
Neuro-Dynamic Programming: An Overview

1

Dimitri Bertsekas
Dept. of Electrical Engineering

and Computer Science
M.I.T.

September 2006

Neuro-Dynamic Programming
An Overview

Neuro-Dynamic Programming: An Overview

2

BELLMAN AND THE DUAL
CURSES

• Dynamic Programming (DP) is very broadly
applicable, but it suffers from:

– Curse of dimensionality
– Curse of modeling

• We address “complexity” by using low-
dimensional parametric approximations

• We allow simulators in place of models
• Unlimited applications in planning, resource

allocation, stochastic control, discrete
optimization

• Application is an art … but guided by
substantial theory

Neuro-Dynamic Programming: An Overview

3

OUTLINE

• Main NDP framework
• Discussion of two classes of methods, based on

approximate value/policy iteration:
– Actor-critic methods/LSPE
– Rollout algorithms

• Additional classes of methods (not discussed):
approximate linear programming, approximation in
policy space

• References:
– Neuro-Dynamic Programming (1996, Bertsekas + Tsitsiklis)
– Reinforcement Learning (1998, Sutton + Barto)
– Dynamic Programming: 3rd Edition (2006, Bertsekas)
– Recent papers with V. Borkar, A. Nedic, and J. Yu

• Papers and this talk can be downloaded from
http://web.mit.edu/dimitrib/www/home.html

Neuro-Dynamic Programming: An Overview

4

DYNAMIC PROGRAMMING /
DECISION AND CONTROL

• Main ingredients:
– Dynamic system; state evolving in discrete time
– Decision/control applied at each time
– Cost is incurred at each time
– There may be noise & model uncertainty
– There is state feedback used to determine the control

System
State

Decision/
Control

Feedback
Loop

Neuro-Dynamic Programming: An Overview

5

APPLICATIONS

• Extremely broad range
• Sequential decision contexts

– Planning (shortest paths, schedules, route planning, supply
chain)

– Resource allocation over time (maintenance, power generation)
– Finance (investment over time, optimal stopping/option valuation)
– Automatic control (vehicles, machines)

• Nonsequential decision contexts
– Combinatorial/discrete optimization (breakdown solution into

stages)
– Branch and Bound/ Integer programming

• Applies to both deterministic and stochastic problems

Neuro-Dynamic Programming: An Overview

6

ESSENTIAL TRADEOFF
CAPTURED BY DP

• Decisions are made in stages
• The decision at each stage:

– Determines the present stage cost
– Affects the context within which future decisions are

made
• At each stage we must trade:

– Low present stage cost
– Undesirability of high future costs

Neuro-Dynamic Programming: An Overview

7

• Optimal decision at the current state minimizes
the expected value of
Current stage cost

+ Future stages cost
(starting from the next state

- using opt. policy)
• Extensive mathematical methodology
• Applies to both discrete and continuous

systems (and hybrids)
• Dual curses of dimensionality/modeling

KEY DP RESULT:
BELLMAN’S EQUATION

Neuro-Dynamic Programming: An Overview

8

• Use one-step lookahead with an “approximate” cost
• At the current state select decision that minimizes the

expected value of

Current stage cost
+ Approximate future stages cost

(starting from the next state)

• Important issues:
– How to construct the approximate cost of a state
– How to understand and control the effects of approximation

KEY NDP IDEA

Neuro-Dynamic Programming: An Overview

9

METHODS TO COMPUTE AN
APPROXIMATE COST

• Parametric approximation algorithms
– Use a functional approximation to the optimal cost; e.g.,

linear combination of basis functions
– Select the weights of the approximation
– One possibility: Hand-tuning, and trial and error
– Systematic DP-related policy and value iteration methods

(TD-Lambda, Q-Learning, LSPE, LSTD, etc)
• Rollout algorithms

– Use the cost of the heuristic (or a lower bound) as cost
approximation

– Obtain by simulation this cost, starting from the state of
interest

Neuro-Dynamic Programming: An Overview

10

SIMULATION AND LEARNING

• Simulation (learning by experience): used to
compute the (approximate) cost-to-go -- a key
distinctive aspect of NDP

• Important advantage: detailed system model
not necessary - use a simulator instead

• In case of parametric approximation: off-line
learning

• In case of a rollout algorithm: on-line learning
(we learn only the cost values needed by on-
line simulation)

Neuro-Dynamic Programming: An Overview

11

PARAMETRIC
APPROXIMATION:
CHESS PARADIGM

• Chess playing computer programs
• State = board position
• Score of position: “Important features”

appropriately weighted

Feature
Extraction

Scoring
Function

Score of position

Features:
Material balance
Mobility
Safety
etc

Position Evaluator

Neuro-Dynamic Programming: An Overview

12

TRAINING

• In chess: Weights are “hand-tuned”
• In more sophisticated methods: Weights are

determined by using simulation-based training
algorithms

• Temporal Differences TD(λ), Q-Learning, Least
Squares Policy Evaluation LSPE(λ), Least
Squares Temporal Differences LSTD(λ), etc

• All of these methods are based on DP ideas of
policy iteration and value iteration

Neuro-Dynamic Programming: An Overview

13

POLICY IMPROVEMENT
PRINCIPLE

• Given a current policy, define a new policy as
follows:

At each state minimize
Current stage cost + cost-to-go of current
policy (starting from the next state)

• Policy improvement result: New policy has
improved performance over current policy

• If the cost-to-go is approximate, the
improvement is “approximate”

• Oscillation around the optimal; error bounds

Neuro-Dynamic Programming: An Overview

14

ACTOR/CRITIC SYSTEMS

• Metaphor for policy evaluation/improvement
• Actor implements current policy
• Critic evaluates the performance; passes

feedback to the actor
• Actor changes/“improves” policy

System Simulator

Decision Generator

Performance
Simulation
Data

Decision State

Performance
Evaluation

Approximate Scoring Function

Scoring Function

Critic

Actor

Feedback
from critic

Neuro-Dynamic Programming: An Overview

15

APPROXIMATE POLICY
EVALUATION

• Consider stationary policy µ w/ cost function J
• Satisfies Bellman’s equation:

J = T(J) = gµ + α PµJ (discounted case)
• Subspace approximation

J ~ Φr
Φ: matrix of basis functions
r: parameter vector

Neuro-Dynamic Programming: An Overview

16

DIRECT AND INDIRECT
APPROACHES

• Direct: Use simulated cost samples and least-squares fit

J ~ ΠJ
Approximate the cost

• Indirect: Solve a projected form of Bellman’s equation

 Φr = ΠT(Φr)
 Approximate the equation

S: Subspace spanned by basis functions
0

ΠJ

Projection
on S

J

Direct Mehod: Projection of cost vector J

S: Subspace spanned by basis functions

T(Φr)

0

Φr = ΠT(Φr)

Projection
on S

Indirect method: Solving a projected
form of Bellman’s equation

Neuro-Dynamic Programming: An Overview

17

DIRECT APPROACH

• Minimize over r; least squares
Σ (Simulated cost sample of J(i) - (Φr)i)2

• Each state is weighted proportionally to its
appearance in the simulation

• Works even with nonlinear function
approximation (in place of Φr)

• Gradient or special least squares methods can
be used

• Problem with large error variance

Neuro-Dynamic Programming: An Overview

18

INDIRECT POLICY EVALUATION

• The most popular simulation-based methods
solve the Projected Bellman Equation (PBE)

• TD(λ): (Sutton 1988) - stochastic
approximation method

• LSTD(λ): (Barto & Bradtke 1996, Boyan 2002) -
solves by matrix inversion a simulation
generated approximation to PBE, optimal
convergence rate (Konda 2002)

• LSPE(λ): (Bertsekas, Ioffe 1996, Borkar, Nedic
2004, Yu 2006) - uses projected value iteration
to find fixed point of PBE

• We will focus now on LSPE

Neuro-Dynamic Programming: An Overview

19

LEAST SQUARES POLICY
EVALUATION (LSPE)

• Consider α-discounted Markov Decision
Problem (finite state and control spaces)

• We want to approximate the solution of
Bellman equation:

J = T(J) = gµ + α PµJ
• It solves the projected Bellman equation

Φr = ΠT(Φr)

S: Subspace spanned by basis functions

T(Φr)

0

Φr = ΠT(Φr)

Projection
on S

Indirect method: Solving a projected
form of Bellman’s equation

Neuro-Dynamic Programming: An Overview

20

PROJECTED VALUE
ITERATION

• Value iteration: Jt+1 = T(Jt)
• Projected Value iteration: Φrt+1 = ΠT(Φrt)

where Φ is a matrix of basis functions and Π is projection
w/ respect to some weighted Euclidean norm ||.||

• Norm mismatch issue:
– Π is nonexpansive with respect to ||.||
– T is a contraction w/ respect to the sup norm

• Key Question: When is ΠT a contraction w/ respect to
some norm?

Neuro-Dynamic Programming: An Overview

21

PROJECTION W/ RESPECT TO
DISTRIBUTION NORM

• Consider the steady-state distribution norm
– Weight of ith component: the steady-state probability of

state i in the Markov chain corresponding to the policy
evaluated

– Projection with respect to this norm can be approximated
by simulation-based least-squares

• Remarkable Fact: If Π is projection w/ respect
to the distribution norm, then ΠT is a
contraction for discounted problems

• Average cost story is more complicated (Yu
and Bertsekas, 2006)

Neuro-Dynamic Programming: An Overview

22

LSPE: SIMULATION-BASED
IMPLEMENTATION

• Simulation-based implementation of Φrt+1 = ΠT(Φrt) with
an infinitely long trajectory, and least squares
Φrt+1 = ΠT(Φrt) + Diminishing simulation noise

• Interesting convergence theory (see papers at www site)
• Optimal convergence rate; much better than TD(λ), same

as LSTD (Yu and Bertsekas, 2006)

Neuro-Dynamic Programming: An Overview

23

SUMMARY OF ACTOR-CRITIC
SYSTEMS

• A lot of mathematical analysis, insight, and practical
experience are now available

• There is solid theory for policy evaluation methods with
linear function approximation: TD(λ), LSPE(λ), LSTD(λ)

• Typically, improved policies are obtained early, then
oscillation “near” the optimum

• On-line computation is small
• Training is challenging and time-consuming
• Less suitable when problem data changes frequently

Neuro-Dynamic Programming: An Overview

24

ROLLOUT POLICIES:
BACKGAMMON PARADIGM

• On-line (approximate) cost-to-go calculation
by simulation of some base policy (heuristic)

• Rollout: Use action w/ best simulation results
• Rollout is one-step policy iteration

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Av. Score by
Monte-Carlo
Simulation

Possible Moves

Neuro-Dynamic Programming: An Overview

25

COST IMPROVEMENT
PROPERTY

• Generic result: Rollout improves on base heuristic
• A special case of policy iteration/policy improvement
• In practice, substantial improvements over the base

heuristic(s) have been observed
• Major drawback: Extensive Monte-Carlo simulation
• Extension to multiple heuristics:

– From each next state, run multiple heuristics
– Use as value of the next state the best heuristic value
– Cost improvement: The rollout algorithm performs at least as well

as each of the base heuristics
• Interesting special cases:

– The classical open-loop feedback control policy (base heuristic is
the optimal open-loop policy)

– Model predictive control (major applications in control systems)

Neuro-Dynamic Programming: An Overview

26

STOCHASTIC PROBLEMS

• Major issue: Computational burden of Monte-
Carlo simulation

• Motivation to use “approximate” Monte-Carlo
• Approximate Monte-Carlo by certainty

equivalence: Assume future unknown
quantities are fixed at some typical values

• Advantage : Single simulation run per next
state, but some loss of optimality

• Extension to multiple scenarios (see
Bertsekas and Castanon, 1997)

Neuro-Dynamic Programming: An Overview

27

DETERMINISTIC PROBLEMS

• ONLY ONE simulation trajectory needed
• Use heuristic(s) for approximate cost-to-go

calculation
– At each state, consider all possible next states, and run

the heuristic(s) from each
– Select the next state with best heuristic cost

• Straightforward to implement
• Cost improvement results are sharper

(Bertsekas, Tsitsiklis, Wu, 1997, Bertsekas
2005)

• Extension to constrained problems

Neuro-Dynamic Programming: An Overview

28

ROLLOUT ALGORITHM
PROPERTIES

• Forward looking (the heuristic runs to the end)
• Self-correcting (the heuristic is reapplied at

each time step)
• Suitable for on-line use
• Suitable for replanning
• Suitable for situations where the problem data

are a priori unknown
• Substantial positive experience with many

types of optimization problems, including
combinatorial (e.g., scheduling)

Neuro-Dynamic Programming: An Overview

29

RELATION TO
MODEL PREDICTIVE CONTROL
• Motivation: Deal with state/control constraints
• Basic MPC framework

– Deterministic discrete time system xk+1 = f(xk,uk)
– Control contraint U, state constraint X
– Quadratic cost per stage: x’Qx+u’Ru

• MPC operation: At the typical state x
– Drive the state to 0 in m stages with minimum

quadratic cost, while observing the constraints
– Use the 1st component of the m-stage optimal

control sequence, discard the rest
– Repeat at the next state

Neuro-Dynamic Programming: An Overview

30

ADVANTAGES OF MPC

• It can deal explicitly with state and control
constraints

• It can be implemented using standard
deterministic optimal control methodology

• Key result: The resulting (suboptimal) closed-
loop system is stable (under a “constrained
controllability assumption” - Keerthi/Gilbert,
1988)

• Connection with infinite-time reachability
• Extension to problems with set-membership

description of uncertainty

Neuro-Dynamic Programming: An Overview

31

CONNECTION OF MPC AND
ROLLOUT

• MPC <==> Rollout with suitable base heuristic

• Heuristic: Apply the (m-1)-stage policy that
drives the state to 0 with minimum cost

• Stability of MPC <==> Cost improvement of
rollout

• Base heuristic stable ==> Rollout policy is also
stable

Neuro-Dynamic Programming: An Overview

32

EXTENSIONS

• The relation with rollout suggests more
general MPC schemes:

– Nontraditional control and/or state constraints
– Set-membership disturbances

• The success of MPC should encourage the use
of rollout

Neuro-Dynamic Programming: An Overview

33

RESTRICTED STRUCTURE
POLICIES

• General suboptimal control scheme
• At each time step: Impose restrictions on future

information or control
• Optimize the future under these restrictions
• Use 1st component of the restricted policy
• Recompute at the next step

• Special cases:
– Rollout, MPC: Restrictions on future control
– Open-loop feedback control: Restrictions on future information

• Main result for the suboptimal policy so obtained:

It has better performance than the restricted policy

Neuro-Dynamic Programming: An Overview

34

CONCLUDING REMARKS

• NDP is a broadly applicable methodology;
addresses optimization problems that are
intractable in other ways

• Many off-line and on-line methods to choose
from

• Interesting theory
• No need for a detailed model; a simulator

suffices
• Computational requirements are substantial
• Successful application is an art
• Many questions remain

