UNDISCOUNTED/NONCONTRACTIVE
DP PROBLEMS
LECTURE OUTLINE

e Undiscounted total cost problems

e Positive and negative cost problems
e Deterministic optimal cost problems
e Adaptive (linear quadratic) DP

e Affine monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. II of the text:
Noncontractive Total Cost Problems

On-line at:

http://web.mit.edu/dimitrib /www /dpchapter.html

Check for most recent version



CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

e Infinite horizon total cost DP theory divides in

— “Kasy” problems where the results one ex-
pects (uniqueness of solution of Bellman Eq.,
convergence of PI and VI, etc) hold

— “Difficult” problems where one of more of
these results do not hold

e “Easy” problems are characterized by the pres-
ence of strong contraction properties in the asso-
ciated algorithmic maps 7" and T},

e A typical example of an “easy” problem is dis-
counted problems with bounded cost per stage
(Chs. 1 and 2 of Voll. IT) and some with unbounded
cost per stage (Section 1.5 of Voll. II)

e Another is semicontractive problems, where T,
is a contraction for some p but is not for other
1+, and assumptions are imposed that exclude the
“ill-behaved” p from optimality

e A typical example is SSP where the improper
policies are assumed to have infinite cost for some
initial states (Chapter 3 of Vol. II)

e In this lecture we go into “difficult” problems



UNDISCOUNTED TOTAL COST PROBLEMS

e Beyond problems with strong contraction prop-
erties. One or more of the following hold:

No termination state assumed
Infinite state and control spaces

Either no discounting, or discounting and
unbounded cost per stage

Risk-sensitivity /exotic cost functions (e.g.,
SSP problems with exponentiated cost)

e Important classes of problems

SSP under weak conditions

Positive cost problems (control/regulation,
robotics, inventory control)

Negative cost problems (maximization of pos-
itive rewards - investment, gambling, finance)

Deterministic positive cost problems - Adap-
tive DP

A variety of infinite-state problems in queue-
ing, optimal stopping, etc

Affine monotonic and risk-sensitive problems
(a generalization of SSP)



POS.

AND NEG. COST - FORMULATION

e System xxi+1 = f(, ur,wr) and cost

N-1
Jr(20) = A}EHOO g {Z akg(xkaﬂk(xk)awk)}

k=0,1,... k=0

Discount factor a € (0, 1], but g may be unbounded

e Case P: g(x,u,w) >0 for all (z,u,w)

e Case N: g(x,u,w) <0 for all (z,u,w)

e Summary of analytical results:

Many of the strong results for discounted
and SSP problems fail

Analysis more complex; need to allow for J;

and J* to take values +oo (under P) or —oo
(under N)

However, J= is a solution of Bellman’s Eq.
(typically nonunique)

Opt. conditions: p is optimal if and only if
T,J" =TJ" (P)orifT,J,=TJ, (N)



SUMMARY OF ALGORITHMIC RESULTS

e Neither VI nor PI are guaranteed to work

e Behavior of VI

— P:TkJ — J" for all J with 0 < J < J*, if
U(x) is finite (or compact plus more condi-
tions - see the text)

— N: TkJ — J" for all J with J* < J <0
e Behavior of PI

— P: J,x 18 monotonically nonincreasing but
may get stuck at a nonoptimal policy

— N: J,» may oscillate (but an optimistic form
of PI converges to J* - see the text)

e These anomalies may be mitigated to a greater
or lesser extent by exploiting special structure, e.g.

— Presence of a termination state

— Proper/improper policy structure in SSP

e [Finite-state problems under P can be trans-
formed to equivalent SSP problems by merging all
states x with J" () = 0 into a termination state.
They can then be solved using the powerful SSP
methodology (see Ch. 4, Section 4.1.4)



EXAMPLE FROM THE PREVIOUS LECTURE

e This is essentially a shortest path example with
termination state t

u’, Cost 0
Cost 0
u, Cost b
J(t)4
Bellman Eq.
Solutions /
J,u’ p = (07 0)

0.0 @)
Case P Case N
VI fails starting from VT fails starting from
J(1)#0,J(t)=0 J(1) < J*(1), J(t) =0
PI stops at u PI oscilllates between p and p/

e Bellman Equation:

J(1) = min|J(1),b+ J(¢)], J(t) = J(t)



DETERM. OPT. CONTROL - FORMULATION

e System: w1 = f(xk,ur), arbitrary state and
control spaces X and U

e Cost positivity: 0 < g(x,u), Vo € X, ue U(x)

e No discounting:

o “Goal set of states” Xj
— All x € X are cost-free and absorbing

e A shortest path-type problem, but with possibly
infinite number of states

e A common formulation of control/regulation
and planning/robotics problems

e Example: Linear system, quadratic cost (possi-
bly with state and control constraints), Xo = {0}
or Xo 1s a small set around 0

e Strong analytical and computational results



DETERM. OPT. CONTROL - ANALYSIS

e Bellman’s Eq. holds (for not only this problem,

but also all deterministic total cost problems)

J (x) = rr%]l?) {9(z,0)+ T (f(z,u))}, VzeX
ucU(x

e Definition: A policy 7w terminates starting from

r if the state sequence {xy} generated starting

from xo = x and using 7 reaches Xy in finite time,
i.e., satisfies x; € X for some index k

e Assumptions: The cost structure is such that
— J(z) > 0, Va ¢ Xo (termination incentive)

— For every x with J"(z) < oo and every € > 0,
there exists a policy 7 that terminates start-
ing from x and satisfies J.(xz) < J" (z) + €.

e Uniqueness of solution of Bellman’s Eq.: J™ is
the unique solution within the set

J={J|0<J(x)<oc,VzeX, Jx)=0,Vze Xo}

e Counterexamples: Earlier SP problem. Also
linear quadratic problems where the Riccati equa-
tion has two solutions (observability not satisfied).



DET. OPT. CONTROL - VI/PI CONVERGENCE

e The sequence {T*J} generated by VI starting
from a J € J with J > J* converges to J~

e If in addition U(x) is finite (or compact plus
more conditions - see the text), the sequence {T%J}
generated by VI starting from any function J € J
converges to J"

e A sequence {J,:} generated by PI satisfies
Ju(x) | J(x) forall z € X

e PI counterexample: The earlier SP example

e Optimistic Pl algorithm: Generates pairs {Ji, u*}
as follows: Given Ji, we generate u* according to

k(@) = arg min {g(z,0)+i(f@w)}, @€ X
and obtain Jgi1 with my > 1 VIs using p*:

mk—l

Jrr1(z0) = Je(@m, )+ Y gz, pk(2r)), w0 € X
t=0

If Jo € J and Jy > TJy, we have J, | J".
e Rollout with terminating heuristic (e.g., MPC).



LINEAR-QUADRATIC ADAPTIVE CONTROL

o System: xpy11 = Axrp+Bug, xp € R, up € k™
o Cost: Y~ (2} Qx + uj Rug), @ >0, R>0

e Optimal policy is linear: u*(x) = Lx

e The Q-factor of each linear policy u is quadratic:

Qury=(a ) K (L) ()

U
e We will consider A and B unknown

e We use as basis functions all the quadratic func-
tions involving state and control components

xtxd, utud, x'ul, Vi,7
These form the “rows” ¢(z,u)’ of a matrix ®

e The Q-factor (), of a linear policy p can be
exactly represented within the subspace spanned
by the basis functions:

Qu(z,u) = ¢(x,u)'r,
where r,, consists of the components of K, in (*)

e Key point: Compute r, by simulation of u (Q-
factor evaluation by simulation, in a PI scheme)



PI FOR LINEAR-QUADRATIC PROBLEM

e Policy evaluation: r, is found (exactly) by least
squares minimization

2

mrin Z ‘gb(a:k, ug)'r — (33;@@3% + ug Ruy, + ¢($k+1a H(mkﬂ))/r)

where (xx,ur, Tr11) are “enough” samples gener-
ated by the system or a simulator of the system.

e Policy improvement:
fi(z) € argmin (¢(x, u)'ry)
e Knowledge of A and B is not required

e If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

e The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive DP

e This field deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time



FINITE-STATE AFFINE MONOTONIC PROBLEMS

e (Generalization of positive cost finite-state stochas-
tic total cost problems where:

— In place of a transition prob. matrix P, we
have a general matrix 4, > 0

— In place of 0 terminal cost tunction, we have
a more general terminal cost function J > 0

e Mappings

Tpd = b+ Aud, (TJ)(3) = lffellj\rjl(TuJ)(Z)

e Cost function of m = {uo, p1,...}

Je(i) =limsup (T - Tun_,J)(2), i=1,...,n

N — o0

e Special case: An SSP with an exponential risk-
sensitive cost, where for all ¢ and u € U(4)

Aij(u) = pij(u)esthmd), b(i,u) = pie(u)esti-w?)
e Interpretation:

T(i) = E{e(length of path of 7 starting from z)}



AFFINE MONOTONIC PROBLEMS: ANALYSIS

e The analysis follows the lines of analysis of SSP

e Key notion (generalizes the notion of a proper
policy in SSP): A policy p is stable if Af — 0; else
it is called unstable

e We have
N—-1

TNJT = ANJ+Y Afby, YJERY, N=1.2,...,
k=0

e For a stable policy u, we have for all J € Rq»

o0

Ju =limsup T J = limsup » ~Afb, = (I-A,)~1b,

N —o00 N — o0 L—0
e Consider the following assumptions:
(1) There exists at least one stable policy

(2) For every unstable policy u, at least one com-
ponent of > ., Akb, is equal to oo

e Under (1) and (2) the strong SSP analytical
and algorithmic theory generalizes

e Under just (1) the weak SSP theory generalizes.



