposition 3. If, for the linear system ( 7), the
setsXk+1,Ukareconvexforallk=0, 1,... N-I,
the sets E*k+ l' T:, and X: defined byequati ns (11)
through (14) are also convex for all k. If, for all
k=O, 1, 2, ..., N-I, the sets Xk+ I' Wk nd Uk
are compact the sets E:+1, Tk and *k are
closed; if, in addition, the sets Xk+I' Wk nd Uk
are compact and Ak is invertible for all k=O, 1,2,

N 1 h * * *..., -, t e sets Ek+ I' Tk and Xk a e also
compact for all k.

For practical applications it is important hat the
sets E:+1, T:, and X: can be characteriz d by a
finite set of numbers. This is possible when Xk and
Uk are convex polyhedra. The sets E:+ l' : and
X: are in this case polyhedra and thus an be
characterized by a finite number of bound in hyper-
planes. Given the state Xk at time k, the s t of all
controls Uk with the property that

(AkXk + Bkuk)eEk+ 1

may, under these circumstances, be det rmined
on-line as the intersection of two polyhedr .Any
control in this intersection is then adeq ate for
reachability. The relevant algorithm is p sented
in Appendix 1.

If, however, the given sets are not polyhe ra, the
exact calculation of the modified target t be and
the effective target tube given by equations 15) and
(16) becomes extremely difficult if not in easible.
One can, however, conceive of cons ructing
approximations to these tubes that are charac-
terized by a finite set of numbers. 0 e such
possibility is to approximate the sets X: , E: and T:
for each K=O, 1,2,..., N, by ellipsoids kCX:,
£k C E: and Tk C Tk*, since an ellipsoid is co pletely
characterized by its center and a weighting matrix.
In this way, the modified target tube M, for
example, is approximated by an inter al tube
M= {(tk, k): k= 1, ..., N} whose cross ections
are ellipsoids. Then, in order for the original
target tube {(Xk, k): k= 1, 2, ..., N to be
reachable from the set Xo at time 0, it is fficient
(but not necessary) that Xo C To. This ap roxima-
tion approach is the basis for the el ipsoidal
approximation algorithm given in App ndix 2,
where results on the optimal control f linear
systems with quadratic cost criteria are sed not
only to derive ellipsoidal tubes but also derive
control laws that are linear.

Sklk=Sklk-l n{Xk :Zk -HkxkEV k}

Sklk-t =Fk-tSk-tlk-l +Gk-l W,

SOlO = Xo

One would like to identify a "duality" relation
between an estimation problem of this form and a
control problem. Such a relation exists and, as we
now show, the corresponding control problem is
the special case of the target tube reachability
problem considered in section 3 where there is no
input noise.

Consider the special case of Problem 2 in which
the system is linear and there is no disturbance in
the dynamics, so that the system equation is

Xk+ 1 = Akxk + Bkuk (24)

In this case we wish to keep the system output

Yk=CkXk

in a prescribed tube {(Yk, k); k= 1,2, ..., N} in
Rn x iN by the appropriate choice of control law

5. RELATION BETWEEN CONTROL i ND ESTIMATION ALGORITHMS

It is well-known that there exists duality
between certain stochastic estimation roblems
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U(', .) mapping the pairs (Xk, k) into Uk.- USing the results of Sections 3 and 4, the corresp nding

modified target tube X: is generated y the
algorithm:

Appendix 2, where, in addition, linear control laws
are derived.

The identifications in equations (29) and (30) are
not the ones usually associated with the duality
between the stochastic filtering problem and the
linear system-quadratic cost optimal control prob-
lem. We remark, however, that the "usual" identi-
fications are not the only ones for which the
Riccati equations, or their discrete-time counter-
parts, associated with the filtering problem and the
regulator problem can be put in one-one corres-
pondence; an alternative set of identifications is
given by equation (29). In fact, let Pk be the
solution at time k of the discrete Riccati equation
corresponding to the optimal control problem
involving system (24) and the quadratic cost
functional

x: =T:n{Xk:CkxkeYk} (26)

T: =A; lX:+1 +( -A; 1 Bk)Uk I (27)

where

X~={XN:CNxNeYN} (28)

It can be seen that the algorithm (26-28) or the
control problem and the algorithm (21-23) or the
estimation problem have certain similarities. They
both have at each step a set intersection in lving
the output, and a vector sum operation in lving
the input. The solution in the case of the esti ation
algorithm propagates forward in time whe eas in
the case of the control algorithm it pro agates
backwards. In fact, if between the system (19),
(20) and (24), (25) we make the identificatio s

J[u] = x~'P-

and, with 'P, Ri' Q i positive definite matrices, let
1::(klk) be the solution at time k of the Riccati
equation corresponding to the stochastic filtering
problem involving the system (19), (20) with

x., Wk-l, Vk (k= I, ...N) being independent
Gaussian random vectors with zero mean and
covariances equal to 'P, QN-k-l, RN-k respectively.
Then, by writing the corresponding equations, it
can be easily seen that under the identifications (29)
we have

F _ A -I. G - A -I B .
k-l- N-k, k-!-- N-k N-k,

Hk= -CN-k (29)

and between the corresponding sets involt ed we

make the identifications

X =X~={Z:CNzeYN};

Wk-l=UN-k

Vk=YN-k;
(k=O, ..., N).I:-1(klk)=PN-k

(30)

then, for t~e special case where the measurt ments are zero (I.e. Zl = ...= Zk=O), we have b com-

paring (21-23) with (26-28),

6. REACHABILITY WITH IMPERFECT
STATE INFORMATION

In this section we extend Problems I and 2 to
the case where, instead of having perfect knowledge
of the system state, the controller has access only
to noise-corrupted measurements of the system
output. The objective is again either to drive the
state XN of the system inside a target set at the final
time or to keep the entire state trajectory inside a
target tube. We restrict attention to linear systems
and assume that all given sets are convex. Within
these assumptions, we derive sufficient conditions
for reachability. The complete solution of the
problem is given in principle by Dynamic Program-
ming [1]; however, it appears to involve all the
complexities of a dual control problem [8]. We
depart here from a strict Dynamic Programming
formulation. For this reason the conditions we
derive are only sufficient and the results are weaker
than those of the perfect information case.

Consider again the linear system

Sklk=X*N-k k=O,...,N-l. (31)

Thus one can solve the control probl m by
solving the corresponding estimation probl m. In
either case, of course, one would like to be ble to
describe the sets Sklk or X: by finite sets of n mbers,
which will be true for ellipsoids, for e ample.
However, even if all the given sets are ell psoids,
the sets Sklk are not ellipsoids. On the othe hand,
lower and upper ellipsoidal bounds SI, k' u, k(SI, k
C Sklk C Su, k) can be calculated for them [5]. or the
control problem, the lower bound is of inte st as it
provides suboptimal modified target sets, and it
can form the basis for an ellipsoidal al otithm
(with an appropriate modification for th input
noise case) for construction of a ~uboptim I solu-
tion. However, this same algorithm can be studied
best by relating the tube problem to th linear
quadratic optimal control problem as is one in (32)Xk+ 1 =Akxk+ Bkuk+GkWk
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where now the controller has availat le only

measurements of the form

and the scalar term /52(k) is given by

{)2(k)=(I-f3k-i)(I-Pk){)2(k-I)+{)2(zk) (39)
Zk=CkXk+Vk (33)

and the observation noise vectors Vk at known to belong to given bounded sets V k' Ass me that

the sets W k, V k and Xo are the ellipsoids,

where

1J2(Zk) = (Zk -CkAk-1Xk-l)'[(1- Pk)- lCkI;(klk

-l)C~ + Pk lRk]-l(Zk -CkAk-lik-l)'

(40)

The initial conditions are

1::(°1°) ='1' , 02(0)=0 (41 )Xo=Jl.o.

Wk={Wk: WkQklWk~l}

Vk={Vk: vkRklvk~l}

Xo={Xo: (Xo-J1,,)'\j/-l(Xo-J10)~~} (34)

while Pk-l and Pk, k=l,..., N, are arbitrary
parameters with O<Pk-l < 1 and O<Pk< 1.

It can be seen that the weighting matrix I:(klk)
of the estimate ellipsoid is precomputable and that
the lengths of its axes are proportional to the
square root of the term [1-c52(k)] which depends
via equations (39) and (40), on the particular
measurements received. Since c52(k) ~ 0, one can
always precompute (except for the center) the
largest possible estimate set

where Qk, Rk and 'I' are positive definit matrices
and 110 is a known n-vector.

Given at time k the measurements z , ..., Zk
and the prior controls uo, ..., Uk-I' the ontroller
can in principle esti mate the set of possi Ie states
Xk compatible with the measurements. Unfortu-
nately, however, this set is not easily cha acterized
or computed in practice; on the other and, an
ellipsoidal bound to it can readily be c Iculated.
We give the relevant algorithm below in P position
4, the proof of which can be found in Ref [5]. This
algorithm is formally identical to a tochastic
Kalman estimator in modified form nd bears
close relation to an algorithm due to CHWEPPE
[2, 3]. However, it has important advan ages over
the latter as the resulting estimator is I near, has
precomputable gains and as time a proaches
infinity, it converges to a time-invari nt filter.
Since the effect of a known control can be ~uper-
imposed, we give the algorithm assumin Uk=O.

Proposition 4. An ellipsoidal estimat set fi(k)
which contains the set of possible states Xk of the
system (32) compatible with observed measure-
ments Zi, ..., Zk is given by:

nk= {Xk: (Xk-Xk)/1;-I(klk)(Xk-Xk)~ I} (42)

Returning now to the reachability problem, we
assume that the controller has available an esti.
mator that gives at each time k the ellipsoidal
estimate set (42) as described by its center it,
which is computed on-line via (36), and its weighting
matrix 1;(klk), which may be either precomputed
and stored or computed on-line. Furthermore, we
restrict attention to control laws u(', .) that map
the pairs (it, k) to Uk. We have thus assumed that
the control process may be separated from the
estimation process, We now proceed to derive
sufficient conditions for reachability of a target
tube {(Xt, k): k=l, 2, .." N}cRnxJN, The
approach we will follow is to reduce the target tube
reachability problem with imperfect information
to a target tube problem with perfect information,
a problem that can be solved using the results of
Sections ~ 3 and 4. This reduction is achieved by
shifting emphasis from the reachability of a target
tube by the system state Xt to the reach ability of a
different target tube by the state estimate it, a
process that is possible because, once it is known,
the system state is guaranteed to lie within the set
fik defined by equation (42). In fact, suppose we
define the ellipsoid St, k= I, 2, ..., N, to be the
estimate ellipsoid (42) translated to have its center
at the origin, i.e,

!1(k) = {Xk : (Xk-~k)/E-1(klk)(xk-~k)~1-c52(k)}

:1 (35)

where the center ~kERn of the elliPsoit is given

recursively by

.tk+l=Ak.tk+Pk,+lI;(~~llk+l)
JCk+1Rk+l(Zk+l-Ck+1A .tk) (36)

the n x n weighting matrix I:(klk) of th~ ellipsoid
is given recursively by !

I:(klk) = [(1- Pk)~-l(klk -1)

+ PkC~Rk lCk]-l (37)

I;(klk -1)=(1- !;-1)-1 Ak-l~(~-llk t l)A'k-l

+{3k-1Gk-1Qk-1Gk-l (38)

Sk={Z: z'~-l(klk)z~I}. (43)

Notice that Sk is precomputable. Then it is clear
that if the state estimate ik is known then the set
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of possible system states is contained in th

t elliPSOid Xk + Sk' which is merely the estimate set ( 2). Con-

versely, in order for the system state Xk 0 lie for

all k in the given target tube

The solution of Problem 3 can be given using the
results of section 2. Define, analogously to equa-
tions (15), (16) and (17), the effective target set
t:+1 at time k+ I, and the updated target set t: at
time k

, N},{(Xk, k): k= 1,2,
r-:+1={zeRn: (z+dk)et:+1. VdkeDk}

~t is sufficient that the state estimate ik lit for all k
In the tube {(.tk, k): k = I, ..., N} here the

sets .tk are defined as
t:={zeRn: (Akz+Bxuk)eP.:+1

for some UkeU k}

~k = {Z: (Xk + z)eXk, 'v'zeSk} (44) ~* t * <tXk = k ("\Ak

Now, substitution of equations (32) r and (33)

into (36) shows that the estimate it is enerated

recursively by

~~=~N

Xk+ 1 =Akxk+ Bkuk + dk (45)

where the lumped disturbance dk is givenlby

(46)

dk=Lk+lCk+lAk(Xk-Xk) Il+Lk+l Ck+lGkWk+Lk+lV~ 1

and the, precomputable, gain matrix Lk i~ given by

Lk=PkI:(klk)CkRkl. (47)

Furthermore, it follows immediately fro i equation
(46) that dk belongs to the known set:

Dk=Lk+ ICk+ IAkSk+Lk+ ICk+ IGkWk+~k+ I V A+ I

I (48)

Then, by Proposition I, a necessary and sufficient
condition for the existence of a solution to Problem
3 is that xo=floeto*, where flo is defined in equation
(34). Since existence of a solution of Problem 3 is,
as indicated earlier, sufficient for existence of a
solution to the problem of reachability of the
target tube {(Xl, k): k= I, ..., N} by the state
Xl of a system (32) in the presence of the imperfect
measurements (33), we have the following proposi-
tion:

Proposition 5. A sufficient condition for reach-
ability of the target tube {(Xl, k): k= I, ..., N}
by the state Xl of system (32) from the initial con-
dition set Xo is that xo=floet* where the set t:
is defined recursively by equations (49-52).

As in sections 3 and 4, the effective and modified
target sets E:+ 1 and g: are precomputable via
equations (49-52), and the polyhedral algorithm of
Appendix I, and the ellipsoidal algorithm of
Appendix 2 are applicable for their calculation.
We also remark that the problem of reachability of
a target set XN in the presence of the imperfect
measurements (33) can be viewed as the special
case of the problem of reachability of the target
tube {(Xl, k): k= I, ..., N} of this section where
we take all of the sets Xl but XN to be the entire
space R".

It should be noted that in the derivation of the
sufficient condition of Proposition 5 we have made
several weakening assumptions. We have assumed
that the estimate sets available to the controller are
the ellipsoid& given by equation (42) whereas in
fact the controller can in principle calculate smaller
estimate sets. In addition, in equations (45-48)
we have assumed that the estimation error (Xl -Xl)
at time k, can be any vector in the estimate set 81
of equation (43) whereas the set of possible values
of estimation error is a subset of 81 which depends
on the previous disturbances W'-1' V, (i= I, ..., k).
Thus it is to be expected that other, possibly
stronger, sufficient conditions besides the one of
Proposition 5 exist. It appears, however, that such

where Sk is defined by equation (43) an the ellip-
soids W k and V k+ 1 are defined in equaC n (34).

Thus, a sufficient condition for the r achability
of the target tube {(Xk, k):k= 1, ...} by the
system state Xk in the presence ofimperfe t informa-
tion is that the target tube {(.tk, k) :k= ,..., N}
defined by equation (44) be reachable b the state
Xk of the estimator (45). Since the esti ate Xk is
generated by the controller and known to him at
each time k, this problem is simply the arget tube
reach ability problem with perfect infor ation that
was examined in sections 3 and 4. i

We summarize the above develop men by stating
I

the following problem and its solution:

Problem 3. Consider the discrete s stem (45)
with the initial condition io = flo and the arget tube
{(.tk, k):k= 1, ..., N} given by equ tion (44).
Find, if it exists, a control law u(., .) pping the
pairs (ik, k) into Uk, k=O, ..., N- I such that
the state ik of system (45) lies for all k i the target
tube {(.tk, k):k= 1, ..., N} for al possible
disturbances dkEDk, where the set Ok i given for

all k=O, 1, ..., N-l by equation (4 ).
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By making the identificationsconditions would require sizable on-line co puta-
tions that would make the control sche e im-
practical or even infeasible. On the other hand,
the implementation of a control scheme ba ed on
the sufficient condition of Proposition 5 p sents
no more difficulty than the one of the erfect
information case.

[ Dk 0
]Ak= 0 Fk'

Gk=[ ~k

and
7. APPLICATION TO DIFFERENTIAL GA ES

In this section we indicate how, with minor
modifications, the results obtained in pr vious
sections may be applied to the examinatio of a
class of differential games. Consider aga n the
linear discrete-time system

Xk= {Xt= IIMtXkl1 <e}

where

Mk=[Ck, -Ck]

the problem reduces to that stated above.
Returning to the original system (52), it is clear

that, since the objective of the evader is to keep the
state trajectory of the system inside the escape tube
throughout the whole time interval, the problem
from the evader's viewpoint is simply that of the
reachability of the escape tube T E' This, in turn,
is simply Problem 2 of section 3, where the evader
and pursuer are identified, respectively, with the
controller and nature. Recalling that the target
tube {(Xk, k); k=O, I, 2, ..., N} is reachable
from state Xo at time 0 if and only if Xo is an
element of the modified target set X: defined by
equations (11-14), it follows that escape is guaran-
teed for the evader if and only if the initial system
state lies in X:. More generally, the modified
target tube

(52)Xk + 1 =Akxk + Bkuk + Gk Wk

where in this case we identify the controllerse ecting
the control Uk' k = 0, I, 2,..., N -I, a "the
evader" and the controller selecting Wk a "the
pursuer". The initial state Xo is assumed kn wn to
both controllers, as is the state Xk as it evo ves in
time. As before, the controllers are constra' ed to
select control laws Uk(') and Wk(') whose values
lie, respectively, in the prescribed sets Uk a d W k,
k = 0, 1, 2,..., N -1. Consider also a given

escape tube

, N}cR"xJN (53)TE={(Xk, k): k=O, 1,2,

and its complement in R" x J No the capture Itube Me={(X:, k); k=O, 1,.. ., N} (55)

TC={(Xk, k): k=O, 1,2,..., N}=TE (54) defined recursively by (11-14), is the set of all
statetime pairs for which escape is guaranteed.

From the point of view of the pursuer, however,
the problem is different, since for capture to occur
it is sufficient that the trajectory enter the capture
tube only once during the time interval. In other
words, the pursuer is interested in the non-reach-
ability of the escape tube, which occurs if the
trajectory enters the capture tube at least once
during the time interval, rather than reachability of
the capture tube, for which it is demanded that the
entire state trajectory lie in the capture tube.
Furthermore, in order to guarantee capture, the
pursuer must assume the pessimistic attitude of
"playing first", in the sense of declaring his strategy
to the evader. In other words, the problem of
guaranteed capture is the problem of non-reach-
ability of the escape tube when the evader chooses
his strategy with knowledge of the pursuer's
strategy. This is again Problem 2 of section 3 with
the order of selecting controls reversed, i.e. the
sequence of selections is: (1) Pursuer selects wo,
(2) Evader selects °0' ..., (2N -1) Pursuer selects
WN-I' (2N) Evader selects UN-I' In the same way

where the bar -denotes set complementatio .The
objective of the pursuer is to drive the syste state
into the capture tube T c, while the evader' objec-
tive is to keep the state outside the capture t be for
all time, i.e. the evader attempts to keep testate
trajectory in the escape tube. :An example where such a problem can I rise is

the case of two separate dynamic syste s, an
evader '

=DkYk+Ekuk

and a pursuer

Zk+ 1 =Fkzk+Hkvk

and capture occurs if the states Yk and tZk are

sufficiently "close" for some k. For e ample,
capture might be considered to occur if :

.,

IICt(Yt-Zt)11 <e for any k=O, 1, N
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that we rt:cursively defined the effective and ~ mOdi- fied target sets at each time k via equations (111-14),

we can define their analogs in this case wh re the

order of selections is reversed, viz.

It is clear that ME will be a subset of Mc since
Mc is the set of points in Rft x J N from which the
evader can escape capture when he "plays last"
whereas ME is the set of points from which the
evader can escape capture when he is in the less
advantageous position of having to play first, i.e.
when he must declare his strategy to the pursuer.
Furthermore, ME will in general be a strict subset
of Mc, so that the region ME of guaranteed escape
and the region Mc of guaranteed capture are in
general disjoint except at time N. This can be seen
by examining the updated target sets T~-l and
T~/-l at time N -1 defined by equations (11-14)
and (56-59), viz.

(56)

(57)

(58)

(59)

E:~l =X:~l +( -BkUk)

T:'={zeRn: Akz+GkwkeE:~l' \t'WkeWk}

X:'=XknT:'
xt' = XN

Reachability of the escape tube TE={( k' k);
k = 0, I, 2, ..., N} from state Xo at time with
this reversed order of selections is, clea ly by
analogy with proposition 2, equivalent to eX:'.
Thus the escape tube T E is non-reachabl , and
therefore capture is guaranteed, from state Xo at
time to if and only if xo~X:', i.e. xoeX:' wh re, as
before, the bar -denotes set complemen ation.
Furthermore, we can view equations (56- 9) as
defining a modified target tube

T~-l ={XN-l:3 UN-leUN-l S.t.'v'WN-leWN-l'

AN-IXN-l +BN-IUN-l + GN-l wN-leXN} (61)

Tt'-l ={XN-l :'v'WN-1EWN-l, 3UN-1EUN-l S.t.

AN-1XN-l +BN-1UN-l + GN-1WN-1EXN} (62)

,N} (60)Mc={(X:, k): k=O,l,
it is clear that in order for Tt-l to equal Tt'-t,
the order of the phrases "3UN -leU N -I" and
"'ltwN-leWN-l" must be interchangeable, which
is not in general the case.

The three regions in R" x J N of guaranteed
capture, guaranteed escape, and neither guaranteed
capture nor guaranteed escape can be interpreted
profitably in terms of a sequential zero-sum game
involving the system (52) and the cost functional

whose complement is the set of all state-tim pairs
for which capture is guaranteed.

Thus the two modified target tubes ME a d Mc
defined by equations (59) and (60) may be iewed
as dividing the trajectory space R" x J N int three
regions, as shown schematically in Fig. .The
modified target tube ME is the region from which
escape is guaranteed, the complement Mc i of the
modified target tube Mc is the region from! which
capture is guaranteed, and the set of poin s that
are in neither ME nor Mc is the region fro which
neither capture nor escape is guaranteed. i

{ l if the evader escapes (63)
J(Xk, k, D, v)= 0 if the evader is captured.

IIIIIII
Region of guaranteed escapeI , / I _/ / /

This is simply the characteristic function of the
escape tube (54) in RnxJN, It is clear that the
evader wishes to maximize J and the pursuer wishes
to minimize J,

A moment's reflection shows that the region of
guaranteed escape is the set of state-time pairs
(Xk' k) for which

.
max minJ[xk,k, D, v]

u w

:

/~v~~~ ~~~~~ I;/~ 7);, Capture tub
0 I I -I

/ / ! /

= miD maxJ[Xk' k, n, v] = 1
W D

i.e. the set of state-time pairs for which the upper
and lower value of the game are both equal to 1.
Similarly, the region of guaranteed capture is the
set of state-time pairs for which

0= max minJ[Xk' k, D, v]
11 W

FIG. 3. Schematic presentation of the regirns of
guaranteed capture and g;uaranteed escape in a usuit-

evasIon game.
= mill maxJ[Xk, k, u, v].

w a
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The region for which neither capture nor tscape
are guaranteed is the set of (Xk, k) for which i

0= max minJ[Xk' k, 0, V]
u w

< mill max J[ Xk, k, u, v] i 1
w a

i.e. for which the game has no saddle point i pure
strategies. Under these conditions, one mig t wish
to proceed in a number of ways. The usu I pro-
cedure is to seek a saddle point in mixed str egies.
We do not investigate this situation further n this

paper.
It should be noted that for a constant ystem

where the sets Uk, W k, Xk are also consta tone
can determine the minimum time for guar nteed
capture from a given initial condition xo. This
minimum time is (N -q) where q is the large t time
index of sets X:' that contain xo'

We finally remark that the polyhedral alg rithm
of Appendix I is applicable for characteriza ion of
the guaranteed capture and guaranteed scape
tubes when the sets Uk, W k, and Xk are pol hedra
or unions of disjoint and closed polyhedra. In the
particular case where X1=X2= ...XN-l= =R"
and the problem is closely related to the tar et set
reachability problem the computational r quire-
ments are greatly reduced.
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APPENDIX 1

A polyhedral algorithm for construction of tubes
In this Appendix we consider the problem of

section 4, and we give an algorithm for construction
of the effective and modified target sets E~, ..., E! ,
X~-l' ..., X!, when the sets Xk, Uk are closed
convex polyhedra, or unions of closed disjoint
convex polyhedra, and the system is linear.

A polyhedron P in R" is characterized by a finite
set of vectors {e1, ..., ek}' the support set, and
the values of its support functional

u(eIIP), , u(exIP)

at these vectors. It is the set of points x satisfying

k<x, eL> ~O"(eiIP) for i=l

We give the following lemmas the proof of
which can be found in Ref. [11].

8. CONCLUSIONS
Attention has been given to the problem of the

reachability of a target set or a target tube by the
state of a discrete dynamic system. Necess y and
sufficient conditions for existence of a solut'on are
given for the case where the state of the syst m can
be measured exactly, while sufficient conditi ns for
existence of a solution are given for the cas when
only disturbance-corrupted output measur ments
are available. Algorithms for implementa ion of
the relevant control schemes are given for t e case
of a linear system; in particular, the elli soidal
approximation algorithm given in Appe dix 2
leads to linear control laws. It is also sho n how
the target tube reachability problem is relat d to a
class of pursuit-evasion games.

The results reported in this paper can be e tended
in several ways. The problems of reachabil ty of a
target set and a target tube for a continuo s time
system, and particularly the problem of infinite
time reachability for both discrete and con inuous
time systems deserve attention. For thi latter
problem some results have been reported in this
paper in connection with the ellipsoidal al orithm
of Appendix 2. However, the infinite tim reach-
ability problem is essentially different in s ructure
from the problems considered in this pape , and it
will be the subject of a forthcoming public tion.

Lemma A.
set {et, ...

I. Given a polyhedron P with support
, e~}, and support functional

q(e1!P), , u(ekIP)

invertible matrix) has
, A,-lek} and values of

the polyhedron AP (A
support set {A,-let,..
support functional

q(A,-lei\AP)=q(el!P)' i= I, ..., k
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Lemma A.2. Given two polyhedra X and~! with

support sets {Xl"'" Xk}, {Yl"'" Ym!, the
vector sum X + Y is a polyhedron with sup ort set
{x I' ..., Xk' Y l' ...Y m} and support funct nal

requirements for the controller. On the other hand,
the algorithm does not involve any approximations,
and all computations are done off-line.

u(qlX + y) = u(qIX) + u(ql y)

q=XI' , Xk, Yl, !Ym

Also, the intersection X n Y is the poly~edron
bounded by the hyperplanes j

<x, q> ~min{u(qIX), u(qIY)}

q=Xl' ..., Xk' Yl' . fYm

We also prove the following Proposition 1

Proposition A.I. If the polyhedron XN I of the
target tube has support set {e\,..., e} and
support functional u(e\IXN),..., u(ekIX) the
effective target set E~ is the polyhedron b unded
by the hyperplanes

<x, ej> ~u(ejIXN)-u(GN-lejIWN-l)

i=l,..., k (A.1)

APPENDIX 2

An ellipsoidal appro;\"imation algorithm for con-
struction of tubes

From the viewpoint of practically implementing
the results of sections 2 through 4, it is clearly
desirable that the effective and modified target sets
be describable by a finite collection of numbers.
Such is the case if, for example, these sets are
ellipsoids. However, even if the system is linear
and the various constraint sets are ellipsoids, these
effective and modified target sets are not ellipsoids.
On the other hand, a possible approach is to
internally approximate these sets by ellipsoids, a
procedure that not only allows us to easily imple-
ment the results of Sections 3 and 4 but, in addition,
leads to control laws that are linear. It should be
noted, however, that by internally approximating
the true modified and effective target sets by ellip-
soids the necessary and sufficient conditions
obtained earlier become only sufficient.

Consider the special case of Problem 2 in which
the system is linear and given by

Xk+ 1 =AkXk+ Bkuk+GkWk

and the relevant constraint sets are the ellipsoids
described by

where U(.\ W N -1) is the support functiona l of the

set WN-IO , ,
Proof If xEE~ then

<x, q> +(1(GN-lqIWN-l)~(1(qIXN), qE~k

and xeP where P is the polyhedron bOUf ed by the hyperplanes (A. I). Hence, E~cP. C nsider

now the polyhedron P w with Supp rt set
{el, ..., ek} and support function :'

u(eilP w)=U(GN-lei\WN-l)'

i=l,..., k. Then it is GN-IWN-1CPw. Using
Lemma A.2 it is P+P wcXN and hence GN 1 WN-l
+PcXN which implies PcE~. Hence P=E~.

Q.E.D.
We note that it is possible that not aJl of the

hyperplanes (A.1) are support hyperplane of E~
and before we proceed with the algorit m the
redundant hyperplanes should be discard using
linear programming.

After the polyhedron E~ is determ' ed, the
modified target set X~-l =XN-ln N~l[E~
+(-BN-1UN-l)] which clearly is a poly edron,
can be determined using Lemmas A.I, .2 and
linear programming. We proceed simi rly to
determine the remaining polyhedra of th tubes.
It should be noted that the number of upport
hyperplanes of the polyhedra tends to inc ease as
we go towards the initial time, and for hig dimen-
sional svstems this way involve nontrivial storage

Xk={zeRn: z'CkCkz~l}

II XN={zeRn: z"Pz~l}

U={veRm; v'Rkv~l}

Wk={veRQ: v'Dkv~l}

and the matrices 'P, Rk and Dk are assumed positive
definite for all k=O, I,..., N-I.

We first approximate the effective target set E~
by an ellipsoid. To this end, we state the following
lemma, the proof of which can be found in Ref. [2].

Lemma A.3. Consider two ellipsoids SI' S2 with
support functionals U(qISl) = (q'Qq)t, u(qlSJ
=(q'Q2q)t. "Their vector sum SI +S2 is contained
in the ellipsoid S with support function u(qIS)
= {q'[,B-IQ1+(I-,B)-IQ2]q}t, where ,B is a frte
parameter with 0 <,B < 1.

We seek to internally approximate E: by an
ellipsoid £~ c E~. Hence we must have

£~+ GN-l WN-lcXN.

The support functionals of the ellipsoids GN-l W N-l
and XN are,

u(qIGN-l W N-l)=(q'GN-IDN:'1 GN-lq)t

and u(qIXN)=(q"P-1q)t. By Lemma A.3 the
relation £~ + GN -1 W N -1 C XN is satisfied if the
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support functional of £~ is given by (ql£~)
=(q'FNlq)+ where

FNl =(1-f3N)(",-I_f3NIGN-1DN~1 GN- ),

O<f3N<l. (A.2)

If the given constraint sets are such that ~ has a nonempty interior, then there exists a N with

O<.8N< I such that the matrix FN of ( .2) is
positive definite and the ellipsoid '

r,~={z: z'FNz~ I} (A.3)

If !~-1 contains the set GN-ZWN-Z the subse-
quent effective target set E~ -1 is nonempty and
we proceed with similar approximations. If some
effective target set is empty, then the algorithm
breaks down. This, of course, does not imply that
the original target tube is not reachable, since the
approximations make this condition sufficient only.
If one wishes to proceed with the ellipsoidal
algorithm he will have to start with a "larger"
target tube. We summarize the algorithm below:

A suboptimal modified target tube {!!, ..., !~}
and effective target tube {E!, ..., Et} are given
recursively by:

!:={Xk: x~Kkxk~ 1} k=l, ..., N

£:={Xk: x~Fkxk~l} k=l,..., N

is contained in E~.
iThe modified target set is now defined, U ing the

ellipsoid f.~, as the set of points XN-l ith the
property that both

(A.4)XN-ICN-ICN-IXN-l~l

where

Fj;l =(1-Pk)[Kj;1_pj;lGk-1Dk!1 G~-l]

Kk-l =A~-l[Fj;l +Bk-1Rj;.!lB~- J-l Ak-l

+C~-lCk-lxN=AN-IXN-l+BN-lUN-lEE~

for some UN-lEUN-l' (A.S)
KN=\/f

The second requirement becomes in this c.se that and the parameters Pk are such that O<Pk<l and
the matrices Ft are positive definite. A sufficient
condition for reachability is then that the set

(A.6)

xNF NXN ~ 1 for some UN-1

with UN-1RN-1UN-1 ~ 1.
T:={xo: x~Koxo~l}

The set of points satisfying both equati°rs (A.4)
and (A.6) clearly contains the set of points ith the
property that

contains Xo. where

K =A' [F-1 + B R-1B' ] -lA0 0 1 0 o'

Furthermore, a control law that achieves reach-
ability is given by:

XN-1CN-1CN-1XN-l

+UN-1RN-1UN-l +XN~'NXN:S 1 (A.7)

where
(A.12)Uk(Xk) = -(Rk+B~Fk+ lBk)-lB~Fk+1Akxk.

(A.8)xN=AN-IXN-l + BN-IUN-l

By well-known results on the linear q t adratiC problem of optimal control, see Ref. [9], t e set of

XN-l satisfying equations (A.7) and (A.8) 's given

by

~~-l={XN-l: x:"-lKN-IXN-l~l} (A.9)

We remark that another control law that achieves
reach ability is the control law with a dead zone
given by equation (A.12) when XkAkFk+ 1 Akxk > 1
(i.e. Akxk~£:+J and Uk(Xk)=O otherwise. In
certain applications the use of a dead zone can be
particularly beneficial.

Consider now the case where the system is
constant (time-invariant) and the given constraint
sets are constant. Suppose that the algebraic
matrix equation

where the positive definite matrix KN-l is $iven by
the discrete Riccati equation j

K=A'[(1-P)K-1
KN-l =AN-l[Fjil

+BN-IRji:1BN-J -lAN-l+CN-lCN-t (A.I0)
-P-l(1-P)GD-1G'

+BR-1B']-lA+C'C

-I

,..F=(1-P)[K-1_p-1GD-1G']

Furthermore. a control law that aChieve! reach- ability is

°N-l(XN-V= -(RN-l

+BN-1FNBN-v-1BN-1FNAN-1XN-l' I (A.ii)

has a positive definite solution K for some 0 < fJ < 1
for which the matrix
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a la sortie faussees par les perturbations sont disponibles.
L 'article donne un algorithme pour la construction efficace
d'approximations elliptiques des series en question et il est
montre que cet algorithme conduit a des lois lineaires de
commande. L 'article discute egalement.des applications de
ces resultats a des jeux de poursuite-fuite.

is also positive definite, Then jf the init'al state
belongs to the set X*={x: x'Kx~l}, t en the
state of the system can be made to stay ind finitely
in the tube {X*, X*",,} and since X*cX
= {x : x' C' Cx ~ I } infinite time reacha jlity is
achieved, The corresponding linear time-i variant
control law that achieves reachability is Zusammenfassung-Die Arbeit befaBt sich mit der Regelung

van diskontinuierlichen Systemen bei Yorhandensein einer
Unbestimmtheit. Sie kann vorliegen in Form van Storungen
in der Systemdynamik, van Storungen, die die Ausgangs-
messungen fiilschen oder van unvollstiindiger Kenntnis
des Anfangszustandes des Systems. In alien Fiillen werden
die unbestimmten GroBen als unbekannt, abeT als in gege-
benen Mengen liegend, angenommen. Betrachtet wird
zuniichst das Problem der OberfUhrung des System-zustandes
zur Endzeit in eine vorgeschriebene Zielmenge und zwar bei
der ungiinstigsten Kombination van Storungen. Dies wird
auf das Problem der Beschriinkung der ganzen Zustands-
trajektorie auf einen gegebenen Ziel-"Schlauch" ausgedehnt.
Notwendige und hinreichende Bedingungen werden rur den
Fall angegeben, daB der Systernzustand exakt gemessen
werden kann, wiihrend hinreichende Bedingungen ftir die
Erreichbarkeit fUr den Fall gegeben werden, wenD lediglich
dUTCh Storungen gefiilschte Messungen vorhanden sind.
Angegeben wird ein Algorithmus zur wirksamen Konstruk-
tion van elliptischen Approximationen der enthaltenen Men-
gen. Weiter wird gezeigt, daB dieser Algorithmus zu linearen
Regelungsgesetzen ftihrt. Die Anwendung der bier gewonn-
nenen Ergebnisse auf eine Klasse van Yerfolgungsspielen
wird diskutiert.

u(x) = -(R+B'FB)-lB'FAx

and it can have a dead zone if desirable.
The ellipsoidal algorithm presented in this

Appendix has the drawback that the ap oxima-
tions involved may cause failure of existe ce of a
solution even when an optimal solution exi ts. For
this reason specification of "larger" targ t tubes
and "larger" control sets may be necess ry if a
solution is to be achieved. Thus the pro dure is
not entirely satisfying. However, in vie of the
appeal of the linear control laws, it ma prove
useful in at least some practical cases. so an
important question that requires furth r con-
sideration concerns the quality of the ap oxima-
tions involved in the algorithm. Unfortu tely, it
appears to be difficult to obtain precise e timates
of the approximation involved and further esearch
and simulations are required for a more mplete
evaluation of the merits and drawback of the

algorithm.

Pe3IOMe-HaCTo~aH CTaTbH OTHOCHTCH K ynpaBJ1eHWO
B 3aMKHYTOM KOHTYpe CHCTeMaMH C AHCKpeTHblM BpeMeHeM
B npHCYTCTBHH HeonpeAeneHHOCTeA. HeonpeAeneHHOCTb
MOJKeT HMeTb MecTO B cMblcne nOMeX B AHHaMHKe CHCTeMbl,
B CMblCJle nOMeX HCKaJKaIOlUHX BblXOAHble H3MepeHWI HJIH
B CMblCJle HenOnHOrO 3HaHHH Ha~an&HOrO COCTOHHHR
CHCTeMbI. Bo BCeX CJIY'laHX, HeOnpeAeneHHble BeJIH1{HHbl
npeAnOnaralOTCH HeH3BeCTHblMH 3a HCKnlO~eHHeM HX
npHHalJ.JIeJKHOCTH K onpeAeneHHbIM pRAaM. CTaTbR pacc-
MaTpHBaeT CHa~aJla 3aAa'fY npHBeAeHHR COCTOJIHHR CHCTeMbi
B KoHe'IHbIA MOMeHT B JaAaHHblit pHA ~eneA npH HaHXYJJ.IJleM
CO~eTaHHH nOMeX. 3TO 3aTeM o6o6~aeTCH K 3aAa~e nOA-
AepJKaHHH COCTOHHRII BHYTpH AaHHOA "o6ono'!KH" ~eneA.
CTaTbH AaeT Heo6xoAHMbie H AOCTaTO~Hble YCJlOBHH ARB
CnOCO6HOCTH AOCTHJKeHWI pRAa ~eneA B cnY'l8e KOrAa
COCTOHHHe MOJKeT 6b1Tb TO'IHO H3MepeHO, B TO BpeMH KaK
AOCTaTO'IHble ycnoBHH AnH 3TOA cnOCO6HOCTH AOCTHJKeHWI
AalOTCH KOrAa HMelOTCH HaJlHUO JIHllIb BblXOAHble H3MepeHHJI
HCKaJKeHHble nOMeXaMH. CTaTbR AaeT aJlrOpHTM ARB
3<l><jJeKTHBHOrO nocTpoeHHR 3nmm:rH~ecKHX npH6JIJDKeHHA
K paCCMaTpHBaeMblM pHAaM H nOKa3blBaeT 'iTO 3TOT
aJlrOpHTM npHBO)J.HT K JlHHeitHblM 3aKOHaM ynpaBJ1eHWI.
CTaTbR TaKJKe 06cyJKAaeT npHMeHeHHR CBOHX pe3YJIbTaTOB
K HrpaM npecneAOBaHHJI H no6era.

Resurne-cet article se rapporte a la commande n boucle
fermee de systemes a temps discret en presence d'incerti-
tudes. L'incertitude peut avoir lieu sous la forme e pertur-
bations dans la dyanmique du systeme, sous la orme de
perturbations faussant les mesures a la sortie 0 sous la
forme d'une connaissance incomplete de I'etat nitial du
systeme. Dans tous les cas, ItS grandeurs incert iDes sont
supposees inconnues sauf leur appartenance a es series
donnees. L 'article considere d'abord Ie probleme d'amener
I'etat du systeme au moment final dans une serle p escrite de
buts sous la plus mauvaise combinaison de pert rbations.
Ceci est ensuite generalise au probleme de maint nir toute
la trajectoire de I'etat 1\ I'interieur d'une "envelop "donnee
de buts. L 'article donne des conditions nece saires et
suffisantes pour la capacite d'atteindre une serle e buts et
une enveloppe de buts dans Ie cas oill'etat peut e e mesure
exactement, tandis que des conditions suffisantes our cette
capacite d'atteindre sont donnees lorsque seules d mesures


