
WAS1 

Dimitri  P. Bertsekas 

Department  of Electr ical   Engineer ing and 
Coordinated  Science  Laboratory 

U n i v e r s i t y   o f   I l l i n o i s   a t  Urbana-Champaign 
U r b a n a ,  I l l i n o i s  61801 

Abstract  

In t h i s  paper we consider a c l a s s  of monotone 
mappings underlying many sequent ia l   opt imizat ion 
problems  over a f i n i t e   o r   i n f i n i t e   h o r i z o n  which 
are o f   i n t e re s t   i n   app l i ca t ions .   Th i s   c l a s s   o f  
problems  includes  deterministic and s tochas t i c   op t i -  
mal control  problems, minim control  problems, 
Semi-llarkov Decision  problems and o thers .  We prove 
some f ixed  point   propert ies   of   the   opt imal   value 
function and we analyze  the  convergence  properties 
of a re la ted  general ized Dynamic Programming 
algorithm. We a l so   g ive  a su f f i c i en t   cond i t ion  
for  convergence,  which is widely  applicable and 
considerably  strengthens known r e l a t e d   r e s u l t s .  

1. Introduction 

It i s  we l l  known that Dynamic Programing 
(D.P. for   shor t )  i s  the   p r inc ipa l  method for   analy-  
sis of  sequential  optimization  problems. It i s  
a l s o  known that i t  i s  possible   to   descr ibe  each 
i t e r a t i o n   o f  a D.P. algorithm by nwians of a 
c e r t a i n  mapping which maps a space  of  functions 
defined on t h e   s t a t e   s p a c e   i n t o   i t s e l f .  In prob- 
lems with a f i n i t e ,  say  k, number of   s tages ,   a f te r  
k successive  appl icat ions  of   this  mapping ( i . e . ,  
a f t e r  k s teps   of   the  D.P. algorithm)  one  obtains 
the  optimal  value  function  of  the  problem.  In 
problems  with  an  inf ini te  number of  stages one 
hopes tha t   t he  sequence  of  functions  generated by 
successive  appl icat ion  of   the D.P. i t e r a t i o n  con- 
verges   in  some sense t o  the  optimal  value  functi 'on 
of  the  problem. 

the  deterministic  optimal  control  problem  of  f ind- 
ing  a f i n i t e  sequence  of  control  functions 
TT = {po,&l,. . . ,pk-l]  which  minimize 

To i l l u s t r a t e   t h i s  viewpoint let us  consider 

k- 1 

i-0 
(1) fk,n(xo) C h [ ~ i , ~ i ( ~ i ) I  

subject   to   the  system  equat ion  constraint  

(2) xi+l g[xi,Pi(xi)l i = 0,1,. .., k-1. 

The states xi be long   to  a s ta te   space  X and the  
cont ro ls  (x ) are elements  of a control  space U. 

The initial 8 t a t e  x. i s  given,  and  h,g are given 

functions.  The  D.P. a lgo r i thm  fo r   t h i s  problem 
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i s  given by 

(3)  fo(X) - 0 
(4)  fi+l(x) = iEf[h(x,u) + fi[g(x,u)l)  

and the  optimal  value  of  the  problem is obtained 
a t  t h e   k t h   s t e p  of the   a lgori thm 

i O , l , .  . . ,k-l  

i:f fk,n(xO) * fk(xo). 

Not ice   a l so  that One may obtain  the  value 4, (x ) 

of  (1)  corresponding t o  any n = {po,pl,. . .,%-l] 
from t h e   k t h   s t e p  of  the D.P. algorithm 

*= 0 

(5) fo,+ = 0 

(6)  f i+l,sr(x)  h[xs\_l_i(x)I 

+ f i ,n [g(x,Pk-l-i(x))l 

Now it is p o s s i b l e   t o   f o m l a t e   t h e  problem 
above as well as to   desc r ibe   t he  D.P. algorithm 
(3),  (4) by means of  the mapping H given by 

(7)  H(x,u,f) = h(x,u) + f [g(x ,u) l .  
Let us  def ine 

and fo r  any  funct B on p: X - U 
( 8 )  T(f)(x) i f H(x,'J,f) 

(9)  T&(f)(x) d x , ~ ( x ) , f l  

Then, i n  view  of (5), ( 6 ) ,  we  may wr i t e   t he   cos t  
func t iona l  f of (1) as 

(10)  fk,n(xo) = (T T,, . . . . T )(fo)(xo) 

where f o  i s  the  zero  function  of  (3), 
( fo(x)  = 0, VX E X) and (T T . .. Tpk-l) i s  the  

k ,n 

Po 1 CLk-1 

Po Wl 
composition  of  the  mappings T ,T ,..., T . 

Po k l  9-1 
Simi lar ly   the  D.P. algorithm  (3),(4) may be 
described by 

(11) fi+l(x) 0 T(fi) (x) i = 0,1,. . . ,k-1 

and we  have 

(12) i n f  r, *(Xo) 0 Tk(fo)(xo) 
n s  

where Tk i s  the  composition  of T w i t h   i t s e l f  k 
times. 

One  may cons ider   a l so   an   in f in i te   hor izon  
version  of  the  deterministic  problem above  where- 

20 



by we seek a sequence n = {hot~, , . . . ]   of   control  

functions which  .minimize 
k- 1 

subject   to   the  system  equat ion  constraint  

We assume tha t   t he   func t ion   h  above is such  that  
t he   l imi t  in (13) is well defined  for  every TI. A 
question  of  considerable  computational  and  analy- 
t i c a l   i n t e r e s t   c o n c e r n s   t h e   v a l i d i t y   o f   t h e  
equation 

(15) f* (x) = i;f fn(x) = l i m  Tk(fo)  (x) 
k-- 

where T is the  mapping of (8). When (15)  holds, 
t he  D.P. a lgor i thm  y ie lds  in the   l imi t   the   op t imal  
value  of  the  problem.  Another  importang  question 
i s  whether  the  optimal  value  function  f   satisfies 
Bellman's  functional  equation 

(16) f*(x) - inf{h(x,u) + f*[g(x,u)]] 

or  equivalently  whether 
U 

(17)  f*(x) - T(f*)(x) 

and f* is a f ixed  point   of   the  mapping T. Consider- 
a b l e   a m u n t  of  research  has  been  directed  towards 
resolving  these and o ther   re la ted   ques t ions .  It 
has been  proved  under fa i r ly   general   assumptions 
t h a t  (16)  holds  true. However the   equa l i ty  (15) 
has been  proved  only  under res t r ic t ive   assumpt ions .  
In f a c t  (15) may f a i l  even  for  very  simple  prob- 
lems as the  following example shows: 

Example: let X = LO,=), U = (Op) be   the  state and 
control   spaces   respect ively.  Let the  system  equa- 
t i o n  be 

xi+l = 2x + u i = O , l , . . .  
i i  

and l e t   t h e   c o s t   p e r   s t a g e  be defined by 

h(x,u) = x + u. 

Then it can   ea s i ly  be ve r l f i ed  that 

f  (x) = i n f  f,(x) = + m v x E X 
* 

while  
TI 

Tk(fo) (0 )  = 0 v k = 1,2, . .  . 
The determinis t ic   opt imizat ion problem  de- 

scribed  above is representa t ive   o f  a plethora  of  
sequential   optimization  problems  of  practical  in- 
t e r e s t  which may be  formlated  in   terms  of  map- 
pings similar t o   t h e  mapping H of (7). Further- 
more D.P. algorithms  corresponding  to  such  mob- 
leme m y  also  be  described in tenus  of mappings 
similar t o   t h e  mapping T of (8). A genera l   c lass  
of  such  sequential   optimization  problems w i l l  be 
described i n  the   next   sect ion  together   with ex- 
alnples   of   specif ic   c lasses   of   problems  of   inter-  
est. S imi l a r ly   a s  in de te rmin i s t i c  problems, 
questions arise a s  t o  whether  equations  such as 
(15)  and  (17)  hold. The purpose  of  this paper is 
to   provide  an  analysis   of   these  quest ions in a 
genera l   se t t ing .  To t h i s  end we take as our 
s t a r t i ng   po in t   a   c l a s s  of  mappings and subsequent 
l y   cons t ruc t  a c l a s s  of abs t rac t   op t imiza t ion  
problems  which  contains as spec ia l  cases severe> 

classes  of  problems  of  interest .  The va l id i ty  of 
severa l  important properties  of  these problems is 
t r a c e d   d i r e c t l y   t o   p r o p e r t i e s  of the i r   assoc ia ted  
mappings. Since the framework adopted is abs t r ac t  
and  general i n  nature,   the  analysis  provides a 
measure  of t h e   e x t e n t   t o  which r e s u l t s  obtaineC 
e a r l i e r   f o r   s p e c i f i c  cases hold true in a more 
g e m 1  s e t t i n g .  In addi t ion   ex is t ing   resu l t s   for  
important special cases, such as de terminis t ic  and 
stochastic  optimal  control  problem,  concerning 
the  convergence  of  the D.P. algorithm in i n f i n i t e  
horizon  problems are substant ia l ly   s t rengthened.  
In view of t h e  space l imi ta t ion ,  110 deta i led  
proofs   are   given in t h i s  paper. They may be  found 
in a report   [15]   avai lable  from the  author on r e -  
quest .  

2. A Class of Monotone I(amiqgg 

real number and l e t  F be the  set of a l l  functions 
f:X - [bpi. For  any two funct ions  f , f ' sF we 
write 

Let X,U be two s e t s ,   l e t   b  be 8- extended 

f = f '  i f   f ( x )  = f ' ( x )  v xsx 

f < f '  i f   f ( x )  5 f ' ( x )  v xsx. 

For any c o l l e c t i o n   { f  IwA] of  functions in F we 
denote by inf  f  (sup  f ) the  pointwise  infinura 

(suprenum)  of  f  over A. For any  sequence (fk] 
with fksF we denote by T i m  fk the pointwise limit 

k 9  
of {fk] (assuming it is well defined as an  extend- 
ed real valued  funct'on), and by l i m  i n f  fk  and 

l i m  sup f   the   pointwise  l imit   infer ior   or   l imit  

superior  of E?]. Throughout t h i s  paper the  con- 
vergence  analysis is car r ied   ou t   wi th in   the   se t  of 

as limits of  sequences  of  extended real numbers. 
extended real nwbers ,   i . e .  sol o r  4 are  allowed 

Consider now a mapping H:X d U X F - [b,mI 
which has the  following  monotonicity  property 

(18)  f I f' H(x,u,f) 5 H(x,U,f') 

(Y 

m A  (YmA 
Cy 

k Irp 

lp, 

v(x,u)cX X U,f,f 'cF. 

For any  function p:X - U def ine  the  mpping 
T :F- F by means of 

(19)  TP(f)(x) E H[x,p(x),fl  xsx. 

Define  a lso  the mappings T: F - F and 7 :  F + F by 
means of 

(20) T(f)(x) = inf  H(x,u,f) xeX. 

(21)  ?(f)(x) = sup  H(x,u,f) =X. 

P 

U 

U 

Relation  (18)  implies  the  following mono- 
t o n i c i t y  relations 
(22)  f 2 f '  3 Tw(f )  5 T,,(f') V f , f ' eF ,  p :  x-4J 
(23) f 5 f' =e T(f) 5 T ( f ' ) ,  ?(f) < ? ( f ' )  

v € , f ' cF  



(24) f 5 f' 3 (T T ... T ) ( f )  
ko w 1  % 

5 (Tw T ... T ) ( f ' )  V f , f ' e F  
0 p1  % 

w : X 4 ,  i4, . . . , k. i 

In r e l a t i o n  (24)  above (T . . .T ) represents   the  
No 4 

composition  of  the  mappiags Two,Tk ,,..., Tb. We 

shall denote by {, 8, ? the   respec t ive  composi- 

t ion  of  T T, F k t h  i t s e l f  k times. 
Pa 

Mppings  of  the type considered are of   in te r -  
e s t   i n   s eve ra l   c l a s ses   o f  dynamic optimization 
problems  under ce r t a in ty  or under   uncertainty  in-  
volving  s ta t ionary  or   nonstat ionary dynamic sys- 
tems and an  inf ini te   horizon.  Some examples a r e  
provided below. Further examples may be found i n  
the  author 's   forthcoming  textbook  [16]  and  in  the 
paper by Denardo [ 111 who considered  similar map- 
pings  under  additional  boundedness and cont rac t ion  
assumptions. 

Deterministic Optimal Control  with  Additive  Cost 
Functional (see e.g. I l l )  

(25)  B(x,u,f) = h(x,u) + a(x,u)f[g(x,u)l  

If  h(x,u) >, 0, cy(x,u) 2 0, v(X,U)cX X U,&O, then H 
above f a l l   w i th in   t he   desc r ibed  framework. Here X 
is  the  state space, U is the con t ro l  space, h(x,u) 
represents   cost  per s tage ,  g:X X U -  X represents  
the  system  function,  and  U(X,U) may be  vikwed as a 
discount  factor whenever a(x,u) < 1. This  discount 
fac tor  may depend  on x and u .  

Stochastic Optimal Control  with  Additive  Cost 
Functional (see e.g. 12.41) 

(26)  H(x,u,f)  =EEh(x,u,w)+  cy(x,u,w)f[g(x,u,v)l  Ix,u] 

e r e  w is  an  uncertain  parameter-element  of a 
countable  set  W with  given  probabi l i ty   dis t r ibut ion 
for  every (x,u)cX x U, and E{ -1 denotes  expectation. 
I f  h(x,u,w) 0, a(x,u,w) 2 0 V(x,u,w)cX x U x W, 
b=O, then H above fa l l s 'wi th in   our  framework, 

Minimax Control Problems with  Additive  Cost 
Functionale (see e.g.   [5-711 

(27)  H(x,u,f) = sup {hCx,u,w) 

W 

WSW(X,U) 

* ~ x , ~ , w ~ f [ g ( x , ~ , w ) l l  
Here again w i s  an  uncertain  parameter-element  of a 
set W, and  W(x,u) i s  a given  subset  of W for   every 
(x,u)sX X U. I f  h(x,u,w) >_ 0, cy(x,u,w) 2 0 
V(x,u,w)cX x U X W, b=O then H above f a l l s   w i t h i n  
our framework. The same i s  t r u e   i f  "sup" i n  (27) 
is replaced by " in f "   i n  which  case  (27) i s  of 
i n t e r e s t   i n  Max-Min problems. 

Stochastic  Control  Problems  with Expoaexitial Cost 
Functionals  (see e.g. [8,911 

(28)  H(x,u,f) = E ~ ~ ~ ( ~ , ~ ' ~ ) ~ [ ~ ( X , U , W ) I   ~ x , u )  
W 

Here everything i s  as in   (26 ) .  

mization  problems  corresponding  to  the mapping H 
and we consider   re la ted  general ized Dynamic R o -  
grarmdng Algorithms.  Various  existence,  character- 

In  the  next  section we formulate two o p t i -  

i z a t i o n  and  convergence r e s u l t s  are given sub- 
sequent ly   in   Sect ion 4 .  

3. A Class of  Opthdzation  Problems 
Let il denote the set of a l l  sequences 

II = {pO,pl,. . .] of  functions  pk:x - u ( a l so   r e fe r -  

r e d   t o  as po l i c i e s ) .  Suppose that fOeF i s  a func- 

t ion  such that 

(29)  fo(x) 5 H(x,u,fo) V(X,U)EX x U 

and  def ine  for   every xcX, neU 

(30)  fn(x) - lim(T T .. .T ) ( fo) (x) .  
lr- Po @1 % 

By ( 2 9 )  we have  fo 5 T (fo),  k=O,l, ..., and  using 
9c 

(24) we ob ta in  

(31) fo  5 T (fo) 5 . . . <, (Tw . . .T )(fo) 5 . . . 
w0 0 %  

Hence t h e   l i m i t   i n  ( 3 0 )  is well defined as an  ex- 
tended real number. 

f ind ing  
Consider now the  optimization  problems  of 

(34) f* (x) = in f   fn(x)  
Tl€U 

(35) Y (x) * sup fn(x) 
ncn 

as well as pol ic ies   a t ta in ing   the   in f i ra rm.or   the  
supremum above ( i f  any e x i s t ) .  These problems  con- 
t a i n  as special cases dynamic optimization  prob- 
lems over   an  inf ini te   horizon which  have  been t h e  
subject   of  much a t ten t ion   in   recent   years .  One 
example i s  the  deterministic  Optimization  problem 
of   the  past   sect ion  under   the  assumption that t h e  
function h ib (1) s a t i s f i e d   h ( x , u )  2 0 f o r  a l l  
x,u.  In t h i s  case fo  is  t aken   t o  be the   funct ion 

which i s  iden t i ca l ly   ze ro  on X (fo(x)=O,V  xcX). As 

another example t ake   t he  mapping (26)  and  assume 
t h a t  0 g h(x,u,w).  a(x,u,w)= 1, V(x,u,w)cX x U X W 
f (x) =-0, V X S X . ~  Then the  problemsassociated  with 

t i e  framewor? o f  the   negat ive  and  posi t ive dynamic 

. . .  

9 4 )  and (35 f 11 wi th in  

programning  problems &mined  by Blackvell  1141, 
Strauch 121 and  subsequently by Hinderer  131. 
S imi l a r ly   fo r   t he  mapping  (27)  under t h e  same as- 
sumptions on h and cy, problem ( 3 4 )  represents   an  
inf in i te   hor izon   vers ion   of  minimax control  prob- 
lems  considered by Witsenhausen 151 and  contains 
as a spec ia l  case a r eachab i l i t y  problem  consider- 
ed by the  author  [ 101 . 
i s  extended real valued,  one may handle con- 
s t r a i n t s  on x and u which may be   p re sen t   i n   t he  
minimization  problem  (34)  simply by l e t t i n g  H. t ake  
the  value -I= whenever x o r  u v io l a t e   t hese  con- 
s t r a i n t s .  For the  maximization  problem  (35)  one 
may handle  constraints  on x o r  u  when b = -m by 
l e t t i n g  H take the   va lue  -EY whenever the  con- 
s t r a i n t s  are v io la ted .  When b # - a reformula- 
t i o n   o f   t h e  problem is necessary  and is poss ib le  
f o r  many problems  of i n t e r e s t  by using  reach- 

It is t o  be noted that, s ince   the  mapping H 



a b i l i t y  methods [ 101. 
Now cons ider   the   func t ions  4, and % given by 

(36) 4, = i n f  (T ... T ) ( fo )  k = 1,2,. . . 
(37) Tk = sup (T ... T ) ( fo )  k = 1,2,. .. 

n d  wo %l 

nen Po %-1 
The funct ions  fky f represent   the   op t imal   va lue  

funct ions  of   " t runcated"  ( f ini te   horizon)   vers ions 
of  problem  (34)  and  (35)  respectively. By (31), 
( fk) , fik) are increasing  eequences  and  their   point-  
wise l i m i t s  f,,T, 

(38)  f,(x) = l i m  fk(x) VxsX 

(39) ?,(x> = 1imTk(x) V X ~ X  

are well defined as f u n c t i o n s   i n  F. 

dit ions  under  which the   fo l lov ing   equal i t i es   ho ld  

(40)  f* = T(f*) , f = T(f ) 

- 
k 

Ic4, 

lrcD 

The objec t ive   o f   th i s   paper  i s  to  provide  con- 

4 -4 

(41) f, = f 
* , f , = f  . - 4  

Equations  (40) may be  viewed as generalized  ver- 
sions  of  Bellman's  equation. They are known t o  
hold  for  discounted,  negative and pos i t i ve  D.P. 
models 141 ,[21,[31 . They do not necessar i ly  
hold i n   o u r  more g e n e r a l   s e t t i n g  i n  the  absence 
of  additional  assumptions  which are s p e c i f i e d   i n  
the  next   sect ion.  The val idi ty   of   equat ions  (41)  
i s  of  considerable  analytical   and  computational 
i n t e r e s t   s i n c e   t h e   f u n c t i o n s  f, and T, may 

usua l ly   (bu t   no t   a lways   wi th in   our   se t t ing)   be  ob- 
t a i n e d   i n   t h e   l i m i t  by the  D.P. Algorithm 

(42) f, = l i m  Tk(fo) , f, = lim??(fo). 

In spec ia l  cases such as those  considered by rrr* 

Strauch  [2]  and  Hinderer [31 there   holds  ?, = f 

but the equa l i ty  f, = f can  be  guaranteed  to  hold 

only   under   res t r ic t ive   f in i teness   assumpt ions  on 
the  space U ( see   [2] ,   Th .9 .1)   inpegat ive  D.P. 
models. An example where f, # f was g iven   in  

Section 1 and  other  examples  where f, # f*  have 
been  given  in 121 (p.880)  and [lo] (p.608).  With- 
i n  our more gene ra l   s e t t i ng  we prove-in the   next  
s e c t i o n   t h a t  it i s  always true t h a t  f, = ̂ i* and wg 
provide  conditions  under  which  the  equality f  f 
a lso  holds .   These  condi t ions  (Proposi t ion 107 
s t r eng then   subs t an t i a l ly   ex i s t ing   r e su l t s .  

amined in   the  next   sect ion.   Condi t ions  under  
which  the  equalit ies  (42)  hold are provided.  In 
add i t ion   t he   ques t ion   o f   ex i s t ence  and  character-  
izat ion  of   opt i lnal   s ta t ionary  pol ic ies  i s  examined. 

It i s  to  be  noted  that   the  equations  (40),  
(41), and  (42)  hold  under  boundedness  and  contrac- 
t ion  assumptions  s imilar   to   those  introduced by 
Denardo i n  [111.  Since  Denardo's  analysis i s  c w -  
p l e t e  and s a t i s f y i n g   t h e r e  i s  no reason  of  dupli-  
cating  any  portion  of it here.  For t h i s  reason we 
shall r e s t r i c t   o u r   a t t e n t i o n   t o   s i t u a t i o n s   w h e r e  
contraction  assumptions  such as those  of [11] need 
not be s a t i s f i e d .  

N 

k+= Ira, 

* 

Several   o ther   subsidiary  quest ions are ex- 

4. Main Resul t s  
The f i r s t   r e l a t i o n e  between f,, f, and f , 

T' are g iven   in   the   fo l lowing  twu proposit ions.  
The resu l t s   for   p roblem (34) d i f f e r  from those   for  
problem  (35). 
P r o w s i t i o n  1: There  holds 

N * 

(43) Y, = T. 
Prowsi t ion   2 :  Assume that f, - T(f,) and  fur ther-  
more the  infimum i n   t h e   r e l a t i o n  

(44) f,(x) = i n f  H(x,u,f,) 

i s  a t ta ined   for   every  xoX.  Then 

(45)  f* = T(f*) = f, = T(f,) 

and if p*(x) a t t a i n s   t h e  infimum i n  (44) for  each 
xsX then   the   s ta t ionary   po l icy  rr* = {p*,p*, . . .] 
minimizes  fn(x)  for  every  xsx. 

U 

Further   propert ies   and  re la t ions  of  f,, N f,, 

f , f follow upon the  introduct ion  of  the fo l lov-  
i ng  two cont inui ty   p roper t ies   o f  H. 

PL. If El i , ]  i s  any  sequence  with %SF, and 

gk 5 g,+l f o r  a l l  k,  then 

* -* 

PL. There e x i s t s  a s c a l a r  CY > 0 such  that   for a l l  
scalars r > 0 and  functions  feF  there  holds 

(47)  H(x,u,f)l  H(x,u,f+re)<_  H(x,u,f) + QT 

V(X,U)PX x u 
where e denotes   the  uni t   funct ion on X (e(x)= 1, 

The following two propositions  provide  con- 
VXSX) , 

dit ions  under  which the  functiona  fk and ?k of 

(36),(37)  can be  computed i t e r a t i v e l y  by means of 
generalized Dynamic Programing  algorithms. 
Proposition  3:  Let P2 hold  and ass- t h a t  
fO(x) > -OD for a l l  xsx. Then fk = Tk(fo)  for a l l  
k - 1,2, ... and  hence 

f, - l i m  f = l i m  Tk(fo). 
k- k-a, 

Proposit ion 3 may f a i l   t o  hold i f   e i t h e r   o f  
i ts two assumptions i s  not i n   e f f e c t .  

CounterexamOle 1: Take X = { O ] ,  U = (0,1), b = 0, 
f (0) 0, H(O,u,f) 1 if f ( 0 )  > 0, H(O,u,f) = u i 9  f(O) = 0. Then (T . . . T  (fo) (0) = 1 f o r  

every ncn and k z 2. Hence fk(0)= f,(O)= f * (0)=1. 

But we have Tk(fo)(0) 0 f o r   a l l   k .  Here P2 is  
v io la ted .  

Counterexample  2: Take X - {OJ) ,  U = (-m,01 , 
b = 4, fo(0)  = f o ( l )  = 4, H(O,u,f) u i f  

f (1)  = -0)) H(O,u,f) * 0 i f   f ( 1 )  > -03, and 
H(l,u,f) = u. Then (T T . . . T )(f,)(O)= 0, 

'0 %-1 

'0 % 'Lk-1 

and k 2 2. Hence we have fk(0) = f,(O) = 0, 
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f k ( l )  = f m ( l )  = for   every  k >_ 2 .  On the   o ther  

hand we have T (fo)(0) = T ( f o ) ( l )  = -01 f o r  a l l  

k > 1. Notice  a lso that f o r   t h i s  problem we have 
f*-=  f, and  T(f*) (O)= T(f,) (0)s T(f*)  (l)rT(fm) ( 1 ) ~  

= 4. Hence f* # T(f*)  and f, # T(f,). Here P2 

is sat isf ied  but   the   assumption  fo(x)  > -01, V xeX 
i s  vio la ted .  
Proposit ion 4 :  Let P2 hold  and assume that 
T (fo)  (x) < -to, f o r  a l l  xex. Then Y = Tk( fo )   fo r  

a l l  k = 1,2,.. .   and  hence 

k  k 

-k 
k 

- 
f, = l i m  fk  = l i m  T ( fo) .  k 

k- lrco 
Proposit ion 4 may f a i l   t o  hold i f   e i t h e r   o f  

i t s  two assumptions i s  n o t   i n   e f f e c t .  

Counterexample 3: Take X = EO], U = (O,l) ,  b = 0 ,  
fo(0)  = 0, H(O,u,f) = u i f  0 <- f ( 0 )  < 1, 

u H(O,u,f) = f ( 0 )  + u i f  1 5 f (0) .  Then 
fk(0)  = sup(T . . .T ) ( fo ) (0 )  = 1 but  

-k 
T (f,) (0) = k for   every k >- 1. Here P2 i s  v i o l a t -  

veil '0 'k-1 

ed.  "Notice a l s o  that here ?*(O) - 1 but 
T(f )(O) = 2 and  f* p ?(?*). -U* 

Counterexample 4 :  Take X = { O , l ] ,  U = LO,-), b = 0, 
fo(o)  = f O ( l )  = 0, H(O,u,f) = u i f   f ( 1 )  = 0, 

H(O,u,f) = 0 i f   f ( 1 )  < m, and H(l,u,f)  = U. Then 
(T T ... T ) ( fo ) (0 )  = 0, 

bo iJ'1 %-1 

(T T . . .T ) ( f o ) ( l )  = p (1) for  every k >_ 1. 

Hence we have ?,(O) = ?,(O) = 0, fk ( l )=  ?-(1)= m 

f o r   a l l  k >_ 1. On the   o ther  hand we have 
-k T ( fo) (0)  = T ( f o ) ( l )  = - f o r  a l l  k z 2.  Notice 4 

a l s o   t h a t   f o r   t h i s  problem we have f = f, (as 

Proposition l p red ic t s )  and  T(f )(O)= T(f  )(1)= m .  

Hence cr" # T(f ) and Tm # ?(?-). Here P2 i s  s a t i s -  

fied  but  the  assumption T ( fo) (x)  < m y  xaX i s  
vio la ted .  

The following  propositions  provide  conditions 
under  which.  the  optimal va&e functions  f*  and ?* 
are fixed  points  of T and T respect ively.   Further-  
more under  appropriate  conditions  f* and ?4 are 
charzcterized as the  "smallest" f ixed   po in ts  of T 
and T respec t ive ly .  

Proposit ion 5: Let P2 hold  and assume t h a t   f ' c F  i s  
a function  such that f '  2 f o y   f ' ( x )  > -m fo r  a l l  
XeX, and f '  T ( f ' ) .  Then f* 5 f ' .  

'0 5 %-1 0 - 

d -  

-4 - -* 
Nnnt 

-k 

In  Counterexample 1 wg have t h a t  f '  (0) = 0 
s a t i s f i e s   f '  = T f f ' ) .  Yet f (0) = 1 > f ' ( 0 ) .  Here 
P2 is  vio la ted .  

Proposit ion 6: Let P2 hold  and assu? t h a t   f ' a F  i s  
a f u n c t i o n   s u c h   t h a t   f '   f o ,   f '   T ( f ' )  and e i t h e r  
f ' ( x )  < 0 or else  sup(^ ... T ) ( f l ) ( x ) = + ( f ~ ) ( x )  

f o r  a l l  xcx. Then r* f ' .  
'k-1 

It i s  t o  be  noted that Proposit ion 6 may 

form the  basis   for   computat ion  of   the  funct ion ?* 
when t h e  set X i s  a f i n i t e  set , X ={x1,x2,. . . ,xn) , 
and ?* s a t i s f i e s  ?* = T(f ). Under these  con- 
d i t i o n s  it follows from Proposit ion 6 t h a t  
Ecfk(xl), . . . ;s"(xn>) solve  the  problem 

5 -* 

n 
min C Ai 

i-1 

subjec t  to  

h i  2 sup H(xi,uDf ) i = 1, ..., n 
U x 

A i  L f0(Xi) i = l , . . . , n  

where fh. i s  the   funct ion  taking  values   ?(xi)= h i ,  

i= 1,. . . ,n. 
Propos i t ion  7: Assume t h a t  P1 holds ,   fo(x)  > -OD 

f o r  a l l  xeX, and  furthermore  the mapping H has   the  
property that for  every  (x,u)eX X U t h e r e   e x i s t s  
a sequence  of  policies {TI,} such t h a t  

(48 )  H(x,u,fn ) - H(x,u,f*). 
k 

Then 
f* = T(f*). 

Propos i t ion  8 :  Assume t h a t  P1 holds 
t h e  mapping H has  the  property that 
(x,u)cX x U t h e r e   e x i s t s  a sequence 
En,] such  that  

and  furthermore 
for   every  
o f   po l i c i e s  

& 

(49 )  H(x,u,hk)  - H(x,u,f rrjt ). 
Then N* N -* 

f = T(f ) .  
Counterexamples 2, 3 a n i .  4 shw&the-rrta_nner i n  

which t h e   r e l a t i o n s  f* = T(f ) and f = T(f*) may 
f a i l   t o  hold. 

and (49 )  may be. q u i t e   d i f f i c u l t   t o   v e r i f y  i n  
specific  problems. For  example while  they  do 
hold  in   posi t ive  and  negat ive dynamic  programming 
problems [14], [21, 131, t h e i r   v e r i f i c a t i o n  i s  
rather  complicated.  The fol lowing  proposi t ion 
provide$  a l ternat ive,   and  in  some cases more 
e a s i l x x r i f i a b l e   c o n d i t i o n s ,  which  guarantee  that 
f = T(f ). 
Propos i t ion  9 :  Let P l y  P2 hold and  assume fu r the r  

t h a t  T ( fo) (x)  e = f o r  a l l  XSX or  otherwise 

It i s  t o  be noted  that   the   condi t ions (48 )  

w* 

-k 

Yk = ? ( fo j   fo r  a l l  k 1. Then 

The following  proposit ion  provides a compact- 
ness  agsumption  under  which  the  equality 
f, = f = T(f*) is s a t i s f i e d  and  furthermore  an 
opt imal   s ta t ionary   po l icy   ex is t s .  It i s  r e a d i l y  
v e r i f i a b l e  in many problems  of I n t e r e s t  and  con- 
s t i t u t e s  a subs t an t i a l  improvement over   avai lable  
suf f ic ien t   ccondi t ions   for   the  D.P. a lgo r i thm  to  
y i e l d  in t h e  limit the  optimal  value  function f*. 
Proposition  10: Let U be a Hausdorff  topological 
space and  assume t h a t   P l y  P2 hold,  we have 
fo(x) > -= f o r  a l l  xeX, and t h e r e   e x i s t s  a non- 
negat ive  integer  f such  that  for  each. XEX, 
h e ( & , - )  and k >_ k t h e   s e t  
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i s  compact. Then * 
f* = T(f ) = f, = T(f,). 

Furthermore  there  exists a s ta t ionary   po l icy  
rr* = {p*,p*, . . .] which  minimizes  fn(x)  for a l l  xsX. 

The compactness  of  the sets yC(x,X) of  (50) 
may be   ve r i f i ed   i n  a number of  important  special  
cases. One such  case i s  when %(x,X) i s  a f i n i t e  

set  f o r  a l l  k,  x, X .  Simply cons ider   the   d i scre te  
topology on U [121, i . e .  the  topology  consis t ing 
of a l l  subsets   of  U. In   this   topology a s e t  i s  com- 
p a c t   i f  and  only i f  i t  i s  f i n i t e .  For t h i s   c a s e  
t h e   r e l a t i o n  f, = f* for   the  negat ive model of 
Strauch  has  been shown earlier [21.  There are 
many other  important  cases  where  the  compactness 
of  yC(x,h)  can  be  verified. It i s  not  our  intent-  

ion  to   provide  an  extensive l i s t  of  such cases. In- 
s tead  we state as a n   i l l u s t r a t i o n  two sets of 
assumptions  which  guarantee  compactness of %(x,X) 

in   t he   ca se   o f   t he  mapping 

(51)  H(x,u,f) = h(x,u) + Q(X,U)  f[g(x,u)] 

corresponding t o  a de te rminis t ic   op t imal   cont ro l  
problem . 

Assume in (51)  that   h(x,u) 2 0, Q(X,U) 2 0 
f o r  a l l  (x,u)sX x U and  take  F t o  be  the set of 
functions  f :X - [0,m] and  fo(x) = 0, VxsX.  Then 

compactness  of U (x,h) i s  gua ran teed   i f :  

a )  X = Rn (n-dimensional  Euclidean  space), 

U = Rm, h, g, (Y are continuous  in  (x,u)  and  h 
s a t i s f i e s  l i m  h(xn,un) = 0) for   every bounded 

sequence  [x } and  every  sequence {U ] f o r  which 

lun\ 4, ( 1  - 1  i s  a norm on R 1. 

b)  X = Rn, U i s  a nonempty and  compact subset  of 
Rm, g  and cy are continuous, 
h i s  contiauous on Rn x U. 

earlier, other   general   suff ic ient   condi t ions  which 
guarantee   tha t   an   op t imal   s ta t ionary   po l icy   ex is t s  
for  special  cases  of  problem  (17) are those  of 
Maitra for  discounted  problems  (see  [3]  Th.5.11), 
and  Kushner for   f ree   ena time problems  [131. In 
these  cases   the  basic  mapping has contract ion  pro-  
p e r t i e s  which  guarantee  that f, = f*. In both 
cases   the   suf f ic ien t   condi t ions   for   ex is tence   o f  
an  opt imal   s ta t ionary  pol icy  fol low from 
Proposit ion 10. 

F ina l ly  we poin t   ou t   tha t   our   resu l t s  are 
l i m i t e d   i n  two ways. F i r s t  we have  allowed as 
admissible   pol ic ies  a l l  sequences  of  arbitrary 
functions  pk: X - U. In  many problems  of i n t e r e s t  

t he re  may be r e s t r i c t i o n s  on the  class of  functions 
p under  consideration. For  example $ m y  be 

required  to  be  measurable, when X and U are 
measurable  spaces. Our r e s u l t s ,   u n l e s s   t h e  problem 
is reformulated, are not   appl icable   to   such  a case.  
A second l i m i t a t i o n  i s  due to  the  assumption  (29) 
on t h e   i n i t i a l   f u n c t i o n   f o  which ru les   ou t   the  

a p p l i c a b i l i t y   o f   o u r   r e s u l t s   t o   c e r t a i n   c l a s s e s  of 

k 

rrp 

m n 

Aside  from  the  result  of  Strauch  mentioned 

k 

problems  which  do  not f i t   t h e  framework of 
Positive  and  Negative D.P. models.  Current re- 
search i s  aimed a t  r e l axa t ion ,   t o   t he   ex ten t  p s -  
s ib le ,   o f   these   res t r ic t ive   assumpt ions .  
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