
UNDISCOUNTED/NONCONTRACTIVE

DP PROBLEMS

LECTURE OUTLINE

• Undiscounted total cost problems

• Positive and negative cost problems

• Deterministic optimal cost problems

• Adaptive (linear quadratic) DP

• Affine monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. II of the text:

Noncontractive Total Cost Problems

On-line at:

http://web.mit.edu/dimitrib/www/dpchapter.html

Check for most recent version



CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

• Infinite horizon total cost DP theory divides in

− “Easy” problems where the results one ex-
pects (uniqueness of solution of Bellman Eq.,
convergence of PI and VI, etc) hold

− “Difficult” problems where one of more of
these results do not hold

• “Easy” problems are characterized by the pres-
ence of strong contraction properties in the asso-
ciated algorithmic maps T and Tµ

• A typical example of an “easy” problem is dis-
counted problems with bounded cost per stage
(Chs. 1 and 2 of Voll. II) and some with unbounded
cost per stage (Section 1.5 of Voll. II)

• Another is semicontractive problems, where Tµ

is a contraction for some µ but is not for other
µ, and assumptions are imposed that exclude the
“ill-behaved” µ from optimality

• A typical example is SSP where the improper
policies are assumed to have infinite cost for some
initial states (Chapter 3 of Vol. II)

• In this lecture we go into “difficult” problems



UNDISCOUNTED TOTAL COST PROBLEMS

• Beyond problems with strong contraction prop-
erties. One or more of the following hold:

− No termination state assumed

− Infinite state and control spaces

− Either no discounting, or discounting and
unbounded cost per stage

− Risk-sensitivity/exotic cost functions (e.g.,
SSP problems with exponentiated cost)

• Important classes of problems

− SSP under weak conditions

− Positive cost problems (control/regulation,
robotics, inventory control)

− Negative cost problems (maximization of pos-
itive rewards - investment, gambling, finance)

− Deterministic positive cost problems - Adap-
tive DP

− A variety of infinite-state problems in queue-
ing, optimal stopping, etc

− Affine monotonic and risk-sensitive problems
(a generalization of SSP)



POS. AND NEG. COST - FORMULATION

• System xk+1 = f(xk, uk, wk) and cost

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

Discount factor α ∈ (0, 1], but g may be unbounded

• Case P: g(x, u, w) ≥ 0 for all (x, u, w)

• Case N: g(x, u, w) ≤ 0 for all (x, u, w)

• Summary of analytical results:

− Many of the strong results for discounted
and SSP problems fail

− Analysis more complex; need to allow for Jπ
and J* to take values +∞ (under P) or −∞
(under N)

− However, J* is a solution of Bellman’s Eq.
(typically nonunique)

− Opt. conditions: µ is optimal if and only if
TµJ* = TJ* (P) or if TµJµ = TJµ (N)



SUMMARY OF ALGORITHMIC RESULTS

• Neither VI nor PI are guaranteed to work

• Behavior of VI

− P: T kJ → J* for all J with 0 ≤ J ≤ J*, if
U(x) is finite (or compact plus more condi-
tions - see the text)

− N: T kJ → J* for all J with J* ≤ J ≤ 0

• Behavior of PI

− P: Jµk is monotonically nonincreasing but
may get stuck at a nonoptimal policy

− N: Jµk may oscillate (but an optimistic form
of PI converges to J* - see the text)

• These anomalies may be mitigated to a greater
or lesser extent by exploiting special structure, e.g.

− Presence of a termination state

− Proper/improper policy structure in SSP

• Finite-state problems under P can be trans-
formed to equivalent SSP problems by merging all
states x with J*(x) = 0 into a termination state.
They can then be solved using the powerful SSP
methodology (see Ch. 4, Section 4.1.4)



EXAMPLE FROM THE PREVIOUS LECTURE

• This is essentially a shortest path example with
termination state t

a 1 2 1 2 t b

t b c u′, Cost 0

u, Cost b

2 Cost 0

t) Case P Case N ) Case P Case N

Bellman Eq. Solutions
Bellman Eq. Solutions

Bellman Eq. Solutions
Bellman Eq. Solutions

Jµ′ = (0, 0)0) Jµ′ = J* = (0, 0)

0) Jµ = (b, 0) 0) Jµ = J* = (b, 0)0) J(1) 0) J(1)

(1) J(t) Case P Case N (1) J(t) Case P Case N

PI stops at µ µ PI oscilllates between µ and µ′

VI fails starting from VI fails starting from
J(1) != 0, J(t) = 0 J(1) < J∗(1), J(t) = 0

• Bellman Equation:

J(1) = min
[

J(1), b+ J(t)], J(t) = J(t)



DETERM. OPT. CONTROL - FORMULATION

• System: xk+1 = f(xk, uk), arbitrary state and
control spaces X and U

• Cost positivity: 0 ≤ g(x, u), ∀ x ∈ X, u ∈ U(x)

• No discounting:

Jπ(x0) = lim
N→∞

N−1
∑

k=0

g
(

xk, µk(xk)
)

• “Goal set of states” X0

− All x ∈ X0 are cost-free and absorbing

• A shortest path-type problem, but with possibly
infinite number of states

• A common formulation of control/regulation
and planning/robotics problems

• Example: Linear system, quadratic cost (possi-
bly with state and control constraints), X0 = {0}
or X0 is a small set around 0

• Strong analytical and computational results



DETERM. OPT. CONTROL - ANALYSIS

• Bellman’s Eq. holds (for not only this problem,
but also all deterministic total cost problems)

J*(x) = min
u∈U(x)

{

g(x, u)+J*
(

f(x, u)
)}

, ∀ x ∈ X

• Definition: A policy π terminates starting from
x if the state sequence {xk} generated starting
from x0 = x and using π reaches X0 in finite time,
i.e., satisfies xk̄ ∈ X0 for some index k̄

• Assumptions: The cost structure is such that

− J*(x) > 0, ∀ x /∈ X0 (termination incentive)

− For every x with J*(x) < ∞ and every ǫ > 0,
there exists a policy π that terminates start-
ing from x and satisfies Jπ(x) ≤ J*(x) + ǫ.

• Uniqueness of solution of Bellman’s Eq.: J* is
the unique solution within the set

J =
{

J | 0 ≤ J(x) ≤ ∞, ∀ x ∈ X, J(x) = 0, ∀ x ∈ X0

}

• Counterexamples: Earlier SP problem. Also
linear quadratic problems where the Riccati equa-
tion has two solutions (observability not satisfied).



DET. OPT. CONTROL - VI/PI CONVERGENCE

• The sequence {T kJ} generated by VI starting
from a J ∈ J with J ≥ J* converges to J*

• If in addition U(x) is finite (or compact plus
more conditions - see the text), the sequence {T kJ}
generated by VI starting from any function J ∈ J
converges to J*

• A sequence {Jµk} generated by PI satisfies
Jµk(x) ↓ J*(x) for all x ∈ X

• PI counterexample: The earlier SP example

• Optimistic PI algorithm: Generates pairs {Jk, µk}
as follows: Given Jk, we generate µk according to

µk(x) = arg min
u∈U(x)

{

g(x, u)+Jk
(

f(x, u)
)}

, x ∈ X

and obtain Jk+1 with mk ≥ 1 VIs using µk:

Jk+1(x0) = Jk(xmk
)+

mk−1
∑

t=0

g
(

xt, µk(xt)
)

, x0 ∈ X

If J0 ∈ J and J0 ≥ TJ0, we have Jk ↓ J*.

• Rollout with terminating heuristic (e.g., MPC).



LINEAR-QUADRATIC ADAPTIVE CONTROL

• System: xk+1 = Axk+Buk, xk ∈ ℜn, uk ∈ ℜm

• Cost:
∑∞

k=0(x
′
kQxk + u′

kRuk), Q ≥ 0, R > 0

• Optimal policy is linear: µ∗(x) = Lx

• The Q-factor of each linear policy µ is quadratic:

Qµ(x, u) = (x′ u′ )Kµ

(

x
u

)

(∗)

• We will consider A and B unknown

• We use as basis functions all the quadratic func-
tions involving state and control components

xixj , uiuj , xiuj , ∀ i, j

These form the “rows” φ(x, u)′ of a matrix Φ

• The Q-factor Qµ of a linear policy µ can be
exactly represented within the subspace spanned
by the basis functions:

Qµ(x, u) = φ(x, u)′rµ

where rµ consists of the components of Kµ in (*)

• Key point: Compute rµ by simulation of µ (Q-
factor evaluation by simulation, in a PI scheme)



PI FOR LINEAR-QUADRATIC PROBLEM

• Policy evaluation: rµ is found (exactly) by least
squares minimization

min
r

∑

(xk,uk)

∣

∣

∣
φ(xk, uk)

′

r −
(

x
′

kQxk + u
′

kRuk + φ
(

xk+1, µ(xk+1)
)

′

r
)

∣

∣

∣

2

where (xk, uk, xk+1) are “enough” samples gener-
ated by the system or a simulator of the system.

• Policy improvement:

µ(x) ∈ argmin
u

(

φ(x, u)′rµ
)

• Knowledge of A and B is not required

• If the policy evaluation is done exactly, this
becomes exact PI, and convergence to an optimal
policy can be shown

• The basic idea of this example has been gener-
alized and forms the starting point of the field of
adaptive DP

• This field deals with adaptive control of continuous-
space (possibly nonlinear) dynamic systems, in
both discrete and continuous time



FINITE-STATE AFFINE MONOTONIC PROBLEMS

• Generalization of positive cost finite-state stochas-
tic total cost problems where:

− In place of a transition prob. matrix Pµ, we
have a general matrix Aµ ≥ 0

− In place of 0 terminal cost function, we have
a more general terminal cost function J̄ ≥ 0

• Mappings

TµJ = bµ +AµJ, (TJ)(i) = min
µ∈M

(TµJ)(i)

• Cost function of π = {µ0, µ1, . . .}

Jπ(i) = lim sup
N→∞

(Tµ0
· · ·TµN−1

J̄)(i), i = 1, . . . , n

• Special case: An SSP with an exponential risk-
sensitive cost, where for all i and u ∈ U(i)

Aij(u) = pij(u)eg(i,u,j), b(i, u) = pit(u)eg(i,u,t)

• Interpretation:

Jπ(i) = E{e(length of path of π starting from i)}



AFFINE MONOTONIC PROBLEMS: ANALYSIS

• The analysis follows the lines of analysis of SSP

• Key notion (generalizes the notion of a proper
policy in SSP): A policy µ is stable if Ak

µ → 0; else
it is called unstable

• We have

TN
µ J = AN

µ J+

N−1
∑

k=0

Ak
µbµ, ∀ J ∈ ℜn, N = 1, 2, . . . ,

• For a stable policy µ, we have for all J ∈ ℜn

Jµ = lim sup
N→∞

TN
µ J = lim sup

N→∞

∞
∑

k=0

Ak
µbµ = (I−Aµ)−1bµ

• Consider the following assumptions:

(1) There exists at least one stable policy

(2) For every unstable policy µ, at least one com-
ponent of

∑∞

k=0 A
k
µbµ is equal to ∞

• Under (1) and (2) the strong SSP analytical
and algorithmic theory generalizes

• Under just (1) the weak SSP theory generalizes.


