UNDISCOUNTED/NONCONTRACTIVE

DP PROBLEMS

LECTURE OUTLINE

- Undiscounted total cost problems
- Positive and negative cost problems
- Deterministic optimal cost problems
- Adaptive (linear quadratic) DP
- Affine monotonic and risk sensitive problems

Reference:

Updated Chapter 4 of Vol. II of the text:

Noncontractive Total Cost Problems

On-line at:

http://web.mit.edu/dimitrib/www/dpchapter.html

Check for most recent version

CONTRACTIVE/SEMICONTRACTIVE PROBLEMS

- Infinite horizon total cost DP theory divides in
 - "Easy" problems where the results one expects (uniqueness of solution of Bellman Eq., convergence of PI and VI, etc) hold
 - "Difficult" problems where one of more of these results do not hold
- "Easy" problems are characterized by the presence of strong contraction properties in the associated algorithmic maps T and T_{μ}
- A typical example of an "easy" problem is discounted problems with bounded cost per stage (Chs. 1 and 2 of Voll. II) and some with unbounded cost per stage (Section 1.5 of Voll. II)
- Another is semicontractive problems, where T_{μ} is a contraction for some μ but is not for other μ , and assumptions are imposed that exclude the "ill-behaved" μ from optimality
- A typical example is SSP where the improper policies are assumed to have infinite cost for some initial states (Chapter 3 of Vol. II)
- In this lecture we go into "difficult" problems

UNDISCOUNTED TOTAL COST PROBLEMS

- Beyond problems with strong contraction properties. One or more of the following hold:
 - No termination state assumed
 - Infinite state and control spaces
 - Either no discounting, or discounting and unbounded cost per stage
 - Risk-sensitivity/exotic cost functions (e.g.,
 SSP problems with exponentiated cost)
- Important classes of problems
 - SSP under weak conditions
 - Positive cost problems (control/regulation, robotics, inventory control)
 - Negative cost problems (maximization of positive rewards investment, gambling, finance)
 - Deterministic positive cost problems Adaptive DP
 - A variety of infinite-state problems in queueing, optimal stopping, etc
 - Affine monotonic and risk-sensitive problems (a generalization of SSP)

POS. AND NEG. COST - FORMULATION

• System $x_{k+1} = f(x_k, u_k, w_k)$ and cost

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

Discount factor $\alpha \in (0,1]$, but g may be unbounded

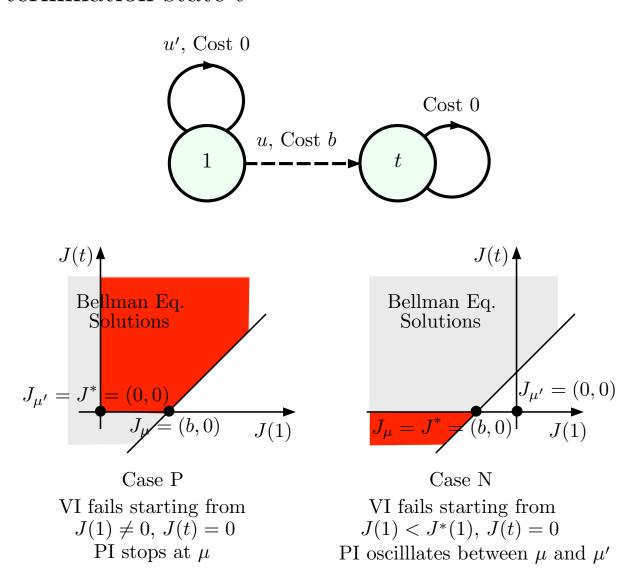
- Case P: $g(x, u, w) \ge 0$ for all (x, u, w)
- Case N: $g(x, u, w) \leq 0$ for all (x, u, w)
- Summary of analytical results:
 - Many of the strong results for discounted and SSP problems fail
 - Analysis more complex; need to allow for J_{π} and J^* to take values $+\infty$ (under P) or $-\infty$ (under N)
 - However, J^* is a solution of Bellman's Eq. (typically nonunique)
 - Opt. conditions: μ is optimal if and only if $T_{\mu}J^* = TJ^*$ (P) or if $T_{\mu}J_{\mu} = TJ_{\mu}$ (N)

SUMMARY OF ALGORITHMIC RESULTS

- Neither VI nor PI are guaranteed to work
- Behavior of VI
 - P: $T^k J \to J^*$ for all J with $0 \le J \le J^*$, if U(x) is finite (or compact plus more conditions see the text)
 - N: $T^k J \to J^*$ for all J with $J^* \leq J \leq 0$
- Behavior of PI
 - P: J_{μ^k} is monotonically nonincreasing but may get stuck at a nonoptimal policy
 - N: J_{μ^k} may oscillate (but an optimistic form of PI converges to J^* see the text)
- These anomalies may be mitigated to a greater or lesser extent by exploiting special structure, e.g.
 - Presence of a termination state
 - Proper/improper policy structure in SSP
- Finite-state problems under P can be transformed to equivalent SSP problems by merging all states x with $J^*(x) = 0$ into a termination state. They can then be solved using the powerful SSP methodology (see Ch. 4, Section 4.1.4)

EXAMPLE FROM THE PREVIOUS LECTURE

ullet This is essentially a shortest path example with termination state t



• Bellman Equation:

$$J(1) = \min[J(1), b + J(t)], \qquad J(t) = J(t)$$

DETERM. OPT. CONTROL - FORMULATION

- System: $x_{k+1} = f(x_k, u_k)$, arbitrary state and control spaces X and U
- Cost positivity: $0 \le g(x, u), \forall x \in X, u \in U(x)$
- No discounting:

$$J_{\pi}(x_0) = \lim_{N \to \infty} \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k))$$

- "Goal set of states" X_0
 - All $x \in X_0$ are cost-free and absorbing
- A shortest path-type problem, but with possibly infinite number of states
- A common formulation of control/regulation and planning/robotics problems
- Example: Linear system, quadratic cost (possibly with state and control constraints), $X_0 = \{0\}$ or X_0 is a small set around 0
- Strong analytical and computational results

DETERM. OPT. CONTROL - ANALYSIS

• Bellman's Eq. holds (for not only this problem, but also all deterministic total cost problems)

$$J^*(x) = \min_{u \in U(x)} \left\{ g(x, u) + J^*(f(x, u)) \right\}, \quad \forall x \in X$$

- Definition: A policy π terminates starting from x if the state sequence $\{x_k\}$ generated starting from $x_0 = x$ and using π reaches X_0 in finite time, i.e., satisfies $x_{\bar{k}} \in X_0$ for some index \bar{k}
- Assumptions: The cost structure is such that
 - $-J^*(x) > 0, \ \forall \ x \notin X_0$ (termination incentive)
 - For every x with $J^*(x) < \infty$ and every $\epsilon > 0$, there exists a policy π that terminates starting from x and satisfies $J_{\pi}(x) \leq J^*(x) + \epsilon$.
- Uniqueness of solution of Bellman's Eq.: J^* is the unique solution within the set

$$\mathcal{J} = \{ J \mid 0 \le J(x) \le \infty, \, \forall \, x \in X, \, J(x) = 0, \, \forall \, x \in X_0 \}$$

• Counterexamples: Earlier SP problem. Also linear quadratic problems where the Riccati equation has two solutions (observability not satisfied).

DET. OPT. CONTROL - VI/PI CONVERGENCE

- The sequence $\{T^k J\}$ generated by VI starting from a $J \in \mathcal{J}$ with $J \geq J^*$ converges to J^*
- If in addition U(x) is finite (or compact plus more conditions see the text), the sequence $\{T^kJ\}$ generated by VI starting from any function $J \in \mathcal{J}$ converges to J^*
- A sequence $\{J_{\mu^k}\}$ generated by PI satisfies $J_{\mu^k}(x) \downarrow J^*(x)$ for all $x \in X$
- PI counterexample: The earlier SP example
- Optimistic PI algorithm: Generates pairs $\{J_k, \mu^k\}$ as follows: Given J_k , we generate μ^k according to

$$\mu^k(x) = \arg\min_{u \in U(x)} \left\{ g(x, u) + J_k(f(x, u)) \right\}, \quad x \in X$$

and obtain J_{k+1} with $m_k \ge 1$ VIs using μ^k :

$$J_{k+1}(x_0) = J_k(x_{m_k}) + \sum_{t=0}^{m_k - 1} g(x_t, \mu^k(x_t)), \quad x_0 \in X$$

If $J_0 \in \mathcal{J}$ and $J_0 \geq TJ_0$, we have $J_k \downarrow J^*$.

• Rollout with terminating heuristic (e.g., MPC).

LINEAR-QUADRATIC ADAPTIVE CONTROL

- System: $x_{k+1} = Ax_k + Bu_k, x_k \in \Re^n, u_k \in \Re^m$
- Cost: $\sum_{k=0}^{\infty} (x'_k Q x_k + u'_k R u_k), \ Q \ge 0, \ R > 0$
- Optimal policy is linear: $\mu^*(x) = Lx$
- The Q-factor of each linear policy μ is quadratic:

$$Q_{\mu}(x, u) = (x' \quad u') K_{\mu} \begin{pmatrix} x \\ u \end{pmatrix} \qquad (*)$$

- We will consider A and B unknown
- We use as basis functions all the quadratic functions involving state and control components

$$x^i x^j, \qquad u^i u^j, \qquad x^i u^j, \qquad \forall i, j$$

These form the "rows" $\phi(x,u)'$ of a matrix Φ

• The Q-factor Q_{μ} of a linear policy μ can be exactly represented within the subspace spanned by the basis functions:

$$Q_{\mu}(x, u) = \phi(x, u)' r_{\mu}$$

where r_{μ} consists of the components of K_{μ} in (*)

• Key point: Compute r_{μ} by simulation of μ (Q-factor evaluation by simulation, in a PI scheme)

PI FOR LINEAR-QUADRATIC PROBLEM

• Policy evaluation: r_{μ} is found (exactly) by least squares minimization

$$\min_{r} \sum_{(x_k, u_k)} \left| \phi(x_k, u_k)' r - \left(x_k' Q x_k + u_k' R u_k + \phi \left(x_{k+1}, \mu(x_{k+1}) \right)' r \right) \right|^2$$

where (x_k, u_k, x_{k+1}) are "enough" samples generated by the system or a simulator of the system.

• Policy improvement:

$$\overline{\mu}(x) \in \arg\min_{u} \left(\phi(x, u)' r_{\mu} \right)$$

- Knowledge of A and B is not required
- If the policy evaluation is done exactly, this becomes exact PI, and convergence to an optimal policy can be shown
- The basic idea of this example has been generalized and forms the starting point of the field of adaptive DP
- This field deals with adaptive control of continuousspace (possibly nonlinear) dynamic systems, in both discrete and continuous time

FINITE-STATE AFFINE MONOTONIC PROBLEMS

- Generalization of positive cost finite-state stochastic total cost problems where:
 - In place of a transition prob. matrix P_{μ} , we have a general matrix $A_{\mu} \geq 0$
 - In place of 0 terminal cost function, we have a more general terminal cost function $\bar{J} \geq 0$
- Mappings

$$T_{\mu}J = b_{\mu} + A_{\mu}J,$$
 $(TJ)(i) = \min_{\mu \in \mathcal{M}} (T_{\mu}J)(i)$

• Cost function of $\pi = \{\mu_0, \mu_1, \ldots\}$

$$J_{\pi}(i) = \limsup_{N \to \infty} (T_{\mu_0} \cdots T_{\mu_{N-1}} \bar{J})(i), \quad i = 1, \dots, n$$

• Special case: An SSP with an exponential risk-sensitive cost, where for all i and $u \in U(i)$

$$A_{ij}(u) = p_{ij}(u)e^{g(i,u,j)}, \quad b(i,u) = p_{it}(u)e^{g(i,u,t)}$$

• Interpretation:

$$J_{\pi}(i) = E\{e^{\text{(length of path of } \pi \text{ starting from } i)}\}$$

AFFINE MONOTONIC PROBLEMS: ANALYSIS

- The analysis follows the lines of analysis of SSP
- Key notion (generalizes the notion of a proper policy in SSP): A policy μ is stable if $A_{\mu}^{k} \to 0$; else it is called unstable
- We have

$$T^{N}_{\mu}J = A^{N}_{\mu}J + \sum_{k=0}^{N-1} A^{k}_{\mu}b_{\mu}, \quad \forall J \in \Re^{n}, \ N = 1, 2, \dots,$$

• For a stable policy μ , we have for all $J \in \Re^n$

$$J_{\mu} = \limsup_{N \to \infty} T_{\mu}^{N} J = \limsup_{N \to \infty} \sum_{k=0}^{\infty} A_{\mu}^{k} b_{\mu} = (I - A_{\mu})^{-1} b_{\mu}$$

- Consider the following assumptions:
 - (1) There exists at least one stable policy
 - (2) For every unstable policy μ , at least one component of $\sum_{k=0}^{\infty} A_{\mu}^{k} b_{\mu}$ is equal to ∞
- Under (1) and (2) the strong SSP analytical and algorithmic theory generalizes
- Under just (1) the weak SSP theory generalizes.