Monte Carlo Linear Algebra: A Review and Recent Results

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

Caradache, France, 2012

Monte Carlo Linear Algebra

An emerging field combining Monte Carlo simulation and algorithmic linear algebra

Plays a central role in approximate DP (policy iteration, projected equation and aggregation methods)

Advantage of Monte Carlo

Can be used to approximate sums of huge number of terms such as high-dimensional inner products

A very broad scope of applications

- Linear systems of equations
- Least squares/regression problems
- Eigenvalue problems
- Linear and quadratic programming problems
- Linear variational inequalities
- Other quasi-linear structures

Monte Carlo Estimation Approach for Linear Systems

We focus on solution of Cx = d

- Use simulation to compute $C_k \to C$ and $d_k \to d$
- Estimate the solution by matrix inversion $C_k^{-1}d_k \approx C^{-1}d$ (assuming C is invertible)
- Alternatively, solve $C_k x = d_k$ iteratively

Why simulation?

C may be of small dimension, but may be defined in terms of matrix-vector products of huge dimension

What are the main issues?

- Efficient simulation design that matches the structure of C and d
- Efficient and reliable algorithm design
- What to do when C is singular or nearly singular

References

Collaborators: Huizhen (Janey) Yu, Mengdi Wang

- D. P. Bertsekas and H. Yu, "Projected Equation Methods for Approximate Solution of Large Linear Systems," Journal of Computational and Applied Mathematics, Vol. 227, 2009, pp. 27-50.
- H. Yu and D. P. Bertsekas, "Error Bounds for Approximations from Projected Linear Equations," Mathematics of Operations Research, Vol. 35, 2010, pp. 306-329.
- D. P. Bertsekas, "Temporal Difference Methods for General Projected Equations," IEEE Trans. on Aut. Control, Vol. 56, pp. 2128 - 2139, 2011.
- M. Wang and D. P. Bertsekas, "Stabilization of Stochastic Iterative Methods for Singular and Nearly Singular Linear Systems", Lab. for Information and Decision Systems Report LIDS-P-2878, MIT, December 2011 (revised March 2012).
- M. Wang and D. P. Bertsekas, "Convergence of Iterative Simulation-Based Methods for Singular Linear Systems", Lab. for Information and Decision Systems Report LIDS-P-2879, MIT, December 2011 (revised April 2012).
- D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II: Approximate Dyn. Programming, Athena Scientific, Belmont, MA, 2012.

Outline

- Motivating Framework: Low-Dimensional Approximation
 - Projected Equations
 - Aggregation
 - Large-Scale Regression
- Sampling Issues
 - Simulation for Projected Equations
 - Multistep Methods
 - Constrained Projected Equations
- Solution Methods and Singularity Issues
 - Invertible Case
 - Singular and Nearly Singular Case
 - Deterministic and Stochastic Iterative Methods
 - Nullspace Consistency
 - Stabilization Schemes

Low-Dimensional Approximation

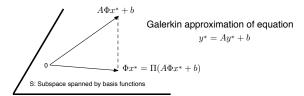
- Start from a high-dimensional equation y = Ay + b
- Approximate its solution within a subspace $S = \{ \Phi x \mid x \in \Re^s \}$
- Columns of Φ are basis functions

Equation approximation approach

Approximate solution y^* with the solution Φx^* of an equation defined on S

Important example: Projection/Galerkin approximation

$$\Phi x = \Pi(A\Phi x + b)$$



Matrix Form of Projected Equation

Let Π be projection with respect to a weighted Euclidean norm $||y||_{\Xi} = \sqrt{y'\Xi y}$

The Galerkin solution is obtained from the orthogonality condition

$$\Phi x^* - (A\Phi x^* + b) \perp (Columns of \Phi)$$

or

$$Cx = d$$

where

$$C = \Phi' \Xi (I - A) \Phi, \qquad d = \Phi' \Xi b$$

Motivation for simulation

If y is high-dimensional, C and d involve high-dimensional matrix-vector operations

Another Example: Aggregation

Let D and Φ be matrices whose rows are probability distributions.

Aggregation equation

By forming convex combinations of variables (i.e., $y \approx \Phi x$) and equations (using D), we obtain an aggregate form of the fixed point problem y = Ay + b:

$$x = D(A\Phi x + b)$$

or Cx = d with

$$C = DA\Phi$$
, $d = Db$

Connection with projection/Galerkin approximation

The aggregation equation yields

$$\Phi x = \Phi D(A\Phi x + b)$$

 ΦD is an oblique projection in some of the most interesting types of aggregation [if $D\Phi = I$ so that $(\Phi D)^2 = \Phi D$] - also a seminorm projection.

Another Example: Large-Scale Regression

Weighted least squares problem

Consider

$$\min_{\mathbf{y}\in\Re^n}\|\mathbf{W}\mathbf{y}-\mathbf{h}\|_{\Xi}^2,$$

where W and h are given, $\|\cdot\|_{\Xi}$ is a weighted Euclidean norm, and y is high-dimensional.

We approximate y within the subspace $S = \{\Phi x \mid x \in \Re^s\}$, to obtain

$$\min_{x\in\Re^s}\|\boldsymbol{W}\Phi\boldsymbol{x}-\boldsymbol{h}\|_{\Xi}^2.$$

Equivalent linear system Cx = d

$$C = \Phi' W' \Xi W \Phi$$
, $d = \Phi' W' \Xi h$

Key Idea for Simulation

Critical Problem

Compute sums $\sum_{i=1}^{n} a_i$ for very large n (or $n = \infty$)

Convert Sum to an Expected Value

Introduce a sampling distribution ξ and write

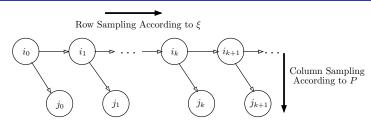
$$\sum_{i=1}^n a_i = \sum_{i=1}^n \xi_i \left(\frac{a_i}{\xi_i} \right) = E_{\xi} \{ \hat{a} \}$$

where the random variable \hat{a} has distribution

$$P\left\{\hat{a}=\frac{a_i}{\xi_i}\right\}=\xi_i, \qquad i=1,\ldots,n$$

- We "invent" ξ to convert a "deterministic" problem to a "stochastic" problem that can be solved by simulation.
- Complexity advantage: Running time is independent of the number *n* of terms in the sum, only the distribution of *â*.
- Importance sampling idea: Use a sampling distribution that matches the problem for efficiency (e.g., make the variance of \hat{a} small).

Row and Column Sampling for System Cx = d



- Row sampling: Generate sequence $\{i_0, i_1, ...\}$ according to ξ (the diagonal of Ξ), i.e., relative frequency of each row i is ξ_i
- Column sampling: Generate sequence $\{(i_0, j_0), (i_1, j_1), \dots\}$ according to some transition probability matrix P with

$$p_{ij} > 0$$
 if $a_{ij} \neq 0$,

i.e., for each i, the relative frequency of (i, j) is p_{ij}

- Row sampling may be done using a Markov chain with transition matrix Q (unrelated to P)
- Row sampling may also be done without a Markov chain just sample rows according to some known distribution ξ (e.g., a uniform)

Simulation Formulas for Matrix Form of Projected Equation

Approximation of C and d by simulation:

$$C = \Phi' \Xi (I - A) \Phi \sim C_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \left(\phi(i_t) - \frac{a_{i_t i_t}}{p_{i_t i_t}} \phi(j_t) \right)',$$

$$d = \Phi' \Xi b \sim d_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) b_{i_t}$$

- We have by law of large numbers $C_k \to C$, $d_k \to d$.
- Equation approximation: Solve the equation $C_k x = d_k$ in place of Cx = d.

Algorithms

- Matrix inversion approach: $x^* \approx C_k^{-1} d_k$ (if C_k is invertible for large k)
- Iterative approach: $x_{k+1} = x_k \gamma G_k (C_k x_k d_k)$

Multistep Methods - $TD(\lambda)$ -Type

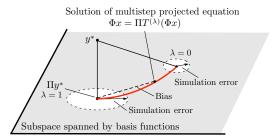
Instead of solving (approximately) the equation y = T(y) = Ay + b, consider the multistep equivalent

$$y=T^{(\lambda)}(y)$$

where for $\lambda \in [0, 1)$

$$T^{(\lambda)} = (1 - \lambda) \sum_{\ell=0}^{\infty} \lambda^{\ell} T^{\ell+1}$$

- Special multistep sampling methods
- Bias-variance tradeoff

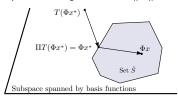


Constrained Projected Equations

Consider

$$\Phi x = \Pi T(\Phi x) = \Pi(A\Phi x + b)$$

where Π is the projection operation onto a closed convex subset \hat{S} of the subspace S (w/ respect to weighted norm $\|\cdot\|_{\Xi}$; Ξ : positive definite).



• From the properties of projection,

$$(\Phi x^* - T(\Phi x^*))' \Xi (y - \Phi x^*) \ge 0, \quad \forall y \in \hat{S}$$

• This is a linear variational inequality: Find x^* such that

$$f(\Phi x^*)'(y-\Phi x^*)\geq 0, \qquad \forall \ y\in \hat{S},$$
 where $f(y)=\Xi(y-T(y))=\Xi(y-(Ay+b))$.

Equivalence Conclusion

Two equivalent problems

The projected equation

$$\Phi x = \Pi T(\Phi x)$$

where Π is projection with respect to $\|\cdot\|_{\Xi}$ on convex set $\hat{S}\subset S$

The special-form VI

$$f(\Phi x^*)'\Phi(x-x^*)\geq 0, \qquad \forall \ x\in X,$$

where

$$f(y) = \Xi(y - T(y)), \qquad X = \{x \mid \Phi x \in \hat{S}\}$$

Special linear cases: T(y) = Ay + b

- $\hat{S} = \Re^n$: VI <==> $f(\Phi x^*) = \Xi(\Phi x^* T(\Phi x^*)) = 0$ (linear equation)
- $\hat{S} = \text{subspace}$: VI <==> $f(\Phi x^*) \perp \hat{S}$ (e.g., projected linear equation)
- f(y) the gradient of a quadratic, \hat{S} : polyhedral (e.g., approx. LP and QP)
- Linear VI case (e.g., cooperative and zero-sum games with approximation)

Deterministic Solution Methods - Invertible Case of Cx = d

Matrix Inversion Method

$$x^* = C^{-1}d$$

Generic Linear Iterative Method

$$X_{k+1} = X_k - \gamma G(CX_k - d)$$

where:

- G is a scaling matrix, $\gamma > 0$ is a stepsize
- Eigenvalues of $I \gamma GC$ within the unit circle (for convergence)

Special cases:

- Projection/Richardson's method: C positive semidefinite, G positive definite symmetric
- Proximal method (quadratic regularization)
- Splitting/Gauss-Seidel method

Simulation-Based Solution Methods - Invertible Case

Given sequences $C_k \to C$ and $d_k \to d$

Matrix Inversion Method

$$x_k = C_k^{-1} d_k$$

Iterative Method

$$x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)$$

where:

- G_k is a scaling matrix with $G_k \to G$
- $\gamma > 0$ is a stepsize

 $x_k \to x^*$ if and only if the deterministic version is convergent

Solution Methods - Singular Case (Assuming a Solution Exists)

Given sequences $C_k \to C$ and $d_k \to d$. Matrix inversion method does not apply

Iterative Method

$$x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)$$

Need not converge to a solution, even if the deterministic version does

Questions:

- Under what conditions is the stochastic method convergent?
- How to modify the method to restore convergence?

Simulation-Based Solution Methods - Nearly Singular Case

The theoretical view

If C is nearly singular, we are in the nonsingular case

The practical view

If C is nearly singular, we are essentially in the singular case (unless the simulation is extremely accurate)

The eigenvalues of the iteration

$$x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)$$

get in and out of the unit circle for a long time (until the "size" of the simulation noise becomes comparable to the "stability margin" of the iteration)

Think of roundoff error affecting the solution of ill-conditioned systems (simulation noise is far worse)

Deterministic Iterative Method - Convergence Analysis

Assume that C is invertible or singular (but Cx = d has a solution)

Generic Linear Iterative Method

$$x_{k+1} = x_k - \gamma G(Cx_k - d)$$

Standard Convergence Result

Let C be singular and denote by $\mathbf{N}(C)$ the nullspace of C. Then: $\{x_k\}$ is convergent (for all x_0 and sufficiently small γ) to a solution of Cx = d if and only if:

- (a) Each eigenvalue of *GC* either has a positive real part or is equal to 0.
- (b) The dimension of N(GC) is equal to the algebraic multiplicity of the eigenvalue 0 of GC.
- (c) N(C) = N(GC).

Proof Based on Nullspace Decomposition for Singular Systems

For any solution x^* , rewrite the iteration as

$$x_{k+1} - x^* = (I - \gamma GC)(x_k - x^*)$$

Linarly transform the iteration

Introduce a similarity transformation involving $\mathbf{N}(C)$ and $\mathbf{N}(C)^{\perp}$

Let *U* and *V* be orthonormal bases of N(C) and $N(C)^{\perp}$:

$$[U\ V]'(I - \gamma GC)[U\ V] = I - \gamma \left[\begin{array}{cc} U'GCU\ U'GCV \\ V'GCU\ V'GCV \end{array} \right]$$
$$= I - \gamma \left[\begin{array}{cc} 0\ U'GCV \\ 0\ V'GCV \end{array} \right]$$
$$\equiv \left[\begin{array}{cc} I & -\gamma N \\ 0 & I - \gamma H \end{array} \right],$$

where H has eigenvalues with positive real parts. Hence for some $\gamma > 0$,

$$\rho(I-\gamma H)<1$$
,

so $I - \gamma H$ is a contraction ...

Nullspace Decomposition of Deterministic Iteration

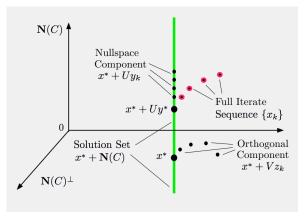


Figure: Iteration decomposition into components on N(C) and $N(C)^{\perp}$.

$$x_k = x^* + Uy_k + Vz_k$$

- Nullspace component: $y_{k+1} = y_k \gamma N z_k$
- Orthogonal component: $z_{k+1} = z_k \gamma H z_k$ CONTRACTIVE

Stochastic Iterative Method May Diverge

The stochastic iteration

$$x_{k+1} = x_k - \gamma G_k (C_k x_k - d_k)$$

approaches the deterministic iteration

$$x_{k+1} = x_k - \gamma G(Cx_k - d),$$
 where $\rho(I - \gamma GC) \leq 1.$

However, since

$$\rho(I - \gamma G_k C_k) \rightarrow 1$$

 $\rho(I - \gamma G_k C_k)$ may cross above 1 too frequently, and we can have divergence.

Difficulty is that the orthogonal component is now coupled to the nullspace component with simulation noise

Divergence of the Stochastic/Singular Iteration

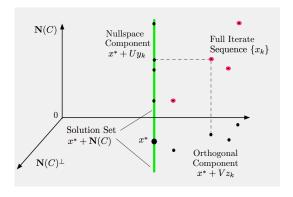


Figure: NOISE LEAKAGE FROM $\mathbf{N}(C)$ to $\mathbf{N}(C)^{\perp}$

$$x_k = x^* + Uy_k + Vz_k$$

- Nullspace component: $y_{k+1} = y_k \gamma N z_k + \text{Noise}(y_k, z_k)$
- Orthogonal component: $z_{k+1} = z_k \gamma H z_k + \text{Noise}(y_k, z_k)$

Divergence Example for a Singular Problem

2 × 2 Example

Let the noise be $\{e_k\}$: MC averages with mean 0 so $e_k \to 0$, and let

$$x_{k+1} = \left[\begin{array}{cc} 1 + e_k & 0 \\ e_k & 1/2 \end{array} \right] x_k$$

• Nullspace component $y_k = x_k(1)$ diverges:

$$\prod_{t=1}^{k} (1+e_t) = O(e^{\sqrt{k}}) \to \infty$$

• Orthogonal component $z_k = x_k(2)$ diverges:

$$x_{k+1}(2) = 1/2x_k(2) + e_k \prod_{i=1}^{k} (1 + e_i),$$

where

$$e_k \prod_{t=1}^k (1+e_t) = O\left(\frac{e^{\sqrt{k}}}{\sqrt{k}}\right) \to \infty.$$

What Happens in Nearly Singular Problems?

- "Divergence" until Noise << "Stability Margin" of the iteration
- Compare with roundoff error problems in inversion of nearly singular matrices

A Simple Example

Consider the inversion of a scalar c>0, with simulation error $\eta.$ The absolute and relative errors are

$$E=rac{1}{c+\eta}-rac{1}{c}, \qquad E_r=rac{E}{1/c}.$$

By a Taylor expansion around $\eta = 0$:

$$E pprox rac{\partial \left(1/(c+\eta)\right)}{\partial \eta}\Big|_{\eta=0} \eta = -rac{\eta}{c^2}, \qquad E_r pprox -rac{\eta}{c}.$$

For the estimate $\frac{1}{c+n}$ to be reliable, it is required that

- $|\eta| << |c|$.
- Number of i.i.d. samples needed: $k \gg 1/c^2$.

Nullspace Consistent Iterations

Nullspace Consistency and Convergence of Residual

- If $N(G_k C_k) \equiv N(C)$, we say that the iteration is nullspace-consistent.
- Nullspace consistent iteration generates convergent residuals $(Cx_k d \rightarrow 0)$, iff the deterministic iteration converges.

Proof Outline:

$$x_k = x^* + Uy_k + Vz_k$$

- Nullspace component: $y_{k+1} = y_k \gamma N z_k + \text{Noise}(y_k, z_k)$
- Orthogonal component: $z_{k+1} = z_k \gamma H z_k + \text{Noise}(z_k)$ DECOUPLED

LEAKAGE FROM N(C) IS ANIHILATED by V so

$$Cx_k - d = CVz_k \rightarrow 0$$

Interesting Special Cases

Proximal/Quadratic Regularization Method

$$X_{k+1} = X_k - (C'_k C_k + \beta I)^{-1} C'_k (C_k X_k - d_k)$$

Can diverge even in the nullspace consistent case.

- In the nullspace consistent case, under favorable conditions $x_k \to \text{some solution } x^*$.
- In these cases the nullspace component y_k stays constant.

Approximate DP (projected equation and aggregation)

The estimates often take the form

$$C_k = \Phi' M_k \Phi, \qquad d_k = \Phi' h_k,$$

where $M_k \to M$ for some positive definite M.

- If Φ has dependent columns, the matrix $C = \Phi' M \Phi$ is singular.
- The iteration using such C_k and d_k is nullspace consistent.
- In typical methods (e.g., LSPE) $x_k \rightarrow$ some solution x^* .

Stabilization of Divergent Iterations

A Stabilization Scheme

Shifting the eigenvalues of $I - \gamma G_k C_k$ by $-\delta_k$:

$$x_{k+1} = (1 - \delta_k)x_k - \gamma G_k (C_k x_k - d_k).$$

Convergence of Stabilized Iteration

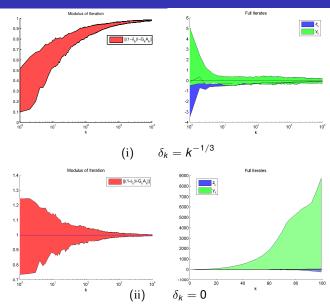
Assume that the eigenvalues are shifted slower than the convergence rate of the simulation:

$$(C_k-C,d_k-d,G_k-G)/\delta_k\to 0, \qquad \sum_{k=0}^{\infty}\delta_k=\infty$$

Then the stabilized iteration generates $x_k \to \text{some } x^*$ iff the deterministic iteration without δ_k does.

- Stabilization is interesting even in the nonsingular case
- It provides a form of "regularization"

Stabilization of the Earlier Divergent Example



Thank You!