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APPENDIX A:

Mathematical Background

In this appendix, we collect definitions, notational conventions, and several
results from linear algebra and real analysis that are used extensively in
nonlinear programming. Only a few proofs are given. Additional proofs can
be found in Appendix A of the book by Bertsekas and Tsitsiklis [BeT89],
which provides a similar but more extended summary of linear algebra and
analysis. Related and additional material can be found in the books by
Hoffman and Kunze [HoK71], Lancaster and Tismenetsky [LaT85], and
Strang [Str76] (linear algebra), and the books by Ash [Ash72], Ortega and
Rheinboldt [OrR70], and Rudin [Rud76] (real analysis).

Set Notation

If X is a set and x is an element of X , we write x ∈ X . A set can be
specified in the form X = {x | x satisfies P}, as the set of all elements
satisfying property P . The union of two sets X1 and X2 is denoted by
X1 ∪ X2, and their intersection by X1 ∩ X2. The symbols ∃ and ∀ have
the meanings “there exists” and “for all,” respectively. The empty set is
denoted by Ø.

The set of real numbers (also referred to as scalars) is denoted by &.
The set & augmented with +∞ and −∞ is called the set of extended real
numbers . We write −∞ < x < ∞ for all real numbers x, and −∞ ≤ x ≤ ∞
for all extended real numbers x. We denote by [a, b] the set of (possibly
extended) real numbers x satisfying a ≤ x ≤ b. A rounded, instead of
square, bracket denotes strict inequality in the definition. Thus (a, b], [a, b),
and (a, b) denote the set of all x satisfying a < x ≤ b, a ≤ x < b, and
a < x < b, respectively. Furthermore, we use the natural extensions of the
rules of arithmetic: x · 0 = 0 for every extended real number x, x ·∞ = ∞
if x > 0, x · ∞ = −∞ if x < 0, and x + ∞ = ∞ and x − ∞ = −∞ for
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746 Mathematical Background Appendix A

every scalar x. The expression ∞−∞ is meaningless and is never allowed
to occur.

Inf and Sup Notation

The supremum of a nonempty set X of scalars, denoted by supX , is defined
as the smallest scalar y such that y ≥ x for all x ∈ X . If no such scalar y
exists, we say that the supremum of X is ∞. Similarly, the infimum of X ,
denoted by inf X , is defined as the largest scalar y such that y ≤ x for all
x ∈ X , and is equal to −∞ if no such scalar y exists. For the empty set,
we use the convention

supØ = −∞, inf Ø = ∞.

If supX is equal to a scalar x̄ that belongs to the set X , we say that
x̄ is the maximum point of X and we write x̄ = maxX. Similarly, if inf X is
equal to a scalar x̄ that belongs to the set X , we say that x̄ is the minimum
point ofX and we write x̄ = minX. Thus, when we write maxX (or minX)
in place of supX (or inf X , respectively), we do so just for emphasis: we
indicate that it is either evident, or it is known through earlier analysis, or
it is about to be shown that the maximum (or minimum, respectively) of
the set X is attained at one of its points.

Function Notation

If f is a function, we use the notation f : X +→ Y to indicate the fact that
f is defined on a nonempty set X (its domain) and takes values in a set
Y (its range). Thus when using the notation f : X +→ Y , we implicitly
assume that X is nonempty. If f : X +→ Y is a function, and U and V
are subsets of X and Y , respectively, the set

{

f(x) | x ∈ U
}

is called the
image or forward image of U under f , and the set

{

x ∈ X | f(x) ∈ V
}

is
called the inverse image of V under f .

A.1 VECTORS AND MATRICES

We denote by &n the set of n-dimensional real vectors. For any x ∈ &n,
we use xi to indicate its ith coordinate, also called its ith component , and
we also write x = (x1, . . . , n).

Vectors in &n will be viewed as column vectors, unless the contrary
is explicitly stated. For any x ∈ &n, x′ denotes the n-dimensional row
vector that has the same components as x, arranged in the same order.
The inner product of two vectors x, y ∈ &n is defined by x′y =

∑n
i=1 xiyi.

Two vectors x, y ∈ &n satisfying x′y = 0 are called orthogonal .
If x is a vector in &n, the notations x > 0 and x ≥ 0 indicate that all

components of x are positive and nonnegative, respectively. For any two
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vectors x and y, the notation x > y means that x − y > 0. The notations
x ≥ y, x < y, etc., are to be interpreted accordingly.

If X is a set and λ is a scalar, we denote by λX the set {λx | x ∈ X}.
If X1 and X2 are two subsets of &n, we denote by X1 +X2 the set

{x1 + x2 | x1 ∈ X1, x2 ∈ X2},

which is referred to as the vector sum of X1 and X2. We use a similar
notation for the sum of any finite number of subsets. In the case where
one of the subsets consists of a single vector x̄, we simplify this notation as
follows:

x̄+X = {x̄+ x | x ∈ X}.

We also denote by X1 −X2 the set

{x1 − x2 | x1 ∈ X1, x2 ∈ X2}.

Given sets Xi ⊂ &ni , i = 1, . . . ,m, the Cartesian product of the Xi,
denoted by X1 × · · ·×Xm, is the set

{

(x1, . . . , xm) | xi ∈ Xi, i = 1, . . . ,m
}

,

which is a subset of &n1+···+nm .

Subspaces and Linear Independence

A nonempty subset S of &n is called a subspace if ax + by ∈ S for every
x, y ∈ S and every a, b ∈ &. An affine set or linear manifold in &n is a
translated subspace, i.e., a set X of the form X = x̄+S = {x̄+x | x ∈ S},
where x̄ is a vector in &n and S is a subspace of &n, called the subspace
parallel to X . Note that there can be only one subspace S associated with
an affine set in this manner. [To see this, let X = x + S and X = x̄ + S̄
be two representations of the affine set X . Then, we must have x = x̄ + s̄
for some s̄ ∈ S̄ (since x ∈ X), so that X = x̄ + s̄+ S. Since we also have
X = x̄ + S̄, it follows that S = S̄ − s̄ = S̄.] The span of a finite collection
{x1, . . . , xm} of elements of &n is the subspace consisting of all vectors y
of the form y =

∑m
k=1 αkxk, where each αk is a scalar.

The vectors x1, . . . , xm ∈ &n are called linearly independent if there
exists no set of scalars α1, . . . ,αm, at least one of which is nonzero, such
that

∑m
k=1 αkxk = 0. An equivalent definition is that x1 /= 0, and for every

k > 1, the vector xk does not belong to the span of x1, . . . , xk−1.
If S is a subspace of &n containing at least one nonzero vector, a basis

for S is a collection of vectors that are linearly independent and whose
span is equal to S. Every basis of a given subspace has the same number
of vectors. This number is called the dimension of S. By convention, the
subspace {0} is said to have dimension zero. The dimension of an affine set
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x̄+S is the dimension of the corresponding subspace S. Every subspace of
nonzero dimension has a basis that is orthogonal (i.e., any pair of distinct
vectors from the basis is orthogonal).

Given any set X , the set of vectors that are orthogonal to all elements
of X is a subspace denoted by X⊥:

X⊥ = {y | y′x = 0, ∀ x ∈ X}.

If S is a subspace, S⊥ is called the orthogonal complement of S. Any vector
x can be uniquely decomposed as the sum of a vector from S and a vector
from S⊥. Furthermore, we have (S⊥)⊥ = S.

Matrices

For any matrix A, we use Aij , [A]ij , or aij to denote its ijth element. The
transpose of A, denoted by A′, is defined by [A′]ij = aji. For two matrices
A and B of compatible dimensions, we have (AB)′ = B′A′.

If X is a subset of &n and A is an m × n matrix, then the image of
X under A is denoted by AX (or A ·X if this enhances notational clarity):

AX = {Ax | x ∈ X}.

extrem If Y is a subset of &m, the inverse image of Y under A is denoted
by A−1Y or A−1 · Y :

A−1Y = {x | Ax ∈ Y }.

If X and Y are subspaces, then AX and A−1Y are also subspaces.
Let A be a square matrix. We say that A is symmetric if A′ = A.

We say that A is diagonal if [A]ij = 0 when i /= j. We say that A is lower
triangular if [A]ij = 0 when i < j, and upper triangular if [A]ij = 0 when
i > j. We denote by I the identity matrix (the diagonal matrix whose
diagonal elements are 1). We denote the determinant of A by det(A).

Let A be an m× n matrix. The range space of A, denoted by R(A),
is the set of all y ∈ &m such that y = Ax for some x ∈ &n. The nullspace
of A, denoted by N(A), is the set of all x ∈ &n such that Ax = 0. It is
seen that R(A) and N(A) are subspaces. The rank of A is the dimension
of R(A). The rank of A is equal to the maximal number of linearly inde-
pendent columns of A, and is also equal to the maximal number of linearly
independent rows of A. The matrix A and its transpose A′ have the same
rank. We say that A has full rank , if its rank is equal to min{m,n}. This
is true if and only if either all the rows of A are linearly independent, or
all the columns of A are linearly independent.

The range space of an m × n matrix A is equal to the orthogonal
complement of the nullspace of its transpose, i.e.,

R(A) = N(A′)⊥.



Sec. A.2 Norms, Sequences, Limits, and Continuity 749

Another way to state this result is that given vectors a1, . . . , an ∈ &m (the
columns of A) and a vector x ∈ &m, we have x′y = 0 for all y such that
a′iy = 0 for all i if and only if

x = λ1a1 + · · ·+ λnan

for some scalars λ1, . . . ,λn [compare with Farkas’ Lemma (Prop. B.15 in
Appendix B)].

A function f : &n +→ & is said to be affine if it has the form f(x) =
a′x + b for some a ∈ &n and b ∈ &. Similarly, a function f : &n +→ &m is
said to be affine if it has the form f(x) = Ax + b for some m × n matrix
A and some b ∈ &m. If b = 0, f is said to be a linear function or linear
transformation. Sometimes, with slight abuse of terminology, an equation
or inequality involving a linear function, such as a′x = b or a′x ≤ b, is
referred to as a linear equation or inequality, respectively.

A.2 NORMS, SEQUENCES, LIMITS, AND CONTINUITY

Definition A.1: A norm ‖·‖ on &n is a mapping that assigns a scalar
‖x‖ to every x ∈ &n and that has the following properties:

(a) ‖x‖ ≥ 0 for all x ∈ &n.

(b) ‖cx‖ = |c| · ‖x‖ for every c ∈ & and every x ∈ &n.

(c) ‖x‖ = 0 if and only if x = 0.

(d) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ &n.

The Euclidean norm is defined by

‖x‖ = (x′x)1/2 =

(

n
∑

i=1

|xi|2
)1/2

.

The space &n, equipped with this norm, is called a Euclidean space. We
will use the Euclidean norm almost exclusively in this book. In particular,
in the absence of a clear indication to the contrary, ‖ · ‖ will denote the
Euclidean norm. Two important results for the Euclidean norm are:

Proposition A.1: (Pythagorean Theorem) If x and y are or-
thogonal then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.
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Proposition A.2: (Schwarz inequality) For any two vectors x
and y, we have

|x′y| ≤ ‖x‖ · ‖y‖,

with equality holding if and only if x = αy for some scalar α.

Two other important norms are the maximum norm ‖·‖∞ (also called
sup-norm or #∞-norm), defined by

‖x‖∞ = max
i

|xi|,

and the #1-norm ‖ · ‖1, defined by

‖x‖1 =
n
∑

i=1

|xi|.

Sequences

We use both subscripts and superscripts in sequence notation. Generally,
we prefer subscripts, but we use superscripts whenever we need to reserve
the subscript notation for indexing components of vectors and functions.
The meaning of the subscripts and superscripts should be clear from the
context in which they are used.

A sequence {xk | k = 1, 2, . . .} (or {xk} for short) of scalars is said
to converge if there exists a scalar x such that for every ε > 0 we have
|xk − x| < ε for every k greater than some integer K (that depends on
ε). The scalar x is said to be the limit of {xk}, and the sequence {xk}
is said to converge to x; symbolically, xk → x or limk→∞ xk = x. If for
every scalar b there exists some K (that depends on b) such that xk ≥ b
for all k ≥ K, we write xk → ∞ and limk→∞ xk = ∞. Similarly, if for
every scalar b there exists some integer K such that xk ≤ b for all k ≥ K,
we write xk → −∞ and limk→∞ xk = −∞. Note, however, that implicit
in any of the statements “{xk} converges” or “the limit of {xk} exists” or
“{xk} has a limit” is that the limit of {xk} is a scalar. A scalar sequence
{xk} is called a Cauchy sequence if for every ε > 0, there exists some integer
K (depending on ε) such that |xk − xm| < ε for all k ≥ K and m ≥ K.

A scalar sequence {xk} is said to be bounded above (respectively, be-
low) if there exists some scalar b such that xk ≤ b (respectively, xk ≥ b) for
all k. It is said to be bounded if it is bounded above and bounded below.
The sequence {xk} is said to be monotonically nonincreasing (respectively,
nondecreasing) if xk+1 ≤ xk (respectively, xk+1 ≥ xk) for all k. If xk → x
and {xk} is monotonically nonincreasing (nondecreasing), we also use the
notation xk ↓ x (xk ↑ x, respectively).
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Proposition A.3: Every bounded and monotonically nonincreasing
or nondecreasing scalar sequence converges.

Note that a monotonically nondecreasing sequence {xk} is either
bounded, in which case it converges to some scalar x by the above propo-
sition, or else it is unbounded, in which case xk → ∞. Similarly, a mono-
tonically nonincreasing sequence {xk} is either bounded and converges, or
it is unbounded, in which case xk → −∞.

Given a scalar sequence {xk}, let

ym = sup{xk | k ≥ m}, zm = inf{xk | k ≥ m}.

The sequences {ym} and {zm} are nonincreasing and nondecreasing, re-
spectively, and therefore have a limit whenever {xk} is bounded above or
is bounded below, respectively (Prop. A.3). The limit of ym is denoted by
lim supk→∞ xk, and is referred to as the upper limit of {xk}. The limit of
zm is denoted by lim infk→∞ xk, and is referred to as the lower limit of
{xk}. If {xk} is unbounded above, we write lim supk→∞ xk = ∞, and if it
is unbounded below, we write lim infk→∞ xk = −∞.

Proposition A.4: Let {xk} and {yk} be scalar sequences.

(a) We have

inf{xk | k ≥ 0} ≤ lim inf
k→∞

xk ≤ lim sup
k→∞

xk ≤ sup{xk | k ≥ 0}.

(b) {xk} converges if and only if

−∞ < lim inf
k→∞

xk = lim sup
k→∞

xk < ∞.

Furthermore, if {xk} converges, its limit is equal to the common
scalar value of lim infk→∞ xk and lim supk→∞ xk.

(c) If xk ≤ yk for all k, then

lim inf
k→∞

xk ≤ lim inf
k→∞

yk, lim sup
k→∞

xk ≤ lim sup
k→∞

yk.

(d) We have

lim inf
k→∞

xk + lim inf
k→∞

yk ≤ lim inf
k→∞

(xk + yk),
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lim sup
k→∞

xk + lim sup
k→∞

yk ≥ lim sup
k→∞

(xk + yk).

A sequence {xk} of vectors in &n is said to converge to some x ∈ &n

if the ith component of xk converges to the ith component of x for every i.
We use the notations xk → x and limk→∞ xk = x to indicate convergence
for vector sequences as well. The sequence {xk} is called bounded (or
Cauchy) if each of its corresponding coordinate sequences is bounded (or
Cauchy, respectively). It can be seen that {xk} is bounded if and only if
there exists a scalar c such that ‖xk‖ ≤ c for all k. An infinite subset of a
sequence {xk} is called a subsequence of {xk}. A subsequence can itself be
viewed as a sequence, and can be represented as a set {xk | k ∈ K}, where
K is an infinite subset of positive integers (the notation {xk}K will also be
used).

Definition A.2: We say that a vector x ∈ &n is a limit point of a se-
quence {xk} in &n if there exists a subsequence of {xk} that converges
to x.

Proposition A.5:

(a) A bounded sequence of vectors in &n converges if and only if it
has a unique limit point.

(b) A sequence in &n converges if and only if it is a Cauchy sequence.

(c) Every bounded sequence in &n has at least one limit point.

(d) Let {xk} be a scalar sequence. If lim supk→∞ xk (lim infk→∞ xk)
is finite, then it is the largest (respectively, smallest) limit point
of {xk}.

o(·) Notation

For a positive integer p and a function h : &n +→ &m we write

h(x) = o
(

‖x‖p
)

if

lim
k→∞

h(xk)

‖xk‖p
= 0,

for all sequences {xk} such that xk → 0 and xk /= 0 for all k.
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Closed and Open Sets

We say that x is a closure point or limit point of a subset X of &n if there
exists a sequence {xk} ⊂ X that converges to x. The closure of X , denoted
cl(X), is the set of all closure points of X .

Definition A.3: A subset X of &n is called closed if it is equal to
its closure. It is called open if its complement, {x | x /∈ X}, is closed.
It is called bounded if there exists a scalar c such that ‖x‖ ≤ c for all
x ∈ X . It is called compact if it is closed and bounded. A neighborhood
of a vector x is an open set containing x. If X ⊂ &n and x ∈ X , we
say that x is an interior point of X if there exists a neighborhood of x
that is contained in X . A vector x ∈ X which is not an interior point
of X is said to be a boundary point of X . The set of all boundary
points of X is called the boundary of X .

For any norm ‖ · ‖ in &n, ε > 0, and x∗ ∈ &n, consider the sets

{

x | ‖x− x∗‖ < ε
}

,
{

x | ‖x− x∗‖ ≤ ε
}

.

The first set is open and is called an open sphere centered at x∗, while the
second set is closed and is called a closed sphere centered at x∗. Sometimes
the terms open ball and closed ball are used, respectively.

Proposition A.6:

(a) The union of finitely many closed sets is closed.

(b) The intersection of closed sets is closed.

(c) The union of open sets is open.

(d) The intersection of finitely many open sets is open.

(e) A set is open if and only if all of its elements are interior points.

(f) Every subspace of &n is closed.

(g) A subset of &n is compact if and only if it is closed and bounded.

Continuity

Let f : X +→ &m be a function, where X is a subset of &n, and let x be a
vector in X . If there exists a vector y ∈ &m such that the sequence

{

f(xk)
}

converges to y for every sequence {xk} ⊂ X such that limk→∞ xk = x, we
write limz→x f(z) = y. If there exists a vector y ∈ &m such that the
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sequence
{

f(xk)
}

converges to y for every sequence {xk} ⊂ X such that
limk→∞ xk = x and xk ≤ x (respectively, xk ≥ x) for all k, we write
limz↑x f(z) = y [respectively, limz↓x f(z)].

Definition A.4: Let X be a subset of &n.

(a) A function f : X +→ &m is called continuous at a vector x ∈ X if
limz→x f(z) = f(x).

(b) A function f : X +→ &m is called right-continuous (respectively,
left-continuous) at a vector x ∈ X if limz↓x f(z) = f(x) [respec-
tively, limz↑x f(z) = f(x)].

(c) A real-valued function f : X +→ & is called upper semicontinuous
(respectively, lower semicontinuous) at a vector x ∈ X if f(x) ≥
lim supk→∞ f(xk) [respectively, f(x) ≤ lim infk→∞ f(xk)] for ev-
ery sequence {xk} ⊂ X that converges to x.

(d) A function f : X +→ & is called coercive if for every sequence
{xk} ⊂ X such that ‖xk‖ → ∞, we have limk→∞ f(xk) = ∞.

If f : X +→ &m is continuous at every vector in a subset of its domain
X , we say that f is continuous over that subset . If f : X +→ &m is
continuous at every vector in its domain X , we say that f is continuous .
We say that f is Lipschitz continuous if

∥

∥f(x)−f(y)
∥

∥ ≤ L‖x−y‖ for some
scalar L and all x, y ∈ X . We also say that f : X +→ & is coercive over
a subset of its domain X if for every sequence {xk} from that subset such
that ‖xk‖ → ∞, we have limk→∞ f(xk) = ∞. If f is coercive over X , we
simply say that f is coercive.

Proposition A.7:

(a) Any vector norm on &n is a continuous function.

(b) Let f : &m +→ &p and g : &n +→ &m be continuous functions.
The composition f ·g : &n +→ &p, defined by (f ·g)(x) = f

(

g(x)
)

,
is a continuous function.

(c) Let f : &n +→ &m be continuous, and let Y be an open (re-
spectively, closed) subset of &m. Then the inverse image of Y ,
{

x ∈ &n | f(x) ∈ Y
}

, is open (respectively, closed).

(d) Let f : &n +→ &m be continuous, and let X be a compact subset
of &n. Then the image of X ,

{

f(x) | x ∈ X
}

, is compact.
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(e) Let X be a closed subset of &n and let f : X +→ & be lower
semicontinuous at all points of X . Then the level set

{

x ∈ X |
f(x) ≤ γ

}

is closed for all γ ∈ &.

If X is a nonempty subset of &n and f is a real-valued function whose
domain contains X , we say that a vector x∗ ∈ X is a minimum of f over X
if f(x∗) = infx∈X f(x). We also call x∗ a minimizing point or a minimizer
or a minimum of f overX . Alternatively, we say that f attains a minimum
over X at x∗, and we indicate this by writing

x∗ ∈ argmin
x∈X

f(x).

If x∗ is known to be the unique minimizer of f over X , by slight abuse of
notation, we also write

x∗ = argmin
x∈X

f(x).

We use similar notation for maxima. An important property of compact-
ness in connection with optimization problems is the following theorem,
which provides conditions for existence of solutions of optimization prob-
lems.

Proposition A.8: (Weierstrass’ Theorem) Let X be a nonempty
subset of &n and let f : X +→ & be lower semicontinuous at all points
of X . Assume that one of the following three conditions holds:

(1) X is compact.

(2) X is closed and f is coercive.

(3) There exists a scalar γ such that the level set

{

x ∈ X | f(x) ≤ γ
}

is nonempty and compact.

Then, the set of minima of f over X is nonempty and compact.

Proof: Assume condition (1). Let {zk} ⊂ X be a sequence such that

lim
k→∞

f(zk) = inf
z∈X

f(z).

Since X is bounded, this sequence has at least one limit point x [Prop.
A.5(c)]. Since X is closed, x belongs to X , while the lower semicontinuity
of f implies that f(x) ≤ limk→∞ f(zk) = infz∈X f(z). Therefore, we must
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have f(x) = infz∈X f(z). The set of all minima of f over X is the level set
{

x ∈ X | f(x) ≤ infz∈X f(z)
}

, which is closed by the lower semicontinuity
of f [Prop. A.7(e)], and hence compact since X is bounded.

Assume condition (2). Consider a sequence {zk} as in the proof of
part (a). Since f is coercive, {zk} must be bounded and the proof proceeds
like the proof of part (a).

Assume condition (3). If the given γ is equal to infz∈X f(z), the set
of minima of f over X is

{

x ∈ X | f(x) ≤ γ
}

, and since by assumption
this set is nonempty, we are done. If γ > infz∈X f(z), consider a sequence
{zk} as in the proof of part (a). Then, for all k sufficiently large, zk must
belong to the set

{

x ∈ X | f(x) ≤ γ
}

. Since this set is compact, {zk} must
be bounded and the proof proceeds like the proof of part (a). Q.E.D.

Note that with appropriate adjustments, the above proposition ap-
plies to the existence of maxima of f over X . In particular, if f is upper
semicontinuous at all points of X and X is compact, there exists a vector
y ∈ X such that f(y) = supz∈X f(z). Note also that under additional
convexity assumptions on X and f , there is a more refined theory of exis-
tence of optimal solutions, whereby the boundedness assumptions underly-
ing Weierstrass’ Theorem are replaced by alternative conditions involving
directions of recession (see [BNO03], Section 2.3, [Ber09], Section 3.2).

With an application of Weierstrass’ Theorem, we obtain the following
norm equivalence property in &n, which shows that if a sequence converges
with respect to one norm, it converges with respect to all other norms.

Proposition A.9: For any two norms ‖·‖ and ‖·‖′ on &n, there exists
some positive constant c ∈ & such that ‖x‖ ≤ c‖x‖′ for all x ∈ &n.

Proof: Let a be the minimum of ‖x‖′ over the set of all x ∈ &n such that
‖x‖ = 1. The latter set is closed and bounded and, therefore, the minimum
is attained at some x̃ (Prop. A.8) that must be nonzero since ‖x̃‖ = 1. For
any x ∈ &n, x /= 0, the ‖ · ‖ norm of x/‖x‖ is equal to 1. Therefore,

0 < a = ‖x̃‖′ ≤
∥

∥

∥

x

‖x‖

∥

∥

∥

′
=

‖x‖′
‖x‖

, ∀ x /= 0,

which proves the desired result with c = 1/a. Q.E.D.

As a corollary, we obtain the following.

Proposition A.10: If a subset of &n is open (respectively, closed,
bounded, or compact) for some norm, it is open (respectively, closed,
bounded, or compact), for all other norms.
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Matrix Norms

A norm ‖ · ‖ on the set of n×n matrices is a real-valued mapping that has
the same properties as vector norms do when the matrix is viewed as an
element of &n2

. The norm of an n× n matrix A is denoted by ‖A‖.
We are mainly interested in induced norms , which are constructed as

follows. Given any vector norm ‖ · ‖, the corresponding induced matrix
norm, also denoted by ‖ · ‖, is defined by

‖A‖ = max
{

x∈*n|‖x‖=1
}

‖Ax‖. (A.1)

The set over which the maximization takes place above is closed [Prop.
A.7(c)] and bounded, while the function being maximized is continuous
[Prop. A.7(b)]. Therefore, by Weiestrass’ theorem (Prop. A.8) the maxi-
mum is attained. It is easily verified that for any vector norm, Eq. (A.1)
defines a matrix norm having all the required properties.

Note that by the Schwarz inequality (Prop. A.2), we have

‖A‖ = max
‖x‖=1

‖Ax‖ = max
‖y‖=‖x‖=1

|y′Ax|.

By reversing the roles of x and y in the above relation and by using the
equality y′Ax = x′A′y, it follows that

‖A‖ = ‖A′‖. (A.2)

A.3 SQUARE MATRICES AND EIGENVALUES

Definition A.5: A square matrix A is called singular if its determi-
nant is zero. Otherwise it is called nonsingular or invertible.

Proposition A.11:

(a) Let A be an n× n matrix. The following are equivalent:

(i) The matrix A is nonsingular.

(ii) The matrix A′ is nonsingular.

(iii) For every nonzero x ∈ &n, we have Ax /= 0.

(iv) For every y ∈ &n, there exists a unique x ∈ &n such that
Ax = y.

(v) There exists an n× n matrix B such that AB = I = BA.
(vi) The columns of A are linearly independent.
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(vii) The rows of A are linearly independent.

(b) Assuming that A is nonsingular, there is a unique matrix B sat-
isfying AB = I = BA, which is called the inverse of A and is
denoted by A−1.

(c) For any two square invertible matrices A and B of the same
dimensions, we have (AB)−1 = B−1A−1.

Let A and B be square matrices, and let C be a matrix of appropriate
dimension. Then we have

(A+ CBC′)−1 = A−1 −A−1C(B−1 + C′A−1C)−1C′A−1,

provided all the inverses appearing above exist. For a proof, multiply the
right-hand side by A+ CBC′ and show that the product is the identity.

Another useful formula provides the inverse of the partitioned matrix

M =

[

A B
C D

]

.

There holds

M−1 =

[

Q −QBD−1

−D−1CQ D−1 +D−1CQBD−1

]

,

where
Q = (A−BD−1C)−1,

provided all the inverses appearing above exist. For a proof, multiply M
with the given expression for M−1 and verify that the product is the iden-
tity.

Definition A.6: The characteristic polynomial φ of an n× n matrix
A is defined by φ(λ) = det(λI − A), where I is the identity matrix of
the same size as A. The n (possibly repeated and complex) roots of
φ are called the eigenvalues of A. A vector x (with possibly complex
coordinates) such that Ax = λx, where λ is an eigenvalue of A, is
called an eigenvector of A associated with λ.

Proposition A.12: Let A be a square matrix.

(a) A complex number λ is an eigenvalue of A if and only if there
exists a nonzero eigenvector associated with λ.

(b) A is singular if and only if it has an eigenvalue that is equal to
zero.
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Note that the only use of complex numbers in this book is in relation
to eigenvalues and eigenvectors. All other matrices or vectors are implicitly
assumed to have real components.

Proposition A.13: Let A be an n× n matrix.

(a) The eigenvalues of a triangular matrix are equal to its diagonal
entries.

(b) If S is a nonsingular matrix and B = SAS−1, then the eigenval-
ues of A and B coincide.

(c) The eigenvalues of cI +A are equal to c+ λ1, . . . , c+ λn, where
λ1, . . . ,λn are the eigenvalues of A.

(d) The eigenvalues of Ak are equal to λk
1 , . . . ,λ

k
n, where λ1, . . . ,λn

are the eigenvalues of A.

(e) If A is nonsingular, then the eigenvalues of A−1 are the recipro-
cals of the eigenvalues of A.

(f) The eigenvalues of A and A′ coincide.

Definition A.7: The spectral radius ρ(A) of a square matrix A is
defined as the maximum of the magnitudes of the eigenvalues of A.

It can be shown that the roots of a polynomial depend continuously
on the coefficients of the polynomial. For this reason, the eigenvalues of a
square matrix A depend continuously on A, and we obtain the following.

Proposition A.14: The eigenvalues of a square matrix A depend
continuously on the elements of A. In particular, ρ(A) is a continuous
function of A.

The next two propositions are fundamental for the convergence theory
of linear iterative methods.

Proposition A.15: For any induced matrix norm ‖·‖ and any square
matrix A we have
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lim
k→∞

‖Ak‖1/k = ρ(A) ≤ ‖A‖.

Furthermore, given any ε > 0, there exists an induced matrix norm
‖ · ‖ such that

‖A‖ = ρ(A) + ε.

Proposition A.16: Let A be a square matrix. We have

lim
k→∞

Ak = 0

if and only if ρ(A) < 1.

A corollary of the above proposition is that the iteration xk+1 = Axk

converges to 0 for every initial condition x0 if and only if ρ(A) < 1. From
this it also follows that if ρ(A) < 1, the iteration xk+1 = Axk + b converges
to the vector x∗ = (I−A)−1b for every initial condition x0 and every vector
b. To see this, note that the iteration xk+1 = Axk + b can equivalently be
written as yk+1 = Ayk, where yk = xk − x∗.

A.4 SYMMETRIC AND POSITIVE DEFINITE MATRICES

Symmetric matrices have several special properties, particularly with re-
spect to their eigenvalues and eigenvectors. In this section, ‖ · ‖ denotes
the Euclidean norm throughout.

Proposition A.17: Let A be a symmetric n× n matrix. Then:

(a) The eigenvalues of A are real.

(b) The matrix A has a set of n mutually orthogonal, real, and
nonzero eigenvectors x1, . . . , xn.

(c) Suppose that the eigenvectors in part (b) have been normalized
so that ‖xi‖ = 1 for each i. Then

A =
n
∑

i=1

λixix′
i,

where λi is the eigenvalue corresponding to xi.
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Proposition A.18: Let A be a symmetric n × n matrix, let λ1 ≤
· · · ≤ λn be its (real) eigenvalues, and let x1, . . . , xn be associated
orthogonal eigenvectors, normalized so that ‖xi‖ = 1 for all i. Then:

(a) ‖A‖ = ρ(A) = max
{

|λ1|, |λn|
}

, where ‖ · ‖ is the matrix norm
induced by the Euclidean norm.

(b) λ1‖y‖2 ≤ y′Ay ≤ λn‖y‖2 for all y ∈ &n.

(c) (Courant-Fisher Minimax Principle) For all i = 1, . . . , n, and for
all i-dimensional subspaces Si and all (n − i + 1)-dimensional
subspaces Si, there holds

min
‖y‖=1, y∈S

i

y′Ay ≤ λi ≤ max
‖y‖=1, y∈Si

y′Ay.

Furthermore, equality on the left (right) side above is attained
if Si is the subspace spanned by xi, . . . , xn (Si is the subspace
spanned by x1, . . . , xi, respectively).

(d) (Interlocking Eigenvalues Lemma) Let λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃n be
the eigenvalues of A+ bb′, where b is a vector in &n. Then,

λ1 ≤ λ̃1 ≤ λ2 ≤ λ̃2 ≤ · · · ≤ λn ≤ λ̃n.

Proof: (a) We know that ‖A‖ ≥ ρ(A) (Prop. A.15), so we need to show
the reverse inequality. We express an arbitrary vector y ∈ &n in the form
y =

∑n
i=1 ξixi, where each ξi is a suitable scalar. Using the orthogonality

of the vectors xi and the Pythagorean Theorem (Prop. A.1), we obtain
‖y‖2 =

∑n
i=1 |ξi|2 ·‖xi‖2. Using the Pythagorean Theorem again, we obtain

‖Ay‖2 =

∥

∥

∥

∥

∥

n
∑

i=1

λiξixi

∥

∥

∥

∥

∥

2

=
n
∑

i=1

|λi|2 · |ξi|2 · ‖xi‖2 ≤ ρ2(A)‖y‖2.

Since this is true for every y, we obtain ‖A‖ ≤ ρ(A) and the desired result
follows.

(b) As in part (a), we express the generic y ∈ &n as y =
∑n

i=1 ξixi. We
have, using the orthogonality of the vectors xi, i = 1, . . . , n, and the fact
‖xi‖ = 1,

y′Ay =
n
∑

i=1

λi|ξi|2‖xi‖2 =
n
∑

i=1

λi|ξi|2

and

‖y‖2 =
n
∑

i=1

|ξi|2‖xi‖2 =
n
∑

i=1

|ξi|2.
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These two relations prove the desired result.

(c) Let Xi be the subspace spanned by x1, . . . , xi. The subspaces Xi and
Si must have a common vector x0 with ‖x0‖ = 1, since the sum of their
dimensions is n + 1 [if there was no common nonzero vector, we could
take sets of basis vectors for Xi and Si (a total of n + 1 in number),
which would have to be linearly independent, yielding a contradiction].
The vector x0 can be expressed as a linear combination x0 =

∑i
j=1 ξjxj ,

and since ‖x0‖ = 1 and ‖xi‖ = 1 for all i = 1, . . . , n, we must have

i
∑

j=1

ξ2j = 1.

We also have using the expression

A =
n
∑

j=1

λjxjx′
j

[cf. Prop. A.17(c)],

x′
0Ax0 =

i
∑

j=1

λjξ2j ≤ λi





i
∑

j=1

ξ2j



 .

Combining the last two relations, we obtain x′
0Ax0 ≤ λi, which proves

the left-hand side of the desired inequality. The right-hand side is proved
similarly. Furthermore, we have x′

iAxi = λi, so equality is attained as in
the final assertion.

(d) From part (c) we have

λi = max
S
i

min
‖y‖=1, y∈S

i

y′Ay ≤ max
S
i

min
‖y‖=1, y∈S

i

y′(A+ bb′)y ≤ λ̃i,

so that λi ≤ λ̃i for all i. Furthermore, from part (c), for some (n− i+ 1)-
dimensional subspace S̃i we have

λ̃i = min
‖y‖=1, y∈S̃

i

y′(A+ bb′)y.

Using this relation and the left-hand side of the inequality of part (c),
applied to the subspace {y | y ∈ S̃i, b′y = 0}, whose dimension is at least
(n− i), we obtain

λ̃i ≤ min
‖y‖=1, y∈S̃

i
, b′y=0

y′(A+ bb′)y = min
‖y‖=1, y∈S̃

i
, b′y=0

y′Ay ≤ λi+1,
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and the proof is complete. Q.E.D.

Proposition A.19: Let A be a square matrix, and let ‖ · ‖ be the
matrix norm induced by the Euclidean norm. Then:

(a) If A is symmetric, then ‖Ak‖ = ‖A‖k for any positive integer k.

(b) ‖A‖2 = ‖A′A‖ = ‖AA′‖.

(c) If A is symmetric and nonsingular, then ‖A−1‖ is equal to the
reciprocal of the smallest of the absolute values of the eigenvalues
of A.

Proof: (a) If A is symmetric then Ak is symmetric. Using Prop. A.18(a),
we have ‖Ak‖ = ρ(Ak). Using Prop. A.13(d), we obtain ρ(Ak) = ρ(A)k,
which is equal to ‖A‖k by Prop. A.18(a).

(b) For any vector x such that ‖x‖ = 1, we have, using the Schwarz in-
equality (Prop. A.2),

‖Ax‖2 = x′A′Ax ≤ ‖x‖ · ‖A′Ax‖ ≤ ‖x‖ · ‖A′A‖ · ‖x‖ = ‖A′A‖.

Thus, ‖A‖2 ≤ ‖A′A‖. On the other hand,

‖A′A‖ = max
‖y‖=‖x‖=1

|y′A′Ax| ≤ max
‖y‖=‖x‖=1

‖Ay‖ · ‖Ax‖ = ‖A‖2.

Therefore, ‖A‖2 = ‖A′A‖. The equality ‖A‖2 = ‖AA′‖ is obtained by
replacing A by A′ and using Eq. (A.2).

(c) This follows by combining Prop. A.13(e) with Prop. A.18(a). Q.E.D.

Definition A.8: A symmetric n×nmatrixA is called positive definite
if x′Ax > 0 for all x ∈ &n, x /= 0. It is called nonnegative definite or
positive semidefinite if x′Ax ≥ 0 for all x ∈ &n.

Throughout this book, the notion of positive and negative definiteness
applies exclusively to symmetric matrices. Thus whenever we say that a
matrix is positive or negative (semi)definite, we implicitly assume that the
matrix is symmetric.
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Proposition A.20:

(a) For any m× n matrix A, the matrix A′A is symmetric and non-
negative definite. The matrix A′A is positive definite if and only
if A has rank n. In particular, if m = n, A′A is positive definite
if and only if A is nonsingular.

(b) A square symmetric matrix is nonnegative definite (respectively,
positive definite) if and only if all of its eigenvalues are nonneg-
ative (respectively, positive).

(c) The inverse of a symmetric positive definite matrix is symmetric
and positive definite.

Proof: (a) Symmetry is obvious. For any vector x ∈ &n, we have x′A′Ax =
‖Ax‖2 ≥ 0, which establishes nonnegative definiteness. Positive definite-
ness is obtained if and only if the inequality is strict for every x /= 0, which
is the case if and only if Ax /= 0 for every x /= 0. This is equivalent to A
having rank n.

(b) Let λ and x be an eigenvalue and a corresponding real nonzero eigen-
vector of a symmetric nonnegative definite matrix A. Then 0 ≤ x′Ax =
λx′x = λ‖x‖2, which proves that λ ≥ 0. For the converse result, let y be an
arbitrary vector in &n. Let λ1, . . . ,λn be the eigenvalues of A, assumed to
be nonnegative, and let x1, . . . , xn be a corresponding set of nonzero, real,
and orthogonal eigenvectors. Let us express y in the form y =

∑n
i=1 ξixi.

Then y′Ay = (
∑n

i=1 ξixi)′(
∑n

i=1 ξiλixi). From the orthogonality of the
eigenvectors, the latter expression is equal to

∑n
i=1 ξ

2
i λi‖xi‖2 ≥ 0, which

proves that A is nonnegative definite. The proof for the case of positive
definite matrices is similar.

(c) The eigenvalues of A−1 are the reciprocal of the eigenvalues of A [Prop.
A.13(e)], so the result follows using part (b). Q.E.D.

Proposition A.21: Let A be a square symmetric nonnegative defi-
nite matrix.

(a) There exists a symmetric matrix Q with the property Q2 = A.
Such a matrix is called a symmetric square root of A and is de-
noted by A1/2.

(b) A symmetric square root A1/2 is invertible if and only if A is
invertible. Its inverse is denoted by A−1/2.

(c) There holds A−1/2A−1/2 = A−1.
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(d) There holds AA1/2 = A1/2A.

Proof: (a) Let λ1, . . . ,λn be the eigenvalues of A and let x1, . . . , xn be
corresponding nonzero, real, and orthogonal eigenvectors normalized so
that ‖xk‖ = 1 for each k. We let

A1/2 =
n
∑

k=1

λ1/2
k xkx′

k,

where λ1/2
k is the nonnegative square root of λk. We then have

A1/2A1/2 =
n
∑

i=1

n
∑

k=1

λ1/2
i λ1/2

k xix′
ixkx′

k =
n
∑

k=1

λkxkx′
k = A.

Here the second equality follows from the orthogonality of distinct eigen-
vectors; the last equality follows from Prop. A.17(c). We now notice that
each one of the matrices xkx′

k is symmetric, so A1/2 is also symmetric.

(b) This follows from the fact that the eigenvalues of A are the squares of
the eigenvalues of A1/2 [Prop. A.13(d)].

(c) We have (A−1/2A−1/2)A = A−1/2(A−1/2A1/2)A1/2 = A−1/2IA1/2 = I.

(d) We have AA1/2 = A1/2A1/2A1/2 = A1/2A. Q.E.D.

A symmetric square root of A is not unique. For example, let A1/2 be
as in the proof of Prop. A.21(a) and notice that the matrix −A1/2 also has
the property (−A1/2)(−A1/2) = A. However, if A is positive definite, it can
be shown that the matrix A1/2 we have constructed is the only symmetric
and positive definite square root of A.

A.5 DERIVATIVES

Let f : &n +→ & be some function, fix some x ∈ &n, and consider the
expression

lim
α→0

f(x+ αei)− f(x)

α
,

where ei is the ith unit vector (all components are 0 except for the ith
component which is 1). If the above limit exists, it is called the ith par-
tial derivative of f at the vector x and it is denoted by (∂f/∂xi)(x) or
∂f(x)/∂xi (xi in this section will denote the ith component of the vector
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x). Assuming all of these partial derivatives exist, the gradient of f at x is
defined as the column vector

∇f(x) =







∂f(x)
∂x1
...

∂f(x)
∂xn






.

For any y ∈ &n, we define the one-sided directional derivative of f in
the direction y to be

f ′(x; y) = lim
α↓0

f(x+ αy)− f(x)

α
,

provided that the limit exists.
If the directional derivative of f at a vector x exists in all directions

y and f ′(x; y) is a linear function of y, we say that f is differentiable at
x. This type of differentiability is also called Gateaux differentiability . It
is seen that f is differentiable at x if and only if the gradient ∇f(x) exists
and satisfies

∇f(x)′y = f ′(x; y), ∀ y ∈ &n.

The function f is called differentiable over a subset U of &n if it is differ-
entiable at every x ∈ U . The function f is called differentiable (without
qualification) if it is differentiable at all x ∈ &n.

If f is differentiable over an open set U and ∇f(·) is continuous at
all x ∈ U , f is said to be continuously differentiable over U . It can then be
shown that

lim
y→0

f(x+ y)− f(x) −∇f(x)′y

‖y‖
= 0, ∀ x ∈ U, (A.3)

where ‖ · ‖ is an arbitrary vector norm. If f is continuously differentiable
over &n, then f is also called a smooth function. If f is not smooth, it is
called nonsmooth.

The preceding equation can also be used as an alternative definition
of differentiability. In particular, f is called Frechet differentiable at x
if there exists a vector g satisfying Eq. (A.3) with ∇f(x) replaced by g.
If such a vector g exists, it can be seen that all the partial derivatives
(∂f/∂xi)(x) exist and that g = ∇f(x). Frechet differentiability implies
(Gateaux) differentiability but not conversely (see for example Ortega and
Rheinboldt [OrR70] for a detailed discussion). In this book, when dealing
with a differentiable function f , we will always assume that f is continu-
ously differentiable over some open set [∇f(·) is a continuous function over
that set], in which case f is both Gateaux and Frechet differentiable, and
the distinctions made above are of no consequence.
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The definitions of differentiability of f at a vector x only involve the
values of f in a neighborhood of x. Thus, these definitions can be used
for functions f that are not defined on all of &n, but are defined instead
in a neighborhood of the vector at which the derivative is computed. In
particular, for functions f : X +→ &, where X is a strict subset of &n, we
use the above definition of differentiability of f at a vector x, provided x is
an interior point of the domain X . Similarly, we use the above definition
of continuous differentiability of f over a subset U , provided U is an open
subset of the domain X . Thus any mention of continuous differentiability
of a function over a subset implicitly assumes that this subset is open.

Differentiation of Vector-Valued Functions

A function f : &n +→ &m, with component functions f1, . . . , fm, is called
differentiable (or smooth) if each component is differentiable (or smooth,
respectively). The gradient matrix of f , denoted ∇f(x), is the n×mmatrix
whose ith column is the gradient ∇fi(x) of fi:

∇f(x) =
[

∇f1(x) · · ·∇fm(x)
]

.

The transpose of ∇f is called the Jacobian of f and is the matrix whose
ijth entry is equal to the partial derivative ∂fi/∂xj .

Now suppose that each one of the partial derivatives of a function
f : &n +→ & is a smooth function of x. We use the notation (∂2f/∂xi∂xj)(x)
to indicate the ith partial derivative of ∂f/∂xj at a vector x ∈ &n. The
Hessian of f is the matrix whose ijth entry is equal to (∂2f/∂xi∂xj)(x),
and is denoted by ∇2f(x). We have (∂2f/∂xi∂xj)(x) = (∂2f/∂xj∂xi)(x)
for every x, which implies that ∇2f(x) is symmetric.

If f : &m+n +→ & is a function of (x, y), where x ∈ &m and y ∈ &n, and
x1, . . . , xm and y1, . . . , yn denote the components of x and y, respectively,
we write

∇xf(x, y) =







∂f(x,y)
∂x1
...

∂f(x,y)
∂xm






, ∇yf(x, y) =







∂f(x,y)
∂y1
...

∂f(x,y)
∂yn






.

We denote by ∇2
xxf(x, y), ∇2

xyf(x, y), and ∇2
yyf(x, y) the matrices with

components

[

∇2
xxf(x, y)

]

ij
=

∂2f(x, y)

∂xi∂xj
,

[

∇2
xyf(x, y)

]

ij
=

∂2f(x, y)

∂xi∂yj
,

[

∇2
yyf(x, y)

]

ij
=

∂2f(x, y)

∂yi∂yj
.
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If f : &m+n +→ &r, and f1, f2, . . . , fr are the component functions of f , we
write

∇xf(x, y) =
[

∇xf1(x, y) · · ·∇xfr(x, y)
]

,

∇yf(x, y) =
[

∇yf1(x, y) · · ·∇yfr(x, y)
]

.

Let f : &k +→ &m and g : &m +→ &n be smooth functions, and let h
be their composition, i.e.,

h(x) = g
(

f(x)
)

.

Then, the chain rule for differentiation states that

∇h(x) = ∇f(x)∇g
(

f(x)
)

, ∀ x ∈ &k.

Some examples of useful relations that follow from the chain rule are:

∇
(

f(Ax)
)

= A′∇f(Ax), ∇2
(

f(Ax)
)

= A′∇2f(Ax)A,

where A is a matrix,

∇x

(

f
(

h(x), y
)

)

= ∇h(x)∇hf
(

h(x), y
)

,

∇x

(

f
(

h(x), g(x)
)

)

= ∇h(x)∇hf
(

h(x), g(x)
)

+∇g(x)∇gf
(

h(x), g(x)
)

.

Differentiation Theorems

We now state some theorems relating to differentiable functions that will
be useful for our purposes.

Proposition A.22: (Mean Value Theorem) If f : & +→ & is
continuously differentiable over an open interval I, then for every x, y ∈
I, there exists some ξ ∈ [x, y] such that

f(y)− f(x) = ∇f(ξ)(y − x).
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Proposition A.23: (Second Order Expansions) Let f : &n +→ &
be twice continuously differentiable over an open sphere S centered at
a vector x.

(a) For all y such that x+ y ∈ S,

f(x+ y) = f(x) + y′∇f(x) + 1
2y

′
(

∫ 1
0

(

∫ t
0 ∇2f(x+ τy)dτ

)

dt
)

y.

(b) For all y such that x+ y ∈ S, there exists an α ∈ [0, 1] such that

f(x+ y) = f(x) + y′∇f(x) + 1
2y

′∇2f(x+ αy)y.

(c) For all y such that x+ y ∈ S there holds

f(x+ y) = f(x) + y′∇f(x) + 1
2y

′∇2f(x)y + o
(

‖y‖2
)

.

Proposition A.24: (Descent Lemma) Let f : &n +→ & be contin-
uously differentiable, and let x and y be two vectors in &n. Suppose
that

∥

∥∇f(x+ ty)−∇f(x)
∥

∥ ≤ Lt‖y‖, ∀ t ∈ [0, 1],

where L is some scalar. Then

f(x+ y) ≤ f(x) + y′∇f(x) +
L

2
‖y‖2.

Proof: Let t be a scalar parameter and let g(t) = f(x + ty). The chain
rule yields (dg/dt)(t) = y′∇f(x+ ty). Now

f(x+ y)− f(x) = g(1)− g(0) =

∫ 1

0

dg

dt
(t) dt =

∫ 1

0
y′∇f(x+ ty) dt

≤
∫ 1

0
y′∇f(x) dt+

∣

∣

∣

∣

∫ 1

0
y′
(

∇f(x+ ty)−∇f(x)
)

dt

∣

∣

∣

∣

≤
∫ 1

0
y′∇f(x) dt+

∫ 1

0
‖y‖ · ‖∇f(x+ ty)−∇f(x)‖dt

≤ y′∇f(x) + ‖y‖
∫ 1

0
Lt‖y‖ dt = y′∇f(x) +

L

2
‖y‖2.

Q.E.D.
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Proposition A.25: (Implicit Function Theorem) Let f : &n+m +→
&m be a function of x ∈ &n and y ∈ &m such that:

(1) f(x, y) = 0.

(2) f is continuous, and has a continuous and nonsingular gradient
matrix ∇yf(x, y) in an open set containing (x, y).

Then there exist open sets Sx ⊂ &n and Sy ⊂ &m containing x and y,
respectively, and a continuous function φ : Sx +→ Sy such that y = φ(x)
and f

(

x,φ(x)
)

= 0 for all x ∈ Sx. The function φ is unique in the sense
that if x ∈ Sx, y ∈ Sy, and f(x, y) = 0, then y = φ(x). Furthermore,
if for some integer p > 0, f is p times continuously differentiable the
same is true for φ, and we have

∇φ(x) = −∇xf
(

x,φ(x)
)(

∇yf(x,φ(x))
)−1

, ∀ x ∈ Sx.

As a final word of caution to the reader, let us mention that one can
easily get confused with gradient notation and its use in various formulas,
such as for example the order of multiplication of various gradients in the
chain rule and the Implicit Function Theorem. Perhaps the safest guideline
to minimize errors is to remember our conventions:

(a) A vector is viewed as a column vector (an n× 1 matrix).

(b) The gradient ∇f of a scalar function f : &n +→ & is also viewed as a
column vector.

(c) The gradient matrix ∇f of a vector function f : &n +→ &m with
components f1, . . . , fm is the n × m matrix whose columns are the
(column) vectors ∇f1, . . . ,∇fm.

With these rules in mind one can use “dimension matching” as an effective
guide to writing correct formulas quickly.

A.6 CONVERGENCE THEOREMS

Many iterative algorithms can be written as

xk+1 = T
(

xk

)

, k = 0, 1, . . . ,

where T : X +→ X is a mapping from a set X ⊂ &n into itself, and has the
property

∥

∥T (x)− T (y)
∥

∥ ≤ ρ‖x− y‖, ∀ x, y ∈ X. (A.4)

Here ‖ · ‖ is some norm, and ρ is a scalar with 0 ≤ ρ < 1. Such a mapping
is called a contraction mapping, or simply a contraction. The scalar ρ is
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called the contraction modulus of T . Note that a mapping T may be a
contraction for some choice of the norm ‖ · ‖ and fail to be a contraction
under a different choice of norm.

Any vector x∗ ∈ X satisfying T (x∗) = x∗ is called a fixed point of
T and the iteration xk+1 = T (xk) is an important algorithm for finding
such a fixed point. The following is the central result regarding contraction
mappings.

Proposition A.26: (Contraction Mapping Theorem) Suppose
that T : X +→ X is a contraction of modulus ρ ∈ [0, 1) and that X is
a closed subset of &n. Then:

(a) (Existence and Uniqueness of Fixed Point) The mapping T has
a unique fixed point x∗ ∈ X .

(b) (Convergence) For every initial vector x0 ∈ X , the sequence {xk}
generated by xk+1 = T (xk) converges to x∗. In particular,

‖xk − x∗‖ ≤ ρk‖x0 − x∗‖, ∀ k ≥ 0.

Proof: (a) Fix some x0 ∈ X and consider the sequence {xk} generated by
xk+1 = T (xk). We have, from the contraction property [cf. Eq. (A.4)],

‖xk+1 − xk‖ ≤ ρ‖xk − xk−1‖,

for all k ≥ 1, which implies

‖xk+1 − xk‖ ≤ ρk‖x1 − x0‖, ∀ k ≥ 0.

It follows that for every k ≥ 0 and m ≥ 1, we have

‖xk+m − xk‖ ≤
m
∑

i=1

‖xk+i − xk+i−1‖

≤ ρk(1 + ρ+ · · ·+ ρm−1)‖x1 − x0‖

≤
ρk

1− ρ
‖x1 − x0‖.

Therefore, {xk} is a Cauchy sequence and must converge to a limit, denoted
x∗ (Prop. A.5). Furthermore, since X is closed, x∗ belongs to X . We have
for all k ≥ 1,

∥

∥T (x∗)− x∗
∥

∥ ≤
∥

∥T (x∗)− xk

∥

∥+ ‖xk − x∗‖ ≤ ρ‖x∗ − xk−1‖+ ‖xk − x∗‖
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and since xk converges to x∗, we obtain T (x∗) = x∗. Therefore, the limit
x∗ of xk is a fixed point of T . It is a unique fixed point because if y∗ were
another fixed point, we would have

‖x∗ − y∗‖ =
∥

∥T (x∗)− T (y∗)
∥

∥ ≤ ρ‖x∗ − y∗‖,

which implies that x∗ = y∗.

(b) We have

‖xk′ − x∗‖ =
∥

∥T
(

xk′−1

)

− T (x∗)
∥

∥ ≤ ρ‖xk′−1 − x∗‖,

for all k′ ≥ 1, so by applying this relation successively for k′ = k, k − 1,
. . .,1, we obtain the desired result. Q.E.D.

The type of convergence demonstrated in part (b) of the preceding
proposition is referred to as linear convergence. More precisely, given a
sequence {xk} that converges to some x∗ ∈ &n, and a continuous (error)
function e : &n +→ & such that e(x∗) = 0, we say that

{

e(xk)
}

converges
linearly or geometrically, if there exist q > 0 and β ∈ (0, 1) such that for
all k

e(xk) ≤ qβk.

Typical examples of error functions that we use are e(x) = ‖xk − x∗‖
and e(x) = f(x) − f(x∗), where f is the cost function of an optimization
problem.

We note that the convergence of contraction iterations is maintained
when there are additional decaying perturbations in T (xk), i.e.,

xk+1 = T (xk) + wk, (A.5)

where T : &n +→ &n is a contraction and {wk} is a sequence in &n such
that wk → 0 (see the discussion following the subsequent Prop. A.30). A
related useful fact is that when

{

‖wk‖
}

is linearly decaying, then the linear
convergence of {xk} is maintained. In particular, consider the iteration
(A.5), and assume that T is a contraction of modulus ρ ∈ [0, 1) and for
some scalars q > 0 and σ ∈ (0, 1) we have ‖wk‖ ≤ qσk, for all k. Then we
claim that {xk} converges to x∗, the unique fixed point of T , and for every
scalar γ with max{ρ, σ} < γ < 1, there exits a scalar p > 0 such that

‖xk − x∗‖ ≤ pγk, ∀ k ≥ 0. (A.6)

To see this, we note that for all k, we have

‖xk − x∗‖ =
∥

∥T (xk−1)− x∗ + wk−1

∥

∥ ≤
∥

∥T (xk−1)− x∗
∥

∥+ ‖wk−1‖,

so that by using the contraction property,

‖xk − x∗‖ ≤ ρ‖xk−1 − x∗‖+ qσk−1.
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Replacing k with k − 1, we have

‖xk−1 − x∗‖ ≤ ρ‖xk−2 − x∗‖+ qσk−2,

and by combining the preceding two relations,

‖xk − x∗‖ ≤ ρ2‖xk−2 − x∗‖+ q(σk−1 + ρσk−2).

Proceeding similarly, we obtain for all k,

‖xk − x∗‖ ≤ ρk‖x0 − x∗‖+ q(σk−1 + ρσk−2 + · · ·+ ρk−2σ + ρk−1)

≤ ρk‖x0 − x∗‖+ kq
(

max{ρ, σ})k−1

≤ γk‖x0 − x∗‖+ q̄γk,

where for a given γ ∈
(

max{ρ, σ}, 1
)

, q̄ is such that kq
(

max{ρ, σ}
)k−1 ≤

q̄γk for all k. This shows Eq. (A.6).
In the case of a linear mapping

T (x) = Ax + b,

where A is an n × n matrix and b ∈ &n, it can be shown that T is a
contraction mapping with respect to some norm (but not necessarily all
norms) if and only if all the eigenvalues of A lie strictly within the unit
circle. For a proof, see [OrR70], or [Ber12], Example 1.5.1.

Contractions with Respect to a Weighted Maximum Norm

Given a vector ξ = (ξ1, . . . , ξn)′ ∈ &n, with positive components ξi > 0,
the weighted maximum norm corresponding to ξ is defined by

‖x‖ξ = max
i=1,...,n

|xi|
ξi

, x ∈ &n.

Consider the linear mapping

T (x) = Ax + b, (A.7)

where A is an n×nmatrix with components aij and b is a vector in &n. The
following proposition gives useful criteria for T to be a weighted maximum
norm contraction.

Proposition A.27: Consider the mapping T of Eq. (A.7).

(a) T is a contraction with respect to ‖ · ‖ξ with modulus ρ if and
only if

∑n
j=1 |aij | ξj

ξi
≤ ρ, ∀ i = 1, . . . , n.
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(b) Let P be a stochastic n × n matrix P (i.e., its components pij
satisfy pij ≥ 0 for all i, j = 1, . . . , n, and

∑n
j=1 pij = 1 for all

i = 1, . . . , n), and assume that

|aij | ≤ pij , ∀ i, j = 1, . . . , n,

and that for some row index ī ∈ {1, . . . , n},

|aīj | < pīj , ∀ j = 1, . . . , n.

Assume further that P corresponds to an irreducible Markov
chain (one with a single recurrent class and no transient states)
and that ξ = (ξ1, . . . , ξn)′ ∈ &n is its invariant distribution, i.e.,

ξi > 0, i = 1, . . . , n,
n
∑

i=1

ξi = 1, ξ′ = ξ′P.

Then T is a contraction with respect to the norm ‖ · ‖ξ.

Part (a) of the preceding proposition is given as Prop. 1.5.2(a) of
[Ber12], while part (b) is given as Prop. 1 of [BeY09].

Convergence of Iterations with Delays

The following two propositions deal with iterations that involve delayed
iterates.

Proposition A.28: (Iterations with Delays I) Let {αk} be a
scalar sequence such that

|αk| ≤
n
∑

i=1

βi|αk−i|, ∀ k = 0, 1, . . . ,

where βi > 0, i = 1, . . . , n, are some scalars with
∑n

i=1 βi < 1, and n
is a positive integer. Then the sequence {γk}, where

γk = max
i=1,...,n

|ak−i|
ξi

,

converges to 0 linearly, where ξ = (ξ1, . . . , ξn)′ is the unique solution
of the system of equations
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n
∑

i=1

ξi = 1, ξj =
βj

∑n
i=1 βi

ξ1+ξj+1, j = 1, . . . , n−1, ξn =
βn

∑n
i=1 βi

ξ1.

Proof: The given system of equations can be seen to have a unique so-
lution by successively expressing ξn, ξn−1, . . . , ξ2 in terms of ξ1, and then
determining ξ1 from the equation

∑n
i=1 ξi = 1. Furthermore, we can easily

verify the equation ξ′ = ξ′P for ξ to be the invariant distribution of the
irreducible matrix P given by

P =









β1/
∑n

i=1 βi β2/
∑n

i=1 βi · · · βn−1/
∑n

i=1 βi βn/
∑n

i=1 βi

1 0 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0









.

The proof follows by using Prop. A.27(b). Q.E.D.

The preceding proposition can be used to show that an iteration of
the form

αk = γ +
n
∑

i=1

βiαk−i,

where γ is a scalar, and β1, . . . ,βn are scalars satisfying
∑n

i=1 |βi| < 1,
converges to

γ

1−
∑n

i=1 βi
.

The following proposition is due to [FAJ14], whose proof we follow closely.
Additional related results are given in [Fey16].

Proposition A.29: (Iterations with Delays II) Let {αk} be a
nonnegative sequence satisfying

αk+1 ≤ pαk + q max
max{0,k−d}≤$≤k

α$, ∀ k = 0, 1, . . . , (A.8)

for some positive integer d and nonnegative scalars p and q such that
p+ q < 1. Then we have

αk ≤ ρkα0, ∀ k = 0, 1, . . . , (A.9)

where ρ = (p+ q)
1

1+d .
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Proof: We first show a preliminary relation. Since p+ q < 1, we have

1 ≤ (p+ q)−
b

1+b ,

which implies that

p+ qρ−b = p+ q(p+ q)−
b

1+b

≤ (p+ q)(p+ q)−
b

1+b

= (p+ q)
1

1+b

= ρ.

(A.10)

We now show Eq. (A.9) by induction. It clearly holds for k = 0. Assume
that it holds for all k up to some k̄. Then

αk ≤ ρkα0, ∀ k = max{0, k̄ − b}, . . . , k̄.

From this relation and Eq. (A.8), we have

αk̄+1 ≤ pρk̄α0 + q

(

max
max{0,k̄−b}≤$≤k̄

ρ$α0

)

≤ pρk̄α0 + qρmax{0,k̄−b}α0

≤ pρk̄α0 + qρk̄−bα0

=
(

p+ qρ−b
)

ρk̄α0.

Using also Eq. (A.10), we have αk̄+1 ≤ ρk̄+1α0, and this completes the
induction. Q.E.D.

Nonstationary Iterations

For nonstationary iterations of the form xk+1 = Tk(xk), where the function
Tk depends on k, the ideas of the preceding propositions may apply but
with modifications. The following proposition is often useful in this respect.

Proposition A.30: Let {αk} be a nonnegative scalar sequence such
that

αk+1 ≤ (1− γk)αk + βk, ∀ k = 0, 1, . . . ,

where 0 ≤ βk, 0 < γk ≤ 1 for all k, and

∞
∑

k=0

γk = ∞,
βk

γk
→ 0.

Then αk → 0.
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Proof: We first show that given any ε > 0, we have αk < ε for infinitely
many k. Indeed, if this were not so, by letting k̄ be such that αk ≥ ε and
βk/γk ≤ ε/2 for all k ≥ k̄, we would have for all k ≥ k̄

αk+1 ≤ αk − γkαk + βk ≤ αk − γkε+
γkε

2
= αk −

γkε

2
.

Therefore, for all m ≥ k̄,

αm+1 ≤ αk̄ −
ε

2

m
∑

k=k̄

γk.

Since {αk} is nonnegative and
∑∞

k=0 γk = ∞, we obtain a contradiction.
Thus, given any ε > 0, there exists k̄ such that βk/γk < ε for all k ≥ k̄

and αk̄ < ε. We then have

αk̄+1 ≤ (1− γk)αk̄ + βk < (1 − γk)ε + γkε = ε.

By repeating this argument, we obtain αk < ε for all k ≥ k̄. Since ε can be
arbitrarily small, it follows that αk → 0. Q.E.D.

As an example, consider the iteration

xk+1 = T (xk) + wk,

where T : &n +→ &n is a contraction of modulus ρ ∈ (0, 1) and {wk} is a
sequence in &n such that wk → 0. Then we have

‖xk+1 − x∗‖ ≤
∥

∥T (xk)− x∗
∥

∥+ ‖wk‖ ≤ ρ‖xk − x∗‖+ ‖wk‖,

and Prop. A.30 applies with αk = ‖xk − x∗‖, γk = 1 − ρ, and βk = ‖wk‖,
showing that xk → x∗.

As another example, consider a sequence of “approximate” contrac-
tion mappings Tk : &n +→ &n, satisfying
∥

∥Tk(x) − Tk(y)
∥

∥ ≤ (1− γk)‖x− y‖+ βk, ∀ x, y ∈ &n, k = 0, 1, . . . ,

where γk ∈ (0, 1], for all k, and

∞
∑

k=0

γk = ∞,
βk

γk
→ 0.

Assume also that all the mappings Tk have a common fixed point x∗. Then

‖xk+1 − x∗‖ =
∥

∥Tk(xk)− Tk(x∗)
∥

∥ ≤ (1− γk)‖xk − x∗‖+ βk,

and from Prop. A.30, it follows that the sequence {xk} generated by the
iteration xk+1 = Tk(xk) converges to x∗ starting from any x0 ∈ &n.
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Supermartingale Convergence

We next give a convergence theorem relating to deterministic sequences. It
is a special case of a fundamental theorem, known as the supermartingale
convergence theorem, which relates to convergence of sequences of random
variables. We will not need this more general theorem in our analysis, and
we refer to [Ber15a] and [WaB13] for some of its applications in incremental
optimization methods with randomized order of component selection.

Proposition A.31: Let {Yk}, {Zk}, {Wk}, and {Vk} be four scalar
sequences such that

Yk+1 ≤ (1 + Vk)Yk − Zk +Wk, k = 0, 1, . . . , (A.11)

{Zk}, {Wk}, and {Vk} are nonnegative, and

∞
∑

k=0

Wk < ∞,
∞
∑

k=0

Vk < ∞.

Then either Yk → −∞, or else {Yk} converges to a finite value and
∑∞

k=0 Zk < ∞.

Proof: We first give the proof assuming that Vk ≡ 0, and then generalize.
In this case, using the nonnegativity of {Zk}, we have

Yk+1 ≤ Yk +Wk.

By writing this relation for the index k set to k̄, . . . , k, where k ≥ k̄, and
adding, we have

Yk+1 ≤ Yk̄ +
k
∑

$=k̄

W$ ≤ Yk̄ +
∞
∑

$=k̄

W$.

Since
∑∞

k=0 Wk < ∞, it follows that {Yk} is bounded above, and by taking
upper limit of the left hand side as k → ∞ and lower limit of the right
hand side as k̄ → ∞, we have

lim sup
k→∞

Yk ≤ lim inf
k̄→∞

Yk̄ < ∞.

This implies that either Yk → −∞, or else {Yk} converges to a finite value.
In the latter case, by writing Eq. (A.11) for the index k set to 0, . . . , k, and
adding, we have

k
∑

$=0

Z$ ≤ Y0 +
k
∑

$=0

W$ − Yk+1, ∀ k = 0, 1, . . . ,
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so by taking the limit as k → ∞, we obtain
∑∞

$=0 Z$ < ∞.
We now extend the proof to the case of a general nonnegative sequence

{Vk}. We first note that

log
k
∏

$=0

(1 + V$) =
k
∑

$=0

log(1 + V$) ≤
∞
∑

k=0

Vk,

since we generally have (1+a) ≤ ea and log(1+a) ≤ a for any a ≥ 0. Thus
the assumption

∑∞
k=0 Vk < ∞ implies that

∞
∏

$=0

(1 + V$) < ∞. (A.12)

Define

Ȳk = Yk

k−1
∏

$=0

(1+V$)−1, Z̄k = Zk

k
∏

$=0

(1+V$)−1, W̄k = Wk

k
∏

$=0

(1+V$)−1.

Multiplying Eq. (A.11) with
∏k

$=0(1 + V$)−1, we obtain

Ȳk+1 ≤ Ȳk − Z̄k + W̄k.

Since W̄k ≤ Wk, the hypothesis
∑∞

k=0 Wk < ∞ implies
∑∞

k=0 W̄k < ∞,
so from the special case of the result already shown, we have that either
Ȳk → −∞ or else {Ȳk} converges to a finite value and

∑∞
k=0 Z̄k < ∞. Since

Yk = Ȳk

k−1
∏

$=0

(1 + V$), Zk = Z̄k

k
∏

$=0

(1 + V$),

and
∏k−1

$=0 (1 + V$) converges to a finite value by the nonnegativity of {Vk}
and Eq. (A.12), it follows that either Yk → −∞ or else {Yk} converges to
a finite value and

∑∞
k=0 Zk < ∞. Q.E.D.

Fejér Monotonicity

Supermartingale convergence theorems can be applied in a variety of con-
texts. One such context, the so called Fejér monotonicity theory, deals
with iterations that “almost” decrease the distance to every element of
some given set X∗. We may then often show that such iterations are con-
vergent to a (unique) element of X∗. Applications of this idea arise when
X∗ is the set of optimal solutions of an optimization problem or the set
of fixed points of a certain mapping. Examples are various gradient and
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subgradient projection methods with a diminishing stepsize that arise in
various contexts in this book.

Proposition A.32: (Fejér Convergence Theorem) Let X∗ be a
nonempty subset of &n, and let {xk} ⊂ &n be a sequence satisfying
for some p > 0 and for all k,

‖xk+1−x∗‖p ≤ (1+βk)‖xk −x∗‖p−γk φ(xk;x∗)+ δk, ∀ x∗ ∈ X∗,

where {βk}, {γk}, and {δk} are nonnegative sequences satisfying

∞
∑

k=0

βk < ∞,
∞
∑

k=0

γk = ∞,
∞
∑

k=0

δk < ∞,

φ : &n ×X∗ +→ [0,∞) is some nonnegative function, and ‖ · ‖ is some
norm. Then:

(a) The minimum distance sequence infx∗∈X∗ ‖xk − x∗‖ converges,
and in particular, {xk} is bounded.

(b) If {xk} has a limit point x̄ that belongs to X∗, then the entire
sequence {xk} converges to x̄.

(c) Suppose that for some x∗ ∈ X∗, φ(·;x∗) is lower semicontinuous
and satisfies

φ(x;x∗) = 0 if and only if x ∈ X∗. (A.13)

Then {xk} converges to a point in X∗.

Proof: (a) Let {εk} be a positive sequence such that
∑∞

k=0(1+βk)εk < ∞,
and let x∗

k be a point of X∗ such that

‖xk − x∗
k‖p ≤ inf

x∗∈X∗
‖xk − x∗‖p + εk.

Then since φ is nonnegative, we have for all k,

inf
x∗∈X∗

‖xk+1 − x∗‖p ≤ ‖xk+1 − x∗
k‖p ≤ (1 + βk)‖xk − x∗

k‖p + δk,

and by combining the last two relations, we obtain

inf
x∗∈X∗

‖xk+1 − x∗‖p ≤ (1 + βk) inf
x∗∈X∗

‖xk − x∗‖p + (1 + βk)εk + δk.

The result follows by applying Prop. A.31 with

Yk = inf
x∗∈X∗

‖xk − x∗‖p, Zk = 0, Wk = (1 + βk)εk + δk, Vk = βk.
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(b) Following the argument of the proof of Prop. A.31, define for all k,

Ȳk = ‖xk − x̄‖p
k−1
∏

$=0

(1 + β$)−1, δ̄k = δk

k
∏

$=0

(1 + β$)−1.

Then from our hypotheses, we have
∑∞

k=0 δ̄k < ∞ and

Ȳk+1 ≤ Ȳk + δ̄k, ∀ k = 0, 1, . . . , (A.14)

while {Ȳk} has a limit point at 0, since x̄ is a limit point of {xk}. For any
ε > 0, let k̄ be such that

Ȳk̄ ≤ ε,
∞
∑

$=k̄

δ̄$ ≤ ε,

so that by adding Eq. (A.14), we obtain for all k > k̄,

Ȳk ≤ Ȳk̄ +
∞
∑

$=k̄

δ̄$ ≤ 2ε.

Since ε is arbitrarily small, it follows that Ȳk → 0. We now note that as in
Eq. (A.12),

∞
∏

$=0

(1 + β$)−1 < ∞,

so that Ȳk → 0 implies that ‖xk − x̄‖p → 0, and hence xk → x̄.

(c) From Prop. A.31, it follows that

∞
∑

k=0

γk φ(xk;x∗) < ∞.

Thus limk→∞, k∈K φ(xk;x∗) = 0 for some subsequence {xk}K. By part (a),
{xk} is bounded, so the subsequence {xk}K has a limit point x̄, and by the
lower semicontinuity of φ(·;x∗), we must have

φ(x̄;x∗) ≤ lim
k→∞, k∈K

φ(xk;x∗) = 0,

which in view of the nonnegativity of φ, implies that φ(x̄;x∗) = 0. Using
the hypothesis (A.13), it follows that x̄ ∈ X∗, so by part (b), the entire
sequence {xk} converges to x̄. Q.E.D.





APPENDIX B:

Convex Analysis

Convexity is central in nonlinear programming, and has a rich mathe-
matical theory. In this appendix, we selectively collect the definitions,
notational conventions, and results that we will need. For detailed text-
book accounts of convex analysis and its connections with optimization,
see Rockafellar [Roc70], Ekeland and Teman [EkT76], Hiriart-Urruty and
Lemarechal [HiL93], Rockafellar and Wets [RoW98], Borwein and Lewis
[BoL00], Bonnans and Shapiro [BoS00], Zalinescu [Zal02], Auslender and
Teboulle [AuT03], Bertsekas, Nedić, and Ozdaglar [BNO03], and Bertsekas
[Ber09].

A discussion of generalized notions of convexity, including quasicon-
vexity and pseudoconvexity, and their applications in optimization can be
found in the books by Avriel [Avr76], Bazaraa, Sherali, and Shetty [BSS93],
Mangasarian [Man69], and the references quoted therein.

The author’s convex optimization theory textbook [Ber09] is con-
sistent with the notation and content of this appendix, but develops the
subject in much greater depth and detail. Proofs of the results quoted
are generally given in this textbook, and on some occasions, in the au-
thor’s convex optimization algorithms textbook [Ber15a]. In a few cases of
important convex optimization-related results, a proof is included here.

B.1 CONVEX SETS AND FUNCTIONS

A subset C of &n is called convex if

αx+ (1− α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]. (B.1)

The following proposition provides some means for verifying convexity of
a set.

783
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Proposition B.1:

(a) For any collection {Ci | i ∈ I} of convex sets, the set intersection
∩i∈ICi is convex.

(b) The vector sum of two convex sets C1 and C2 is convex.

(c) The image of a convex set under a linear transformation is con-
vex.

(d) If C is a convex set and f : C +→ & is a convex function, the level
sets {x ∈ C | f(x) ≤ α} and {x ∈ C | f(x) < α} are convex for
all scalars α.

Proof: See Prop. 1.1.1 and Section 1.1.1 of [Ber09]. Q.E.D.

Let C be a convex subset of &n. A function f : C +→ & is called
convex if

f
(

αx+(1−α)y
)

≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C, ∀ α ∈ [0, 1]. (B.2)

The function f is called concave if −f is convex. The function f is called
strictly convex if the above inequality is strict for all x, y ∈ C with x /= y,
and all α ∈ (0, 1). For a function f : &n +→ &, we also say that f is convex
over the convex set C if Eq. (B.2) holds.

We occasionally deal with functions f : C +→ [−∞,∞] that can take
infinite values. The epigraph of such a function f is the subset of &n+1

given by
epi(f) =

{

(x,w) | x ∈ C, w ∈ &, f(x) ≤ w
}

.

We say that f : C +→ (−∞,∞] is convex if C is convex and epi(f) is a
convex set. Note that a function f : C +→ (−∞,∞] is convex if Eq. (B.2)
holds (here the rules of arithmetic are extended to include ∞ + ∞ = ∞,
0 ·∞ = 0, and α ·∞ = ∞, for all α > 0).

The effective domain of f is the set

dom(f) =
{

x ∈ C | f(x) < ∞
}

,

which is convex if f is convex. The function f is called closed if epi(f) is a
closed set, and it is called proper if dom(f) is nonempty and f(x) > −∞
for all x ∈ C.

By restricting the definition of a convex function to its effective do-
main we can avoid calculations with ∞, and we will often do this. However,
in some analyses it is more economical to use convex functions that can
take the value of infinity.

A useful property, obtained by repeated application of the definition
of convexity [cf. Eq. (B.2)], is that if x1, . . . , xm ∈ C, α1, . . . ,αm ≥ 0, and
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∑m
i=1 αi = 1, then

f

(

m
∑

i=1

αixi

)

≤
m
∑

i=1

αif(xi).

This is a special case of Jensen’s inequality and can be used to prove a
number of interesting inequalities in applied mathematics and probability
theory.

The following proposition provides some means for recognizing convex
functions.

Proposition B.2:

(a) A linear function is convex.

(b) Any vector norm is convex.

(c) The weighted sum of convex functions, with positive weights, is
convex.

(d) If I is an index set, C is a convex subset of "n, and fi : C #→
(−∞,∞] is convex for each i ∈ I, then the function h : C #→
(−∞,∞] defined by

h(x) = sup
i∈I

fi(x)

is also convex.

(e) If F : "n+m #→ " is a convex function of the pair (x, z) where
x ∈ "n, z ∈ "m, and Z is a convex set such that infZ∈Z F (x, z) >
−∞ for all x ∈ "n, then the function f : "n → " defined by

f(x) = inf
Z∈Z

F (x, z), ∀ x ∈ "n,

is convex.

Proof: For parts (a)-(d), see Props. 1.1.4-1.1.6 and Section 1.1.3 of [Ber09].
For part (e), see Prop. 3.3.1 of [Ber09]. Q.E.D.

Characterizations of Differentiable Convex Functions

For differentiable functions, there is an alternative characterization of con-
vexity, given in the following proposition, parts (a) and (b) of which are
classical. Part (c) is given as Theorem 2.1.5 in Nesterov’s book [Nes04],
but the proof that (iv) implies (i) given there is flawed.
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Proposition B.3: (First Derivative Characterizations) Let C
be a convex subset of &n and let f : &n +→ & be differentiable over &n.

(a) f is convex over C if and only if

f(z) ≥ f(x) + (z − x)′∇f(x), ∀ x, z ∈ C.

(b) f is strictly convex over C if and only if the above inequality is
strict whenever x /= z.

(c) Let f be convex. For a scalar L > 0 the following five properties
are equivalent:

(i)
∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L ‖x− y‖, for all x, y ∈ &n.

(ii) f(x) + ∇f(x)′(y − x) + 1
2L

∥

∥∇f(x) − ∇f(y)
∥

∥

2 ≤ f(y), for
all x, y ∈ &n.

(iii)
(

∇f(x) − ∇f(y)
)′
(x − y) ≥ 1

L

∥

∥∇f(x) − ∇f(y)
∥

∥

2
, for all

x, y ∈ &n.

(iv) f(y) ≤ f(x)+∇f(x)′(y−x)+ L
2 ‖y−x‖2, for all x, y ∈ &n.

(v)
(

∇f(x)−∇f(y)
)′
(x− y) ≤ L‖x− y‖2, for all x, y ∈ &n.

Proof: For parts (a) and (b), see Prop. 1.1.7 and Section 1.1.4 of [Ber09].
For part (c), see [Ber15a], Exercise 6.1 (with solution included). Q.E.D.

For twice differentiable convex functions, there is another characteri-
zation of convexity, which is given in the following proposition.

Proposition B.4: (Second Derivative Characterizations) Let
C be a convex subset of &n and let f : &n +→ & be twice continuously
differentiable over &n.

(a) If ∇2f(x) is positive semidefinite for all x ∈ C, then f is convex
over C.

(b) If ∇2f(x) is positive definite for every x ∈ C, then f is strictly
convex over C.

(c) If C is open and f is convex over C, then ∇2f(x) is positive
semidefinite for all x ∈ C.

(d) If f(x) = x′Qx, where Q is a symmetric matrix, then f is convex
if and only if Q is positive semidefinite. Furthermore, f is strictly
convex if and only if Q is positive definite.
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Proof: See Prop. 1.1.10 and Section 1.1.4 of [Ber09]. Q.E.D.

The conclusion of Prop. B.4(c) can also be proved if C is assumed
to have nonempty interior instead of being open. We now consider a
strengthened form of strict convexity for a continuously differentiable func-
tion f : &n +→ &. We say that f is strongly convex if for some σ > 0, we
have

f(y) ≥ f(x) +∇f(x)′(y − x) +
σ

2
‖x− y‖2, ∀ x, y ∈ &n. (B.3)

It can be shown that an equivalent definition is that

(

∇f(x)−∇f(y)
)′
(x− y) ≥ σ‖x− y‖2, ∀ x, y ∈ &n. (B.4)

A proof of this may be found in several sources, including the on-line ex-
ercises of Chapter 1 of [Ber09]. By fixing x in the definition (B.3), we see
that a strongly convex function majorizes a coercive function, so it is itself
coercive. It is also strictly convex, as shown among other properties by the
following proposition.

Proposition B.5: (Strong Convexity) Let f : &n +→ & be a func-
tion that is continuously differentiable. Then:

(a) If f strongly convex in the sense that it satisfies Eq. (B.4) for
some σ > 0, then f is strictly convex. If in addition, ∇f satisfies
the Lipschitz condition

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ &n, (B.5)

for some L > 0, then we have for all x, y ∈ &n

(

∇f(x)−∇f(y)
)′
(x−y) ≥

σL

σ + L
‖x−y‖2+

1

σ + L

∥

∥∇f(x)−∇f(y)
∥

∥

2
.

(B.6)

(b) If f is twice continuously differentiable over &n, then f satisfies
Eq. (B.4) if and only if the matrix ∇2f(x) − σI, where I is the
identity, is positive semidefinite for every x ∈ &n.

Proof: (a) Fix some x, y ∈ &n such that x /= y, and define the function
h : [0, 1] +→ & by

h(t) = f
(

x+ t(y − x)
)

.
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Consider some t, t̄ ∈ [0, 1] such that t < t̄. Using the chain rule and Eq.
(B.4), we have

(dh(t̄)

dt
−

dh(t)

dt

)

(t̄− t)

=
(

∇f
(

x+ t̄(y − x)
)

−∇f
(

x+ t(y − x)
)

)′
(y − x)(t̄− t)

≥ σ(t̄ − t)2‖x− y‖2 > 0.

Thus, dh/dt is strictly increasing, and for any t ∈ (0, 1)

h(t)− h(0)

t
=

1

t

∫ t

0

dh(τ)

dτ
dτ <

1

1− t

∫ 1

t

dh(τ)

dτ
dτ =

h(1)− h(t)

1− t
.

Equivalently, we have th(1) + (1 − t)h(0) > h(t), so from the definition of
h, we obtain

tf(y) + (1 − t)f(x) > f
(

ty + (1− t)x
)

.

Since this inequality was proved for arbitrary t ∈ (0, 1) and x /= y, it follows
that f is strictly convex.

We now assume that the Lipschitz condition (B.5) holds, and show
Eq. (B.6). From Eqs. (B.4) and (B.5), we have σ ≤ L. If σ = L, the result
follows by combining the relation (iii) of Prop. B.3(c) and the relation

∥

∥∇f(x)−∇f(y)
∥

∥ ≥ σ‖x− y‖, ∀ x, y ∈ &n,

which is a consequence of the strong convexity assumption (B.4). For σ < L
consider the function

φ(x) = f(x)−
σ

2
‖x‖2.

We will show that ∇φ, which is given by

∇φ(x) = ∇f(x)− σx, (B.7)

is Lipschitz continuous with constant L − σ. To this end, based on the
equivalence of statements (i) and (v) of Prop. B.3(c), it is sufficient to
show that

(

∇φ(x) −∇φ(y)
)′
(x− y) ≤ (L− σ)‖x− y‖2, ∀ x, y ∈ &n,

or, using the expression (B.7) for ∇φ,

(

∇f(x)−∇f(y)− σ(x − y)
)′
(x− y) ≤ (L− σ)‖x− y‖2, ∀ x, y ∈ &n.

This relation is equivalently written as

(

∇f(x)−∇f(y)
)′
(x− y) ≤ L‖x− y‖2, ∀ x, y ∈ &n,
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and is true by the equivalence of statements (i) and (v) of Prop. B.3(c).
Having shown that ∇φ is Lipschitz continuous with constant L − σ,

we use the equivalence of statements (i) and (iii) of Prop. B.3(c) to the
function φ and obtain

(

∇φ(x) −∇φ(y)
)′
(x − y) ≥

1

L− σ

∥

∥∇φ(x) −∇φ(y)
∥

∥

2
.

Using the expression (B.7) for ∇φ in this relation, we have

(

∇f(x)−∇f(y)−σ(x− y)
)′
(x− y) ≥

1

L− σ

∥

∥∇f(x)−∇f(y)−σ(x− y)
∥

∥

2
,

which after expanding the quadratic and collecting terms, can be verified
to be equivalent to the desired relation.

(b) Suppose that f satisfies Eq. (B.4). We fix some x ∈ &n, let d be any
vector in &n, and let γ be a scalar in (0, 1]. We use the second order
expansion of Prop. A.23(b) twice to obtain

f(x+ γd) = f(x) + γd′∇f(x) +
γ2

2
d′∇2f(x+ tγd)d,

and

f(x) = f(x+ γd)− γd′∇f(x+ γd) +
γ2

2
d′∇2f(x+ sγd)d,

for some t and s belonging to [0, 1]. By adding these two equations and
using Eq. (B.4), we obtain

γ2

2
d′
(

∇2f(x+sγd)+∇2f(x+tγd)
)

d =
(

∇f(x+γd)−∇f(x)
)′
(γd) ≥ σγ2‖d‖2.

We divide both sides by γ2 and then take the limit as γ → 0 to conclude
that d′∇2f(x)d ≥ σ‖d‖2. Since this inequality was proved for every d ∈ &n,
it follows that ∇2f(x)− σI is positive semidefinite.

Conversely, assume that ∇2f(x) − σI is positive semidefinite for all
x ∈ &n. Fix some x, y ∈ &n such that x /= y, and consider the function
g : [0, 1] +→ & defined by

g(t) = ∇f
(

tx+ (1 − t)y
)′
(x− y).

Using the Mean Value Theorem (Prop. A.22 in Appendix A), we have

(

∇f(x)−∇f(y)
)′
(x− y) = g(1)− g(0) =

dg(t)

dt

for some t ∈ [0, 1]. Since ∇2f
(

tx + (1 − t)y
)

− σI is positive semidefinite,
we have

dg(t)

dt
= (x− y)′∇2f

(

tx+ (1− t)y
)

(x− y) ≥ σ‖x− y‖2.

By combining the preceding two relations, we obtain Eq. (B.4). Q.E.D.
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Convex and Affine Hulls

Let X be a subset of &n. A convex combination of elements of X is a vector
of the form

∑m
i=1 αixi, where x1, . . . , xm belong to X and α1, . . . ,αm are

scalars such that

αi ≥ 0, i = 1, . . . ,m,
m
∑

i=1

αi = 1.

The convex hull of X , denoted conv(X), is the set of all convex combina-
tions of elements of X . In particular, if X consists of a finite number of
vectors x1, . . . , xm, its convex hull is

conv
(

{x1, . . . , xm}
)

=

{

m
∑

i=1

αixi

∣

∣

∣
αi ≥ 0, i = 1, . . . ,m,

m
∑

i=1

αi = 1

}

.

It is straightforward to verify that conv(X) is a convex set, and using this,
to assert that conv(X) is the intersection of all convex sets containing X .

We recall that a linear manifold M is a set of the form x + S = {z |
z−x ∈ S}, where S is a subspace, called the subspace parallel to M . If S is
a subset of &n, the affine hull of S, denoted aff(S), is the intersection of all
linear manifolds containing S. Note that aff(S) is itself a linear manifold
and that it contains conv(S). It can be seen that the affine hull of S and
the affine hull of conv(S) coincide.

Given a nonempty subset X of &n, a nonnegative combination of
elements of X is a vector of the form

∑m
i=1 αixi, where m is a positive

integer, x1, . . . , xm belong to X , and α1, . . . ,αm are nonnegative scalars. If
the scalars αi are all positive,

∑m
i=1 αixi is said to be a positive combination.

A set C ⊂ &n is said to be a cone if ax ∈ C for all a > 0 and x ∈ C.
The cone generated by X , denoted cone(X), is the set of all nonnegative
combinations of elements of X . It is easily seen that cone(X) is a convex
cone containing the origin, although it need not be closed even if X is
compact.

The following is a fundamental characterization of convex hulls.

Proposition B.6: (Caratheodory’s Theorem) Let X be a non-
empty subset of &n.

(a) Every nonzero vector from cone(X) can be represented as a pos-
itive combination of linearly independent vectors from X .

(b) Every vector from conv(X) can be represented as a convex com-
bination of no more than n+ 1 vectors from X .

Proof: See Prop. 1.2.1 and Section 1.2 of [Ber09]. Q.E.D.
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Closure and Continuity Properties

We now explore some topological properties of convex sets and functions.
Let C be a convex subset of &n. We say that x is a relative interior
point of C, if x ∈ C and there exists a neighborhood N of x such that
N ∩ aff(C) ⊂ C, i.e., if x is an interior point of C relative to aff(C). The
relative interior of C, denoted ri(C), is the set of all relative interior points
of C. For example, if C is a line segment connecting two distinct points in
the plane, then ri(C) consists of all points of C except for the end points.

Proposition B.7: Let C be a nonempty convex set.

(a) (Line Segment Principle) If x ∈ ri(C) and x̄ ∈ cl(C), then all
points on the line segment connecting x and x̄, except possibly
x̄, belong to ri(C).

(b) (Nonemptiness of Relative Interior) ri(C) is a nonempty convex
set, and has the same affine hull as C. In fact, if m is the dimen-
sion of aff(C) and m > 0, there exist vectors x0, x1, . . . , xm ∈
ri(C) such that x1 − x0, . . . , xm − x0 span the subspace parallel
to aff(C).

(c) (Prolongation Lemma) x ∈ ri(C) if and only if every line segment
in C having x as one endpoint can be prolonged beyond x without
leaving C [i.e., for every x̄ ∈ C, there exists a γ > 1 such that
x+ (γ − 1)(x− x̄) ∈ C].

Proof: See Props. 1.3.1-1.3.3 and Section 1.3 of [Ber09]. Q.E.D.

An important property of the closure of a convex set C is that it does
not “differ” much from C, in the sense that cl(C) and C have the same
relative interior. (This is not true for a nonconvex set; take for example
the set of rational numbers.) The next proposition proves this property,
together with some additional related facts.

Proposition B.8: (Properties of Closure and Relative Inte-
rior)

(a) The closure cl(C) and the relative interior ri(C) of a convex set
C are convex. Furthermore ri

(

cl(C)
)

= ri(C).

(b) For a convex set C, we have cl(C) = cl
(

ri(C)
)

.

(c) Let C and C̄ be nonempty convex sets. Then the following three
conditions are equivalent:
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(i) C and C̄ have the same relative interior.

(ii) C and C̄ have the same closure.

(iii) ri(C) ⊂ C̄ ⊂ cl(C).

(d) The vector sum of two closed convex sets at least one of which
is compact, is a closed convex set.

(e) The image of a convex and compact set under a linear transfor-
mation is a convex and compact set.

(f) The convex hull of a compact set is compact.

(g) If C1 and C2 are convex sets then

ri(C1 × C2) = ri(C1)× ri(C2).

Moreover, if ri(C1) and ri(C2) have a nonempty intersection, then

ri(C1 + C2) = ri(C1) + ri(C2), ri(C1 ∩ C2) = ri(C1) ∩ ri(C2).

Proof: See Section 1.3.1 of [Ber09]. Q.E.D.

An important property of real-valued convex functions over &n is
that they are continuous. Extended real-valued convex functions also have
interesting continuity properties; see [Ber09], Sections 1.3.2, 1.3.3, for a
fuller account. We have the following proposition.

Proposition B.9: (Continuity of a Convex Function) If f :
&n +→ & is convex, then it is continuous. More generally, if C ⊂ &n is
convex and f : C +→ & is convex, then f is continuous in the relative
interior of C.

Proof: See Section 1.3.2 of [Ber09]. Q.E.D.

Another important fact is that in order for all of the level sets of
a closed convex function to be compact, it is sufficient that one of its
nonempty level sets be compact. This follows from the theory of directions
of recession (the specialization to convex functions of the notions of asymp-
totic sequences and asymptotic directions of Section 3.1.2). This theory is
developed in Sections 1.4 and 3.2 of [Ber09], but will not be needed in this
book. The following proposition is sufficient for our purposes.
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Proposition B.10: (Nonemptiness and Compactness of the
Set of Minimizing Points)

(a) The set of minimizing points of a convex function f : &n +→ &
over a closed convex set X is nonempty and compact if and only
if all its level sets,

La =
{

x ∈ X | f(x) ≤ a
}

, a ∈ &,

are compact.

(b) The set of minimizing points over a closed convex set X of a sum
f1 + · · ·+ fm, where f1, . . . , fm are real-valued convex functions
on &n, is nonempty and compact if either X is compact, or if
one of the functions is coercive (for example it is positive definite
quadratic).

Proof: See Section 1.4 and Prop. 3.2.3 of [Ber09]. Q.E.D.

B.2 HYPERPLANES

A hyperplane in &n is a set of the form {x | a′x = b}, where a is nonzero
vector in &n and b is a scalar. If x̄ is any vector in a hyperplane H = {x |
a′x = b}, then we must have a′x̄ = b, so the hyperplane can be equivalently
described as

H = {x | a′x = a′x̄},

or

H = x̄+ {x | a′x = 0}.

Thus, H is an affine set that is parallel to the subspace {x | a′x = 0}. The
vector a is orthogonal to this subspace, and consequently, a is called the
normal vector of H ; see Fig. B.1.

The sets

{x | a′x ≥ b}, {x | a′x ≤ b},

are called the closed halfspaces associated with the hyperplane (also referred
to as the positive and negative halfspaces , respectively). The sets

{x | a′x > b}, {x | a′x < b},

are called the open halfspaces associated with the hyperplane.
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x

Negative Halfspace

Positive Halfspace
e {x | a′x ≥ b}

e {x | a′x ≤ b}

Hyperplane

{x | a′x = b} = {x | a′x = a′x}

a

Figure B.1. Illustration of the hyperplane H = {x | a′x = b}. If x̄ is any vector
in the hyperplane, then the hyperplane can be equivalently described as

H = {x | a′x = a′x̄} = x̄+ {x | a′x = 0}.

The hyperplane divides the space into two halfspaces as illustrated.

Proposition B.11: (Supporting Hyperplane Theorem) If C ⊂
&n is a convex set and x̄ is a point that does not belong to the interior
of C, there exists a vector a /= 0 such that

a′x ≥ a′x̄, ∀ x ∈ C.

Proof: See Prop. 1.5.1 of [Ber09]. Q.E.D.

Proposition B.12: (Separating Hyperplane Theorem) If C1

and C2 are two nonempty and disjoint convex subsets of &n, there
exists a hyperplane that separates them, i.e., a vector a /= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, x2 ∈ C2.

Proof: See Prop. 1.5.2 of [Ber09]. Q.E.D.
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Proposition B.13: (Strict Separation Theorem) If C1 and C2

are two nonempty and disjoint convex sets such that C1 is closed and
C2 is compact, there exists a hyperplane that strictly separates them,
i.e., a vector a /= 0 and a scalar b such that

a′x1 < b < a′x2, ∀ x1 ∈ C1, x2 ∈ C2.

Proof: See Prop. 1.5.3 of [Ber09]. Q.E.D.

The preceding proposition may be used to provide a fundamental
characterization of closed convex sets, namely that every closed convex set
is the intersection of the halfspaces that contain it . To see this, let C
be the set at issue, and note that C is contained in the intersection of
the halfspaces that contain C. To show the reverse inclusion, let x /∈ C.
Applying the Strict Separation Theorem (Prop. B.13) to the sets C and
{x}, we see that there exists a halfspace containing C but not containing x.
Hence, if x /∈ C, then x cannot belong to the intersection of the halfspaces
containing C, proving the result.

We finally provide a special type of separation theorem that is partic-
ularly useful in convex optimization. The proof is somewhat complicated,
and can be found in [Roc70] (Ths. 11.3 and 20.2), in [BNO03] (Props. 2.4.6
and 3.5.1), and in [Ber09] (Props 1.5.6 and 1.5.7).

Proposition B.14: (Proper Separation)

(a) Let C1 and C2 be two nonempty convex subsets of &n. There ex-
ists a hyperplane that separates C1 and C2, and does not contain
both C1 and C2 if and only if

ri(C1) ∩ ri(C2) = Ø.

(b) Let C and P be two nonempty convex subsets of &n such that P
is the intersection of a finite number of closed halfspaces. There-
exists a hyperplane that separates C and P , and does not contain
C if and only if

ri(C) ∩ P = Ø.

Proof: See Props 1.5.6 and 1.5.7 of [Ber09]. Q.E.D.
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B.3 CONES AND POLYHEDRAL CONVEXITY

We now develop some basic results regarding cones and polyhedral sets, in
the context of the objectives of this book. A much broader discussion is
found in Ch. 2 of [Ber09]. We introduce three important types of cones.

Given a cone C, the cone given by

C⊥ = {y | y′x ≤ 0, ∀ x ∈ C},

is called the polar cone of C. Note that the polar cone of a subspace is
the orthogonal complement, illustrating that the notion of polarity may be
viewed as a generalization of the notion of orthogonality.

A cone C is said to be finitely generated , if it has the form

C =







x
∣

∣

∣
x =

r
∑

j=1

µjaj , µj ≥ 0, j = 1, . . . , r







,

where a1, . . . , ar are some vectors.
A cone C is said to be polyhedral , if it has the form

C = {x | a′jx ≤ 0, j = 1, . . . , r},

where a1, . . . , ar are some vectors.
It is straightforward to show that the polar cone of any cone, as well

as all finitely generated and polyhedral cones are convex, by verifying the
definition of convexity of Eq. (B.1). Furthermore, polar and polyhedral
cones are closed, since they are intersections of closed halfspaces. Finitely
generated cones are also closed as shown in part (b) of the following propo-
sition, which also provides some additional important results.

Proposition B.15:

(a) (Polar Cone Theorem) For any nonempty closed convex cone C,
we have (C⊥)⊥ = C.

(b) Let a1, . . . , ar be vectors of &n. Then the finitely generated cone

C =







x
∣

∣

∣
x =

r
∑

j=1

µjaj , µj ≥ 0, j = 1, . . . , r







is closed and its polar cone is the polyhedral cone given by

C⊥ = {x | x′aj ≤ 0, j = 1, . . . , r} .

(c) (Minkowski-Weyl Theorem) A cone is polyhedral if and only if it
is finitely generated.
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(d) (Farkas’ Lemma) Let x, e1, . . . , em, and a1, . . . , ar be vectors of
&n. We have x′y ≤ 0 for all vectors y ∈ &n such that

y′ei = 0, ∀ i = 1, . . . ,m, y′aj ≤ 0, ∀ j = 1, . . . , r,

if and only if x can be expressed as

x =
m
∑

i=1

λiei +
r
∑

j=1

µjaj ,

where λi and µj are some scalars with µj ≥ 0 for all j.

Proof: See Props. 2.2.1, 2.3.1, and 2.3.2 of [Ber09]. Q.E.D.

Polyhedral Sets

A subset of &n is said to be a polyhedral set (or polyhedron) if it is nonempty
and it is the intersection of a finite number of closed halfspaces, i.e., if it is
of the form

P =
{

x | a′jx ≤ bj, j = 1, . . . , r
}

,

where aj are some vectors and bj are some scalars.
The following is a fundamental result, showing that a polyhedral set

can be represented as the sum of a finitely generated cone and the convex
hull of a finite set of points. The proof is based on an interesting construc-
tion that can be used to translate results about polyhedral cones to results
about polyhedral sets.

Proposition B.16: A set P is polyhedral if and only if there ex-
ist a nonempty and finite set of vectors {v1, . . . , vm}, and a finitely
generated cone C such that

P =







x
∣

∣

∣
x = y +

m
∑

j=1

µjvj , y ∈ C,
m
∑

j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m







.

Proof: See Prop. 2.3.3 of [Ber09]. Q.E.D.
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B.4 EXTREME POINTS AND LINEAR PROGRAMMING

A vector x is said to be an extreme point of a convex set C if x belongs to
C and there do not exist vectors y, z ∈ C, and a scalar α ∈ (0, 1) such that

y /= x, z /= x, x = αy + (1 − α)z.

An equivalent definition is that x cannot be expressed as a convex combi-
nation of some vectors of C, all of which are different from x.

An important fact that forms the basis for the simplex method of
linear programming, is that if a linear function f attains a minimum over
a polyhedral set C having at least one extreme point, then f attains a
minimum at some extreme point of C (as well as possibly at some other
nonextreme points). We will prove this fact after considering the more
general case where f is concave, and C is closed and convex. We first show
a preliminary result.

Proposition B.17: Let C be a nonempty, closed, convex set in &n.

(a) If H is a hyperplane that passes through a boundary point of C
and contains C in one of its halfspaces, then every extreme point
of C ∩H is also an extreme point of C.

(b) C has at least one extreme point if and only if it does not contain
a line, i.e., a set L of the form L = {x+ αd | α ∈ &} with d /= 0.

Proof: (a) Let x̄ be an element of T which is not an extreme point of C.
Then we have x̄ = αy + (1− α)z for some α ∈ (0, 1), and some y ∈ C and
z ∈ C, with y /= x and z /= x. Since x̄ ∈ H , x̄ is a boundary point of C,
and the halfspace containing C is of the form {x | a′x ≥ a′x̄}, where a /= 0.
Then a′y ≥ a′x̄ and a′z ≥ a′x̄, which in view of x̄ = αy+ (1−α)z, implies
that a′y = a′x̄ and a′z = a′x̄. Therefore, y ∈ T and z ∈ T , showing that x̄
cannot be an extreme point of T .

(b) Assume that C has an extreme point x and contains a line L = {x̄+αd |
α ∈ &}, where d /= 0. We will arrive at a contradiction. For each integer
n > 0, the vector

xn =

(

1−
1

n

)

x+
1

n
(x̄+ nd) = x+ d+

1

n
(x̄− x)

lies in the line segment connecting x and x̄+ nd, so it belongs to C. Since
C is closed, x+ d = limn→∞ xn must also belong to C. Similarly, we show
that x − d must belong to C. Thus x − d, x, and x + d all belong to C,
contradicting the hypothesis that x is an extreme point.
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Conversely, we use induction on the dimension of the space to show
that if C does not contain a line, it must have an extreme point. This is
true in the real line &1, so assume it is true in &n−1. If a nonempty, closed,
convex subset C of &n contains no line, it must have some boundary point
x̄. Take any hyperplane H passing through x̄ and containing C in one of
its halfspaces. Then, since H is an (n − 1)-dimensional manifold, the set
C ∩H lies in an (n− 1)-dimensional space and contains no line, so by the
induction hypothesis, it must have an extreme point. By part (a), this
extreme point must also be an extreme point of C. Q.E.D.

Proposition B.18: Let C be a convex subset of &n, and let C∗ be
the set of minima of a concave function f : C +→ & over C.

(a) If C∗ contains a relative interior point of C, then f must be
constant over C, i.e., C∗ = C.

(b) If C is closed and contains at least one extreme point, and C∗ is
nonempty, then C∗ contains some extreme point of C.

Proof: (a) Let x∗ belong to C∗ ∩ ri(C), and let x be any vector in C. By
the prolongation lemma of Prop. B.7(c), there exists a γ > 1 such that the
vector

x̂ = x∗ + (γ − 1)(x∗ − x)

belongs to C, implying that

x∗ =
1

γ
x̂+

γ − 1

γ
x.

By the concavity of the function f , we have

f(x∗) ≥
1

γ
f(x̂) +

γ − 1

γ
f(x),

and since f(x̂) ≥ f(x∗) and f(x) ≥ f(x∗), we obtain

f(x∗) ≥
1

γ
f(x̂) +

γ − 1

γ
f(x) ≥ f(x∗).

Hence f(x) = f(x∗).

(b) Let x∗ minimize f over C. If x∗ ∈ ri(C), by part (a), f must be
constant over C, so it attains a minimum at an extreme point of C (since
C has at least one extreme point by assumption). If x∗ /∈ ri(C), then by
Prop. B.14(a), there exists a hyperplane H1 properly separating x∗ and C.
Since x∗ ∈ C, H1 must contain x∗, so by the proper separation property, H1
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cannot contain C, and it follows that the intersection C∩H1 has dimension
smaller than the dimension of C.

If x∗ ∈ ri(C ∩H1), then f must be constant over C ∩H1, so it attains
a minimum at an extreme point of C ∩ H1 [since C contains an extreme
point, it does not contain a line by Prop. B.17(b), and hence C ∩H1 does
not contain a line, which implies that C ∩ H1 has an extreme point]. By
Prop. B.17(a), this optimal extreme point is also an extreme point of C. If
x∗ /∈ ri(C ∩H1), there exists a hyperplane H2 properly separating x∗ and
C ∩ H1. Again, since x∗ ∈ C ∩ H1, H2 contains x∗, so it cannot contain
C ∩ H1, and it follows that the intersection C ∩ H1 ∩ H2 has dimension
smaller than the dimension of C ∩H1.

If x∗ ∈ ri(C∩H1∩H2), then f must be constant over C∩H1∩H2, etc.
Since with each new hyperplane, the dimension of the intersection of C with
the generated hyperplanes is reduced, this process will be repeated at most
n times, until x∗ is a relative interior point of some set C∩H1∩ · · ·∩Hk, at
which time an extreme point of C∩H1∩· · ·∩Hk will be obtained. Through
a reverse argument, repeatedly applying Prop. B.17(a), it follows that this
extreme point is an extreme point of C. Q.E.D.

As a corollary we have the following:

Proposition B.19: Let C be a closed convex set and let f : C +→ &
be a concave function. Assume that for some invertible n× n matrix
A and some b ∈ &n we have

Ax ≥ b, ∀ x ∈ C.

Then if f attains a minimum over C, it attains a minimum at some
extreme point of C.

Proof: Consider the transformation x = A−1y and the problem of mini-
mizing

h(y) = f
(

A−1y
)

over Y = {y | A−1y ∈ C}. The function h is concave over the closed convex
set Y . Furthermore, y ≥ b for all y ∈ Y , implying that Y does not contain
a line, so that by Prop. B.17(b), Y contains an extreme point. If follows
from Prop. B.18(b) that h attains a minimum at some extreme point y∗

of Y . Then f attains its minimum over C at x∗ = A−1y∗, while x∗ is an
extreme point of C, since it can be verified that invertible transformations
of sets map extreme points to extreme points. Q.E.D.
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Extreme Points of Polyhedral Sets

We now consider a polyhedral set P and we characterize the set of its
extreme points (also called vertices). By Prop. B.16, P can be represented
as

P = C + P̂ ,

where C is a finitely generated cone C and P̂ is the convex hull of some
vectors v1, . . . , vm:

P̂ =







x
∣

∣

∣
x =

m
∑

j=1

µjvj ,
m
∑

j=1

µj = 1, µj ≥ 0, j = 1, . . . ,m







.

We note that an extreme point x̄ of P cannot be of the form x̄ = c + x̂,
where c /= 0, c ∈ C, and x̂ ∈ P̂ , since in this case x̄ would be the midpoint
of the line segment connecting the distinct vectors x̂ and 2c+ x̂. Therefore,
an extreme point of P must belong to P̂ , and since P̂ ⊂ P , it must also be
an extreme point of P̂ . An extreme point of P̂ must be one of the vectors
v1, . . . , vm, since otherwise this point would be expressible as a convex
combination of v1, . . . , vm. Thus the set of extreme points of P is either
empty or finite. Using Prop. B.17(b), it follows that the set of extreme
points of P is nonempty and finite if and only if P contains no line.

If P is bounded, then we must have P = P̂ , and it can be shown
that P is equal to the convex hull of its extreme points (not just the convex
hull of the vectors v1, . . . , vm). For a sketch of the proof note that if P is
represented as

P = conv
(

{v1, . . . , vm}
)

+ C,

where v1, . . . , vm are some vectors and C is a finitely generated cone (cf.
Prop. B.16), then the set of extreme points of P is a subset of {v1, . . . , vm}.
The reason is that an extreme point x̄ cannot be of the form x̄ = x̃+y, where
x̃ ∈ conv

(

{v1, . . . , vm}
)

and y /= 0, y ∈ C, since in this case x̄ would be the
midpoint of the line segment connecting the distinct vectors x̃ and x̃+ 2y.
It thus follows that an extreme point must belong to conv

(

{v1, . . . , vm}
)

.
The following proposition gives another and more specific character-

ization of extreme points of polyhedral sets, and is central in the theory of
linear programming.

Proposition B.20: Let P be a polyhedral set in &n.

(a) If P has the form

P =
{

x | a′jx ≤ bj , j = 1, . . . , r
}

,

where aj and bj are given vectors and scalars, respectively, then
a vector v ∈ P is an extreme point of P if and only if the set
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Av =
{

aj | a′jv = bj , j ∈ {1, . . . , r}
}

contains n linearly independent vectors.

(b) If P has the form

P = {x | Ax = b, x ≥ 0},

where A is a given m× n matrix and b is a given vector, then a
vector v ∈ P is an extreme point of P if and only if the columns
of A corresponding to the nonzero coordinates of v are linearly
independent.

(c) (Fundamental Theorem of Linear Programming) Assume that P
has at least one extreme point. Then if a linear function attains
a minimum over P , it attains a minimum at some extreme point
of P .

Proof: (a) If the set Av contains fewer than n linearly independent vectors,
then the system of equations

a′jw = 0, ∀ aj ∈ Av

has a nonzero solution w̄. For sufficiently small γ > 0, we have v+ γw̄ ∈ P
and v − γw̄ ∈ P , thus showing that v is not an extreme point. Thus, if v
is an extreme point, Av must contain n linearly independent vectors.

Conversely, suppose that Av contains a subset Āv consisting of n
linearly independent vectors. Suppose that for some y ∈ P , z ∈ P , and
α ∈ (0, 1), we have v = αy + (1 − α)z. Then for all aj ∈ Āv, we have

bj = a′jv = αa′jy + (1− α)a′jz ≤ αbj + (1− α)bj = bj .

Thus v, y, and z are all solutions of the system of n linearly independent
equations

a′jw = bj , ∀ aj ∈ Āv.

Hence v = y = z, implying that v is an extreme point.

(b) Let k be the number of zero coordinates of v, and consider the matrix
Ā, which is the same as A except that the columns corresponding to the
zero coordinates of v are set to zero. We write P in the form

P = {x | Ax ≤ b, −Ax ≤ −b, −x ≤ 0},

and apply the result of part (a). We obtain that v is an extreme point if and
only if Ā contains n− k linearly independent rows, which is equivalent to
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the n− k nonzero columns of Ā (corresponding to the nonzero coordinates
of v) being linearly independent.

(c) Since P is polyhedral, it has a representation

P = {x | Ax ≥ b},

for some m×n matrix A and some b ∈ &m. If A had rank less than n, then
its nullspace would contain some nonzero vector x̄, so P would contain
a line parallel to x̄, contradicting the existence of an extreme point [cf.
Prop. B.17(b)]. Thus A has rank n and hence it must contain n linearly
independent rows that constitute an n × n invertible submatrix Â. If b̂ is
the corresponding subvector of b, we see that every x ∈ P satisfies Âx ≥ b̂.
The result then follows using Prop. B.19. Q.E.D.

B.5 DIFFERENTIABILITY ISSUES

Convex functions have interesting differentiability properties, which we dis-
cuss in this section. We first consider real-valued functions. Recall that
the directional derivative of a function f : &n +→ & at a point x ∈ &n in
the direction y ∈ &n is given by

f ′(x; y) = lim
α↓0

f(x+ αy)− f(x)

α
,

provided that the limit exists, in which case we say that f is directionally
differentiable at x in the direction y, and we call f ′(x; y) the directional
derivative of f at x in the direction y. We say that f is directionally
differentiable at x if it is directionally differentiable at x in all directions.
Recall also that f is differentiable at x if it is directionally differentiable at
x and f ′(x; y) is linear, as a function of y, of the form

f ′(x; y) = ∇f(x)′y,

where ∇f(x) is the gradient of f at x. It can be shown that if f is dif-
ferentiable, then its gradient is continuous over &n (see [Ber15a], Exercise
3.4).

Given a convex function f : &n +→ &, we say that a vector d ∈ &n is
a subgradient of f at a point x ∈ &n if

f(z) ≥ f(x) + (z − x)′d, ∀ z ∈ &n. (B.8)

If instead f is a concave function, we say that d is a subgradient of f at
x if −d is a subgradient of the convex function −f at x. The set of all
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subgradients of a convex (or concave) function f at x ∈ &n is called the
subdifferential of f at x, and is denoted by ∂f(x).

The next proposition clarifies the relationship between the directional
derivative and the subdifferential, and provides some basic properties of
subgradients.

Proposition B.21: Let f : &n +→ & be a convex function. For every
x ∈ &n, the following hold:

(a) A vector d is a subgradient of f at x if and only if

f ′(x; y) ≥ y′d, ∀ y ∈ &n.

(b) The subdifferential ∂f(x) is a nonempty, convex, and compact
set, and there holds

f ′(x; y) = max
d∈∂f(x)

y′d, ∀ y ∈ &n.

Furthermore, ifX is a bounded set, the set ∪x∈X∂f(x) is bounded.

(c) f is differentiable at x with gradient ∇f(x), if and only if it
has ∇f(x) as its unique subgradient at x. Moreover, if f is
differentiable over &n, then ∇f(·) is a continuous function.

(d) If a sequence {xk} converges to x and dk ∈ ∂f(xk) for all k,
the sequence {dk} is bounded and each of its limit points is a
subgradient of f at x.

(e) If f is equal to the sum f1 + · · · + fm of convex functions fj :
&n +→ &, j = 1, . . . ,m, then ∂f(x) is equal to the vector sum
∂f1(x) + · · ·+ ∂fm(x).

(f) If f is equal to the composition of a convex function h : &m +→ &
and an m × n matrix A [f(x) = h(Ax)], then ∂f(x) is equal to
A′∂h(Ax) =

{

A′g | g ∈ ∂h(Ax)
}

.

(g) A vector x∗ ∈ X minimizes f over a convex set X ⊂ &n if and
only if there exists a subgradient d ∈ ∂f(x∗) such that

d′(z − x∗) ≥ 0, ∀ z ∈ X.

Proof: See Props. 3.1.1-3.1.4, and Exercise 3.4 of [Ber15a]. Q.E.D.

Note that the necessary condition for optimality of part (g) of the
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preceding proposition generalizes the optimality condition of Section 1.1
for the case where f is differentiable:

∇f(x∗)′(z − x∗) ≥ 0, ∀ z ∈ X.

In the special case whereX = &n, we obtain a basic necessary and sufficient
condition for unconstrained optimality of x∗, namely 0 ∈ ∂f(x∗). This
optimality condition is also evident from the subgradient inequality (B.8).

Subdifferential of the Maximum of a Convex Function

A case of great interest in optimization involves functions of the form

f(x) = max
z∈Z

φ(x, z).

The directional derivative and the subdifferential of f can be described in
terms of the directional derivative and the subdifferential of φ, evaluated
at points z̄ where the maximum is attained, as shown by the following
proposition.

Proposition B.22: (Danskin’s Theorem) Let Z ⊂ &m be a com-
pact set, and let φ : &n × Z +→ & be continuous and such that
φ(·, z) : &n +→ & is convex for each z ∈ Z.

(a) The function f : &n +→ & given by

f(x) = max
z∈Z

φ(x, z) (B.9)

is convex and has directional derivative given by

f ′(x; y) = max
z∈Z(x)

φ′(x, z; y),

where φ′(x, z; y) is the directional derivative of the function φ(·, z)
at x in the direction y, and Z(x) is the set of maximizing points
in Eq. (B.9)

Z(x) =

{

z
∣

∣

∣
φ(x, z) = max

z∈Z
φ(x, z)

}

.

In particular, if Z(x) consists of a unique point z and φ(·, z) is
differentiable at x, then f is differentiable at x, and ∇f(x) =
∇xφ(x, z), where ∇xφ(x, z) is the vector with coordinates

∂φ(x, z)

∂xi
, i = 1, . . . , n.
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(b) If φ(·, z) is differentiable for all z ∈ Z and ∇xφ(x, ·) is continuous
on Z for each x, then

∂f(x) = conv
{

∇xφ(x, z) | z ∈ Z(x)
}

, ∀ x ∈ &n. (B.10)

In particular, if φ is linear in x for all z ∈ Z, i.e.,

φ(x, z) = a′zx+ bz, ∀ z ∈ Z,

then
∂f(x) = conv

{

az | z ∈ Z(x)
}

.

Proof: See Prop. 4.5.1 of [BNO03] or Exercise 3.5 of [Ber15a] (with solu-
tion included). Q.E.D.

The preceding proposition derives its origin from a theorem by Dan-
skin [Dan67] that provides a formula for the directional derivative of the
maximum of a (not necessarily convex) directionally differentiable function.
When adapted to a convex function f , this formula yields the expression
(B.10) for ∂f(x).

Subdifferential of the Expected Value of a Convex Function

Another important subdifferential formula relates to the subgradients of an
expected value function

f(x) = E
{

F (x,ω)
}

,

where ω is a random variable taking values in a set Ω, and F (·,ω) : &n +→ &
is a real-valued convex function such that f is real-valued (note that f is
easily verified to be convex). If ω takes a finite number of values with
probabilities p(ω), then the formulas

f ′(x; d) = E
{

F ′(x,ω; d)
}

, ∂f(x) = E
{

∂F (x,ω)
}

, (B.11)

hold because they can be written in terms of finite sums as

f ′(x; d) =
∑

ω∈Ω

p(ω)F ′(x,ω; d), ∂f(x) =
∑

ω∈Ω

p(ω)∂F (x,ω),

so Prop. B.21(e) applies. However, the formulas (B.11) hold even in the
case where Ω is uncountably infinite, with appropriate mathematical inter-
pretation of the integral of set-valued functions E

{

∂F (x,ω)
}

as the set of
integrals

∫

ω∈Ω
g(x,ω) dP (ω), (B.12)
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where g(x,ω) ∈ ∂F (x,ω), ω ∈ Ω (measurability issues must be addressed
in this context). For a formal proof and analysis, see the author’s papers
[Ber72], [Ber73], which also provide a necessary and sufficient condition for
f to be differentiable, even when F (·,ω) is not. In this connection, it is
important to note that the integration over ω in Eq. (B.12) may smooth out
the nondifferentiabilities of F (·,ω) if ω is a “continuous” random variable.
This property can be used in turn in algorithms, including schemes that
bring to bear the methodology of differentiable optimization.

Subgradients of Extended Real-Valued Convex Functions

The notion of a subdifferential and a subgradient of a convex extended
real-valued function f : &n +→ (−∞,∞] can be developed along the lines
of the present section. In particular, a vector d is a subgradient of f at a
vector x such that f(x) < ∞ if the subgradient inequality holds, i.e.,

f(z) ≥ f(x) + (z − x)′d, ∀ z ∈ &n. (B.13)

The subdifferential ∂f(x) is the set of all subgradients of the convex func-
tion f . By convention, ∂f(x) is considered empty for all x with f(x) = ∞.

Note that ∂f(x) is always a closed set, since for any x with f(x) < ∞,
it is the set of all d that lie in the intersection of the infinite collection of
closed halfspaces defined by Eq. (B.13). However, contrary to the case of
real-valued functions, ∂f(x) may be empty, or closed but unbounded, even
if f(x) < ∞. For example, the subdifferential of the extended real-valued
convex function

f(x) =

{

−
√
x if 0 ≤ x ≤ 1,

∞ otherwise,

is given by

∂f(x) =







− 1
2
√
x

if 0 < x < 1,

[−1/2,∞) if x = 1,
Ø if x ≤ 0 or 1 < x.

Thus, ∂f(x) can be empty and can be unbounded at points x that belong
to the effective domain of f (as in the cases x = 0 and x = 1, respectively,
of the above example). However, it can be shown that ∂f(x) is nonempty
and compact at points x that are interior points of the effective domain
of f , as also illustrated by the above example. Also ∂f(x) is nonempty
at points x that are relative interior points of the effective domain of f .
These facts are shown in [Ber09], Prop. 5.4.1.

There are generalized versions of some of the preceding results within
the context of extended real-valued convex functions, but with appropriate
adjustments and additional assumptions to deal with cases where ∂f(x)
may be empty or noncompact. For example the sum differentiation formula

∂(f1 + · · ·+ fm)(x) = ∂f1(x) + · · ·+ ∂fm(x)
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[cf. Prop. B.21(e)] may fail even for x in the effective domain of f1+· · ·+fm;
a condition such as that the relative interiors of the effective domains of the
extended real-valued convex functions f1, . . . , fm have a point in common is
necessary for the formula to hold for all x ∈ &n (see the books [Roc70] and
[Ber09]). There is a similar result for the subdifferential of the composition
f(x) = h(Ax) [cf. Prop. B.21(f)], for the case where h is extended real-
valued convex and A is a matrix: we have

∂f(x) = A′∂h(Ax), ∀ x ∈ &n,

if the range of A contains a point in the relative interior of dom(h).

Danskin’s Theorem for Extended Real-Valued Convex Functions

Let us finally note an extension of Danskin’s Theorem [Prop. B.22(b)],
which provides a more general formula for the subdifferential ∂f(x) of the
function

f(x) = sup
z∈Z

φ(x, z), (B.14)

where Z is a compact set. This version of the theorem does not require
that φ(·, z) is differentiable. Instead it assumes that φ(·, z) is an extended
real-valued closed proper convex function for each z ∈ Z, that int

(

dom(f)
)

[the interior of the set dom(f) =
{

x | f(x) < ∞
}

] is nonempty, and that
φ is continuous on the set int

(

dom(f)
)

×Z. Then for all x ∈ int
(

dom(f)
)

,
we have

∂f(x) = conv
{

∂φ(x, z) | z ∈ Z(x)
}

, (B.15)

where ∂φ(x, z) is the subdifferential of φ(·, z) at x for any z ∈ Z, and Z(x)
is the set of maximizing points in Eq. (B.14); for a formal statement and
proof of this result, see Prop. A.22 of the author’s Ph.D. thesis, which may
be found on-line [Ber71].

Note that the nonemptiness of int
(

dom(f)
)

is an essential assumption
for the formula (B.15) to hold. In particular, the formula may not hold if
instead we just assume that the relative interior of dom(f) is nonempty.
For an example, consider the two spheres in &2

S1 =
{

(x1, x2) | (x1−1)2+x2
2 ≤ 1

}

, S2 =
{

(x1, x2) | (x1+1)2+x2
2 ≤ 1

}

,

let f1 and f2 be the indicator functions of S1 and S2, respectively,

f1(x) =

{

0 if x ∈ S1,
∞ if x /∈ S1,

, f2(x) =

{

0 if x ∈ S2,
∞ if x /∈ S2,

and let

f(x) = max
{

f1(x), f2(x)
}

=

{

0 if x = 0,
∞ if x /= 0.

Then it can be seen that the formula (B.15) does not hold at x = 0.



APPENDIX C:

Line Search Methods

In this appendix we describe algorithms for one-dimensional minimization.
These are iterative algorithms, used to implement (approximately) the line
minimization stepsize rules.

We briefly present three practical methods. The first two use poly-
nomial interpolation, one requiring derivatives, the second only function
values. The third, the Golden Section method, also requires just function
values. By contrast with the interpolation methods, it does not depend on
the existence of derivatives of the minimized function and may be applied
even to discontinuous functions. Its validity depends, however, on a certain
unimodality assumption.

In our presentation of the interpolation methods, we consider mini-
mization of the function

g(α) = f(x+ αd),

where f is continuously differentiable. By the chain rule, we have

g′(α) =
dg(α)

dα
= ∇f(x+ αd)′d.

We assume that
g′(0) = ∇f(x)′d < 0,

i.e., that d is a descent direction at x. We give no convergence or rate of
convergence results, but under some fairly natural assumptions, it can be
shown that the interpolation methods converge superlinearly.

C.1 CUBIC INTERPOLATION

The cubic interpolation method successively determines at each iteration an
appropriate interval [a, b] within which a local minimum of g is guaranteed

809
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to exist. It then fits a cubic polynomial to the values g(a), g(b), g′(a),
g′(b). The minimizing point ᾱ of this cubic polynomial lies within [a, b]
and replaces one of the two points a or b for the next iteration.

Cubic Interpolation

Step 1: (Determination of the Initial Interval) Let s > 0 be
some scalar. (Note: If d “approximates well” the Newton direction,
then we take s = 1.) Evaluate g(α) and g′(α) at the points α = 0,
s, 2s, 4s, 8s, . . . , until two successive points a and b are found such
that either g′(b) ≥ 0 or g(b) ≥ g(a). Then, it can be seen that a local
minimum of g exists within the interval (a, b]. [Note: If g(s) is “much
larger” than g(0), it is advisable to replace s by βs, where β ∈ (0, 1),
for example β = 1

2 or β = 1
5 , and repeat this step.] One can show that

this step can be carried out if limα→∞ g(α) > g(0).

Step 2: (Updating of the Current Interval) Given the current
interval [a, b], a cubic polynomial is fitted to the four values g(a), g′(a),
g(b), g′(b). The cubic can be shown to have a unique minimum ᾱ in
the interval (a, b] given by

ᾱ = b−
g′(b) + w − z

g′(b)− g′(a) + 2w
(b− a),

where

z =
3
(

g(b)− g(a)
)

b− a
+ g′(a) + g′(b),

w =
√

z2 − g′(a)g′(b).

If g′(ᾱ) ≥ 0 or g(ᾱ) ≥ g(a) replace b by ᾱ. If g′(ᾱ) < 0 and g(ᾱ) < g(a)
replace a by ᾱ. (Note: In practice the computation is terminated once
the length of the current interval becomes smaller than a prespecified
tolerance or else we obtain ᾱ = b.)

C.2 QUADRATIC INTERPOLATION

This method uses three points a, b, and c such that a < b < c, and
g(a) > g(b) and g(b) < g(c). Such a set of points is referred to as a three-
point pattern. It can be seen that a local minimum of g must lie between the
extreme points a and c of a three-point pattern a, b, c. At each iteration,
the method fits a quadratic polynomial to the three values g(a), g(b), and
g(c), and replaces one of the points a, b, and c by the minimizing point of
this quadratic polynomial (see Fig. C.1).
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a a ᾱ ᾱ b c g b c g

Figure C.1. A three-point pattern and the associated quadratic polynomial. If
ᾱ minimizes the quadratic, a new three point pattern is obtained using ᾱ and two
of the three points a, b, and c (ᾱ, and a, b in the example of the figure).

Quadratic Interpolation

Step 1: (Determination of Initial Three-Point Pattern) We
search along the line as in the cubic interpolation method until we
find three successive points a, b, and c with a < b < c such that
g(a) > g(b) and g(b) < g(c). As for the cubic interpolation method,
we assume that this stage can be carried out, and we can show that
this is guaranteed if limα→∞ g(α) > g(0).

Step 2: (Updating the Current Three-Point Pattern) Given
the current three-point pattern a, b, c, we fit a quadratic polynomial to
the values g(a), g(b), and g(c), and we determine its unique minimum
ᾱ. It can be shown that ᾱ ∈ (a, c) and that

ᾱ =
1

2

g(a)(c2 − b2) + g(b)(a2 − c2) + g(c)(b2 − a2)

g(a)(c− b) + g(b)(a− c) + g(c)(b − a)
.

Then, we form a new three-point pattern as follows. If ᾱ > b, we
replace a or c by ᾱ depending on whether g(ᾱ < g(b) or g(ᾱ) > g(b),
respectively. If ᾱ < b, we replace c or a by ᾱ depending on whether
g(ᾱ) < g(b) or g(ᾱ) > g(b), respectively. [Note: If g(ᾱ) = g(b) then
a special local search near ᾱ should be conducted to replace ᾱ by a
point ᾱ′ with g(ᾱ′) /= g(b). The computation is terminated when the
length of the three-point pattern is smaller than a certain tolerance.]

An alternative possibility for quadratic interpolation is to determine
the minimum ā of the quadratic polynomial that has the same value as g
at the points 0 and a, and the same first derivative as g at 0. It can be
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b c g(α)

) α αa ᾱ∗ 0 0 s

Figure C.2. A strictly unimodal func-
tion g over an interval [0, s] is defined as
a function that has a unique global min-
imum α∗ in [0, s] and if α1,α2 are two
points in [0, s] such that α1 < α2 < α∗

or α∗ < α1 < α2, then

g(α1) > g(α2) > g(α∗)

or
g(α∗) < g(α1) < g(α2),

respectively. An example of a strictly
unimodal function, is a function which
is strictly convex over [0, s].

verified that this minimum is given by

ā =
g′(0)a2

2
(

g′(0)a+ g(0)− g(a)
) .

C.3 THE GOLDEN SECTION METHOD

Here, we assume that g(α) is strictly unimodal in the interval [0, s], as
defined in Fig. C.2. The Golden Section method minimizes g over [0, s] by
determining at the kth iteration an interval [αk, ᾱk] containing α∗. These
intervals are obtained using the number

τ =
3−

√
5

2
,

which satisfies τ = (1−τ)2 and is related to the Fibonacci number sequence.
The significance of this number will be seen shortly.

Initially, we take
[α0, ᾱ0] = [0, s].

Given [αk, ᾱk], we determine [αk+1, ᾱk+1] so that α∗ ∈ [αk+1, ᾱk+1] as
follows. We calculate

bk = αk + τ(ᾱk − αk)

b̄k = ᾱk − τ(ᾱk − αk)

and g(bk), g(b̄k). Then:

(1) If g(bk) < g(b̄k) we set

αk+1 = αk, ᾱk+1 = bk if g(αk) ≤ g(bk)
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∗ 0 s αk s ak bk α α
∗ k ᾱkbk b̄k ) α α

b c g(α)

Figure C.3. Golden Section search. Given the interval [αk, ᾱk ] containing the
minimum α∗, we calculate

bk = αk + τ(ᾱk − αk)

and
b̄k = ᾱk − τ(ᾱk − αk).

The new interval [αk+1, ᾱk+1] has either bk or b̄k as one of its endpoints.

αk+1 = αk, ᾱk+1 = b̄k if g(αk) > g(bk).

(2) If g(bk) > g(b̄k) we set

αk+1 = b̄k, ᾱk+1 = ᾱk if g(b̄k) ≥ g(ᾱk)

αk+1 = bk, ᾱk+1 = āk if g(b̄k) < g(αk).

(3) If g(bk) = g(b̄k) we set

αk+1 = bk, ᾱk+1 = b̄k.

Based on the definition of a strictly unimodal function it can be shown
(see Fig. C.3) that the intervals [αk, ᾱk] contain α∗ and their lengths con-
verge to zero. In practice, the computation is terminated once (ᾱk − αk)
becomes smaller than a prespecified tolerance.

An important fact, which rests on the choice of the particular number
τ is that

[αk+1, ᾱk+1] = [αk, b̄k] =⇒ b̄k+1 = bk,
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[αk+1, ᾱk+1] = [bk, ᾱk] =⇒ bk+1 = b̄k.

In other words, a trial point bk or b̄k that is not used as the end point of
the next interval continues to be a trial point for the next iteration. The
reader can verify this, using the property

τ = (1 − τ)2.

Thus, in either of the above situations, the values b̄k+1, g(b̄k+1) or bk+1,
g(bk+1) are available and need not be recomputed at the next iteration,
requiring a single function evaluation instead of two.



APPENDIX D:

Implementation of Newton’s

Method

In this appendix we describe a globally convergent version of Newton’s
method based on the modified Cholesky factorization approach discussed
in Section 1.4. A computer code implementing the method can be freely
obtained from the author’s web page or through the book’s web page.

D.1 CHOLESKY FACTORIZATION

We will give an algorithm for factoring a positive definite symmetric matrix
A as

A = LL′,

where L is lower triangular. This is the Cholesky factorization. Let aij be
the elements of A and let Ai be the ith leading principal submatrix of A,
i.e., the submatrix

Ai =









a11 a12 · · · a1i
a21 a22 · · · a2i
...

...
. . .

...
ai1 ai2 · · · aii









.

It is seen that this submatrix is positive definite, since for any y ∈ &i,
y /= 0, we have by the positive definiteness of A

y′Aiy = [ y′ 0 ]A

[

y
0

]

> 0.

815
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The factorization of A is obtained by successive factorization of A1, A2, . . ..
Indeed we have A1 = L1L′

1, where L1 = [
√
a11]. Suppose we have the

Cholesky factorization of Ai−1,

Ai−1 = Li−1L′
i−1. (D.1)

Let us write

Ai =

[

Ai−1 βi

β′
i aii

]

, (D.2)

where βi is the column vector

βi =





a1i
...

ai−1,i



 . (D.3)

Based on Eqs. (D.1)-(D.3), it can be verified that

Ai = LiL′
i,

where

Li =

[

Li−1 0
l′i λii

]

, (D.4)

and

li = L−1
i−1βi, λii =

√

aii − l′ili. (D.5)

The scalar λii is well defined because it can be shown that aii − l′ili > 0.
This is seen by defining b = A−1

i−1βi, and by using the positive definiteness
of Ai to write

0 < [ b′ −1 ]Ai

[

b
−1

]

= b′Ai−1b− 2b′βi + aii

= b′βi − 2b′βi + aii = aii − b′βi

= aii − β′
iA

−1
i−1βi = aii − β′

i(Li−1L′
i−1)

−1βi

= aii − (L−1
i−1βi)′(L

−1
i−1βi) = aii − l′ili.

The preceding construction can also be used to show that the Cholesky
factorization is unique among factorizations involving lower triangular ma-
trices with positive elements along the diagonal. Indeed, A1 has a unique
such factorization, and if Ai−1 has a unique factorization Ai−1 = Li−1L′

i−1,
then Li is uniquely determined from the requirement Ai = LiL′

i with the
diagonal elements of Li positive, and Eqs. (D.4) and (D.5).
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Cholesky Factorization by Columns

In the preceding algorithm, we calculate L by rows, i.e., we first calculate
the first row of L, then the second row, etc. An alternative and equivalent
method is to calculate L by columns, i.e., first calculate the first column of
L, then the second column, etc. To see how this can be done, we note that
the first column of A is equal to the first column of L multiplied with l11,
i.e.,

ai1 = l11li1, i = 1, . . . , n,

from which we obtain
l11 =

√
a11,

li1 =
ai1
l11

, i = 2, . . . , n.

Similarly, given columns 1, 2, . . . , j − 1 of L, we equate the elements of the
jth column of A with the corresponding elements of LL′ and we obtain the
elements of the jth column of L as follows:

ljj =

√

√

√

√ajj −
j−1
∑

m=1

l2jm,

lij =
aij −

∑j−1
m=1 ljmlim
ljj

, i = j + 1, . . . , n.

D.2 APPLICATION TO A MODIFIED NEWTON METHOD

Consider now adding to A a diagonal correction E and simultaneously
factoring the matrix

F = A+ E,

where E is such that F is positive definite. The elements of E are in-
troduced sequentially during the factorization process as some diagonal
elements of the triangular factor are discovered, which are either negative
or are close to zero, indicating that A is either not positive definite or is
nearly singular. As discussed in Section 1.4, this is a principal method
by which Newton’s method is modified to enhance its global convergence
properties. The precise mechanization is as follows:

We first fix positive scalars µ1 and µ2, where µ1 < µ2. We calculate
the first column of the triangular factor L of F by

l11 =

{√
a11 if µ1 < a11,√
µ2 otherwise,
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li1 =
ai1
l11

, i = 2, . . . , n.

Similarly, given columns 1, 2, . . . , j − 1 of L, we obtain the elements of the
jth column from the equations

ljj =















√

√

√

√ajj −
j−1
∑

m=1

l2jm if µ1 < a11 −
∑j−1

m=1 l
2
jm,

√
µ2 otherwise,

lij =
aij −

∑j−1
m=1 ljmlim
ljj

, i = j + 1, . . . , n.

In words, if the diagonal element of LL′ comes out less than µ1, we bring
it up to µ2.

Note that the jth diagonal element of the correction matrix E is equal
to zero if µ1 < ajj −

∑j−1
m=1 l

2
jm and is equal to

µ2 −

(

ajj −
j−1
∑

m=1

l2jm

)

otherwise.
The preceding scheme can be used to modify Newton’s method, where

at the kth iteration, we add a diagonal correction ∆k to the Hessian
∇2f(xk) and simultaneously obtain the Cholesky factorization LkLk′ of
∇2f(xk)+∆k as described above. A modified Newton direction dk is then
obtained by first solving the triangular system

Lky = −∇f(xk),

and then solving the triangular system

Lk′dk = y.

Solving the first system is called forward elimination and is accomplished
in O(n2) arithmetic operations using the equations

y1 = −
∂f(xk)/∂x1

l11
,

yi = −
∂f(xk)/∂xi +

∑i−1
m=1 limym

lii
, i = 2, . . . , n,

where lim is the imth element of Lk. Solving the second system is called
back substitution and is accomplished again in O(n2) arithmetic operations
using the equations

dn =
yn

lnn
,
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di =
yi −

∑n
m=i+1 lmidm

lii
, i = 1, . . . , n− 1.

The next point xk+1 is obtained from

xk+1 = xk + αkdk,

where αk is chosen by the Armijo rule with unity initial step whenever
the Hessian is not modified (∆k = 0) and by means of a line minimization
otherwise.

Assuming fixed values of µ1 and µ2, the following may be verified for
the modified Newton’s method just described:

(a) The algorithm is globally convergent in the sense that every limit
point of {xk} is a stationary point of f . This can be shown using
Prop. 1.2.1 in Section 1.2.

(b) For each local minimum x∗ with positive definite Hessian, there exist
scalars µ > 0 and ε > 0 such that if µ1 ≤ µ and ‖x0 − x∗‖ ≤ ε,
then xk → x∗, ∆k = 0, and αk = 1 for all k. In other words if µ1 is
not chosen too large, the Hessian will never be modified near x∗, the
method will be reduced to the pure form of Newton’s method, and
the convergence to x∗ will be superlinear. The theoretical require-
ment that µ1 be sufficiently small can be eliminated by making µ1

dependent on the norm of the gradient (e.g. µ1 = c‖∇f(xk)‖, where
c is some positive scalar).

Practical Choice of Parameters and Stepsize Selection

We now address some practical issues. As discussed earlier, one should try
to choose µ1 small in order to avoid detrimental modification of the Hes-
sian. Some trial and error with one’s particular problem may be required
here. As a practical matter, we recommend choosing initially µ1 = 0 and
increasing µ1 only if difficulties arise due to roundoff error or extremely
large norm of calculated direction. (Choosing µ1 = 0, runs counter to our
convergence theory because the generated directions are not guaranteed
to be gradient related, but the practical consequences of this are typically
insignificant.)

The parameter µ2 should generally be chosen considerably larger than
µ1. It can be seen that choosing µ2 very small can make the modified Hes-
sian matrix LkLk′ nearly singular. On the other hand, choosing µ2 very
large has the effect of making nearly zero the coordinates of dk that cor-
respond to nonzero diagonal elements of the correction matrix ∆k. Gen-
erally, some trial and error is necessary to determine a proper value of µ2.
A good guideline is to try a relatively small value of µ2 and to increase
µ2 if the stepsize generated by the line minimization algorithm is substan-
tially smaller than unity. The idea here is that small values of µ2 tend to
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produce directions dk with large value of norm and hence small values of
stepsize. Thus a small value of stepsize indicates that µ2 is chosen smaller
than appropriate, and suggests that an increase of µ2 is desirable. It is also
possible to construct along these lines an adaptive scheme that changes the
values of µ1 and µ2 in the course of the algorithm.

The following scheme to set and adjust µ1 and µ2 has worked well
for the author. At each iteration k, we determine the maximal absolute
diagonal element of the Hessian, i.e.,

wk = max

{
∣

∣

∣

∣

∂2f(xk)

(x1)2

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∂2f(xk)

(xn)2

∣

∣

∣

∣

}

,

and we set µ1 and µ2 to

µ1 = r1wk, µ2 = r2wk.

The scalar r1 is set at some “small” (or zero) value. The scalar r2 is
changed each time the Hessian is modified; it is multiplied by 5 if the
stepsize obtained by the minimization rule is less than 0.2, and it is divided
by 5 each time the stepsize is larger than 0.9.

Finally, regarding stepsize selection, any of a large number of possible
line minimization algorithms can be used for those iterations where the
Hessian is modified (in other iterations the Armijo rule with unity initial
stepsize is used). One possibility is to use quadratic interpolation based on
function values; see Section C.2 in Appendix C.

It is worth noting that if the cost function is quadratic, then it can
be shown that a unity stepsize results in cost reduction for any values of µ1

and µ2. In other words if f is quadratic (not necessarily positive definite),
we have

f
(

xk − (F k)−1∇f(xk)
)

≤ f(xk),

where F k = ∇2f(xk)+∆k and ∆k is any positive definite matrix such that
F k is positive definite. As a result, a stepsize near unity is appropriate for
initiating the line minimization algorithm. This fact can be used to guide
the implementation of the line minimization routine.
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[NeB01] Nedić, A., and Bertsekas, D. P., 2001. “Incremental Subgradient Methods for
Nondifferentiable Optimization,” SIAM J. on Optimization, Vol. 12, pp. 109-138.
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