
SHORT  PAPERS 

Clearly, the convexity  result of Theorem 3 rules out two disconnected 
subsets for Z' as indicated in Fig. 3. We assert that  the continuity of 
w(z) (Theorem 4) forbids  the  partitioning subsets Z 12, Z D  and Z3' from 
having  common  interset boundaries. As shown in Fig. 3, suppose that 
Z 2 3  and ZI2 have a common interset boundary which  intersects  [Z,z] at 
;=z(O). At i, since w(z(0)) is continuous  from  the left, we must  have 
wl(zI)=O, so that i$? zL2. Hence  the assertion made above.  We  conclude 
that Z ' =  is the trapezoidal strip  separating zu from zL2  and z31. 

The tabulated results from Fig. 2 are plotted to obtain a  complete 
partitioning of the  parameter  set in Fig.  4  where the following are worth 
noting. 

1) The subsets Z ' ,  Z2,  and Z 3  include their  respective boundaries; 
that is,  they are closed. 

2) The subsets ZI2,  Z23,  and Z3' exclude  their boundaries except for 
the intersect boundary with Z I D .  

3) The subset 2'" is a  completely  open  trapezoidal area which  does 
not  include  any of its boundary points. To exhibit Z'23 ,  which has very 
narrow width (on  the  order of 0.002), portions of Fig. 4 are shown on an 
enlarged horizontal scale. 

v. c o K c L ~ s I o p z s  

Our theoretical  results on convexity and  continuity  are  capable of 
detecting  the  error in an example  in the  literature and  our algorithm 
provides the  correct  and complete  solution  for the same.  We  have 
developed an algorithm  for computing  the  parameterized solution to 
certain types of minmax problems. 
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On the Method of Multipliers for Convex 
Programming 

DIMITRI P. BERTSEKAS 

Abstract-It is known that the method of multipliers  for  constrained 
mioimization can be viewed as a fixed stepsize gradient  method  for solving 
a certaiq dual problem. In this short paper  it is shown that  for convex 
programming  problems  the  method converges globally for a  wide range of 
possible stepsizes. This fact is proved for both cases where  unconstrained 
minimization is exact and  approximate. The results provide the basis for 

385 

considering modifications of the basic stepsize of the method of multipliers 
which  are  aimed at acceleration of its speed of convergence. A few such 
modircations are discussed and some computational  results are presented 
relating to a  problem in optimal control. 

I. INTRODUCTTON 

A sequential  unconstrained minimization technique originally pro- 
posed  by  Hestenes  [4] and Powell  [7] and known  as  the  method of 
multipliers has rapidly  become  a  focal  point of attention in the  area of 
constrained minimization. The properties of the  method  have  been 
investigated by a number of authors (see [I]  for a more complete 
account) and  it has been demonstrated  that multiplier methods offer 
distinct  advantages over standard penalty  methods. 

One way to view  multiplier  methods is to consider  them as fixed 
stepsize gradient  methods for solving  a certain  dual problem. This 
viewpoint has  been  adopted  by  the  author in [l] where  local  convergence 
and  rate of convergence  results  were  given for general constrained 
minimization  problems. Furthermore there  was  given in [l ,  Sect. 51 an 
analysis of the possibility for altering the  basic stepsize of the method. It 
was pointed  out  that  for problems with inherently  convex structure  there 
is a potential  for acceleration of convergence of the method  by  modifica- 
tion of its  basic stepsize. One such  possibility based on  an extrapolation 
device  was  discuss^ and  some  related convergence and  rate of conver- 
gence results  were  given  together  with  a computational example. 

The purpose of this short  paper is to complement the analysis of [l] by 
providing some  new  results for convex programming problems  which 
establish  convergence of the  method of multipliers for a  wide  range of 
stepsizes.  These  results  may  be  used to guarantee  that  certain modified 
stepsize  rules based on extrapolation  and aimed at accelerating  conver- 
gence will not destroy the overall  convergence of the algorithm. A brief 
discussion of such rules and  some  computational results  which  comple- 
ment those  given in [ l ]  are provided  in the  last section of this short 
paper. 

11. THE MFTHOD OF MULTIPLIERS FOR CONVEX 
PROGRAMMING 

Consider  the following  convex programming  problem 

minimizefo(x)subjecttox~X~Rn,f , (x)~O, i = l , . * .  ,m. (1) 

The functions fo, f,, i =  1,. . . ,m are real  valued  convex functions on R" 
and X is  a  closed  convex  subset of R". We  make  the following two 
standing assumptions. 

Assumption I :  Problem (1) has a nonempty  and  compact solution  set. 
Assumption 2: Problem  (1) has a nonempty and compact set of 

Lagrange multiplier  vectors Y*. 
It is well known that Assumption 2 is  satisfied if, for example,  there 

exists a point X E X  such thatfi(X)<O, i = l , . . . , m  . Consider now the 
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where  we denote by y' the  ith  coordinate of the vector y E R". The 
functinnal g, plays a central role in the cnmputational and analytical 
aspects of multiplier methods [8], [lo], [5 ] ,  [6].  We summarize  below the 
properties of gc which are of interest to us. 

Proper@ I :  The functionals g , , c  > 0 and go have a common  set of 
maximizing  points, the set of Lagrange  multipliers Y* of problem (1) 

Propem 2: The minimization  problem indicated  in (3) has a solution 
[ ~ o I :  [51. 
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Property 3: The functional g, is real valued, concave and con- 
tinuously  differentiable. Its gradient Vg,(y)  has coordinates given  by 

where x ( y )  is any  point  (not necessarily  unique) attaining  the infimum  in 
(3) [91, PI. 

Property 4: For any y' ,  y E R m  we have [9] 

g,(v')   >gc(Y)+(Vg,(Y) ,Y'-Y)-  ~ l l Y ' - Y I 1 2 .  
1 

(5) 

The method of multipliers  is  simply the fiwed stepsize gradient itera- 
tion 

y,+,=y,+CVg,(y , )  k = O , I . . . .  (6) 

where the  gradient Vg,(y,) is obtained via (4) and the minimization 
indicated in (3). 

We  shall consider exact or inexact implementations of iterations of the 
following  general form which  includes as a special  case the  iteration (6) 

6c<4 ,<2 (1 -6 )c  k = 0 , 1 , - . .  (8) 

where 6, c are  any scalars  satisfying O <  6 < f ,  c>O. The next  section 
provides  global  convergence results for iterations of this type. 

111. COhXRGEKCE RESULTS 

We  have t h e  following  proposition. 
Proposition I :  The sequence (y,} generated  by iteration (7). (8) is 

bounded  and each of its limit points is a Lagrange  multiplier of problem 
(1). 

Proof: From (5), (7), (8) we obtain 

Hence g , ( y ,+ , )>   gc (yk )  for  all k and {y , }  belongs to the  set 
( y E Rml g , ( y )  > gc(yo)} .  But  this  set is compact since it is a level  set of 
the concave function g, which has  a  compact set of maximizing points 
Y* [ 1 1 ,  Cor. 8.7. I]. Hence { y,} is bounded. Also from (9)  we obtain  that 
IlVg,(y,)ll+O from which, the result  follows. Q.E.D. 

Consider now approximate  implementations of iteration (7), (8) of the 
form 

y,+,=y,+akp(x, .Yk) ,  6c<a,<2(1-6)c  (10) 

wherep(x,,y,) is an approximation  to Vg,(y,) obtained by a procedure 
to be  described  in what follows.  Assume,  in addition to Assumptions 1 
and 2, the following. 

Assumption 3: X =  R" and  the  functions fo, f,; . . ,fm are differenti- 
able. 

Assumption 4: T h e  function  to be minimized in (3) 

P ( x , u ) = f o ( x ) + ~ i ~ , [ I m a x [ 0 , y ' + c f , ( x ) l } 2 - ( Y ; ) 2 ]  I m  (11)  

satisfies  for  some q > O  

F ( x ' , y ) ~ F ( x , y ) + ( Q , F ( ~ , y ) , x ' - x ) + ~ I I ~ ' - x l l ~ , V x , x ' E R " , y € R ~ .  4 

(Th~s  assumption is  satisfied  in particular if fo is a uniformly  convex 
function.) 

We  definep(x,,y,) in (10) to be any vector  with coordinates 

pi(x,.y,)=max[ - - 7 , L ( x , ) ]  YL i=l;.. , m  

with x, any vector  satisfying the criterion 

where VF(x,,y,) denotes  the  gradient of Fwith respect to x ,  andy,,,  is 
given  in  terms of x,,y, by (lo), (12). The  scalar r, is the  kth element of 
an a priori fixed  sequence { r,} with r, > r,+ > 0, r,+O. The definition of 
p(x,,y,) is  motivated  by the form of Vgc(yk) .  Since p(xk,yk)= Vg,(y,) 
whenever VF(x, ,y , )=O one  can rightfully view p ( x k , y k )  as  an 
approximation  to Vgc(yk) .  The inequality (13) may  be  viewed as a 
termination  criterion  for  the minimization of F(x,,y,). Similar termina- 
tion criteria have  been  introduced  and discussed in [I], 151, [6]. Notice 
that  the inequaljty (13) is satisfied for  any  point x, which m i n i m i z e s  
F(x,y,). However one  can easily  show that if yk is  not a Lagrange 
multiplier then (13) is satisfied for all points  in an appropriate neigh- 
borhood of the  set of minimizing points of F(x,y,). Thus  the  criterion 
(13) will be satisfied  within a finite number of iterations  during  the 
minimization of F(x,y,) if y ,  is not a Lagrange  multiplier. We have the 
following  convergence  result. 

Proposition 2: Let { y k )  be any sequence of points  generated by the 
algorithm (IO), (12) with x, satisfying the criterion (13). Then if { y,} is a 
bounded sequence,  every  limit point of { y,} is a Lagrange  multiplier  for 
problem (1). 

Proof: It  has  been shown  in [5] that  the fact that the sequence ( y,} 
is bounded implies that  the set 

cc 
x= u {X I  llvF(x>Y,)ll < rkIIYt+l-YkII} 

k = O  

is also bounded.  This implies  by [ l l ,  Theorem 10.41 thatp(x,y,) satisfies 
the following uniform Lipschitz condition: 

m 

IIP(x',Y,)-P(x,Yk)ll~ ( z [xc. , - i (x?f)  < Lllx-x'llVx',xEX 
i =  1 

k=0 ,1 ; - .  (14) 

where L > 0 is the Lipschitz constant. 
Also  from  Assumption 4 we have  for  any vector x(y , )  such that 

Q F[X(Yk)'Ykl= 0 

F(x,,y,) 2 F [ X ( Y k ) . Y k l +  7 IlXk - X(Y,)l12 
4 

F[X(Y,)rY,I> F(x, .Yk)+(vF(x, .Y,) .~(Yk)-~,)+ ~11~k-x(rk)112 
4 

where { x , }  cx is the sequence generated by the algorithm. It follows 
that 

Thus we obtain 

411xk-x(Yk)!l< llvfxx,>Y,)!l (15) 

for every  vector x(y, )  such that VF[x(yk) ,yk]=O.  In addition, we have 
by (12) and (4) 

P[x(Yk ) .Yk l=  vg,(y , ) .  (16) 

From (13H16) there  follows 
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Apply now ( 5 )  withy'=y,+ I andy=yk. In view  of (IO), (17) we have  for We finally note  that  the  convergence results of this section can  be 
every k trivially generalized to the practically important  case of the  iteration 

Since rk+O it follows that IIyk+,-ykll+O. Hence by (lo), (17)p(xk,y,) 
+O and I I ~ ( x ~ . ~ ~ ) - ~ g c ( ~ k ) l l + O  implying IIVgc(rk)ll+O and  the result 
follows. Q.E.D. 

We mention  that  the  boundedness  assumption on { y k }  does not 
appear  to  be very restrictive. Also a closer examination of the proof 
reveals that if either  all  the  functions h, i =  l , . .  -,m are Lipschitz 
continuous, or the sequence { r k }  is bounded  above by a sufficiently 
small positive number then the  boundedness of { y k }  is guaranteed  and 
need not  be  assumed. In any case  it is possible to eliminate the bound- 
edness assumptian if one specifies upper  and lower bounds on the 
iterates yk ,  say, O <  yL < A i ,  and modifies the  iteration (10) to take the 
form 

A' i f yL+arg i (xk ,yk )>Ai  

i f O < y ~ + a ~ ' ( x k , y k ) < A i  (19) 
ify: + Urgi(XkJk) < 0 

6c < a, < 2( 1 - 6)c .  (20) 

IV. MODIFIED STFPSIZE RULES FOR THE METHOD OF 
MULTIPLIERS 

This section considers various rules for choosing the stepsize a, in the 
iteration (7, (8) with the  purpose of accelerating convergence. These 
rules are  based on extrapolation of one  form or another  and therefore 
they are  meaningful only for the case where  the  ordinary  dual  functional 
go is sufficiently smooth. We shall assume  that the dual  functional has a 
unique  maximizing  point 7 and is  twice continuously differentiable in a 
relative neighborhood of the  form (y ly '=OVi  s.t.yi=O)n(ylIIy-.V1l 
< c), where c > 0 is some scalar. This assumption is satisfied for  example 
if X =  R" and  problem (1) has  a  unique solution X satisfying the 
standard  second  order sufficiency conditions for  a  minimum. We note 
that  one  can easily prove that,  under these assumptions, the  approximate 
Lagrange multipliers generated by iteration (7, (8) which correspond to 
inactive constraints will converge to zero within a  finite  number of 
iterations. This fact suggests that  extrapolation will eventually involve 
only the Lagrange multipliers corresponding  to active constraints. 

The  extrapolation devices that we consider are  based on the  fact  that 
every time the  function F(x,yk)  of (1 1) is minimized yielding a  point xk 
then  one  obtains  both the value and  the gradient of the  ordinary  dual 
functional go at the point 

Proposition 3: Let {yk} be any sequence of points generated by the yk+l=yk+cv&(yk)*  
algorithm (19), (20)  with xk satisfying the  criterion (13).  Assume also that 
the scalars A satisfy A i  > J' ,  i= 1,. . . ,m for some Lagrange multiplier This value and  gradient  are given by 
F=(y',- . . ,Tm) of problem (1). Then every limit point of the sequence 
{ y k }  is a  Lagrange multiplier for  problem (1). 

Proof: Proceeding similarly as in the proof of Proposition 2  one 
obtains  for all k [c.f. (171 

rn 

i= 1 
gO(yk+l)=fO(xk)+ x y L + l i ( x k )  (21) 

ay i ,m. (22) 

One possibility for  extrapolation  based on the relations  above has been 

vergestoapointpwehaveforanyzwithO<z'<A',i=l,..,,mand cVn,(y , )  by means of unconstrained minimization. Then  a  quadratic or 
Hence Ilyk+l-ykll+o. Now if a subsequence ( yk }k€X Of { y k }  'On- described in  [I]. Given yo one  finds y ,=yo+cVg, (yo)  and j , = y I +  

Taking limits as k+m the right hand side tends to zero. It follows that 

( V g c ( y ) , z - y ) < O  Vz,  O < z i < A i ,  i = l ; - .  , m. 

Hence~maximizesg,overtheset{z~0<zi<A',i=1;~~,m).Sincethis 
set contains by assumption  a  Lagrange multiplier it follows that j j  is a 
Lagrange multiplier for  problem (1). Q.E.D. 

Notice  that  upper  bounds A i  to  a  Lagrange multiplier are readily 
available if a feasible point interior to the constraints  and  a lower bound 
to the  optimal value of the problem  are known 13, p. 6471. 

where a, is the stepsize which  maximizes the value of the quadratic or 
cubic  approximation to go(y)  over all a in  an interval [6c,2(1- 6)cI. If 
the  approximation is quite  accurate (as one expects it  to be  near  the 
solution 7) then  the  point y 2  should be closer to 7 than  the  point 
~ , = y l + c V g c ( y l )  which would be obtained by the  ordinary stepsize of 
the  method of multipliers. At the same time the  convergence of the 
method is not destroyed since the stepsize a, wiU be in the interval of 
convergence [6c, 2(1- Qc]. Once y, has been obtained as above, one 
proceeds  to  determine y3'y2+ cVg, (yJ ,  ? 4 = ~ 3 +  cVg,(y3), gO(y3)9 
Vgo(y3),  g0(y4),  Vgo(y4). Based on this information  a  quadratic or cubic 
approximation of go(y) along the line through ys, j;, is made  to  deter- 
mine y, as earlier. Thus by performing extrapolation  at every second 
iteration  and keeping the stepsize within the interval [6c, 2(1-6)c] 
convergence is maintained while hopefully acceleration of convergence is 
achieved. Notice  that the approximation is performed only at every 
second  iteration since at the points y,, y4.. . . ,yur,. . . , neither the value 
of go nor its gradient  are known.  However it is still possible  to perform 
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TABLE I 
_ _ _ _ _ _ ~ ~ ~  

Multiplier Method with 
Multiplier Method  Extrapolation 

yk ‘gc(Yk) yk Vgc(yk) 

0 0 0.47010 0 0.47010 ‘ 

1 0.47010 0.14590  0.47010  0.14590 
2  0.61600 0.05080  0.69914  -0.00222 
3 0.66680 0.01830  0.69563 0.00000 
4  0.6851 1 0.00669 
5  0.69181 0.00242 
6  0.69423 0.00089 

the  approximation at every step when there is only one  constraint  and 
the  dual problem is one-dimensional. For this case it  appears  that  the 
extrapolation device  is  very  efficient. 

Another possibility  for approximating at every step is  based on the 
fact  that even  though go(yJ and Vgo(yJ are unavailable, the approxi- 
mation performed  along the line through y,, yields an approximate 
value  for go(yJ. This value  together  with gO(Y3),  Vgo(ys) may  be  used to 
construct  a  quadratic  approximation  for go along  the line through yz, j 3  
and determine y3 by  maximizing the  approximation of go within  the 
interval of convergence. The process  is  similarly  repeated at every  step. 
In this way convergence  may  be even  faster.  However  since the 
approximation  errors  are  accumulated in this procedure it is perhaps 
wise to use it only  after  one is fairly  close to the  solution. 

The modified  stepsize  rule  which  involves quadratic  extrapolation at 
every  second iteration was  tested in [ I ]  both  for  the case of exact and 
inexact minimization on the Rosen-Suzuki  problem and resulted  in 
sigmficant computatonal savings  for the case  where the penalty para- 
meter c was kept  constant or was  increased at  a relatively low rate.  This 
may be explained  by the  fact  that when the penalty parameter is 
relatively  small,  more unconstrained minimization  cycles are typically 
required and hence the beneficial  effect of extrapolation is utilized  more 
often. We  provide  below an example  where  only one  constraint is 
handled by means of a penalty function  and hence one may  use 
extrapolation  at every iteration.  The  computational results support the 
natural  conjecture  that for  cases  involving  only one  constraint the 
extrapolation device is extremely  effective,  much  more so than in typical 
cases  where  several constraints  are handled  by  means of a penalty. 
Consider an optimal  control problem  involving the system 

x ~ + ~ = x ~ + u ~  k=O,l ; . . ,N-l  

and the cost functional 

subject  to x N  < 1, xo=O, O <  uk, k = 0 ,  1; . .  , N -  1 and where 
Bo; . . ,DN - are given  positive  scalars. This problem  may be viewed as a 
problem of optimal allocation of a finite amount of resource into 11‘ 
different activities. The method of multipliers  with and without  cubic 
extrapolation was  used to eliminate the terminal state  constraint < 1. 
The results  for  the  case N =  10, c =  1, and a sequence { B k }  
= ( I, 10,20,40,40),  are shown  in Table I .  
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Control of Linear Discrete-Time  Stochastic 
Dynamic  Systems with Multiplicative 

Disturbances 

MASANAO AOKI, SENIOR MEhiBER, IEEE 

Abstract-Multiplicative random disturbances frequently occur in 
economic modeling. The money multiplier in a simple monetary 
macroeconomic  model is treated as a random  variable in this paper. The 
optimal control law is derived,  and some consequences of erroneous 
modeling of the random  disturbance are exhibited by simulation. 

I. ~NTRODUC~ION 

There seems to  be considerable  interest  in  applying, or in  assessing the 
applicabihty of stochastic control techniques to  econometric models, 
ranging  from  a single equation model to large  scale  econometric plan- 
ning or forecasting  models of national economies. In some of these 
models random coefficients are  important  and  are likely to be  used 
increasingly  in  econometrics. In other words, in models of economic 
origin, random  disturbances  are often  modeled as multiplicative d~stur- 
bances.  Much of the  stochastic control literature  is  concerned  with 
models in which random  disturbances  are modeled as  additive  distur- 
bances in  the  coefficients. 

Control rules  resulting  from  these  two  different  specifications of 
stochastic  disturbances  are  usually.  and  sometimes  substantially, 
different.  Caution is necessary  in  choosing  stochastic  specifications,  since 
control rules based on models  which  incorrectly  specify  stochastic dis- 
turbances may  destabilize  systems rather  than stabilize  them. Although it 
is  not often clear apriori whether  additive random  disturbances  are more 
plausible than multiplicative  ones, we must understand implications of 
multiplicative random  disturbances in  stochastic control problems. 

The purpose of the paper  is to call attention to the  importance of 
correct  stochastic specification  by  considering a  stochastic  control model 
in which a  random coefficient  arises naturally from the dconomics  being 
modeled. We  consider short-run  control of the money stock. This prob- 
lem gves rise to  a  control problem  in  which the  control “gain”  is a 
random variable  because  there are “slippages”  from the  source base 
which the  monetary  authority actually  controls. 

The  model is  described  in  Section I1 and the institutional  reason  for 
the  randomness of the money  multiplier is described in the Appendix. 
Section I11 discusses  control of a simple  macroeconomic  model  with the 
random money  multiplier.  We  derive control rules  when the  randomness 
in  the money multiplier is modeled as multiplicative and as additive 
disturbances. Some  aspects of the stochastic  misspecification are dis- 
cussed  using  simulation  in  Section IV. 

11. ~ D O M  MONEY MULTIPLJER 

Consider a  control system  described  by a linear  difference equation 

xt+ 1 =@, + m,u, (1) 

where ut is  the scalar control  variable and where m, is a  control gain 
vector.  (This assumption of the  scalar  control variable  is made for the 
simplicity of presentation.) 
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