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Abstract is given by
In this paper we consider a class of monotone 3) fo(x) =0
mappings underlying many sequential optimization
problems over a finite or infinite horizon which @) £ &)= inf{h(x,u) + fi[g(x,u)]}
u

are of interest in applications. This class of
problems includes deterministic and stochastic opti- 1=0,1,...,k"1

mal control problems, minimax control problems, and the optimal value of the problem is obtained
Semi-Markov Decision problems and others. We prove at the kth step of the algorithm

some fixed point properties of the optimal value inf £ (x) = £ (x.)

function and we analyze the convergence properties n k0 k07"
of a related generalized Dynamic Programming
algorithm. We also give a sufficient condition
for convergence, which is widely applicable and of (1) corresponding to any m = {po,pl,.,.,pk 1}
considerably strengthens known related results. from the kth step of the D.P. algorithm

1. _Introduction ) fo’"(x) =0

It is well known that Dynamic Programming
(0.P. for short) is the principal method for analy-
sis of sequential optimization problems. It is
also known that it is possible to describe each + fi,"[g(x,uk_l_i(x))]
iteration of a D.P., algorithm by means of a
certain mapping which maps a space of functions
defined on the state space into itself. In prob-
lems with a finite, say k, number of stages, after

Notice also that one may obtain the value fk’"(xo)

(6) f1+1,n(") = hlx,py ;4 x)]

Now it is possible to formulate the problem
above as well as to describe the D.P. algorithm
(3), (4) by means of the mepping H given by

k successive applications of this mapping (i.e., (7) H(x,u,f) = h(x,u) + flg(x,u)].
after k steps of the D.P. algorithm) one obtains let us define
the optimal value function of the problem. 1In @) T(Ex) =i

problems with an infinite number of stages one

?f H(x,u,f)
hopes that the sequence of functions generated by

and for any function p: X~ U

successive application of the D.P. iteration con- 9) T (£)x) = Hx,p(x),f]
verges in some sense to the optimal value function e
of the problem. Then, in view of (5),(6), we may write the cost
To illustrate this viewpoint let us consider functional fk - of (1) as
the deterministic optimal control problem of find- ?
ing a finite sequence of control functions o) £ _x,)=(T T .... T YD) (x,)
7 = {pgsbiyse--oby ) Which minimize k,m 0 ko ¥ By 0770
k-1 where fo is the zero function of (3),
M g &) = T hlxg,u, )] (f.(x) =0, Y€ X)and (T T ...T ) is the
1=0 0 o ¥ Bi-1
subject to the system equation constraint composition of the mappings Tu ,Tu ,...,Tuk .
0 "l -1
@) x = gfx, u, (x,)] 1=0,1,,..,k-1. Similarly the D.P. algorithm (3),(4) may be
i+l E Sant SR
described by
The states X, belong to a state space X and the (11) f1+1(x) - T(fi)(x) 1=0,1,...,k1

controls ui(xi) are elements of a control space U. and we have

The initial state xq is given, and h,g are given (12) iaf fk "(xo) - Tk(fo)(“o)
w H

functions. The D.P, algorithm for this problem
where Tk is the composition of T with itself k
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by we seek a sequence W = {uo,ul,...} of control

functions which minimize
k-1
(13) £ (x,) = lim T hix,,p, ()]
LAY " {=0 t Ras iy

subject to the system equation constraint
14) xpp = glxg,p @] L=0,1,...

We assume that the function h above is such that
the limit in (13) is well defined for every m. A
question of considerable computational and analy-
tical interest concerns the validity of the
equation

+*
(15) £ ) = inf £ () = lin Tk(fo)(x)

where T is the mapping of (8). When (15) holds,
the D.P, algorithm yields in the limit the optimal
value of the problem. Another import:ang question
is whether the optimal value function f" satisfies
Bellman's functional equation

(16) £ (x) = inf{h(x,u) + £ [g(x,u)]}
u

or equivalently whether
* *
(17) £ (x) = T(f ) (x)

and £* 1s a fixed point of the mapping T. Consider-
able amount of research has been directed towards
resolving these and other related questions. It
has been proved under fairly general assumptions
that (16) holds true. BHowever the equality (15)
has been proved only under restrictive assumptions.
In fact (15) may fail even for very simple prob-
lems as the following example shows:

Example: Let X = [0,9), U = (0,#) be the state and
control spaces respectively. Let the system equa-
tion be

X

= in +u, 1=0,1,...

i+1 i

and let the cost per stage be defined by
h(x,u) = x + u.
Then it can easily be verified that
f*(x) = i#f £ (x) =+ Vxex

while
Tk(fo)(0)=0 Viks=1,2,...

The deterministic optimization problem de-
scribed above is representative of a plethora of
sequential optimization problems of practical in-
terest which may be formulated in terms of map-
pings similar to the mapping H of (7). Further-
more D,P. algorithms corresponding to such prob-
lems may also be described in terms of mappings
similar to the mapping T of (8). A general class
of such sequential optimization problems will be
described in the next section together with ex-
amples of specific classes of problems of inter-
est. Similarly as in deterministic problems,
questions arise as to whether equations such as
(15) and (17) hold. The purpose of this paper is
to provide an analysis of these questions in a
general setting. To this end we take as our
starting point a class of mappings and subsequent
ly construct a class of abstract optimization
problems which contains as special cases several

classes of problems of interest. The validity of
several important properties of these problems is
traced directly to properties of their associated
mappings. Since the framework adopted is abstract
and general in nature, the analysis provides a
measure of the extent to which results obtained
earlier for specific cases hold true in a more
general setting. 1In addition existing results for
important special cases, such as deterministic and
stochastic optimal control problems, concerning
the convergence of the D.P. algorithm in infinite
horizon problems are substantially strengthened.
In view of the space limitation, no detailed
proofs are given in this paper. They may be found
in a report [15] available from the author on re-
quest.

2. A Class of Monotone Mappings
Let X,U be two sets, let b be some extended
real number and let F be the set of all functions

£:X - [b,®]. For any two functions f,£'cF we
write

£=f' if f(x) = f'(x) V xeX

f<f' 1f f£f(x) < £'(x) V xeX.
For any collection {fdlueA} of functions in F we
denote by inf £ (sup far) the pointwise infimum

acA acA
(supremum) of £, over A. For any sequence {fk 1

with £%F we denote by lim £° the pointwise limit
k=
of {fk} (assuming it is well defined as an extend-
ed real valued function), and by lim inf f* and
ko

lim sup fk the pointwise limit inferior or limit

ko
superior of {fk }. Throughout this paper the con-
vergence analysis is carried out within the set of
extended real numbers, i.e. 4 or —» are allowed
as limits of sequences of extended real numbers.
Consider now a mapping H:X X UXx F -~ [b,»)]
which has the following monotonicity property

(18) £ < f' = H(x,u,f) < H(x,u,£')

V(x,u)eX x U,f,f'eF.
For any function p:X -» U define the mapping
Tu:F——F by means of

(19) Tu(f)(x) = Hx,p(x),f] ¥ xzeX.

Define also the mappings T:F ~ F and T:F=F by
means of

(20) T(f)(x) = inf H(x,u,f)
u

@1) TE)(x) = sup H(x,u,f) V xeX.
u

V xeX.

Relation (18) implies the following mono-
tonicity relatioms

(22) f < f' = IL(f) < Tu(f') v f,f'eF, u: XU
(23) £ £ = T(F) < T(E"), T(£) < T(£")
V €,f'eF



(26) £<f' = (T T vee T YD)
o ™1 By
<@ T ...T )(E"Y ¥V £,£'F
Wo B My ’
ui:X~U, i=Q,...,k.

...T ) represents the
"
composition of the mappings T ,T ,...,T . We
Ko M Pk
shall denote by Tt, Tk,'Tk the respective composi-
tion of~Tu, T,'T with itself k times.

Mappings of the type considered are of inter-
est in several classes of dynamic optimization
problems under certainty or under uncertainty in-
volving stationary or nonstationary dynamic sys-
tems and an infinite horizon. Some examples are
provided below. Further examples may be found in
the author's forthcoming textbook [16] and in the
paper by Denardo [11] who considered similar map-
pings under additional boundedness and contraction
assumptions.

Deterministic Optimal Control with Additive Cost

Functional (see e.g. [1}])

(25) H(x,u,f) = h(x,u) + a(x,u)flg(x,u)]

If h(x,u) 2 0, a(x,u) 2 0, V(x,u)eX x U,b=0, then H
above fall within the described framework. Here X
is the state space, U is the control space, h(x,u)
represents cost per stage, g:X x U~ X represents
the system function, and a(x,u) may be viewed as a
discount factor whenever a(x,u) < 1. This discount
factor may depend on x and u.

Stochastic Optimal Control with Additive Cost

Functional (see e.g. {2,4

In relation (24) above (TL
0

(26) H(x,u, f) -E{h(x!uiw)-,- a(x,u,w)f[g(x,u,w)] 'x,u}

Here w is an uncertain parameter-element of a
countable set W with given probability distribution

for every (x,u)eX x U, and E{‘} denotes expectation.

If h(x,u,w) > 0, a(x,u,w) > 0 V(x,u,w)eX x U X W,
b=0, then H above falls ‘within our framework,

Minimax Control Problems with Additive Cost

Functionals (see e.g. [5-7]1)

(27) H(x,u,f) = sup {h(x:usw>
weW(x,u)

W(X,U:w)f[g(xsusw)]}

Here again w is an uncertain parameter-element of a
set W, and W(x,u) is a given subset of W for every
(x,u)eX x U, If h(x,u,w) >0, e(x,u,w) >0
V(x,u,w)eX x U X W, b=0 then H above falls within
our framework. The same is true if "sup" in (27)
is replaced by "inf' in which case (27) is of
interest in Max-Min problems.

Stochastic Control Problems with Exponertial Cost
Functionals (see e.g. [8,9])

(28) H(x,u,f) = E{eh(x’u’w)f[g(x,u,w)][x,u}
w

Here everything is as in (26).
In the next section we formulate two opti-
mization problems corresponding to the mapping H

and we consider related generalized Dynamic Pro-
gramming Algorithms. Various existence, character-

ization and convergence results are given sub-
sequently in Section 4.

3. _A Class of Optimization Problems

Let II denote the set of all sequences
= {uo,ul,...} of functions u, :X ~ U (also refer-

red to as policies). Suppose that foeF is a func-~
tion such that
(29) fo(x) < H(x,u,fo) Vix,u)eX x U

and define for every xeX, mell

(30) £ (x) = ;f:(T“OTul.”Tuk)(fo)(X).

By (29) we have f0 < Tuk(fo), k=0,1,..., and using

(24) we obtain

(31) f0 < Tuo(fo) < ... < (T“o.'.T“k)(fo) < ..

(B2) £y < T(E) € TP(fQ) < -vv < T (£p)

0
33) £, <Fe) <P < oo < T8

A

IN

Hence the limit in (30) is well defined as an ex-
tended real number.

Consider now the optimization problems of
finding

(36) £ (x) = inf £ (x)
el

(35) F (x) = sup £ (x)
mell

as well as policies attaining the infimum. or the
supremum above (if any exist). These problems con-
tain as special cases dynamic optimization prob-
lems over an infinite horizon which have been the
subject of much attention in recent years. One
example is the deterministic optimization problem
of the past section under the assumption that the
function h in (1) satisfied h(x,u) > O for all

x,u. In this case fo is taken to be the function

which is identically zero on X (fo(x)=0,V x¢X). As

another example take the mapping (26) and assume
that 0 < h(x,u,w), a(x,u,w)= 1, V(x,u,w)eX x UX W
fggﬁ) = 0, V xeX. Then the problemsassociated with

and (35) fall within
éﬁe frameégrg o? the negative and positive dynamic

programming problems examined by Blackwell [14],
Strauch [2] and subsequently by Hinderer [3].
Similarly for the mapping (27) under the same as-
sumptions on h and o, problem (34) represents an
infinite horizon version of minimax control prob-
lems considered by Witsenhausen [5] and contains
as a speclal case a reachability problem consider-
ed by the author [10].

It is to be noted that, since the mapping H
is extended real valued, one may handle con-
straints on x and u which may be present in the
minimization problem (34) simply by letting H. take
the value + whenever x or u violate these con-
straints. For the maximization problem (35) one
may handle constraints on x or u when b = -= by
letting H take the value -= whenever the con-
straints are violated. When b # - a reformula-

tion of the groblem is necessary -and is possible
for many problems of interest by using reach-



ability methods [10].
Now consider the functions f, and 'Ek given by

(36) = inf (T ...T Y(E) k=1,2,...

f mel Mo M1’ O ”
(37) £ = sup (T ...T

kK nel Mo Mk-1l
The functions f ,'?k
functions of "truncated" (finite horizon) versions
of problems (34) and (35) respectively. By (31),
{fk},f?k} are increasing sequences and their point-

wise limits ﬁm;:m

(£ k= 1,2,..

represent the optimal value

(38) £,(x) = lim £ (x) VxeX
k=

(39) E_(x) = lm ?k(x) VxeX
k=

are well defined as functions in F.
The objective of this paper is to provide con-
ditions under which the following equalities hold

* * ~rk ~ ~rk

40y £ =T(£) , T =T(E)
* ~ ~k

wl) £ =f , £ =F .

Equations (40) may be viewed as generalized ver-
sions of Bellman's equation. They are known to
hold for discounted, negative and positive D.P.
models [14],[2],{3]. They do not necessarily
hold in our more general setting in the absence
of additional assumptions which are specified in
the next section. The validity of equations (41)
is of considerable analytical and computational
interest since the functions £ and'?w may

usually (but not always within our setting) be ob-
tained in the limit by the D.P. Algorithm

@) £, = Un T , T, = un T,
e oo

In special cases such as those considered by _ .
Strauch [2] and Hinderer [3] there holds T; = f

*
but the equality f = f can be guaranteed to hold

only under restrictive finiteness assumptions on
the space U (see [2], Th.9.1) in negative D.P.
models. An example where £ # f was given in

Section 1 and other examples where f_ # f* have
been given in [2] (p.880) and [10] (p.608). With-
in our more general setting we prove in the next
section that it is always true that £ = £ and wg
provide conditions under which the equality £ = £
also holds. These conditions (Proposition 10
strengthen substantially existing results.

Several other subsidiary questions are ex-
amined in the next section. Conditions under
which the equalities (42) hold are provided. 1In
addition the question of existence and character-
ization of optimal statiomary policies is examined.

It is to be noted that the equations (40),
(41), and (42) hold under boundedness and contrac-
tion assumptions similar to those introduced by
Denardo in [11]. Since Denardo's analysis is com-
plete and satisfying there i1s no reason of dupli-
cating any portion of it here. For this reason we
shall restrict our attention to situations where
contraction assumptions such as those of [1l] need
not be satisfied.

4. Main Results
The first relations between £_, ?; and f*,

?* are given in the following two propositions.
The results for problem (34) differ from those for
problem (35).
Proposition 1:
@) £ =F.

There holds

Proposition 2: Assume that £ = T(f ) and further-
more the infimum in the relation

(44) £ (x) = inf H(x,u,f )
u

is attained for every xeX. Then
* *
(45) £ =T(f) = £ =T(£)

and if w*(x) attains the infimum in (44) for each
xeX then the stationary policy m* = [ux ux, .. .}
minimizes fﬂ(x) for every xeX.
Further properties and relations of £, ?;,
* o~k
f , £ follow upon the introduction of the follow-
ing two continuity properties of H.

Pl. If {gk] is any sequence with g cF, and
gk < &g for all k, then

(46) lt}: H(x,u,gk)= H(x:u’;_i: gk) V(x,u)eX x U.

P2, There exists a scalar o > O such that for all
scalars r > 0 and functions feF there holds

(47) H(x,u,f)< H(x,u,ftre)< H(x,u,f) + or
V(x,u)eX x U

where e denotes the unit function on X (e(x)= 1,

VxeX).

The following two propositions provide con-

ditions under which the functions fk and'?k of

(36), (37) can be computed iteratively by means of
generalized Dynamic Programming algorithms.

Proposition 3: Let P2 hold and assume that
£9(x) > == for all xeX. Then fi = TK(£g) for all

k = 1,2,... and hence
£ = i—l-: £, = lin Tk(fo).
ko

Proposition 3 may fail to hold if either of
its two assumptions is not in effect.

Counterexample 1l: Take X = {0}, U = (0,1), b = 0,
£.(0) = 0, H(O,u,f) = 1 1f £(0) > 0, H(O,u,f) = u
if £(0) = 0. Then (Tuo...Tuk_l)(fo)(O) =1 for
every mell and k > 2. BHence £ (0)= £,(0)= £ (0)=L.
But we have Tk(fo)(O) = 0 for all k. Here P2 is
violated.

Counterexample 2: Take X = {0,1}, U = (-=,0],
b=, £,(0) = £,(1) = =, H(,u,f) = u 1if
£(1) = -», H(O,u,f) = 0 if £(1) > -®, and
H(l,u,f) =u. Then (T T ... T  )(£.,)(0)= 0,
e B Wy eyt O

T T ... T £ 1) =
( bo By uk-l)( o) (1) = uy(1) for every mel

and k > 2. Hence we have fk(O) = £ (0) =0,



fk(l) = @a(l) = «» for every k > 2. On the other

hand we have Tk(fo)(O) - Tk(fo)(l) = = for all

k*z 1. Notice also that for this problem we have
£" = £ and T(£*)(0)= T(£,)(0)= T(f*)(l)-T(ﬁb)(1)=
= -, Hence £f¥ # T(£f*) and £, # T(f). Here P2

is satisfied but the assumption fo(x) > = ¥ xeX
is violated.

Proposition 4: Let P2 hold and assume that

~k ~ ~

T (fo)(x) < 4= for all xeX. Then fk = Tk(fo) for
all k = 1,2,... and hence

%, = lin £ = lim TVt
ko=

).
i 0

Proposition 4 may fail to hold if either of
its two assumptions is not in effect.
Counterexample 3: Take X = {0}, U = (0,1), b = 0,
fo(O) = 0, H(O,u,f) =u if 0 < £(0) < 1,

H(,u,f) = £(0) +u 1f 1 £ £(0). Then
fk(O) = sup(T )(fo) (0) = 1 but
mell 7O k-1
E‘k(fo)(O) =k for every k> 1. Here P2 is violat-

~k
ed. Notice also that here £ (0) = 1 but
T(E*)(0) = 2 and £ # T(FY).

Counterexample 4: Take X = {0,1}, U= [0,2), b =
£,0) = £,(1) = 0, H(0,u,) = u if £(1) = =,
H(O,u,f) = 0 if £(1) < », and H(l,u,f) = u, Then

(T, T ...T  )(£,)(0) = 0,
B My Har’ 0

.
W

0,

( T )(fo)(l) = u.o(l) for every k > 1.

1

Hence we have ”f‘k(O) =% (0) =0, 'Ek(l)= T (==
for all k > 1. On the other hand we have
Tk(fo)(O) =?r’1‘(f0),(1) == for all k > 2.
also that for this problem we have ?ﬁ ='?m (as
Proposition 1 predicts) and'¥(?*)(0)='fff*)(1)= ®,
Hence T+ #?f(’fj*) and ’fm #T(Af;). Here P2 is satis-

fied but the assumption'fk(fo)(x) <o, ¥V xeX is
violated.

The following propositions provide conditions
under which the optimal value functions f and £
are fixed points of T and T respectively. Further-
more. under appropriate conditions £* and F* are
characterized as the '"smallest" fixed points of T
and T respectively.

Proposition 5: Let P2 hold and assume that f'eF is
a function such that £' > fo, f'(x) > = for all

xeX, and £' = T(f'). Then £f* < f'.

In Counterexample 1 we have that £'(0) = 0
satisfies f' = T(f'). Yet £ (0) =1 > £'(0). Here
P2 is violated.

Proposition 6: Let P2 hold and assume that f'cF is
a function such that f' g_fo, f' > T(f') and either

f' @ t =7 '
(x) <= or else s#p(Tuo...Tuk-l)(f ) )= (E') (x)

for all xeX. Then ¥* < £'.

T T ..
Ho M1

Notice

It is to be noted that Proposition 6 may

24

form the basis for computation of the function T~

when the set X is a finite set, X ={x1,x2,...,xn]

gk ko aak
and £ satisfies £ = T(f ). Under these con-
ditions it follows from Proposition 6 that
f¥*(x1),...;f*(xn)} solve the problem

n
min 21 ki

subject to
Ki > sgp H(xi,u,fl) i=1,...,n
Ki > fo(xi) i=1,...,n

where fk is the function taking values fl(xi)= Xi,
i=1,.
Propogition 7: Assume that Pl holds, fo(x) > -»

cesDl.

for all xeX, and furthermore the mapping H has the
property that for every (x,u)eX x U there exists
a sequence of policies {nk} such that

(48) H(x,u,f_ ) = H(x,u,f%).
Mg

Then

£ = T(£%).
Proposition 8: Assume that Pl holds and furthermore
the mapping H has the property that for every
(x,u)eX x U there exists a sequence of policies
{nk} such that

(49) H(x,u,f, ) = H(x,u,f").

Then ~*k ~ ke
f =T(f).

Counterexamples 2, 3 ang.a show the maoner in

which the relations £¥ = T(f') and T = T(f*) may

fail to hold.

It is to be noted that the conditions (48)
and (49) may be. quite difficult to verify in
specific. problems. For example while they do
hold in positive and negative dynamic programming
problems [14}, [2], [3}, their verification is
rather .complicated. The following proposition
provides alternative, and in some cases wmore
g%sikz,!srifiable conditions, which guarantee that
£7 = T(E).

Proposition 9: Let P1l, P2 hold and assume further
that Ek(fo)(x) < o for all xeX or otherwise

i =’1”~k(f0) for all k > 1. Then

~r o~

¥ =TF) =F =T{E).
The foliowing proposition provides a compact-
ness a;sumptign under which the equality
£, =f =T(f ) is satisfied and furthermore an
optimal stationary policy exists. It is readily
verifiable in many problems of interest and con-
stitutes a substantial improvement over available
sufficient cconditions for the D.P. algorithm to

yield in the limit the optimal value function f£*,
Proposition 10: Let U be a Hausdorff topological
space and assume that Pl, P2 hold, we have

fo(x) > -» for all xeX, and there exists a non-
negative integer E such that for each xeX,
re(—=,») and k > k the set



(50) U (x,0) = {uel| H(x,u,£) <2
is compact. Then

* *

£ =T(f) = £ = T(£,).

Furthermore there exists a stationary policy
m* = {u*,u*,...} which minimizes £ (x) for all xeX.

The compactness of the sets Uk(x,x) of (50)
may be verified in a number of important special
cases. One such case is when Uk(x,l) is a finite

set for all k, x, A. Simply consider the discrete
topology on U [12], i.e. the topology consisting
of all subsets of U. In this topology a set is com-
pact if and only if it is finite. For this case
the relation £ = f* for the negative model of
Strauch has been shown earlier [2]. There are
many other important cases where the compactness

of Uk(x,K) can be verified. It is not our intent-

ion to provide an extensive list of such cases. In-
stead we state as an illustration two sets of
assumptions which guarantee compactness of Uk(x,x)

in the case of the mapping
(51) Hx,u,f) = h(x,u) + ox,u) flgx,u)]

corresponding to a deterministic optimal control
problem.

Assume in (51) that h(x,u) > 0, a(x,u) > 0
for all (x,u)eX x U and take F to be the set of
functions f:X —» [0,»] and £,(x) = 0, VxeX. Then

compactness of Uk(x,x) is guaranteed if:
a) X = r® (n-dimensional Euclidean space),

U= Rm, h, g, @ are continuous in (x,u) and h
satisfies lim h(x_,u ) = » for every bounded
o n’ n

sequence {x } and every sequence {un} for which

|un1 - ® (|-l is a norm on Rm).

b) X = Rn, U is a nonempty and compact subset of
Rm, g and ¢ are continuous,
h is continuous on R® x U.

Aside from the result of Strauch mentioned
earlier, other general sufficient conditions which
guarantee that an optimal stationary policy exists
for special cases of problem (17) are those of
Maitra for discounted problems (see [3] Th.5.11),
and Kushner for free end time problems [13]. 1In
these cases the basic mapping has contraction pro-
perties which guarantee that f = £%. In both
cases the sufficient conditions for existence of
an optimal stationary policy follow from
Proposition 10.

Finally we point out that our results are
limited in two ways. First we have allowed as
admissible policies all sequences of arbitrary
functions By ? X - U. In many problems of interest

there may be restrictions on the class of functions
My under consideration. For example Ky mRY be

required to be measurable, when X and U are
measurable spaces. Our results, unless the problem
is reformulated, are not applicable to such a case.
A second limitation is due to the assumption (29)

on the initial function f0 which rules out the

applicability of our results to certain classes of

problems which do not fit the framework of
Positive and Negative D.P. models. Current re-
search 18 aimed at relaxation, to the extent pos-
sible, of these restrictive assumptions,.
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