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a b s t r a c t

We consider linear systems of equations and solution approximations derived by
projection on a low-dimensional subspace. We propose stochastic iterative algorithms,
based on simulation, which converge to the approximate solution and are suitable for
very large-dimensional problems. The algorithms are extensions of recent approximate
dynamic programming methods, known as temporal difference methods, which solve a
projected form of Bellman’s equation by using simulation-based approximations to this
equation, or by using a projected value iteration method.
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1. Introduction

In this paper we focus on systems of linear equations of the form

x = Ax + b, (1.1)

where A is an n × n matrix and b is a column vector in the n-dimensional space Rn. We propose methods to compute an
approximate solution within a subspace spanned by a relatively small number of basis functions.

Ourmotivation comes from recent advances in the field of dynamic programming (DP), where large systems of equations
of the form (1.1) appear in the context of evaluation of the cost of a stationary policy in aMarkovian decision problem. In this
DP context, we are given an n-state Markov chain with transition probability matrix P , which evolves for an infinite number
of discrete time periods, and a cost vector g ∈ Rn, whose components gi represent the costs of being at the corresponding
states i = 1, . . . , n, for a single time period. The problem is to evaluate the total cost vector

x∗ =
∞∑

t=0

αt Ptg,

where α ∈ (0, 1) is a discount factor, and the components xi represent the total expected α-discounted cost over an infinite
number of time periods, starting from the corresponding states i = 1, . . . , n. It is well known that x is the unique solution
of the equation

x = αPx + g,
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and furthermore, x can also be computed iteratively by the Jacobi method xt+1 = αPxt + g (also known as value iteration
in the context of DP), since the mapping x %→ αPx + g is a contraction with respect to the sup norm; see textbooks on DP,
such as for example [6], or [20].

We focus on the case where n is very large, and it may be worth (even imperative) considering a low-dimensional
approximation of a solution within a subspace

S = {Φr | r ∈ Rs},
where the columns of the n × s matrix Φ can be viewed as basis functions. This type of approximation approach has
been the subject of much recent research in approximate DP, where several methods have been proposed and substantial
computational experience has been accumulated. The most popular of these methods use projection with respect to the
weighted Euclidean norm given by

‖x‖ξ =

√√√√
n∑

i=1

ξix2i ,

where ξ ∈ Rn is a probability distribution with positive components. We denote by Π the projection operation onto S with
respect to this norm (while Π depends on ξ , we do not show the dependence, since the associated vector ξ will always be
clear from the context). The aforementioned methods for approximating the solution of the DP equation x = αPx + g aim
to solve the equation

Φr = Π(αPΦr + b)

with ξ being the invariant distribution of the transition probability matrix P (which is assumed irreducible; i.e., has a single
recurrent class and no transient states). The more general methods of this paper aim to approximate a fixed point of the
mapping

T (x) = Ax + b,

by solving the equation

Φr = ΠT (Φr) = Π(AΦr + b), (1.2)

where the projection norm ‖ · ‖ξ is determined in part by the structure of A in a way to induce some desired property. We
view Π as a matrix andwe implicitly assume throughout that I − ΠA is invertible. Thus, for a given ξ , there is a unique vector
y∗ such that y∗ = ΠT (y∗), and we have y∗ = Φr∗ for some r∗ ∈ Rs (if Φ has linearly independent columns, r∗ is also
unique).

To evaluate the distance between Φr∗ and a fixed point x∗ of T , we write

x∗ − Φr∗ = x∗ − Πx∗ + Πx∗ − Φr∗ = x∗ − Πx∗ + ΠTx∗ − ΠTΦr∗ = x∗ − Πx∗ + ΠA(x∗ − Φr∗), (1.3)

from which

x∗ − Φr∗ = (I − ΠA)−1(x∗ − Πx∗).

Thus, we have for any norm ‖ · ‖ and fixed point x∗ of T

‖x∗ − Φr∗‖ ≤ ‖(I − ΠA)−1‖ ‖x∗ − Πx∗‖, (1.4)

and the approximation error ‖x∗ −Φr∗‖ is proportional to the distance of the solution x∗ from the approximation subspace.
If ΠT is a contraction mapping of modulus α ∈ (0, 1) with respect to ‖ · ‖, from Eq. (1.3), we have

‖x∗ − Φr∗‖ ≤ ‖x∗ − Πx∗‖ + ‖ΠT (x∗) − ΠT (Φr∗)‖ ≤ ‖x∗ − Πx∗‖ + α‖x∗ − Φr∗‖,
so that

‖x∗ − Φr∗‖ ≤ 1
1 − α

‖x∗ − Πx∗‖. (1.5)

A better bound is obtained when ΠT is a contraction mapping of modulus α ∈ [0, 1) with respect to a Euclidean norm
(e.g., ‖ · ‖ξ ). Then, using the Pythagorean Theorem, we have

‖x∗ − Φr∗‖2 = ‖x∗ − Πx∗‖2 + ‖Πx∗ − Φr∗‖2

= ‖x∗ − Πx∗‖2 + ‖ΠT (x∗) − ΠT (Φr∗)‖2

≤ ‖x∗ − Πx∗‖2 + α2‖x∗ − Φr∗‖2

from which we obtain

‖x∗ − Φr∗‖2 ≤ 1
1 − α2 ‖x∗ − Πx∗‖2. (1.6)
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The error bounds (1.4)–(1.6) depend only on the subspace S and are valid even ifΦ does not have full rank, as long as I−ΠA
is invertible and Φr∗ is interpreted as the unique solution of the projected equation y = ΠT (y). For the remainder of the
paper, however,we assume that the columns of Φ are linearly independent, since this is needed for the subsequently proposed
algorithms for solving the projected equation.

In the case where ΠT is a contraction mapping with respect to some norm, there are some additional algorithmic
approaches for approximation. In particular, we may consider a Jacobi/fixed point iteration, restricted within S, which
involves projection of the iterates onto S:

Φrt+1 = ΠT (Φrt), t = 0, 1, . . . . (1.7)
In the context of DP this is known as projected value iteration (see [6]). It converges to r∗, but is unwieldy when n is very
large, because the vector T (Φrt) has dimension n.

The preceding observations suggest that it is desirable for ΠT to be a contraction with respect to some norm. However,
this is a complicated issue because ΠT need not be a contraction with respect to a given norm, even if T is a contraction with
respect to that norm. It may thus be important to choose ξ , and the associated projection Π , in special ways that guarantee
that ΠT is a contraction. This question will be discussed in Section 3.

In this paper, we introduce simulation-based algorithms for solving the equation Φr = ΠT (Φr). The key favorable
property of these algorithms is that they involve low-dimensional matrices and vectors, so they do not require n-dimensional
calculations. We consider two types of methods:
(a) Equation approximation methods, whereby r∗ is approximated by r̂ , the solution of a linear system of the form

Φr = Π̂ T̂ (Φr), (1.8)

where Π̂ and T̂ are simulation-based approximations to Π and T , respectively. As the number of simulation samples
increases, r̂ converges to r∗.

(b) Approximate Jacobi methods, which [without explicit calculation of T (Φrt)] can be written in the form

Φrt+1 = ΠT (Φrt) + εt , t = 0, 1, . . . , (1.9)

where εt is a simulation-induced error that diminishes to 0 as the number of simulation samples increases. Similarly
to the methods in (a), they do not require n-dimensional calculations, but apply only when ΠT is a contraction with
respect to some norm. Then, since εt converges to 0, asymptotically iteration (1.9) becomes the Jacobi iteration (1.7),
and rt converges to r∗. We will also interpret later iteration (1.9) as a single iteration of an algorithm for solving the
system (1.8).
Within the DP context, the approximationmethods in (a) above have been proposed in [9,8] (see also the analysis in [18]),

and are known as least squares temporal differences (LSTD)methods. The approximate Jacobi methods in (b) above have been
proposed in [4] (see also the analysis in [18,2,29,6]), and are known as least squares policy evaluation (LSPE) methods. An
earlier, but computationally less effective method, is TD(λ), which was first proposed by Sutton [23] and was instrumental
in launching a substantial body of research on approximate DP in the 1990s (see [7,22,24,25] for discussion, extensions,
and analysis of this method). Within the specialized approximate DP context, LSTD, LSPE, and TD(λ) offer some distinct
advantages, which make them suitable for the approximate solution of problems involving Markov chains of very large
dimension (in a case study where LSPE was used to evaluate the expected score of a game playing strategy, a Markov chain
with more than 2200 states was involved; see [4] and [7], Section 8.3). These advantages are:
(1) The vector x need not be stored at any time. Furthermore, inner products involving the rows of A need not be computed;

this can be critically important if some of the rows are not sparse.
(2) There is a projection norm such that the matrix ΠA is a contraction, so the bound (1.5) applies.
(3) The vector ξ of the projection normneednot be knownexplicitly. Instead, the values of the components of ξ are naturally

incorporated within the simulation as relative frequencies of occurrence of the corresponding states (ξ is the invariant
distribution vector of the associated Markov chain).

These advantages, particularly the first, make the simulation-based approach an attractive (possibly the only) option in
problems so large that traditional approaches are prohibitively expensive in terms of time and storage. An additional
advantage of our methods is that they are far better suited for parallel computation than traditional methods, because the
associated simulation is easily parallelizable.

The present paper extends the approximate DP methods just discussed to the case where A does not have the character
of a stochastic matrix; just invertibility of I −ΠA is assumed. An important difficulty in the non-DP context considered here
is that there may be no natural choice of ξ (and associated Markov chain to be used in the simulation process) such that ΠT
is a contraction. Nonetheless, we show that all of the advantages (1)–(3) of LSTD, LSPE, and TD(λ) within the DP context are
preserved under certain conditions, the most prominent of which is

|aij| ≤ qij, ∀ i, j = 1, . . . , n,
where aij are the components of A and qij are the transition probabilities of a Markov chain, which is used for simulation. In
this case, again ξ is an invariant distribution of the chain and need not be known a priori. This is shown in Section 3, where
some examples, including the important special case of a weakly diagonally dominant system, are also discussed.
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When the condition |aij| ≤ qij, for all i, j, does not hold, the selection of the Markov chain used for simulation and the
associated vector ξ used in the projection operation may be somewhat ad hoc. Furthermore, if ΠA is not a contraction, the
approximate Jacobi methods are not valid and the bound (1.5) does not apply. Instead, the bound of Eq. (1.4) applies and
the equation approximation methods of Section 2 are valid. Note that when I − ΠA is nearly singular, the bounds are poor,
and the associated equation (1.3) suggests potential difficulties. Still, the methods we propose maintain some important
characteristics, namely that the vector x need not be stored at any time, and inner products involving the rows of A need
not be computed.

We note that LSTD and LSPE are in fact entire classes of methods, parameterized with a scalar λ ∈ [0, 1). They are
called LSTD(λ) and LSPE(λ), respectively, and they use the parameter λ similarly to the method of TD(λ). A value λ > 0
corresponds to approximating, in place of x = T (x), the equation x = T (λ)(x), where T (λ) is the mapping

T (λ) = (1 − λ)
∞∑

k=0

λkT k+1. (1.10)

Note that the fixed points of T are also fixed points of T (λ), and that T (λ) coincides with T for λ = 0. However, it can be
seen that when T is a contraction with respect to some norm with modulus α ∈ [0, 1), T (λ) is a contraction with the more
favorable modulus

αλ = (1 − λ)
∞∑

k=0

λkαk+1 = α(1 − λ)

1 − αλ
.

Thus, when approximating the equation x = T (λ)(x), rather than x = T (x), the error bounds (1.5) and (1.6) become more
favorable; in fact αλ → 0 as λ → 1, so asymptotically, from Eq. (1.5), we obtain optimal approximation: ‖x∗ − Φr∗‖ =
‖x∗ − Πx∗‖. Furthermore, T (λ) and ΠT (λ) are arbitrarily close to 0, if λ is sufficiently close to 1, so they can become
contractions with respect to any norm. An important characteristic of our methods is that under certain conditions they
can be straightforwardly applied to the equation x = T (λ)(x), while this is much harder with traditional methods (see
Section 5). However, while the error bounds improve as λ is increased towards 1, the simulation required to solve the
equation Φr = ΠT (λ)(Φr) becomes more time-consuming because the associated simulation samples become more
‘‘noisy.’’ This ‘‘accuracy–noise’’ tradeoff is widely recognized in the approximate DP literature (see e.g., the textbook [6]
and the references quoted there).

In this paper, we focus on describing themethods, making the connection with their DP antecedents, proving some basic
results relating to contraction properties ofΠA, and providing some examples of interesting special cases. Ourmethodology
and analysis, while new almost in their entirety, extend for the most part known ideas from approximate DP. Some of
our methods and analysis, however, are new even within the DP context, as will be specifically pointed out later. A more
detailed delineation of important relevant classes of problems, the associated formulations, projection norm selections,
computational experimentation, and other related issues, are beyond our scope. We note the extended report [5], which
provides some additional material and has a lot of overlap with the present paper. Let us also mention that the solution
of linear systems of equations by using Monte Carlo methods was suggested by von Neumann and Ulam, as recounted
in [13], and has been further discussed in [28,11,12] (see also the survey in [14]). Barto and Duff [3] have pointed out
connections and similaritieswith approximate DP and TD(1). In contrastwith the present paper, theseworks do not consider
approximation/projection onto a low-dimensional subspace, and require that T be a contractionwith respect to some norm.

The paper is organized as follows. In Section 2, we formulate the simulation framework that underlies our methods,
and we discuss the equation approximation approach of (a) above. In Section 3, we discuss the selection of Markov chains,
together with some related examples and special cases, for which various contraction properties can be shown. Among
others, we derive here some new algorithms for Markovian decision problems, which address the well-known issue of
exploration. In Section 4, we develop the approximate Jacobi methods in (b) above, and we discuss their relation with the
equation approximation methods in (a) above. In Section 5, we develop multistep analogs of the methods of Sections 2
and 4, in the spirit of the LSTD(λ), LSPE(λ), and TD(λ) methods of approximate DP. The methods of Sections 2–5 assume
that the rows of Φ are either explicitly known or can be easily generated when needed. In Section 6, we discuss special
methods that use basis functions of the form Amg , m ≥ 0, where g is some vector the components of which can be exactly
computed. These methods bear similarity to Krylov subspace methods (see e.g. [21]), but suffer from the potential difficulty
that the rows of Amg may be hard to compute. We discuss variants of our methods of Sections 2–5 where the rows of Amg
are approximated by simulation of a single sample. These variants are new even in the context of approximate DP (A = αP),
where generating appropriate basis vectors for cost function approximation is a currently prominent research issue. Finally,
in Section 7,we discuss some extensions and relatedmethods, including a general approach for linear least squares problems
and applications to some nonlinear fixed point problems. In particular, we generalize approximate DP methods proposed
for optimal stopping problems (see [26,10,30]).

Regarding notation, throughout the paper, vectors are considered to be column vectors, and a prime denotes
transposition. We generally use subscripts to indicate the scalar components of various vectors and matrices. Vector and
matrix inequalities are to be interpreted componentwise. For example, for two matrices A, B, the inequality A ≤ B means
that Aij ≤ Bij for all i and j. For a vector x, we denote by |x| the vector whose components are the absolute values of the
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Fig. 2.1. The basic simulation methodology consists of generating a sequence of indices {i0, i1, . . .} according to the distribution ξ , and a sequence of
transitions {(i0, j0), (i1, j1), . . .} according to transition probabilities pij . It is possible that jk = ik+1, but this is not necessary.

components of x, i.e., |x|i = |xi| for all i. We use similar notation for matrices, so for example, we denote by |A| the matrix
whose components are |A|ij = |aij| for all i, j = 1, . . . , n.

2. Equation approximation methods

In this section, we discuss the construction of simulation-based approximations to the projected equation Φr =
Π(AΦr + b). This methodology descends from the LSTDmethods of approximate DP, referred to in Section 1. Let us assume
that the positive distribution vector ξ is given. By the definition of projection with respect to ‖ · ‖ξ , the unique solution r∗

of this equation satisfies

r∗ = argmin
r∈Rs

n∑

i=1

ξi

(

φ(i)′r −
n∑

j=1

aijφ(j)′r∗ − bi

)2

,

where φ(i)′ denotes the ith row of the matrix Φ . By setting the gradient of the minimized expression above to 0, we have

n∑

i=1

ξiφ(i)

(

φ(i)′r∗ −
n∑

j=1

aijφ(j)′r∗ − bi

)

= 0.

We thus obtain the following equivalent form of the projected equation Φr = Π(AΦr + b):

n∑

i=1

ξiφ(i)

(

φ(i) −
n∑

j=1

aijφ(j)

)′

r∗ =
n∑

i=1

ξiφ(i)bi. (2.1)

The key idea of ourmethodology can be simply explained by focusing on the two expected valueswith respect to ξ , which
appear in the left and right sides of the above equation: we approximate these two expected values by simulation-obtained
sample averages. When the matrix A is not sparse, we also approximate the summation over aijφ(j) by simulation-obtained
sample averages. In the most basic form of our methods, we generate a sequence of indices {i0, i1, . . .}, and a sequence of
transitions between indices {(i0, j0), (i1, j1), . . .}. We use any probabilistic mechanism for this, subject to the following two
requirements (cf. Fig. 2.1):

(1) The sequence {i0, i1, . . .} is generated according to the distribution ξ , which defines the projection norm ‖ · ‖ξ , in the
sense that with probability 1,

lim
t→∞

t∑
k=0

δ(ik = i)

t + 1
= ξi, i = 1, . . . , n, (2.2)

where δ(·) denotes the indicator function [δ(E) = 1 if the event E has occurred and δ(E) = 0 otherwise].
(2) The sequence {(i0, j0), (i1, j1), . . .} is generated according to a certain stochastic matrix P with transition probabilities

pij which satisfy

pij > 0 if aij -= 0, (2.3)

in the sense that with probability 1,

lim
t→∞

t∑
k=0

δ(ik = i, jk = j)

t∑
k=0

δ(ik = i)
= pij, i, j = 1, . . . , n. (2.4)
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At time t , we form the linear equation

t∑

k=0

φ(ik)
(

φ(ik) − aikjk
pikjk

φ(jk)
)′

r =
t∑

k=0

φ(ik)bik . (2.5)

We claim that this is a valid approximation to Eq. (2.1), the equivalent form of the projected equation.
Indeed, by counting the number of times an index occurs and collecting terms, we can write Eq. (2.5) as

n∑

i=1

ξ̂i,tφ(i)

(

φ(i) −
n∑

j=1

p̂ij,t
aij
pij

φ(j)

)′

r =
n∑

i=1

ξ̂i,tφ(i)bi, (2.6)

where

ξ̂i,t =

t∑
k=0

δ(ik = i)

t + 1
, p̂ij,t =

t∑
k=0

δ(ik = i, jk = j)

t∑
k=0

δ(ik = i)
.

In view of the assumption

ξ̂i,t → ξi, p̂ij,t → pij, i, j = 1, . . . , n,

[cf. Eqs. (2.2) and (2.4)], by comparing Eqs. (2.1) and (2.6), we see that they asymptotically coincide. Since the solution r∗ of
the system (2.1) exists and is unique, the same is true for the system (2.6) for all t sufficiently large. Thus, with probability 1,

r̂t → r∗,

where r̂t is the solution of the system (2.5).
A comparison of Eqs. (2.1) and (2.6) indicates some considerations for selecting the stochasticmatrix P . It can be seen that

‘‘important’’ (e.g., large) components aij should be simulatedmore often (pij: large).1 In particular, if (i, j) is such that aij = 0,
there is an incentive to choose pij = 0, since corresponding transitions (i, j) are ‘‘wasted’’ in that they do not contribute to
improvement of the approximation of Eq. (2.1) by Eq. (2.6). This suggests that the structure of P shouldmatch in some sense
the structure of the matrix A, to improve the efficiency of the simulation. On the other hand, the choice of P does not affect
the limit of Φ r̂t , which is the solution Φr∗ of the projected equation. By contrast, the choice of ξ affects the projection Π
and hence also Φr∗.

Note that there is a lot of flexibility for generating the sequence {i0, i1, . . .} and the transition sequence
{(i0, j0), (i1, j1), . . .} to satisfy Eqs. (2.2) and (2.4). For example, to satisfy Eq. (2.2), the indices it do not need to be sampled
independently according to ξ . Instead, it may be convenient to introduce an irreducibleMarkov chain having states 1, . . . , n
and ξ as its invariant distribution, and to start at some state i0 and generate the sequence {i0, i1, . . .} as a single infinitely
long trajectory of the chain. For the transition sequence, we may optionally let jk = ik+1 for all k, in which case P would be
identical to the transition matrix of the selected Markov chain.

Let us discuss two possibilities for constructing a Markov chain with invariant distribution ξ . The first is useful when
a desirable distribution ξ is known up to a normalization constant. Then, we can construct such a Markov chain starting
with a proposal transition matrix (which matches the structure of A, for instance), by using the so-called detailed balance

1 For a simplified analysis, note that the variance of each coefficient p̂ij,t
aij
pij

appearing in Eq. (2.6) can be calculated to be

Vij,t = γt pij(1 − pij)
a2ij
p2ij

=
γt a2ij
pij

− γt a2ij,

where γt is the expected value of 1/
∑t

k=0 δ(ik = i), assuming the initial i0 is distributed according to ξ . [To see this, note that p̂ij,t is the average of Bernoulli
random variables whose mean and variance are pij and pij(1 − pij), respectively, and whose number is the random variable

∑t
k=0 δ(ik = i).] For a given i,

let us consider the problem of finding pij , j = 1, . . . , n, that minimize
∑n

j=1 Vij,t subject to the constraints pij = 0 if and only if aij = 0, and
∑n

j=1 pij = 1. By
introducing a Lagrange multiplier ν for the constraint

∑n
j=1 pij = 1, and forming and minimizing the corresponding Lagrangian, we see that the optimal

solution satisfies

a2ij
p2ij

= ν

γt
,

implying that pij should be chosen proportional to |aij| (indeed this is standard practice in approximate DP, and is consistent with the principles of
importance sampling [16]). This analysis, however, does not take into account the fact that the choice of pij may also affect ξi (as when ξ is the invariant
distribution of the Markov chain associated with P), and through them the variance of both sides of Eq. (2.6). In order to optimize more meaningfully the
choice of pij , this relation must be taken into account, as well as the dependence of the variance of the solution of Eq. (2.6) on other terms, such as the
vectors φ(i) and b.
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condition. (The Markov chains thus constructed are reversible.) This construction procedure is well known in Markov chain
Monte Carlo (MCMC) methods and we refer to [16] for the details.

Another possibility, which is useful when there is no particularly desirable ξ , is to specify first the transition matrix of
the Markov chain and let ξ be its invariant distribution. Then the requirement (2.2) will be satisfied if the Markov chain is
irreducible, in which case ξ will be the unique invariant distribution of the chain and will have positive components. An
important observation is that explicit knowledge of ξ is not required; it is just necessary to know the Markov chain and
to be able to simulate its transitions. The approximate DP applications fall into this context (see the references given in
Section 1). In Section 3, we will discuss favorable methods for constructing the Markov chain from A, which result in ΠT
being a contraction so that Jacobi methods are applicable.

We finally note that multiple simulated sequences can be used to form the Eq. (2.5). For example, in the Markov-chain-
based sampling schemes,we can generatemultiple infinitely long trajectories of the chain, starting at several different states,
and for each trajectory use jk = ik+1 for all k. This will work even if the chain has multiple recurrent classes, as long as there
are no transient states and at least one trajectory is started from within each recurrent class. Again ξ will be an invariant
distribution of the chain, and need not be known explicitly. Note that using multiple trajectories may be interesting even if
there is a single recurrent class, for at least two reasons:
(a) The generation of trajectories may be parallelized among multiple processors, resulting in significant speedup.
(b) The empirical frequencies of occurrence of the states may approach the invariant probabilities more quickly; this is

particularly so for large and ‘‘stiff’’ Markov chains.

3. Markov chain construction

In this section we will derive conditions for ΠT to be a contraction, so that the error bounds (1.5) and (1.6) apply, and
the approximate Jacobi methods of the next section may also be used. Our results generalize corresponding results known
for DP.

We consider the case where the index sequence {i0, i1, . . .} is generated as an infinitely long trajectory of a Markov chain
whose invariant distribution is ξ . We denote byQ the corresponding transition probabilitymatrix and by qij the components
ofQ . [In general,Q maynot be the same as P , which is used to generate the transition sequence {(i0, j0), (i1, j1), . . .} to satisfy
Eqs. (2.2) and (2.4).] It seems hard to guarantee thatΠT is a contractionmapping, unless |A| ≤ Q . The following propositions
assume this condition.

Proposition 1. Assume that Q is irreducible and that |A| ≤ Q . Then T and ΠT are contraction mappings under any one of the
following three conditions:
(1) For some scalar α ∈ (0, 1), we have |A| ≤ αQ .
(2) There exists an index i such that |aij| < qij for all j = 1, . . . , n.
(3) There exists an index i such that

∑n
j=1 |aij| < 1.

Proof. Let ξ be the invariant distribution of Q . Assume condition (1). Since Π is nonexpansive with respect to ‖ · ‖ξ , it will
suffice to show that A is a contraction with respect to ‖ · ‖ξ . We have

|Az| ≤ |A| |z| ≤ αQ |z|, ∀ z ∈ Rn. (3.1)

Using this relation, we obtain

‖Az‖ξ ≤ α‖Q |z|‖ξ ≤ α‖z‖ξ , ∀ z ∈ Rn, (3.2)

where the last inequality follows since ‖Qx‖ξ ≤ ‖x‖ξ for all x ∈ Rn (see e.g., [24] or [7], Lemma 6.4). Thus, A is a contraction
with respect to ‖ · ‖ξ with modulus α.

Assume condition (2). Then, in place of Eq. (3.1), we have

|Az| ≤ |A| |z| ≤ Q |z|, ∀ z ∈ Rn,

with strict inequality for the row corresponding to i when z -= 0, and in place of Eq. (3.2), we obtain

‖Az‖ξ < ‖Q |z|‖ξ ≤ ‖z‖ξ , ∀ z -= 0.

It follows that A is a contraction with respect to ‖ · ‖ξ , with modulus max‖z‖ξ ≤1 ‖Az‖ξ .
Assume condition (3). It will suffice to show that the eigenvalues of ΠA lie strictly within the unit circle.2 Let Q̄ be the

matrix which is identical to Q except for the ith row which is identical to the ith row of |A|. From the irreducibility of Q , it

2 In the following argument, the projection Πz of a complex vector z is obtained by separately projecting the real and the imaginary components of z
on S. The projection norm for a complex vector x + iy is defined by

‖x + iy‖ξ =
√

‖x‖2
ξ + ‖y‖2

ξ .
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follows that for any i1 -= i it is possible to find a sequence of nonzero components Q̄i1 i2 , . . . , Q̄ik−1ik , Q̄iki that ‘‘lead’’ from i1
to i. Using a well-known result, we have Q̄ t → 0. Since |A| ≤ Q̄ , we also have |A|t → 0, and hence also At → 0 (since
|At | ≤ |A|t ). Thus, all eigenvalues of A are strictly within the unit circle.We next observe that from the proof argument under
conditions (1) and (2), we have

‖ΠAz‖ξ ≤ ‖z‖ξ , ∀ z ∈ Rn,

so the eigenvalues of ΠA cannot lie outside the unit circle.
We now use an argument that has been used to prove Lemma 1 of [29]. Assume to arrive at a contradiction that ν is

an eigenvalue of ΠA with |ν| = 1, and let ζ be a corresponding eigenvector. We claim that Aζ must have both real and
imaginary components in the subspace S. If this were not so, we would have Aζ -= ΠAζ , so that

‖Aζ‖ξ > ‖ΠAζ‖ξ = ‖νζ‖ξ = |ν| ‖ζ‖ξ = ‖ζ‖ξ ,

which contradicts the fact ‖Az‖ξ ≤ ‖z‖ξ for all z, shown earlier. Thus, the real and imaginary components of Aζ are in S,
which implies that Aζ = ΠAζ = νζ , so that ν is an eigenvalue of A. This is a contradiction because |ν| = 1, while the
eigenvalues of A are strictly within the unit circle. !

Note that the preceding proof has shown that under conditions (1) and (2) of Proposition 1, T and ΠT are contraction
mappingswith respect to the specific norm ‖·‖ξ , and that under condition (1), themodulus of contraction isα. Furthermore,
Q need not be irreducible under these conditions — it is sufficient that Q has no transient states (so that it has an invariant
distribution ξ with positive components). Under condition (3), T and ΠT need not be contractions with respect to ‖ · ‖ξ .
For a counterexample, take ai,i+1 = 1 for i = 1, . . . , n − 1, and an,1 = 1/2, with every other entry of A equal to 0. Take
also qi,i+1 = 1 for i = 1, . . . , n − 1, and qn,1 = 1, with every other entry of Q equal to 0, so ξi = 1/n for all i. Then for
z = (0, 1, . . . , 1)′ we have Az = (1, . . . , 1, 0)′ and ‖Az‖ξ = ‖z‖ξ , so A is not a contraction with respect to ‖ · ‖ξ . Taking S
to be the entire space Rn, we see that the same is true for ΠA.

When the row sums of |A| are not greater than one, one can construct Q with |A| ≤ Q by adding another matrix to |A|:
Q = |A| + diag(e − |A|e)R, (3.3)

where R is a transition probability matrix, e is the unit vector that has all components equal to 1, and diag(e − |A|e) is the
diagonalmatrixwith 1−∑n

m=1 |aim|, i = 1, . . . , n, on the diagonal. Then the row sumdeficit of the ith row of A is distributed
to the columns j according to fractions rij, the components of R.

The next proposition uses different assumptions from Proposition 1, and applies to cases where there is no special index
i such that

∑n
j=1 |aij| < 1. In fact A may itself be a transition probability matrix, so that I − A need not be invertible,

and the original system may have multiple solutions; see the subsequent Example 2 for the average cost DP case. The
proposition suggests the use of a damped version of the T mapping in various methods, and is closely connected to a result
on approximate DP methods for average cost problems ([29], Prop. 3).

Proposition 2. Assume that there are no transient states corresponding to Q , that ξ is an invariant distribution of Q , and that
|A| ≤ Q . Assume further that I − ΠA is invertible. Then the mapping ΠTγ , where

Tγ = (1 − γ )I + γ T ,

is a contraction with respect to ‖ · ‖ξ for all γ ∈ (0, 1).

Proof. The argument of the proof of Proposition 1 shows that the condition |A| ≤ Q implies that A is nonexpansive with
respect to the norm ‖ · ‖ξ . Furthermore, since I − ΠA is invertible, we have z -= ΠAz for all z -= 0. Hence for all γ ∈ (0, 1),

‖(1 − γ )z + γΠAz‖ξ < (1 − γ )‖z‖ξ + γ ‖ΠAz‖ξ ≤ (1 − γ )‖z‖ξ + γ ‖z‖ξ = ‖z‖ξ , ∀ z ∈ Rn, (3.4)

where the strict inequality follows from the strict convexity of the norm, and the weak inequality follows from the
nonexpansiveness of ΠA. If we define

ργ = sup
{
‖(1 − γ )z + γΠAz‖ξ | ‖z‖ ≤ 1

}
,

and note that the supremum above is attained by Weierstrass’ Theorem, we see that Eq. (3.4) yields ργ < 1 and

‖(1 − γ )z + γΠAz‖ξ ≤ ργ ‖z‖ξ , ∀ z ∈ Rn.

From the definition of Tγ , we have for all x, y ∈ Rn,

ΠTγ x − ΠTγ y = ΠTγ (x − y) = (1 − γ )Π(x − y) + γΠA(x − y) = (1 − γ )Π(x − y) + γΠ(ΠA(x − y)),

so defining z = x − y, and using the preceding two relations and the nonexpansiveness of Π , we obtain

‖ΠTγ x − ΠTγ y‖ξ = ‖(1 − γ )Πz + γΠ(ΠAz)‖ξ ≤ ‖(1 − γ )z + γΠAz‖ξ ≤ ργ ‖z‖ξ = ργ ‖x − y‖ξ ,

for all x, y ∈ Rn. !
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Note that the mappings ΠTγ and ΠT have the same fixed points, so under the assumptions of Proposition 2, there is a
unique fixed point Φr∗ of ΠT . However, if T has a nonempty linear manifold of fixed points, there arises the question of
how close Φr∗ is to this manifold. It may be possible to address this issue in specialized contexts; in particular, it has been
addressed in [25] in the context of average cost DP problems (cf. the subsequent Example 2).

We now discuss examples of choices of ξ and Q in some interesting special cases.

Example 1 (Discounted Markovian Decision Problems). As mentioned in Section 1, Bellman’s equation for the cost vector of
a stationary policy in an n-state discounted Markovian decision problem has the form x = T (x), where

T (x) = αPx + g,

g is the vector of single-stage costs associated with the n states, P is the transition probability matrix of the associated
Markov chain, and α ∈ (0, 1) is the discount factor. If P is an irreducible Markov chain, and ξ is chosen to be its unique
invariant distribution, the equation approximation method based on Eq. (2.5) yields a popular policy evaluation method
known as LSTD(0) (see the references given in Section 1). Furthermore, since condition (1) of Proposition 1 is satisfied, it
follows that ΠT is a contraction with respect to ‖ · ‖ξ , the error bound (1.6) holds, and the Jacobi/fixed point method (1.7)
applies. These results are well known in the approximate DP literature (see the references given in Section 1).

The methodology of the present paper also allows the use of simulation using a Markov chain Q other than P , with an
attendant change in ξ (in the DP context there is motivation for doing so in cases where P is not irreducible or some states
have very small steady-state probabilities; this is the issue of ‘‘exploration’’ discussed for example in [7,22]). In particular, a
sequence of states {i0, i1, . . .} may be generated according to an irreducible transition probability matrix of the form

Q = (I − B)P + BR,

where B is a diagonal matrix with diagonal components βi ∈ [0, 1] and R is another transition probability matrix (possibly
one corresponding to a different policy). Thus, at state i, the next state is generated according to pij with probability 1 − βi,
and according to rij with probability βi, which may be viewed as an exploration probability at state i [we are exploring other
states, which might not be visited as frequently (or at all) under P]. Thus we solve x = Π(αPx + g) with the weights ξ in
Π being the invariant distribution of Q . If βi < 1 − α for all i, then αP ≤ αQ for some α < 1, so by Proposition 1, ΠT will
still be a contraction with respect to ‖ · ‖ξ (actually with a refinement of the proof of Proposition 1, it can be shown that
ΠT is a contraction if βi < 1 − α2). For other values of βi, ΠT may not be a contraction, but the equation approximation
approach of Section 2 still applies. [Themultistep LSTD(λ)methodology of the subsequent Section 5 also applies. In fact, the
contraction modulus of the multistep mapping T (λ) of Eq. (1.10) approaches 0 as λ → 1 (see the subsequent Proposition 3),
so ΠT (λ) is a contraction for any values βi < 1, provided λ is sufficiently close to 1.]

The corresponding simulation-based algorithms can take a number of forms. After generating a sequence of states
{i0, i1, . . .} according to Q , we construct and then solve the equation

t∑

k=0

φ(ik)
(

φ(ik) − α
pikik+1

qikik+1

φ(ik+1)

)′
r =

t∑

k=0

φ(ik)gik (3.5)

[cf. Eq. (2.5) with the identifications jk = ik+1, aikjk = αpikik+1 and pikjk = qikik+1 ] to obtain an approximation r̂t of r∗. When
gi itself depends on P , e.g., when, as often in DP, gi is the expected cost at state i, gi = ∑n

j=1 pijg(i, j), where g(i, j) is the cost
of a transition (i, j), we use the following extension of Eq. (3.5),

t∑

k=0

φ(ik)
(

φ(ik) − α
pikik+1

qikik+1

φ(ik+1)

)′
r =

t∑

k=0

pikik+1

qikik+1

φ(ik)g(ik, ik+1).

The ratios
pikik+1
qikik+1

can be calculated, when P and Q are known explicitly (as in queueing applications, for instance), or, even
when the latter are not known explicitly, as in Q -factor learning where the state space of the Markov chains associated
with P and Q actually corresponds to the joint state-action space of the problem (see the approximate DP literature). As an
alternative to the above sampling scheme, in a simulation context, it is also straightforward to generate another sequence
of transitions {(i0, j0), (i1, j1), . . .} according to P , in addition to and independently of the sequence {i0, i1, . . .}, which is
generated according to Q . Then, in place of Eq. (3.5), we may form and solve the equation

t∑

k=0

φ(ik)(φ(ik) − αφ(jk))′r =
t∑

k=0

φ(ik)g(ik, jk), (3.6)

as described in Eqs. (2.2)–(2.5).
The idea of using two different Markov chains within approximate DP methods to introduce exploration is well known

(see e.g., [22]). However, the methods based on Eqs. (3.5) and (3.6), as well as their LSPE(λ) analogs, are new to our
knowledge, and have the guaranteed convergence property r̂t → r∗.
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Example 2 (Undiscounted Markovian Decision Problems). Consider the equation x = Ax + b, for the case where A is a
substochastic matrix (aij ≥ 0 for all i, j and

∑n
j=1 aij ≤ 1 for all i). Here 1−∑n

j=1 aij may be viewed as a transition probability
from state i to some absorbing state denoted 0. This is related to Bellman’s equation for the cost vector of a stationary policy
of a DP problem of the stochastic shortest path type (see e.g., [6]). If the policy is proper in the sense that from any state
i -= 0 there exists a path of positive probability transitions from i to the absorbing state 0, the matrix

Q = |A| + diag(e − |A|e)R
[cf. Eq. (3.3)] is irreducible, provided R has positive components. As a result, the conditions of Proposition 1 under condition
(2) are satisfied, and T and ΠT are contractions with respect to ‖ ·‖ξ . It is also possible to use a matrix Rwhose components
are not all positive, as long as Q is irreducible, in which case Proposition 1 under condition (3) applies.

Consider also the equation x = Ax+ b for the case where A is an irreducible transition probability matrix, with invariant
distribution ξ . This is related to Bellman’s equation for the differential cost vector of a stationary policy of an average cost
DP problem involving a Markov chain with transition probability matrix A. Then, if the unit vector e is not contained in the
subspace S spanned by the basis functions, it can be shown that the matrix I − ΠA is invertible (see [25], which also gives
a related error bound). As a result, Proposition 2 applies and shows that the mapping (1 − γ )I + γ A, is a contraction with
respect to ‖ ·‖ξ for all γ ∈ (0, 1). The corresponding equation approximation approach and approximate Jacobi method are
discussed in [29].

Example 3 (Weakly Diagonally Dominant Systems). Consider the solution of the system

Cx = d,

where d ∈ Rn and C is an n × n matrix that is weakly diagonally dominant, i.e., its components satisfy

cii -= 0,
∑

j-=i

|cij| ≤ |cii|, i = 1, . . . , n. (3.7)

By dividing the ith row by cii, we obtain the equivalent system x = Ax + b, where the components of A and b are

aij =
{
0 if i = j,
− cij

cii
if i -= j, bi = di

cii
, i = 1, . . . , n.

Then, from Eq. (3.7), we have
n∑

j=1

|aij| =
∑

j-=i

|cij|
|cii|

≤ 1, i = 1, . . . , n,

so Propositions 1 and 2may be used under the appropriate conditions. In particular, if the matrix Q given by Eq. (3.3) has no
transient states and there exists an index i such that

∑n
j=1 |aij| < 1, Proposition 1 applies and shows thatΠT is a contraction.

Alternatively, instead of Eq. (3.7), assume the somewhat more restrictive condition

|1 − cii| +
∑

j-=i

|cij| ≤ 1, i = 1, . . . , n, (3.8)

and consider the equivalent system x = Ax + b, where

A = I − C, b = d.

Then, from Eq. (3.8), we have
n∑

j=1

|aij| = |1 − cii| +
∑

j-=i

|cij| ≤ 1, i = 1, . . . , n,

so again Propositions 1 and 2 apply under appropriate conditions.

Example 4 (Discretized Poisson’s Equation). Diagonally dominant linear systems arise inmany contexts, including discretized
partial differential equations, finite element methods, and economics applications. As an example, consider a discretized
version of Poisson’s equation over a two-dimensional square grid of N2 points with fixed boundary conditions, which has
the form

xi,j = 1
4
(xi+1,j + xi−1,j + xi,j+1 + xi,j−1) + gi,j, i, j = 1, . . . ,N,

where gi,j are given scalars, and by convention xN+1,j = x0,j = xi,N+1 = xi,0 = 0. A subset of the points (i, j) in the square grid
are ‘‘boundary points’’, where xi,j is fixed and given. The problem is to compute the values xi,j at the remaining points, which
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are referred to as ‘‘interior points’’. Thus, we have one equation for each interior grid point. Clearly, this is a special case of
Examples 2 and 3, with the row components of A corresponding to (i, j) being 1/4 for each neighboring interior point of (i, j),
and 0 otherwise. If from any interior point it is possible to arrive at some boundary point through a path of adjacent interior
points, then clearly based on the graph-geometric structure of the problem, one can construct an irreducible Q satisfying
|A| ≤ Q .

Let us finally address the question whether it is possible to find Q such that |A| ≤ Q and the correspondingMarkov chain
has no transient states or is irreducible. To this end, assume that

∑n
j=1 |aij| ≤ 1 for all i. If A is itself irreducible, then any Q

such that |A| ≤ Q is also irreducible. Otherwise, consider the set

I =
{

i

∣∣∣∣∣

n∑

j=1

|aij| < 1

}

,

and assume that it is nonempty (otherwise the only possibility is Q = |A|). Let Ĩ be the set of i such that there exists a
sequence of nonzero components aij1 , aj1j2 , . . . , ajmi such that i ∈ I , and let Î = {i | i -∈ I ∪ Ĩ} (we allow here the possibility
that Ĩ or Î may be empty). Note that the square submatrix of |A| corresponding to Î is a transition probability matrix, and
that we have aij = 0 for all i ∈ Î and j -∈ Î . Then it can be shown that there exists Q with |A| ≤ Q and no transient states
if and only if the Markov chain corresponding to Î has no transient states. Furthermore, there exists an irreducible Q with
|A| ≤ Q if and only if Î is empty. We refer to the extended report [5] for further discussion and methods to construct Q .

4. Approximate Jacobi methods

We will now focus on the iteration

Φrt+1 = ΠT (Φrt), t = 0, 1, . . . , (4.1)

[cf. Eq. (1.7)], which we refer to as the projected Jacobimethod (PJ for short). We assume throughout this section that ΠT is
a contraction with respect to some norm, and note that Propositions 1 and 2 provide tools for verifying that this is so. A more
general iteration involves a stepsize γ ∈ (0, 1],

Φrt+1 = (1 − γ )Φrt + γΠT (Φrt), t = 0, 1, . . . ,

and has similar algorithmic properties, but for simplicity, we restrict attention to the case γ = 1. Our simulation-based
approximation to the PJ iteration descends from the LSPE methods of approximate DP, referred to in Section 1.

By expressing the projection as a least squares minimization, we can write the PJ iteration (4.1) as

rt+1 = argmin
r∈Rs

‖Φr − T (Φrt)‖2
ξ ,

or equivalently

rt+1 = argmin
r∈Rs

n∑

i=1

ξi

(

φ(i)′r −
n∑

j=1

aijφ(j)′rt − bi

)2

. (4.2)

By setting the gradient of the cost function above to 0 and using a straightforward calculation, we have

rt+1 =
(

n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)

(
n∑

j=1

aijφ(j)′rt + bi

)

. (4.3)

Similarly to the equation approximation methods of Section 2, we observe that this iteration involves two expected values
with respect to the distribution ξ , and we approximate these expected values by sample averages. Thus, we approximate
iteration (4.3) with

rt+1 =
(

t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
(
aikjk
pikjk

φ(jk)′rt + bik

)
, (4.4)

which we refer to as the approximate projected Jacobimethod (APJ for short). Here again {i0, i1, . . .} is an index sequence and
{(i0, j0), (i1, j1), . . .} is a transition sequence satisfying Eqs. (2.2)–(2.4).

Similarly to Section 2, we write Eq. (4.4) as

rt+1 =
(

n∑

i=1

ξ̂i,t φ(i)φ(i)′
)−1 n∑

i=1

ξ̂i,tφ(i)

(
n∑

j=1

p̂ij,t
aij
pij

φ(j)′rt + bi

)

, (4.5)
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where ξ̂i,t and p̂ij,t are defined by

ξ̂i,t =

t∑
k=0

δ(ik = i)

t + 1
, p̂ij,t =

t∑
k=0

δ(ik = i, jk = j)

t∑
k=0

δ(ik = i)
.

We then note that by Eqs. (2.2) and (2.4), ξ̂i,t and p̂ij,t converge (with probability 1) to ξi and pij, respectively, so by comparing
Eqs. (4.3) and (4.5), we see that they asymptotically coincide. Since Eq. (4.3) is a contracting fixed point iteration that
converges to r∗, it follows with a simple argument that the same is true for iteration (4.5) (with probability 1).

To streamline and efficiently implement the APJ iteration (4.4), we introduce the matrices

Bt =
t∑

k=0

φ(ik)φ(ik)′, Ct =
t∑

k=0

φ(ik)
(
aikjk
pikjk

φ(jk) − φ(ik)
)′

,

and the vector

dt =
t∑

k=0

φ(ik)bik .

We then write Eq. (4.4) compactly as

rt+1 = rt + B−1
t (Ctrt + dt), (4.6)

and also note that Bt , Ct , and dt can be efficiently updated using the formulas

Bt = Bt−1 + φ(it)φ(it)′, Ct = Ct−1 + φ(it)
(
ait jt
pit jt

φ(jt) − φ(it)
)′

, (4.7)

dt = dt−1 + φ(it)bit . (4.8)

Let us also observe that Eq. (2.5), the first equation approximation method of Section 2, can be written compactly as

Ctr + dt = 0. (4.9)

We can use this formula to establish a connection between the equation approximation and APJ approaches. In particular,
suppose that we truncate the state and transition sequences after t transitions, but continue the APJ iteration with Bt , Ct ,
and dt held fixed, i.e., consider the iteration

rm+1 = rm + B−1
t (Ctrm + dt), m = t, t + 1, . . . . (4.10)

Then, since APJ approximates PJ and ΠT is assumed to be a contraction, it follows that with probability 1, for sufficiently
large t , the matrix I + B−1

t Ct will be a contraction and iteration (4.10) will converge, by necessity to the solution r̂t of Eq.
(4.9). The conclusion is that, for large t , the APJ iteration (4.6) can be viewed as a single/first iteration of the algorithm (4.10)
that solves the approximate projected equation (4.9).

Another issue of interest is the rate of convergence of the difference rt − r̂t of the results of the two approaches. Within
the DP context and under some natural assumptions, rt − r̂t converges to 0 faster, in a certain probabilistic sense, than the
error differences rt − r∗ and r̂t − r∗ (see [2,29]). Within the more general context of the present paper, a similar analysis is
possible, but is outside our scope.

5. Multistep versions

We now consider multistep versions that replace T with another mapping that has the same fixed points, such as T l with
l > 1, or T (λ) given by

T (λ) = (1 − λ)
∞∑

l=0

λlT l+1,

where λ ∈ (0, 1) is such that the preceding infinite series is convergent, i.e., λA must have eigenvalues strictly within the
unit circle. This is seldom considered in traditional fixed point methods, because either the gain in rate of convergence is
offset by increased overhead per iteration, or the implementation becomes cumbersome, or both. However, in the context of
our simulation-based methods, this replacement is possible, and in fact has a long history in approximate DP, as mentioned
in Section 1.

As motivation, note that if T is a contraction, the modulus of contraction may be enhanced through the use of T l or T (λ).
In particular, if α ∈ [0, 1) is the modulus of contraction of T , the modulus of contraction of T l is αl, while the modulus of
contraction of T (λ) is
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α(λ) = (1 − λ)
∞∑

k=0

λlαl+1 = α(1 − λ)

1 − αλ
< α.

Thus the error bounds (1.5) or (1.6) are enhanced. Moreover, there are circumstances where T (λ) is a contraction, while T is
not, as we will demonstrate shortly (see the following Proposition 3).

To gain some understanding into the properties of T (λ), let us write it as

T (λ)(x) = A(λ)x + b(λ),

where from the equations T l+1(x) = Al+1x + ∑l
m=0 A

mb and T (λ) = (1 − λ)
∑∞

l=0 λlT l+1, we have

A(λ) = (1 − λ)
∞∑

l=0

λlAl+1, b(λ) = (1 − λ)
∞∑

l=0

λl
l∑

m=0

Amb = (1 − λ)
∞∑

l=0

Alb
∞∑

m=l

λm =
∞∑

l=0

λlAlb. (5.1)

The following proposition provides some properties of A(λ), which in turn determine contraction and other properties of
T (λ). We denote by a(λ)

ij the components of A(λ), and by σ (A) and σ (A(λ)) the spectral radius of A and A(λ), respectively. Note
that σ (M) ≤ ‖M‖, where for any n×nmatrixM and norm ‖ ·‖ of Rn, we denote by ‖M‖ the corresponding matrix norm of
M: ‖M‖ = max‖z‖≤1 ‖Mz‖. Note also that for a transition probability matrix Q , having as an invariant distribution a vector
ξ with positive components, we have σ (Q ) = ‖Q‖ξ = 1 (see e.g., [7], Lemma 6.4).

Proposition 3. Let I − A be invertible and σ (A) ≤ 1.

(a) We have σ (A(λ)) < 1 for all λ ∈ (0, 1). Furthermore, limλ→1 σ (A(λ)) = 0.
(b) Assume further that |A| ≤ Q , where Q is a transition probability matrix having as invariant distribution a vector ξ with

positive components. Then,

|A(λ)| ≤ Q (λ), ‖A(λ)‖ξ ≤ ‖Q (λ)‖ξ = 1, ∀ λ ∈ [0, 1),
where Q (λ) = (1−λ)

∑∞
l=0 λlQ l+1. Furthermore, for all λ ∈ (0, 1) the eigenvalues of ΠA(λ) lie strictly within the unit circle,

where Π denotes projection on S with respect to ‖ · ‖ξ .

Proof. (a) From Eq. (5.1), we see that the eigenvalues of A(λ) have the form

(1 − λ)
∞∑

l=0

λlβ l+1 = β(1 − λ)

1 − βλ
, (5.2)

whereβ is an eigenvalue of A. Since |β| ≤ 1 andβ -= 1, there exist integers i and j such thatβ i -= β j, so a convex combination
of β i and β j lies strictly within the unit circle, and the same is true for the eigenvalues (1− λ)

∑∞
l=0 λlβ l+1 of A(λ). It follows

that σ (A(λ)) < 1. It is also evident from Eq. (5.2) that limλ→1 σ (A(λ)) = 0.
(b) To see that |A(λ)| ≤ Q (λ), note that for all l > 1, the components of |A|l are not greater than the corresponding

components of Q l, since they can be written as products of corresponding components of |A| and Q , and by assumption, we
have |aij| ≤ qij for all i, j = 1, . . . , n.Wehave ‖Q (λ)‖ξ = 1 becauseQ (λ) is a transition probabilitymatrix and ξ is an invariant
distribution of Q (λ). The inequality ‖A(λ)‖ξ ≤ ‖Q (λ)‖ξ follows by a simple modification of the proof of Proposition 1.

Since ‖A(λ)‖ξ ≤ ‖Q (λ)‖ξ = 1 andΠ is nonexpansivewith respect to ‖·‖ξ , it follows that ‖ΠA(λ)‖ξ ≤ 1, so all eigenvalues
of ΠA(λ) lie within the unit circle. Furthermore, by Lemma 1 of [29], all eigenvalues ν of ΠA(λ) with |ν| = 1 must also be
eigenvalues of A(λ). Since by part (a) we have σ (A(λ)) < 1 for λ > 0, there are no such eigenvalues. !

Note from Proposition 3(a) that T (λ) is a contraction for λ > 0 even if T is not, provided that I −A is invertible and σ (A) ≤ 1.
This is not true for T l, l > 1, since the eigenvalues of Al are β l where β is an eigenvalue of A, so that σ (Al) = 1 if σ (A) = 1.
Furthermore, under the assumptions of Proposition 3(b), ΠT (λ) is a contraction for λ > 0. This suggests an advantage for
using λ > 0, and the fact limλ→1 σ (A(λ)) = 0 also suggests an advantage for using λ close to 1. However, as we will discuss
later, there is also a disadvantage in our simulation-based methods for using λ close to 1, because of increased simulation
noise.

The key idea of the subsequent simulation-based algorithms is that the ith component (Amg)(i) of a vector of the form
Amg , where g ∈ Rn, can be computed by averaging over properly weighted simulation-based sample values, just as (Ag)(i)
for m = 1. In particular, we generate the index sequence {i0, i1, . . .} and the transition sequence {(i0, i1), (i1, i2), . . .} by
using the same irreducible transition matrix P , and we form the average of wk,mgik+m over all indices k such that ik = i,
where

wk,m =






aikik+1

pikik+1

aik+1 ik+2

pik+1ik+2

· · · aik+m−1 ik+m

pik+m−1 ik+m

ifm ≥ 1,

1 if m = 0.
(5.3)



Author's personal copy

40 D.P. Bertsekas, H. Yu / Journal of Computational and Applied Mathematics 227 (2009) 27–50

In short

(Amg)(i) ≈

t∑
k=0

δ(ik = i)wk,mgik+m

t∑
k=0

δ(ik = i)
. (5.4)

The justification is that, by the ergodicity of the associated Markov chain, we have

lim
t→∞

t∑
k=0

δ(ik = i, ik+1 = j1, . . . , ik+m = jm)

t∑
k=0

δ(ik = i)
= pij1pj1j2 · · · pjm−1jm , (5.5)

and the limit of the right-hand side of Eq. (5.4) can be written as

lim
t→∞

t∑
k=0

δ(ik = i)wk,mgik+m

t∑
k=0

δ(ik = i)
= lim

t→∞

t∑
k=0

n∑
j1=1

· · ·
n∑

jm=1
δ(ik = i, ik+1 = j1, . . . , ik+m = jm)wk,mgik+m

t∑
k=0

δ(ik = i)

=
n∑

j1=1

· · ·
n∑

jm=1

lim
t→∞

t∑
k=0

δ(ik = i, ik+1 = j1, . . . , ik+m = jm)

t∑
k=0

δ(ik = i)
wk,mgik+m

=
n∑

j1=1

· · ·
n∑

jm=1

aij1aj1j2 · · · ajm−1jmgjm

= (Amg)(i),
where the third equality followsusing Eqs. (5.3) and (5.5). By using the approximation formula (5.4), it is possible to construct
complex simulation-based approximations to formulas that involve powers of A. The subsequent multistep methods in this
section and the basis construction methods of Section 6 rely on this idea.

5.1. l-step methods

Let us now develop simulation methods based on the equation Φr = ΠT l(Φr), corresponding to T l with l > 1.
An advantage of these methods is that they do not require any assumption on the spectral radius of A. By contrast, the
subsequent λ-methods require that λσ (A) < 1 in order for T (λ) to be defined. Consider the projected Jacobi iteration

Φrt+1 = ΠT l(Φrt) = Π

(

AlΦrt +
l−1∑

m=0

Amb

)

.

Equivalently,

rt+1 = argmin
r∈Rs

n∑

i=1

ξi
(
φ(i)′r − (T l(Φrt))(i)

)2

= argmin
r∈Rs

n∑

i=1

ξi

(

φ(i)′r − (AlΦ)(i)rt −
(

l−1∑

m=0

Amb

)

(i)

)2

,

where (AlΦ)(i) is the ith row of the matrix AlΦ , and (T l(Φrt))(i) and
(∑l−1

m=0 A
mb

)
(i) are the ith components of the vectors

T l(Φrt) and
∑l−1

m=0 A
mb, respectively. By solving for the minimum over r , we finally obtain

rt+1 =
(

n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)

(

(AlΦ)(i)rt +
(

l−1∑

m=0

Amb

)

(i)

)

.

We propose the following approximation to this iteration:

rt+1 =
(

t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)

(

wk,lφ(ik+l)
′rt +

l−1∑

m=0

wk,mbik+m

)

(5.6)
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wherewk,m is given by Eq. (5.3). Its validity is based on Eq. (5.4), and on the fact that each index i is sampledwith probability
ξi, and each transition (i, j) is generated with probability pij, as part of the infinitely long sequence of states {i0, i1, . . .} of a
Markov chain whose invariant distribution is ξ and transition probabilities are pij.

As in Section 4, we can express the l-step APJ iteration (5.6) in compact form. In particular, we can write Eq. (5.6) as

rt+1 = rt + B−1
t (Ctrt + ht), (5.7)

where

Ct =
t∑

k=0

φ(ik)(wk,lφ(ik+l) − φ(ik))′, Bt =
t∑

k=0

φ(ik)φ(ik)′, ht =
t∑

k=0

φ(ik)
l−1∑

m=0

wk,mbik+m .

Note that to calculate Ct and ht , it is necessary to generate the future l states it+1, . . . , it+l. Note also that Ct , Bt , and ht can
be efficiently updated via

Ct = Ct−1 + φ(tt)(wt,lφ(it+l) − φ(it))′, Bt = Bt−1 + φ(it)φ(it)′, ht = ht−1 + φ(it)zt ,

where zt is given by

zt =
l−1∑

m=0

wt,mbit+m ,

and can be updated by

zt = zt−1 − bit−1

wt−1,1
+ wt,l−1bit+l−1 .

An important observation is that compared to the case l = 1 [cf. Eqs. (4.4) and (2.1)], the term wk,l multiplying φ(ik+l)
′

and the termswk,m multiplying bik+m in Eq. (5.6) tend to increase the variance of the samples used in the approximations as l
increases. This is a generic tradeoff in themultistepmethods of this section: byusing equations involving greater dependence
on more distant steps (larger values of l or λ) we improve the modulus of contraction, but we degrade the quality of the
simulation through greater variance of the associated samples.

The preceding analysis also yields an equation approximation method corresponding to the APJ iteration (5.7). It has the
form Ctr + ht = 0, and we have r̂t → r∗ with probability 1, where r̂t is a solution to this equation.

5.2. λ-methods

Wewill now develop simulationmethods based on the equationΦr = ΠT (λ)(Φr). Wewill express thesemethods using
convenient recursive formulas that use temporal differences; these are residual-like terms of the form Am(b+Ax−x),m ≥ 0,
which are used widely in approximate DP algorithms (see the references given in Section 1). However, we note that there
are several alternative recursive formulas, of nearly equal effectiveness, which do not involve temporal differences. We first
express T (λ) in terms of temporal difference-like terms3:

T (λ)(x) = x +
∞∑

m=0

λm(Amb + Am+1x − Amx).

Using the above expression, we write the projected Jacobi iteration as

Φrt+1 = ΠT (λ)(Φrt) = Π

(

Φrt +
∞∑

m=0

λm(Amb + Am+1Φrt − AmΦrt)

)

,

3 This can be seen from the following calculation [cf. Eq. (5.1)]:

T (λ)(x) =
∞∑

l=0

(1 − λ)λl(Al+1x + Alb + Al−1b + · · · + b)

= x + (1 − λ)
∞∑

l=0

λl
l∑

m=0

(Amb + Am+1x − Amx)

= x + (1 − λ)
∞∑

m=0

( ∞∑

l=m

λl

)

(Amb + Am+1x − Amx)

= x +
∞∑

m=0

λm(Amb + Am+1x − Amx).
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or equivalently

rt+1 = argmin
r∈Rs

n∑

i=1

ξi

(

φ(i)′r − φ(i)′rt −
∞∑

m=0

λm((Amb)(i) + (Am+1Φ)(i)rt − (AmΦ)(i)rt)

)2

,

where (AkΦ)(i) denotes the ith row of thematrix AkΦ , and (Alb)(i) denotes the ith component of the vector Alb, respectively.
By solving for the minimum over r , we can write this iteration as

rt+1 = rt +
(

n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)

( ∞∑

m=0

λm((Amb)(i) + (Am+1Φ)(i)rt − (AmΦ)(i)rt)

)

. (5.8)

We approximate this iteration by

rt+1 = rt +
(

t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
t∑

m=k

λm−kwk,m−kdt(im), (5.9)

where dt(im) are the temporal differences

dt(im) = bim + wm,1φ(im+1)
′rt − φ(im)′rt , t ≥ 0,m ≥ 0. (5.10)

Similarly to earlier cases, the basis for this is to replace the two expected values in the right-hand side of Eq. (5.8) with
averages of samples corresponding to the states ik, k = 0, 1, . . .. In particular, we view

φ(ik)φ(ik)′ as a sample whose steady-state expected value is
n∑

i=1

ξiφ(i)φ(i)′,

φ(ik)
t∑

m=k

λm−kwk,m−kdt(im) as a sample whose steady-state expected value is approximately

n∑

i=1

ξiφ(i)
∞∑

m=0

λm((Amb)(i) + (Am+1Φ)(i)rt − (AmΦ)(i)rt).

Note that the summation of the second sample above is truncated at time t , but is a good approximation when k is much
smaller than t and also when λ is small (see the convergence proof of the subsequent Proposition 4).

By using the temporal difference formula (5.10), we can write iteration (5.9) in compact form as

rt+1 = rt + B−1
t (Ctrt + ht) , (5.11)

where

Bt =
t∑

k=0

φ(ik)φ(ik)′, (5.12)

Ct =
t∑

k=0

φ(ik)
t∑

m=k

λm−kwk,m−k(wm,1φ(im+1) − φ(im))′, (5.13)

ht =
t∑

k=0

φ(ik)
t∑

m=k

λm−kwk,m−kbim . (5.14)

We now introduce the auxiliary vector

zk =
k∑

m=0

λk−mwm,k−mφ(im), (5.15)

and we will show that Ct and ht can be written as

Ct =
t∑

k=0

zk(wk,1φ(ik+1) − φ(ik))′, (5.16)

ht =
t∑

k=0

zkbik . (5.17)
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Thus, the quantities Bt , Ct , ht , and zt can be efficiently updated with the recursive formulas:

Bt = Bt−1 + φ(it)φ(it)′, Ct = Ct−1 + zt(wt,1φ(it+1) − φ(it))′,
ht = ht−1 + ztbit , zt = λwt−1,1zt−1 + φ(it).

Indeed, we write Eq. (5.13) as

Ct =
t∑

k=0

t∑

m=k

λm−kwk,m−kφ(ik)(wm,1φ(im+1) − φ(im))′

=
t∑

m=0

m∑

k=0

λm−kwk,m−kφ(ik)(wm,1φ(im+1) − φ(im))′

=
t∑

k=0

k∑

m=0

λk−mwm,k−mφ(im)(wk,1φ(ik+1) − φ(ik))′

=
t∑

k=0

zk(wk,1φ(ik+1) − φ(ik))′,

thus proving Eq. (5.16). Similarly,

ht =
t∑

k=0

t∑

m=k

λm−kwk,m−kφ(ik)bim

=
t∑

m=0

m∑

k=0

λm−kwk,m−kφ(ik)bim

=
t∑

k=0

k∑

m=0

λk−mwm,k−mφ(im)bik

=
t∑

k=0

zkbik ,

thus proving Eq. (5.17).
The approach of Section 2 yields an equation approximation method, which is based on solving the equation

Ctr + ht = 0.

This method generalizes the LSTD(λ) algorithm of approximate DP, and is analogous to the APJ iteration (5.11).
We will now address the convergence of this method and the APJ iteration (5.11) to the solution of Φr = ΠT (λ)(Φr).

Their convergence hinges on the convergence of the matrix Ct and the vector ht , and in the case of APJ, also the contraction
property of ΠT (λ), similarly to the special case of LSTD(λ) and LSPE(λ) in approximate DP (see [18,2,29]). In particular,
letting Ξ be the diagonal matrix having the probabilities ξi along the diagonal, and using the full rank assumption on Φ , the
equation Φr = ΠT (λ)(Φr) can be written as

Φr = Φ(Φ ′ΞΦ)−1Φ ′Ξ(A(λ)Φr + b(λ)),

or,

(Φ ′ΞΦ)r = Φ ′Ξ(A(λ)Φr + b(λ)),

which are equivalent to r = r + B−1(Cr + h) or Cr + h = 0, respectively, where

B = Φ ′ΞΦ, C = Φ ′Ξ(A(λ) − I)Φ, h = Φ ′Ξb(λ). (5.18)

The equation r = r+B−1(Cr+h) corresponds to the Jacobi iterationΠT (λ) viewed on the space of r . It is clear that 1
t+1Bt → B

with probability 1, where Bt is given by Eq. (5.12). The convergence of 1
t+1Ct → C and 1

t+1ht → h can be analyzed by viewing
(zt , it , it+1) jointly as aMarkov process and exploiting the ergodicity property of the latter. Alternatively, onemay also avoid
dealing with the infinite state-space Markov chain by using a truncation argument which reduces the case of interest to a
finite state-space Markov chain. We give such a convergence proof. We shall make the assumption λmaxi,j |aij|/pij < 1,
which is stronger than the condition λσ (A) < 1, required for themultistepmapping T (λ) to bewell-defined [the assumption
implies that λ|A| ≤ βP for some β ∈ (0, 1), so using Proposition 1, λσ (A) ≤ λ‖A‖ξ ≤ β‖P‖ξ = β < 1].
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Proposition 4. Assume that P is irreducible, and that λ satisfies λmaxi,j |aij|/pij < 1 and λ ∈ [0, 1). Let Ct , ht , C , and h be given
by Eqs. (5.13), (5.14), and (5.18), respectively, and let r∗ be the solution of the equation Φr = ΠT (λ)(Φr). Then, for every given
initial C0 and h0, we have 1

t+1Ct → C and 1
t+1ht → h with probability 1. Furthermore, r̂t → r∗ with probability 1, where r̂t is

the solution of the equation Ct r + ht = 0. If in addition σ (A(λ)) < 1, then rt → r∗ with probability 1, where rt is generated by
the APJ iteration (5.11) starting with any r0.

Proof. Wewill show that 1
t+1Ct → C with probability 1, and the argument for 1

t+1ht → h is similar. Consider the vector zk
of Eq. (5.15), and a ‘‘truncated’’ version involving the last l + 1 terms of the summation:

zk,l =






l∑

j=0

λjwk−j,jφ(ik−j) if k ≥ l,

zk if k < l.
(5.19)

Corresponding to zk,l, we define Ct,l by

Ct,l = Ct−1,l + zt,l(wt,1φ(it+1) − φ(it))′,

with C0,l = C0. We have for some εl such that εl → 0 as l → ∞,4

‖zk − zk,l‖∞ ≤ εl. (5.20)

For a matrix B, denote ‖B‖∞ = maxi,j |Bij|. Using Eq. (5.16), we have
∥∥∥∥

1
1 + t

Ct − 1
1 + t

Ct,l

∥∥∥∥
∞

= 1
t + 1

∥∥∥∥∥

t∑

k=l

(zk − zk,l)
(
wk,1φ(ik+1) − φ(ik)

)′
∥∥∥∥∥

∞
,

so, using Eq. (5.20), we have for some constant ε l with ε l → 0,
∥∥∥∥

1
1 + t

Ct − 1
1 + t

Ct,l

∥∥∥∥
∞

≤ ε l.

This implies that

lim inf
t→∞

1
1 + t

Ct,l − ε l ee′ ≤ lim inf
t→∞

1
1 + t

Ct ≤ lim sup
t→∞

1
1 + t

Ct ≤ lim sup
t→∞

1
1 + t

Ct,l + ε l ee′,

where e is the unit vector that has all components equal to 1. Thus limt→∞ 1
1+t Ct would exist and be the same as

liml→∞ limt→∞ 1
1+t Ct,l when the latter limit exists.

To calculate liml→∞ limt→∞ 1
1+t Ct,l, we fix l and consider limt→∞ 1

1+t Ct,l. We view the l + 2 consecutive states
(ik−l, ik−l+1, . . . , ik, ik+1) as the state of a Markov chain, which has a single recurrent class (since P is irreducible). Let us
denote expected value with respect to its unique invariant distribution by E0{·}. Then, with probability 1, we have

lim
t→∞

1
1 + t

Ct,l = E0
{
zl,l

(
wl,1φ(il+1) − φ(il)

)′}

= E0

{
l∑

j=0

λjwl−j,j+1φ(il−j)φ(il+1)
′ −

l∑

j=0

λjwl−j,jφ(il−j)φ(il)′
}

=
l∑

j=0

λj
∑

il−j,...,il+1

ξil−j

(
ail−j il−j+1 · · · ailil+1)φ(il−j

)
φ(il+1)

′

−
l∑

j=0

λj
∑

il−j,...,il

ξil−j

(
ail−j il−j+1 · · · ail−1 il

)
φ(il−j)φ(il)′

=
l∑

j=0

λjΦ ′ΞAj+1Φ −
l∑

j=0

λjΦ ′ΞAjΦ

= Φ ′Ξ

(
l∑

j=0

(1 − λ)λjAj+1 − I + λl+1Al+1

)

Φ.

4 This is because λmaxi,j |aij|/pij < β for some positive β < 1 by our assumption, so by using Eq. (5.19), we can choose εl = β l/(1 − β).



Author's personal copy

D.P. Bertsekas, H. Yu / Journal of Computational and Applied Mathematics 227 (2009) 27–50 45

The last expression converges to Φ ′Ξ
(
A(λ) − I

)
Φ as l → ∞, because

lim
l→∞

l∑

j=0

(1 − λ)λjAj+1 = A(λ), lim
l→∞

λl+1Al+1 = 0.

This proves that limt→∞ 1
1+t Ct = Φ ′Ξ

(
A(λ) − I

)
Φ. The argument for showing that 1

1+t ht → h is similar. This implies the
convergence of r̂t and the APJ iteration. !

The assumption λmaxi,j |aij|/pij < 1 is important for the truncation argument in the preceding proof, as well as for the
stability of the algorithms, as it makes zt bounded. It would be worth trying to relax this assumption.

5.3. A generalization of TD(λ)

Finally, let us indicate a generalized version of the TD(λ) method of approximate DP [23]. It has the form

rt+1 = rt + γt ztdt(it), (5.21)

where γt is a diminishing positive scalar stepsize, zt is given by Eq. (5.15), and dt(it) is the temporal difference given by Eq.
(5.10). The analysis of TD(λ) that is most relevant to our work is the one in [24]. Much of this analysis generalizes easily. In
particular, the idea of the convergence proof of [24] is to write the algorithm as

rt+1 = rt + γt(Crt + h) + γt(Vtrt + vt), t = 0, 1, . . . ,

where C and h are given by Eq. (5.18), and Vt and vt are random matrices and vectors, respectively, which asymptotically
have zero mean. The essence of the convergence proof of Tsitsiklis and Van Roy is that the matrix C is negative definite, in
the sense that r ′Cr < 0 for all r -= 0, so it has eigenvalues with negative real parts, which implies in turn that the matrix
I + γtC has eigenvalues strictly within the unit circle for sufficiently small γt . The following is a generalization of this key
fact (Lemma 9 of [24]).

Proposition 5. For all λ ∈ [0, 1), if ΠT (λ) is a contraction on S with respect to ‖ · ‖ξ , then the matrix C of Eq. (5.18) is negative
definite.

Proof. By the contraction assumption, we have for some α ∈ [0, 1),

‖ΠA(λ)Φr‖ξ ≤ α‖Φr‖ξ , ∀ r ∈ Rs. (5.22)

Also, Π is given in matrix form as Π = Φ(Φ ′ΞΦ)−1Φ ′Ξ , from which it follows that

Φ ′Ξ(I − Π) = 0. (5.23)

Thus, we have for all r -= 0,

r ′Cr = r ′Φ ′Ξ(A(λ) − I)Φr
= r ′Φ ′Ξ((I − Π)A(λ) + ΠA(λ) − I)Φr
= r ′Φ ′Ξ(ΠA(λ) − I)Φr
= r ′Φ ′ΞΠA(λ)Φr − ‖Φr‖2

ξ

≤ ‖Φr‖ξ · ‖ΠA(λ)Φr‖ξ − ‖Φr‖2
ξ

≤ (α − 1)‖Φr‖2
ξ

< 0,

where the third equality follows from Eq. (5.23), the first inequality follows from the Cauchy–Schwarz inequality applied
with the inner product < x, y >= x′Ξy that corresponds to the norm ‖ · ‖ξ , and the second inequality follows from
Eq. (5.22). !

The preceding proposition supports the validity of the algorithm (5.21), and provides a starting point for its analysis.
However, the details are beyond the scope of the present paper.

6. Using basis functions involving powers of A

We have assumed in the preceding sections that the columns of Φ , the basis functions, are known, and the rows φ(i)′ of
Φ are explicitly available to use in the various simulation-based formulas. We will now discuss a class of basis functions
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that may not be available, but may be approximated by simulation in the course of our algorithms. Let us first consider basis
functions of the form Amg , m ≥ 0, where g is some vector in Rn. Such basis functions are implicitly used in the context of
Krylov subspace methods; see e.g., [21]. A simple justification is that the fixed point of T has an expansion of the form

x∗ =
∞∑

t=0

Atb,

provided the spectral radius of A is less than 1. Thus the basis functions b, Ab, . . . , Asb yield an approximation based on the
first s + 1 terms of the expansion. Also a more general expansion is

x∗ = x̄ +
∞∑

t=0

Atq,

where x̄ is any vector in Rn and q is the residual vector

q = T (x̄) − x = Ax̄ + b − x̄;
this can be seen from the equation x∗− x̄ = A(x∗− x̄)+q. Thus the basis functions x̄, q, Aq, . . . , As−1q yield an approximation
based on the first s + 1 terms of the preceding expansion. Note that we have

Amq = Tm+1(x̄) − Tm(x̄), ∀ m ≥ 0,

so the subspace spanned by these basis functions is the subspace spanned by x̄, T (x̄), . . . , T s(x̄).
Generally, to implement the methods of the preceding sections with basis functions of the form Amg , m ≥ 0, one would

need to generate the ith components (Amg)(i) for any given i, but these may be hard to calculate. However, one can use
instead single sample approximations of (Amg)(i), and rely on the formula

(Amg)(i) ≈

t∑
k=0

δ(ik = i)wk,mgik+m

t∑
k=0

δ(ik = i)
(6.1)

[cf. Eq. (5.4)]. Thus in principle, to approximate the algorithms of earlier sections using such basis functions, we only need
to substitute each occurrence of (Amg)(i) in the vector φ(i) by a sample wk,mgik+m generated independently of the ‘‘main’’
Markov chain trajectory.

It is possible to use, in addition to g, Ag, . . . , Asg , other basis functions, whose components are available with no error, or
to use several sets of basis functions of the form g, Ag, . . . , Asg , corresponding tomultiple vectors g . However, for simplicity
in what follows in this section, we assume that the only basis functions are g, Ag, . . . , Asg for a single given vector g , so the
matrix Φ has the form

Φ =
(
g Ag · · · Asg

)
. (6.2)

The ith row of Φ is

φ(i)′ =
(
g(i) (Ag)(i) · · · (Asg)(i)

)
.

Wewill focus on a version of the equation approximation method of Section 2, which uses single sample approximations of
these rows. The multistep methods of Section 5 admit similar versions, since the corresponding formulas involve powers of
Amultiplying vectors, which can be approximated using Eq. (6.1).

We recall [cf. Eq. (2.1)] that the projected equation Φr = Π(AΦr + b) has the form

n∑

i=1

ξiφ(i)

(

φ(i) −
n∑

j=1

aijφ(j)

)′

r∗ =
n∑

i=1

ξiφ(i)bi, (6.3)

or equivalently, using Eq. (6.2),

n∑

i=1

ξi





g(i)
(Ag)(i)

...
(Asg)(i)




(
g(i) − (Ag)(i) (Ag)(i) − (A2g)(i) · · · (Asg)(i) − (As+1g)(i)

)
r∗ =

n∑

i=1

ξi





g(i)
(Ag)(i)

...
(Asg)(i)



 bi. (6.4)

To approximate this equation, we generate the index sequence {i0, i1, . . .} according to a distribution ξ with positive
components. For each ik, we also generate two additional mutually ‘‘independent’’ sequences

{
(ik, îk,1), (îk,1, îk,2), . . . , (îk,s−1, îk,s)

}
,

{
(ik, ĩk,1), (ĩk,1, ĩk,2), . . . , (ĩk,s, ĩk,s+1)

}
,
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of lengths s and s+ 1, respectively, according to transition probabilities pij. At time t , we form the following linear equation
to approximate Eq. (6.4):

t∑

k=0





gik
ŵk,1gîk,1

...
ŵk,sgîk,s





(
gik − w̃k,1 gĩk+1

w̃k,1gĩk+1
− w̃k,2gĩk+2

· · · w̃k,sgĩk+s
− w̃k,s+1gĩk+s+1

)
r =

t∑

k=0





gik
ŵk,1gîk,1

...
ŵk,sgîk,s




bik , (6.5)

where for allm,

ŵk,m =
aikîk,1
pikîk,1

aîk,1 îk,2
pîk,1 îk,2

· · ·
aîk,m−1 îk,m

pîk,m−1 îk,m

, w̃k,m =
aikĩk,1
pikĩk,1

aĩk,1 ĩk,2
pĩk,1 ĩk,2

· · ·
aĩk,m−1 ĩk,m

pĩk,m−1 ĩk,m

;

[cf. Eq. (5.3)].
To verify the validity of this approximation, we can use Eq. (6.1), and a similar analysis to the one of Section 2. We omit

the straightforward details. We can also construct a corresponding approximate Jacobi method along similar lines.
The preceding methodology can be extended in a few different ways. A similar method can be used in the case where

the rows φ(i)′ of Φ represent expected values with respect to some distribution depending on i, and can be calculated by
simulation. Then, the terms φ(i) and φ(i) − ∑n

j=1 aijφ(j) in Eq. (6.3) may be replaced by mutually independently generated
samples, and the equation approximation formulasmay be appropriately adjusted in similar spirit as Eq. (6.5). Furthermore,
the device of using an extra independent sequence per time step,may also be used to construct l-stepmethods (cf. Section 5)
where the index sequence {i0, i1, . . .} and the transition sequence {(i0, j0), (i1, j1), . . .} are generated by using different
transitionmatrices. Note, however, that the ideas of the present section are harder to use in conjunctionwith the λ-methods
of Section 5, because the corresponding mapping T (λ) involves an infinite number of steps.

We note that constructing basis functions for subspace approximation is an important research issue, and has received
considerable attention recently in the approximate DP literature (see, e.g., [15,17,19,27]). However, the methods of the
present section are new, even within the context of approximate DP, and to our knowledge, they are the first proposals to
introduce sampling for basis function approximation directly within the TD(λ), LSTD, and LSPE-type methods.

Let us finally point out a generic difficulty associated with the method of this section: even if a solution r∗ =
(r∗

0 , r∗
1 , . . . , r∗

s ) of the projected fixed point equation Φr = ΠT (Φr) is found, the approximation of the ith component
of x∗ has the form

φ(i)′r∗ =
s∑

m=0

r∗
m(Amg)(i),

and requires the evaluation of the basis function components (Ag)(i), . . . , (Asg)(i). For this, additional computation and
simulation is needed, using the approximation formula (6.1).

7. Extensions and related methods

In this section, we briefly discuss how some of the ideas of earlier sections can be extended to address other types of
problems, including some that are nonlinear.

7.1. Least squares problems

In a simple view of themethods of the preceding sections, we start from a least squares type of problemor a deterministic
iterative algorithm for solving that problem, and we replace some of the exact expressions appearing in the problem or the
algorithm by simulation-based approximations. This idea can be applied to several different least squares contexts and in a
variety of ways. As illustration, we present a few examples.

Consider solving the problem

min
r∈Rs

‖AΦr − b‖2
ζ (7.1)

to obtain an approximation to the weighted least squares solution of a system Ax = b. Here A is an m × n matrix, ζ is a
known probability distribution vector with positive components, b is a vector in Rm, and as before, Φ is an n × s matrix of
basis functions. The solution is

r∗ = (Φ ′A′ZAΦ)−1Φ ′A′Zb,

where Z is the diagonalm×mmatrix having ζ along the diagonal, and we assume for simplicity that Φ ′A′ZAΦ is invertible.
An approximation to this solution can be obtained by replacing Φ ′A′ZAΦ and Φ ′A′Zb with estimates that are obtained by
simulation and low-dimensional calculations.
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In the most straightforward way to do this, we generate an infinite index sequence i0, i1, . . . by independently
sampling the set {1, . . . ,m} according to the distribution ζ . Simultaneously, we generate two independent sequences
of corresponding transitions {(i0, j0), (i1, j1), . . .} and {(i0, ĵ0), (i1, ĵ1), . . .} according to transition probabilities pij, where
pij > 0 whenever aij -= 0. We then approximate r∗ by r̂ = C−1

t ct , where

Ct = 1
t + 1

t∑

k=0

aikjk
pikjk

aikĵk
pikĵk

φ(jk)φ(ĵk)′, ct = 1
t + 1

t∑

k=0

aikjk
pikjk

φ(jk)bik .

We may also use in place of Ct , its symmetrized version, which is (Ct + C ′
t )/2. It can be seen that Ct → Φ ′A′ZAΦ and

ct → Φ ′A′Zb with probability 1, so r̂t → r∗ as t → ∞, with probability 1.
As another illustration, consider a discrete-time stochastic process with states i = 1, . . . , n, which is ergodic in the sense

that there exists ξ = (ξ1, . . . , ξn), such that its generated trajectories {i0, i1, . . .} satisfy

ξi = lim
t→∞

t∑
k=0

δ(ik = i)

t + 1
, ∀ i = 1, . . . , n, (7.2)

with probability 1. A special case is a Markov chain with a single recurrent class, in which case ξ is the invariant distribution
of the chain. Other special cases, which are not easily modeled by a Markov chain, arise in queueing network applications.
Consider approximating ξ with a mixture distribution Φr∗, where r∗ solves the problem

min
e′r=1,r≥0

1
2
‖ξ − Φr‖2

ζ . (7.3)

Here e is the unit vector, ζ is a known distribution with positive components, and Φ is an n × s matrix whose columns are
basis functions that are distributions. To approximate the problem (7.3), we generate an infinitely long trajectory {i0, i1, . . .}
of the process.We also generate an index sequence {î0, î1, . . .} by independently sampling the states of the process according
to the distribution ζ . We then solve the problem

min
e′r=1,r≥0

1
2
r ′Ctr − c ′

t r, (7.4)

where

Ct = 1
t + 1

t∑

k=0

φ(îk)φ(îk)′, ct = 1
t + 1

t∑

k=0

ζikφ(ik).

It can be seen that asymptotically, as t → ∞, the cost function of problem (7.4) converges with probability 1 to the cost
function of problem (7.3) minus the constant 1

2‖ξ‖2
ζ .

We also note that related methods may be used to calculate an approximation to the spectrum of a matrix A′A, and in
particular the dominant eigenvalue and eigenvector ofA′A (see [5], and the related paper [1],which dealswith the calculation
of an approximation to the Perron–Frobenius eigenvector of a nonnegative matrix).

A potential difficulty with the preceding algorithms (including the ones of Sections 2–6) is the amount of simulation
noise involved in forming reliable estimates of the approximated matrices and vectors. In special cases, the structure of the
problemmay be exploited to reduce the noise; for example, some components may be estimated separately from others (or
computed exactly) to apply more effectively variance reduction techniques.

7.2. Differentiable nonlinear fixed point problems

One potential approach for the general fixed point equation x = T (x), where T is a differentiable mapping, is to use
Newton’smethod to solve the projected equation. In this approach, given rk, we generate rk+1 by using one of the simulation-
based methods given earlier to solve a linearized version (at rk) of the projected equation Φr = ΠT (Φr). This is the linear
equation

Φrk+1 = Π(T (Φrk) + JkΦ(rk+1 − rk)),

where Jk is the Jacobianmatrix of T , evaluated atΦrk. We do not discuss this approach further, and focus instead on a special
case involving a contraction mapping, where convergence from any starting point r0 is guaranteed.

7.3. Extension of Q -learning for optimal stopping

Let us consider a system of the form

x = T (x) = Af (x) + b,
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where f : Rn %→ Rn is a mapping with scalar function components of the form f (x) = (f1(x1), . . . , fn(xn)). We assume that
each of the mappings fi : R %→ R is nonexpansive in the sense that

|fi(xi) − fi(x̄i)| ≤ |xi − x̄i|, ∀ i = 1, . . . , n, xi, x̄i ∈ R. (7.5)

This guarantees that T is a contraction mapping with respect to any norm ‖ · ‖ with the property

‖y‖ ≤ ‖z‖ if |yi| ≤ |zi|, ∀ i = 1, . . . , n,

whenever A is a contraction with respect to that norm. Such norms include weighted l1 and l∞ norms, the norm ‖ · ‖ξ ,
as well as any scaled Euclidean norm ‖x‖ =

√
x′Dx, where D is a positive definite symmetric matrix with nonnegative

components. Under the assumption (7.5), the theory of Section 3 applies and suggests appropriate choices of a Markov
chain for simulation.

A special case has been studied in the context of an optimal stopping problem in [26], which gave a Q -learning algorithm
that is similar in spirit to TD(0). The following example outlines this context.

Example 5 (Optimal Stopping). Consider the equation

x = T (x) = αPf (x) + b,

where P is an irreducible transition probability matrix with invariant distribution ξ , α ∈ (0, 1) is a scalar discount factor,
and f is a mapping with components

fi(xi) = min{ci, xi}, i = 1, . . . , n,

where ci are some scalars. This is theQ -factor equation corresponding to a discounted optimal stopping problemwith states
i = 1, . . . , n, and a choice between two actions at each state i: stop at a cost ci, or continue at a cost bi and move to state
j with probability pij. The optimal cost starting from state i is min{ci, x∗

i }, where x∗ is the fixed point of T , which is unique
because T is a sup-norm contraction, as shown in [26]. As a special case of Proposition 1, we obtain that ΠT is a contraction
with respect to ‖ ·‖ξ , and the associated error bounds apply. Similar results hold in the casewhere αP is replaced by amatrix
A satisfying condition (2) of Proposition 1, or the conditions of Proposition 2. The case where

∑n
j=1 |aij| < 1 for some index i,

and 0 ≤ A ≤ Q , where Q is an irreducible transition probability matrix, corresponds to an optimal stopping problemwhere
the stopping state will be reached from all other states with probability 1, even without applying the stopping action. In this
case, by Proposition 1 under condition (3), ΠA is a contraction with respect to some norm, and hence I − ΠA is invertible.
Using this fact, it follows bymodifying the proof of Proposition 2 thatΠ((1−γ )I+γ T ) is a contractionwith respect to ‖ ·‖ξ .

Wewill nowdescribe an approximate Jacobi algorithm that extends themethodproposed in [30] for the optimal stopping
problem of the preceding example. Similarly to Section 4, the projected Jacobi iteration

Φrt+1 = ΠT (Φrt), t = 0, 1, . . . ,

takes the form

rt+1 =
(

n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)

(
n∑

j=1

aijfj
(
φ(j)′rt

)
+ bi

)

.

We approximate this iteration with

rt+1 =
(

t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
(
aikjk
pikjk

fjk
(
φ(jk)′rt

)
+ bik

)
. (7.6)

Here, as before, {i0, i1, . . .} is a state sequence, and {(i0, j0), (i1, j1), . . .} is a transition sequence satisfying Eqs. (2.2) and (2.4)
with probability 1. The justification of this approximation is very similar to the ones given so far, and will not be discussed
further.

A difficulty with iteration (7.6) is that the terms fjk
(
φ(jk)′rt

)
must be computed for all k = 0, . . . , t , at every step t ,

thereby resulting in significant overhead. Methods to bypass this difficulty in the case of optimal stopping are given in [30],
and can be extended to the more general context of this paper. We finally note that due to the nonlinearity of T , it is hard
to implement the equation approximation methods of Section 2. Furthermore, there are no corresponding versions of the
multistep methods of Section 5.

8. Conclusions

In this paper we have shown how linear fixed point equations can be solved approximately by projection on a low-
dimensional subspace and simulation, thereby generalizing recentmethods from the field of approximateDP.Wehave given
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error bounds that apply to special types of contraction mappings, most prominently some involving diagonally dominant
matrices. However, our methods apply to any linear system of equations whose projected solution is unique. While our
simulation-based methods are likely not competitive with other methods for moderately-sized problems, they provide an
approach for addressing extremely large problems, because they do not involve any vector operations or storage of size
comparable to the original problem dimension. Our methods have been motivated by recent analysis and computational
experience in approximate DP. Much remains to be done to apply them and to assess their potential in other fields.
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