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Solution of Large Systems of Equations Using

Approximate Dynamic Programming Methods
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Abstract

We consider fixed point equations, and approximation of the solution by projection on a low-dimensional
subspace. We propose stochastic iterative algorithms, based on simulation, which converge to the approxi-
mate solution and are suitable for large-dimensional problems. We focus primarily on general linear systems
and propose extensions of recent approximate dynamic programming methods, based on the use of temporal
differences, which solve a projected form of Bellman’s equation by using simulation-based approximations
to this equation, or by using a projected value iteration method.
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Introduction

1. INTRODUCTION

In this paper we focus primarily on large systems of linear equations of the form

x = Ax + b, (1.1)

where A is an n× n matrix and b is a column vector in the n-dimensional space <n. Equivalently, we want
to find a fixed point of the mapping T , given by

T (x) = Ax + b.

We propose methods to approximate the fixed point within a subspace spanned by a relatively small number
of basis functions.

The motivation for our work comes from recent advances in the field of dynamic programming (DP),
where large systems of equations of the form (1.1) appear in the context of evaluation of the cost of a
stationary policy in a Markovian decision problem. In this DP context, we are given an n-state Markov
chain with transition probability matrix P , which evolves for an infinite number of discrete time periods,
and a cost vector g ∈ <n, whose components gi represent the costs of being at the corresponding states
i = 1, . . . , n, for a single time period. The problem is to evaluate the total cost vector

x =
∞∑

t=0

αtP tg,

where α ∈ (0, 1) is a discount factor, and the components xi represent the total expected α-discounted cost
over an infinite number of time periods, starting from the corresponding states i = 1, . . . , n. It is well known
that x is the unique solution of the equation,

x = αPx + g,

and furthermore, x can also be computed iteratively by the Jacobi method xt+1 = αPxt + g (also known as
value iteration in the context of DP), since the mapping x 7→ αPx + g is a contraction with respect to the
sup norm; see textbooks on DP, such as for example Bertsekas [Ber07], or Puterman [Put94].

We focus on the case where n is very large, and it may be worth (even imperative) to consider a
low-dimensional approximation of a solution within a subspace

S = {Φr | r ∈ <s},

where the columns of the n × s matrix Φ are basis functions that are linearly independent. This type of
approximation approach has been the subject of much recent research in approximate DP, where several
methods have been proposed and substantial computational experience has been accumulated. The most
popular of these methods use projection with respect to the weighted Euclidean norm given by

‖x‖ξ =

√√√√ n∑
i=1

ξix2
i ,

where ξ ∈ <n is a probability distribution with positive components. We denote by Π the projection
operation onto S with respect to this norm (while Π depends on ξ, we do not show the dependence, since the
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associated vector ξ will always be clear from the context). The aforementioned methods for approximating
the solution of the DP equation x = αPx + g aim to solve the equation

Φr = Π(αPΦr + b)

with ξ being the invariant distribution of the transition probability matrix P (which is assumed irreducible;
i.e., has a single recurrent class and no transient states). The more general methods for approximating a
fixed point of T (x) = Ax + b, proposed in this paper, aim to solve the equation

Φr = ΠT (Φr) = Π(AΦr + b), (1.2)

where the projection norm ‖ · ‖ξ is determined in part by the structure of A in a way to induce some desired
property. We view Π as a matrix and we implicitly assume throughout that I − ΠA is invertible. Thus, for
a given ξ, Eq. (1.2) has a unique solution Φr∗, which together with the linear independence assumption on
the columns of Φ, implies a unique solution r∗.

To evaluate the distance between Φr∗ and a fixed point x∗ of T , we write

x∗ − Φr∗ = x∗ −Πx∗ + Πx∗ − Φr∗ = x∗ −Πx∗ + ΠTx∗ −ΠTΦr∗ = x∗ −Πx∗ + ΠA(x∗ − Φr∗), (1.3)

from which
x∗ − Φr∗ = (I −ΠA)−1(x∗ −Πx∗).

Thus, we have for any norm ‖ · ‖ and fixed point x∗ of T

‖x∗ − Φr∗‖ ≤
∥∥(I −ΠA)−1

∥∥ ‖x∗ −Πx∗
∥∥, (1.4)

and the approximation error ‖x∗ −Φr∗‖ is proportional to the distance of the solution x∗ from the approxi-
mation subspace. If ΠT is a contraction mapping of modulus α ∈ (0, 1) with respect to ‖ · ‖, from Eq. (1.3),
we have

‖x∗ − Φr∗‖ ≤ ‖x∗ −Πx∗‖+ ‖ΠT (x∗)−ΠT (Φr∗)‖ ≤ ‖x∗ −Πx∗‖+ α‖x∗ − Φr∗‖,

so that
‖x∗ − Φr∗‖ ≤ 1

1− α
‖x∗ −Πx∗‖. (1.5)

A slightly better bound is obtained when ΠT is a contraction mapping of modulus α ∈ [0, 1) with
respect to a Euclidean norm (e.g., ‖ · ‖ξ). Then, using the Pythagorean Theorem, we have

‖x∗ − Φr∗‖2 = ‖x∗ −Πx∗‖2 + ‖Πx∗ − Φr∗‖2

= ‖x∗ −Πx∗‖2 + ‖ΠT (x∗)−ΠT (Φr∗)‖2

≤ ‖x∗ −Πx∗‖2 + α2‖x∗ − Φr∗‖2

from which we obtain
‖x∗ − Φr∗‖2 ≤ 1

1− α2
‖x∗ −Πx∗‖2. (1.6)

We note that in the case where ΠT is a contraction mapping with respect to some norm, there are
some additional algorithmic approaches for approximation. In particular, we may consider a Jacobi/fixed
point iteration, restricted within S, which involves projection of the iterates onto S:

Φrt+1 = ΠT (Φrt), t = 0, 1, . . . . (1.7)
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In the context of DP this is known as projected value iteration (see [Ber07]). It converges to r∗, but is
unwieldy when n is very large, because the vector T (Φrt) has dimension n.

The preceding observations suggest that it is desirable that ΠT be a contraction with respect to some
norm. However, this is a complicated issue because for a given ξ, ΠT need not be a contraction with respect
to a given norm, even if T is a contraction with respect to that norm. It is thus important to choose ξ, and
the associated projection Π, in special ways that guarantee that ΠT is a contraction. This question will be
discussed in Section 3.

In this paper, we introduce simulation-based algorithms for solving the equation Φr = ΠT (Φr). The
key desirable property of these algorithms is that they involve low-dimensional matrices and vectors, so they
do not require n-dimensional calculations. We consider two types of methods:

(a) Equation approximation methods, whereby r∗ is approximated by r̂, the solution of a linear system of
the form

Φr̂ = Π̂T̂ (Φr̂), (1.8)

where Π̂ and T̂ are simulation-based approximations to Π and T , respectively. As the number of
simulation samples increases, r̂ converges to r∗.

(b) Approximate Jacobi methods, which [without explicit calculation of T (Φrt)] can be written in the form

Φrt+1 = ΠT (Φrt) + εt, t = 0, 1, . . . , (1.9)

where εt is a simulation-induced error that diminishes to 0 as the number of simulation samples in-
creases. Similar to the methods in (a), they do not require n-dimensional calculations, but apply only
when ΠT is a contraction with respect to some norm. Then, since εt converges to 0, asymptotically it-
eration (1.9) becomes the projected Jacobi iteration (1.7), and rt converges to r∗. We will also interpret
later iteration (1.9) as a single iteration of an algorithm for solving the system (1.8).

Within the DP context, the approximation methods in (a) above have been proposed by Bradtke and
Barto [BrB96], and by Boyan [Boy02] (see also analysis by Nedić and Bertsekas [NeB03]), and are known
as least squares temporal differences (LSTD) methods. The approximate Jacobi methods in (b) above have
been proposed by Bertsekas and Ioffe [BeI96] (see also analysis by Nedić and Bertsekas [NeB03], Bertsekas,
Borkar, and Nedić [BBN04], Yu and Bertsekas [YuB06], and Bertsekas [Ber07]), and are known as least
squares policy evaluation (LSPE) methods. An earlier, but computationally less effective method, is TD(λ),
which was first proposed by Sutton [Sut88] and was instrumental in launching a substantial body of research
on approximate DP in the 1990s (see Bertsekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98], and
Tsitsiklis and Van Roy [TsV97], [TsV99a] for discussion, extensions, and analysis of this method). Within
the specialized approximate DP context, LSTD, LSPE, and TD(λ) offer some distinct advantages, which
make them suitable for the approximate solution of problems involving Markov chains of very large dimension
(in a case study where LSPE was used to evaluate the expected score of a game playing strategy, a Markov
chain with more than 2200 states was involved; see [BeI96], and [BeT96], Section 8.3). These advantages are:

(1) The vector x need not be stored at any time. Furthermore, inner products involving the rows of A

need not be computed; this can be critically important if some of the rows are not sparse.

(2) There is a projection norm such that the matrix ΠA is a contraction, so the bounds (1.6), (1.5), and
other related bounds apply.
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(3) The vector ξ of the projection norm need not be known explicitly. Instead, the values of the compo-
nents of ξ are naturally incorporated within the simulation as relative frequencies of occurrence of the
corresponding states (ξ is the invariant distribution vector of the associated Markov chain).

These advantages, particularly the first, make the simulation-based approach an attractive (possibly the
only) option in problems so large that traditional approaches are prohibitively expensive in terms of time
and storage. Indeed, even if ΠA were a contraction and a suitable vector ξ were explicitly known, the solution
of the equation Φr = ΠT (Φr) with traditional non-simulation methods, would still require the formation of
n-dimensional inner products, and would be prohibitive for n large enough. Of course, the simulation-based
methods are also affected by a large n, and may in fact require more computation than traditional methods
to obtain a highly accurate approximation to Φr∗. However, when nearly exact solution is prohibitively
expensive, but solution accuracy is not critical, simulation-based methods may be able to produce adequate
approximations to Φr∗ much faster than traditional methods. An additional advantage of our methods is
that they are far better suited for parallel computation than traditional methods, because the associated
simulation is easily parallelizable.

The present paper extends the approximate DP methods just discussed to the case where A does not
have the character of a stochastic matrix; just invertibility of I − ΠA is assumed. An important difficulty
in the nonDP context considered here is that there may be no natural choice of ξ (and associated Markov
chain to be used in the simulation process) such that ΠT is a contraction. Nonetheless, we show that all
of the advantages (1)-(3) of LSTD, LSPE, and TD(λ) within the DP context are preserved under certain
conditions, the most prominent of which is

|aij | ≤ pij , ∀ i, j = 1, . . . , n, (1.10)

where aij are the components of A and pij are the transition probabilities of a Markov chain, which is used
for simulation. In this case, again ξ is an invariant distribution of the chain and need not be known a priori.
This is shown in Section 3, where some examples, including the important special case of a weakly diagonally
dominant system, are also discussed.

When the condition |aij | ≤ pij , for all i, j, does not hold, the selection of the Markov chain used
for simulation and the associated vector ξ used in the projection operation may be somewhat ad hoc.
Furthermore, if ΠA is not a contraction, the approximate Jacobi methods are not valid and the bound (1.5)
does not apply. Instead, the bound of Eq. (1.4) applies. If I − ΠA is nearly singular, this latter bound is
poor, and the associated Eq. (1.3) suggests potential difficulties. Still, the equation approximation methods
of Section 2 are valid, and maintain some important characteristics, namely that the vector x need not be
stored at any time, and inner products involving the rows of A need not be computed.

We note that LSTD and LSPE are in fact entire classes of methods, parameterized with a scalar
λ ∈ [0, 1). They are called LSTD(λ) and LSPE(λ), respectively, and they use the parameter λ similar to
the method of TD(λ). A value λ > 0 corresponds to approximating, in place of x = T (x), the equation
x = T (λ)(x), where T (λ) is the mapping

T (λ) = (1− λ)
∞∑

k=0

λkT k+1.

Note that the fixed points of T are also fixed points of T (λ), and that T (λ) coincides with T for λ = 0.
However, it can be seen that when T is a contraction with respect to some norm with modulus α ∈ [0, 1),
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T (λ) is a contraction with the more favorable modulus

αλ = (1− λ)
∞∑

k=0

λkαk+1 =
α(1− λ)
1− αλ

.

Thus, when approximating the equation x = T (λ)(x), rather than x = T (x), the error bounds (1.6)-(1.5)
become more favorable; in fact αλ → 0 as λ → 1, so asymptotically, from Eq. (1.5), we obtain optimal
approximation: ‖x∗ − Φr∗‖ = ‖x∗ − Πx∗‖. Furthermore, T (λ) and ΠT (λ) are arbitrarily close to 0, if λ is
sufficiently close to 1, so they can become contractions with respect to any norm. An important characteristic
of our methods is that under certain conditions [typically Eq. (1.10)], they can be straightforwardly applied
to the equation x = T (λ)(x), while this is much harder with traditional methods (see Section 5). However,
while the error bounds improve as λ is increased towards 1, the simulation required to solve the equation
Φr = ΠT (λ)(Φr) becomes more time-consuming because the associated simulation samples become more
“noisy.” This “accuracy-noise” tradeoff is widely recognized in the approximate DP literature (see e.g., the
textbook [Ber07] and the references quoted there).

In this paper, we focus on describing the methods, making the connection with their DP antecedents,
proving some basic results relating to contraction properties of ΠA, and providing some examples of interest-
ing special cases. A more detailed delineation of important relevant classes of problems, and the associated
formulations, projection norm selections, and other related issues, are beyond the scope of the present paper,
and are a subject for further research.

The paper is organized as follows. In Section 2, we formulate the simulation framework that underlies
our methods, and we discuss the equation approximation approach of (a) above. We also briefly consider an
alternative approach, which is based on minimization of the equation error norm

‖Φr −AΦr − b‖ξ.

In Section 3, we discuss the selection of Markov chains, together with some related examples and special
cases, for which various contraction properties can be shown. In Section 4, we develop the approximate
Jacobi methods in (b) above, and we discuss their relation with the equation approximation methods in
(a) above. In Section 5, we develop multistep analogs of the methods of Section 2 and 4, in the spirit of
the LSTD(λ), LSPE(λ), and TD(λ) methods of approximate DP. The methods of Sections 2-5 assume that
the rows of Φ are either explicitly known or can be easily generated when needed. In Section 6, we discuss
special methods that use basis functions of the form Amg, m ≥ 0, where g is some vector the components
of which can be exactly computed. These methods bear similarity to Krylov subspace methods (see e.g.
Saad [Saa03]), but suffer from the potential difficulty that the rows of Amg may be hard to compute. We
discuss variants of our methods of Sections 2-5 where the rows of Amg are approximated by simulation of a
single sample. These variants are new even in the context of approximate DP (A = αP ), where generating
appropriate basis vectors for cost function approximation is a currently prominent research issue. Finally, in
Section 7, we discuss some extensions of our methods that apply to certain nonlinear fixed point problems.
We generalize approximate DP methods proposed for optimal stopping problems (see Tsitsiklis and Van Roy
[TsV99b], Choi and Van Roy [ChV06], and Yu and Bertsekas [YuB07]), and a method for approximating
the dominant eigenvalue and corresponding eigenvector of a nonnegative matrix, first proposed by Basu,
Bhatatacharyya, and Borkar [BBB6].

Regarding notation, throughout the paper, vectors are considered to be column vectors, and a prime
denotes transposition. We generally use subscripts to indicate the scalar components of various vectors and
matrices. Vector and matrix inequalities are to be interpreted componentwise. For example, for two matrices
A, B, the inequality A ≤ B means that Aij ≤ Bij for all i and j.
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2. EQUATION APPROXIMATION METHODS

In this section, we discuss the construction of simulation-based approximations to the projected equation
Φr = Π(AΦr + b). This methodology descends from the LSTD methods of approximate DP, referred to in
Section 1. Let us assume that the positive distribution vector ξ is given. By the definition of projection with
respect to ‖ · ‖ξ, the unique solution r∗ of this equation satisfies

r∗ = arg min
r

n∑
i=1

ξi

φ(i)′r −
n∑

j=1

aijφ(j)′r∗ − bi

2

,

where φ(i)′ denotes the ith row of the matrix Φ. By setting the gradient of the minimized expression above
to 0, we have

n∑
i=1

ξiφ(i)

φ(i)′r∗ −
n∑

j=1

aijφ(j)′r∗ − bi

 = 0.

We thus obtain the following equivalent form of the projected equation Φr = Π(AΦr + b):

n∑
i=1

ξiφ(i)

φ(i)−
n∑

j=1

aijφ(j)

′ r∗ =
n∑

i=1

ξiφ(i)bi. (2.1)

The key idea of our methodology can be simply explained by focusing on the two expected values
with respect to ξ, which appear in the left and right sides of the above equation: we approximate these two
expected values by simulation-obtained sample averages. For this, we need to generate a sequence of indices
i according to the probabilities ξi. A convenient way to do so is by using a Markov chain that has states
1, . . . , n and has ξ as an invariant distribution. State i of the chain will be associated with the index of the
component xi of x. We leave open for the time being the method to select the transition probabilities pij of
the chain, except for the requirement

pij > 0 if aij 6= 0, (2.2)

as well as the implicit requirement that the chain should have no transient states (since otherwise it would
not have an invariant distribution with all components positive). In Section 3, we will discuss favorable
methods for constructing pij from aij , which lead to bounds for the error ‖x∗ − Φr∗‖ξ and contraction
properties for ΠT .

In the most basic form of our methods, we generate a sequence of states {i0, i1, . . .}, and a sequence of
transitions

{
(i0, j0), (i1, j1), . . .

}
of the chain. We use any probabilistic mechanism for this, subject to the

following two requirements (cf. Fig. 2.1):

(1) The sequence {i0, i1, . . .} is generated according to the distribution ξ, which defines the projection norm
‖ · ‖ξ, in the sense that with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i)

t + 1
= ξi, i = 1, . . . , n, (2.3)

where δ(·) denotes the indicator function [δ(E) = 1 if the event E has occurred and δ(E) = 0 otherwise].
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(2) The sequence
{
(i0, j0), (i1, j1), . . .

}
is generated according to the transition probabilities pij of the

Markov chain, in the sense that with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i, jk = j)∑t

k=0 δ(ik = i)
= pij , i, j = 1, . . . , n. (2.4)

At time t, we form the linear equation

t∑
k=0

φ(ik)
(

φ(ik)−
aikjk

pikjk

φ(jk)
)′

r =
t∑

k=0

φ(ik)bik . (2.5)

We claim that this is a valid approximation to Eq. (2.1), the equivalent form of the projected equation. The
idea is to view

φ(ik)φ(ik)′ as a sample whose steady-state expected value is the matrix
n∑

i=1

ξiφ(i)φ(i)′,

aikjk

pikjk

φ(ik)φ(jk)′ as a sample whose steady-state expected value is the matrix
n∑

i=1

ξiφ(i)
n∑

j=1

aijφ(j)′,

φ(ik)bik as a sample whose steady-state expected value is the vector
n∑

i=1

ξiφ(i)bi.

i0 i1 ik+1ik

j0 j1 jk jk+1

Figure 2.1. One method to generate states according to the distribution ξ [cf. Eq. (2.3)] for

the case of an irreducible Markov chain is to simulate a single infinitely long sample trajectory

{i0, i1, . . .} of the chain. The transition sequence {(i0, j0), (i1, j1), . . .} is simultaneously generated

according to the transition probabilities pij . It is possible that jk = ik+1, but this is not necessary.

Indeed, by counting the number of times a state occurs and collecting terms, we can write Eq. (2.5) as

n∑
i=1

ξ̂i,tφ(i)

φ(i)−
n∑

j=1

p̂ij,t
aij

pij
φ(j)

′ r =
n∑

i=1

ξ̂i,tφ(i)bi, (2.6)

where

ξ̂i,t =
∑t

k=0 δ(ik = i)
t + 1

, p̂ij,t =
∑t

k=0 δ(ik = i, jk = j)∑t
k=0 δ(ik = i)

.

In view of the assumption
ξ̂i,t → ξi, p̂ij,t → pij , i, j = 1, . . . , n,
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[cf. Eqs. (2.3) and (2.4)], by comparing Eqs. (2.1) and (2.6), we see that they asymptotically coincide. Since
the solution r∗ of the system (2.1) exists and is unique, the same is true for the system (2.6) for all t

sufficiently large. Thus, with probability 1,

r̂t → r∗,

where r̂t is the solution of the system (2.5).

A comparison of Eqs. (2.1) and (2.6) indicates some considerations for selecting the Markov chain (other
than that it should have no transient states). It can be seen that “important” (e.g., large) components aij

should be simulated more often (pij : large).† In particular, if (i, j) is such that aij = 0, there is an incentive
to choose pij = 0, since corresponding transitions (i, j) are “wasted” in that they do not contribute to
improvement of the approximation of Eq. (2.1) by Eq. (2.6). This suggests that the structure of the Markov
chain should match in some sense the structure of the matrix A. This point will be further discussed in
Section 3.

Note that there is a lot of flexibility for generating the state sequence {i0, i1, . . .} and the transition
sequence

{
(i0, j0), (i1, j1), . . .

}
to satisfy Eqs. (2.3) and (2.4). One possibility is to start at some state i0 and

generate a single infinitely long trajectory of the Markov chain, in which case jk = ik+1 for all k. Then the
requirements (2.3) and (2.4) will be satisfied if the Markov chain is irreducible, in which case ξ will be the
unique invariant distribution of the chain and will have positive components; this is an important special
case in approximate DP applications (see the references given in Section 1), and will be discussed further in
the next section.

An alternative possibility is to generate multiple infinitely long trajectories of the chain, starting at
several different states, and for each trajectory use jk = ik+1 for all k. This will work even if the chain has
multiple recurrent classes, as long as there are no transient states and at least one trajectory is started from
within each recurrent class. Again ξ will be an invariant distribution of the chain, and need not be known
explicitly. Note that using multiple trajectories may be interesting even if there is a single recurrent class,
for at least two reasons:

(1) The generation of trajectories may be parallelized among multiple processors, with significant speedup
resulting.

† For a simplified analysis, note that the variance of each coefficient p̂ij,t
aij
pij

appearing in Eq. (2.6) can be

calculated to be

Vij,t = γtpij(1− pij)
a2

ij

p2
ij

=
γta

2
ij

pij
− γta

2
ij ,

where γt is the expected value of 1/
∑t

k=0
δ(ik = i), assuming the initial state i0 is distributed according to ξ. [To

see this, note that p̂ij,t is the average of Bernoulli random variables whose mean and variance are pij and pij(1−pij),

respectively, and whose number is the random variable
∑t

k=0
δ(ik = i).] For a given i, let us consider the problem

of finding pij , j = 1, . . . , n, that minimize
∑n

j=1
Vij,t subject to the constraints pij = 0 if and only if aij = 0, and∑n

j=1
pij = 1. By introducing a Lagrange multiplier ν for the constraint

∑n

j=1
pij = 1, and forming and minimizing

the corresponding Lagrangian, we see that the optimal solution satisfies
a2

ij

p2
ij

= ν
γt

, implying that pij should be chosen

proportional to |aij | (indeed this is standard practice in approximate DP, and is consistent with the principles of

importance sampling [Liu01]). This analysis, however, does not take into account the fact that the choice of pij

also affects the steady-state probabilities ξi, and through them the variance of both sides of Eq. (2.6). In order to

optimize more meaningfully the choice of pij , this relation must be taken into account, as well as the dependence of

the variance of the solution of Eq. (2.6) on other terms, such as the vectors φ(i) and b.
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(b) The empirical frequencies of occurrence of the states may approach the invariant probabilities more
quickly; this is particularly so for large and “stiff” Markov chains.

An important observation is that it is not important to explicitly know ξ; it is just necessary to know
the Markov chain and to be able to simulate its transitions. The choice of the Markov chain is significant,
however, since it determines ξ, and hence it determines whether ΠT is a contraction and the error bounds
(1.5) or (1.6) of Section 1 apply. Furthermore, the Markov chain should be chosen so that it has no transient
states (so that ξi > 0 for all i) and it can be conveniently simulated. Sometimes the choice of the Markov
chain is evident (this is true for example in DP). Some other cases where there are favorable choices of the
Markov chain will be discussed in the next section.

A Variant With Independently Simulated Transitions

The preceding algorithm requires that the sequence of transitions is generated according to transition prob-
abilities pij . However, this is not necessary, although it saves some computation in the case where jk = ik+1.
In particular, we may generate the state sequence {i0, i1, . . .} in the same way as before using the transition
probabilities pij [cf. Eq. (2.3)], but generate the transition sequence {(i0, j0), (i1, j1), . . .} according to other
transition probabilities p̃ij that satisfy

p̃ij > 0 if aij 6= 0,

and

lim
t→∞

∑t
k=0 δ(ik = i, jk = j)∑t

k=0 δ(ik = i)
= p̃ij , i, j = 1, . . . , n, (2.7)

with probability 1. At time t, we obtain r̂t as the solution of the linear equation

t∑
k=0

φ(ik)
(

φ(ik)−
aikjk

p̃ikjk

φ(jk)
)′

r =
t∑

k=0

φ(ik)bik . (2.8)

The preceding analysis carries through and shows that r̂t → r∗ with probability 1.

A Variant Without Simulated Transitions

Let us note an alternative approximation, which requires the generation of a sequence {i0, i1, . . .} according
to the distribution ξ [cf. Eq. (2.3)], but does not require the sequence of transitions {(i0, j0), (i1, j1), . . .}. In
this approach, at time t, we form the linear equation

t∑
k=0

φ(ik)

φ(ik)−
n∑

j=1

aikjφ(j)

′ r =
t∑

k=0

φ(ik)bik . (2.9)

Clearly, the solution of this system exists for t sufficiently large (with probability 1), and similar to the
preceding analysis, it can be shown to converge to r∗. A potential difficulty with this method is that the
summation over j in Eq. (2.9) may be very time-consuming (proportional to n). On the other hand, if each
row of A has a relatively small number of easily computable nonzero components, the approach based on
solution of Eq. (2.9) may be competitive or superior to the approach based on Eq. (2.5), because it involves
less simulation “noise.”

10
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Note that in cases where a favorable choice of ξ is explicitly known and the formation of the sums∑n
j=1 aikjφ(j) in Eq. (2.9) are not prohibitively expensive, one need not use a Markov chain, but rather just

generate a sequence {i0, i1, . . .} according to the probabilities ξi, and then replace Eq. (2.9) with

n∑
i=1

δ
(
{ik = i for some k ∈ [0, t]}

)
ξiφ(i)

φ(i)−
n∑

j=1

aijφ(j)

′ r =
n∑

i=1

δ
(
{ik = i for some k ∈ [0, t]}

)
ξiφ(i)bi.

(2.10)
The solution of Eq. (2.10) converges with probability 1 to r∗ as t → ∞, and the rate of convergence will
likely be faster than the one of Eq. (2.9). In particular, the terms corresponding to different states in Eq.
(2.10) are weighted with the same weights as in the true projected equation (2.1).

There is also a method that is intermediate between the one based on Eq. (2.9) and the one based on
Eq. (2.5). In this method, we partition the set of indices {1, . . . , n} into “blocks” J1, . . . , JM , i.e.,

{1, . . . , n} = J1 ∪ · · · ∪ JM ,

and we write
n∑

j=1

aijφ(j) =
M∑

m=1

∑
j∈Jm

aijφ(j).

Then, when at state i, instead of sampling the columns j of A with probabilities pij , we sample the blocks
Jm with some probabilities p̃im, and instead of Eq. (2.9) or (2.5), we solve the equation

t∑
k=0

φ(ik)

φ(ik)−
∑

j∈Jmk

aikj

p̃ikmk

φ(j)

′ r =
t∑

k=0

φ(ik)bik ,

where Jmk is the block sampled at state ik.

Variants With Noisy Samples of the Problem Data

In further variants of the preceding iterations, zero mean noise with appropriate independence properties
may be added to aikj and bik . For example, Eq. (2.9) may be replaced by

t∑
k=0

φ(ik)

φ(ik)−
n∑

j=1

(
aikj + ζk(j)

)
φ(j)

′ r =
t∑

k=0

φ(ik)(bik + θk), (2.11)

where for each j, ζk(j) is a sequence of random variables such that, with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i)ζk(j)

t + 1
= 0, ∀ i, j = 1, . . . , n, (2.12)

and θk is a sequence of random variables such that, with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i)θk

t + 1
= 0, ∀ i = 1, . . . , n. (2.13)

This variant can be used in situations where the components aij and bi represent the expected values
of random variables whose samples can be conveniently simulated with additive “noises” ζk(j) and θk,
respectively, such that Eqs. (2.12) and (2.13) hold with probability 1.

11
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There are also other variants where aikjk and bik are expected values, which are replaced in the earlier
formulas by suitable weighted samples. For example, if bi has the form

bi =
n∑

j=1

qijc(i, j),

where c(i, j) are given scalars and qij are transition probabilities, we may replace bik in Eq. (2.5) by

qikjk

pik,jk

c(ik, jk).

An Alternative: Minimizing the Equation Error Norm

Let us finally consider an alternative approach for approximate solution of the equation x = T (x), based on
finding a vector r that minimizes†

‖Φr − T (Φr)‖2ξ ,

or
n∑

i=1

ξi

φ(i)′r −
n∑

j=1

aijφ(j)′r − bi

2

.

In the DP literature, this is known as the Bellman equation error approach. We assume that the matrix
(I−A)Φ has rank s, which guarantees that the vector r∗ that minimizes the weighted sum of squared errors
is unique. A detailed comparison of this approach and the earlier approach based on solving the projected
equation is beyond the scope of the present paper. However, the simulation-based solution methods and the

† Error bounds similar to the ones of Eq. (1.4) and (1.5) can be developed for this approach, assuming that I−A

is invertible and x∗ is the unique solution. In particular, let r̃ minimize ‖Φr − T (Φr)‖2
ξ. Then

x∗ − Φr̃ = x∗ − T (Φr̃) + T (Φr̃)− Φr̃ = Tx∗ − T (Φr̃) + T (Φr̃)− Φr̃ = A(x∗ − Φr̃) + T (Φr̃)− Φr̃,

so that

x∗ − Φr̃ = (I −A)−1
(
T (Φr̃)− Φr̃

)
.

Thus, we obtain

‖x∗ − Φr̃‖ξ ≤
∥∥(I −A)−1

∥∥
ξ
‖Φr̃ − T (Φr̃)‖ξ

≤
∥∥(I −A)−1

∥∥
ξ

∥∥Πx∗ − T (Πx∗)
∥∥

ξ

=
∥∥(I −A)−1

∥∥
ξ

∥∥Πx∗ − x∗ + Tx∗ − T (Πx∗)
∥∥

ξ

=
∥∥(I −A)−1

∥∥
ξ

∥∥(I −A)(Πx∗ − x∗)
∥∥

ξ

≤
∥∥(I −A)−1

∥∥
ξ
‖I −A‖ξ‖x∗ −Πx∗‖ξ,

where the second inequality holds because r̃ minimizes ‖Φr−T (Φr)‖2
ξ. In the case where T is a contraction mapping

with respect to the norm ‖ · ‖ξ, with modulus α ∈ (0, 1), a similar calculation yields

‖x∗ − Φr̃‖ξ ≤
1 + α

1− α
‖x∗ −Πx∗‖ξ.

12



Equation Approximation Methods

analysis of the two approaches are quite similar, so the alternative equation error-based approach is worth
mentioning here.

The optimal solution r∗ satisfies the corresponding necessary optimality condition

n∑
i=1

ξi

φ(i)−
n∑

j=1

aijφ(j)

φ(i)−
n∑

j=1

aijφ(j)

′ r∗ =
n∑

i=1

ξi

φ(i)−
n∑

j=1

aijφ(j)

 bi. (2.14)

A simulation-based approximation to this equation, which requires the formation of row sums as in Eq. (2.9),
is the linear equation

t∑
k=0

φ(ik)−
n∑

j=1

aikjφ(j)

φ(ik)−
n∑

j=1

aikjφ(j)

′ r =
t∑

k=0

φ(ik)−
n∑

j=1

aikjφ(j)

 bik . (2.15)

Similar to our earlier analysis, it can be seen that the solution to this equation approaches r∗, the solution
to Eq. (2.14), as t →∞.

To obtain a simulation-based approximation to Eq. (2.14), without requiring the calculation of row sums
of the form

∑n
j=1 aijφ(j), we introduce an additional sequence of transitions {(i0, j′0), (i1, j′1), . . .}, which is

generated according to the transition probabilities pij of the Markov chain, and is also “independent” of the
sequence {(i0, j0), (i1, j1), . . .} in the sense that with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i, jk = j)∑t

k=0 δ(ik = i)
= lim

t→∞

∑t
k=0 δ(ik = i, j′k = j)∑t

k=0 δ(ik = i)
= pij , i, j = 1, . . . , n, (2.16)

and

lim
t→∞

∑t
k=0 δ(ik = i, jk = j, j′k = j′)∑t

k=0 δ(ik = i)
= pijpij′ , i, j, j′ = 1, . . . , n; (2.17)

(see Fig. 2.2). At time t, we form the linear equation
t∑

k=0

(
φ(ik)−

aikjk

pikjk

φ(jk)
)(

φ(ik)−
aikj′

k

pikj′
k

φ(j′k)

)′
r =

t∑
k=0

(
φ(ik)−

aikjk

pikjk

φ(jk)
)

bik . (2.18)

Similar to our earlier analysis, it can be seen that this is a valid approximation to Eq. (2.14). In what follows,
we will focus on the solution of the equation Φr = ΠT (Φr), but some of the analysis of the next section is
relevant to the simulation-based minimization of ‖Φr − T (Φr)‖2ξ , using Eq. (2.15) or Eq. (2.18).

i0 i1 ik+1ik

j0 j1 jk jk+1

j0 j1 jk jk+1

Figure 2.2. A possible simulation mechanism for minimizing the equation error norm [cf.

Eq. (2.18)]. We generate a sequence of states {i0, i1, . . .} according to the distribution ξ, by

simulating a single infinitely long sample trajectory of the chain. Simultaneously, we generate two

independent sequences of transitions, {(i0, j0), (i1, j1), . . .} and {(i0, j′0), (i1, j′1), . . .}, according to

the transition probabilities pij , so that Eqs. (2.16) and (2.17) are satisfied.
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Let us finally note that the equation error approach can be generalized to yield a simulation-based
method for solving the general linear least squares problem

min
r

n∑
i=1

ξi

ci −
m∑

j=1

qijφ(j)′r

2

,

where qij are the components of an n × m matrix Q, and ci are the components of a vector c ∈ <n. In
particular, one may write the corresponding optimality condition [cf. Eq. (2.14)] and then approximate it by
simulation [cf. Eq. (2.18)].

3. MARKOV CHAIN CONSTRUCTION

The methods of the preceding section leave open the issue of selection of the distribution vector ξ and the
transition probabilities pij . The present section gives some results, which can be used to prove interesting
properties such as contraction of ΠT with associated error bounds. These results are illustrated through
their applications in some interesting classes of problems.

We denote by P the matrix whose components are the transition probabilities pij . Thus, ξ is an
invariant distribution of P if ξ′ = ξ′P . We also denote by |A| the matrix whose components are

|A|ij = |aij |, i, j = 1, . . . , n.

Generally, it seems hard to guarantee that ΠT is a contraction mapping, unless |A| ≤ P . The following
propositions assume this condition, as well as additional conditions that guarantee that ΠT is a contraction,
so that the error bounds of Eqs. (1.5) and (1.6) apply.

Proposition 1: Assume that there are no transient states corresponding to P , that ξ is an invariant
distribution of P , and that one of the following two conditions holds:

(1) For some scalar α ∈ (0, 1), we have |A| ≤ αP .

(2) We have |A| ≤ P , and there exists an index i such that

|aij | < pij , ∀ j = 1, . . . , n.

Then T and ΠT are contraction mappings with respect to the norm ‖ · ‖ξ, and under condition (1),
the modulus of contraction is α.

Proof: Since Π is nonexpansive with respect to ‖ · ‖ξ, it will suffice to show that A is a contraction with
respect to ‖ · ‖ξ.

Assume condition(1). Then for all z ∈ <n with z 6= 0, we have (considering 0/0 to be 0)

‖Az‖2ξ =
n∑

i=1

ξi

 n∑
j=1

aijzj

2

14



Markov Chain Construction

=
n∑

i=1

ξi

 n∑
j=1

pij
aij

pij
zj

2

≤
n∑

i=1

ξi

n∑
j=1

pij

(
aij

pij
zj

)2

≤ α2

n∑
i=1

ξi

n∑
j=1

pijz2
j

= α2

n∑
j=1

n∑
i=1

ξipijz2
j

= α2

n∑
j=1

ξjz2
j

= α2‖z‖2ξ ,

where the first inequality follows from the convexity of the quadratic function, the second inequality follows
from the assumption |A| ≤ αP , and the next to last equality follows from the property

∑n
i=1 ξipij = ξj of

the invariant distribution. Thus, A is a contraction with respect to ‖ · ‖ξ with modulus α.

The proof under condition (2) is similar, by using the preceding calculation with α = 1 and with the
second inequality replaced by a strict inequality. We thus obtain ‖Az‖ξ < ‖z‖ξ for all z 6= 0, and it follows
that A is a contraction with respect to ‖ · ‖ξ, with modulus max‖z‖ξ≤1 ‖Az‖ξ. Q.E.D.

Proposition 1 can be used in the case where

n∑
j=1

|aij | ≤ 1, ∀ i = 1, . . . , n, (3.1)

with strict inequality for at least one index i, as a potential means to construct a transition probability
matrix P for which ΠT is a contraction with respect to ‖ · ‖ξ. In particular, let

P = |A|+ (e− |A|e)q′, (3.2)

where q is a probability distribution vector with positive components, and e is the unit vector that has all
components equal to 1. We note that |A| ≤ P and since q′e = 1, we have

Pe = |A|e + (e− |A|e)q′e = |A|e + (e− |A|e) = e,

so that P is a transition probability matrix. To interpret P as given by Eq. (3.2), consider an additional
artificial restart state 0, and the following transition mechanism: at state i, we either go to state j (probability
|aij |), or we go to an artificial “restart” state (probability 1−

∑n
m=1 |aim|) from which we immediately move

to state j with probability qj , the jth component of q. Note the following generalization of Eq. (3.2), which
uses different restart probabilities at each state i:

P = |A|+ diag(e− |A|e)Q,

where Q is a transition probability matrix, and diag(e− |A|e) is the diagonal matrix with 1−
∑n

m=1 |aim|,
i = 1, . . . , n, on the diagonal, so the row sum deficit of row i is distributed to the columns j according to
fractions qij .
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As mentioned in Section 2, intuition suggests that the structure of P should be close to the structure
of |A|, in the sense that we should aim to choose pij = 0 whenever aij = 0. The reason is that a transition
(i, j) for which aij = 0 does not contribute to improvement of the approximation of Eq. (2.1) by Eq. (2.6).
There is therefore an incentive to use as few positive restart probabilities as possible, consistently with the
requirement that P should have no transient states, in order to minimize the number of pairs (i, j) for which
pij > 0 but aij = 0. The following proposition becomes useful within this context, as it allows the use of
restart probabilities that are not necessarily all positive.

Proposition 2: Assume that P is irreducible, ξ is its invariant distribution, |A| ≤ P , and there
exists an index i such that

n∑
j=1

|aij | < 1.

Then ΠT is a contraction with respect to some norm.

Proof: It will suffice to show that the eigenvalues of ΠA lie strictly within the unit circle.† Let P̄ be the
matrix which is identical to P except for the ith row which is identical to the ith row of |A|. From the
irreducibility of P , it follows that for any i1 6= i it is possible to find a sequence of nonzero components
P̄i1i2 , . . . , P̄ik−1ik , P̄iki that “lead” from i1 to i. Using a well-known result, we have P̄ t → 0. Since |A| ≤ P̄ ,
we also have |A|t → 0, and hence also At → 0 (since |At| ≤ |A|t). Thus, all eigenvalues of A are strictly
within the unit circle. Next, by essentially repeating the proof of Prop. 1, we see that

‖ΠAz‖ξ ≤ ‖z‖ξ, ∀ z ∈ <n,

so the eigenvalues of ΠA cannot lie outside the unit circle.

Assume to arrive at a contradiction that ν is an eigenvalue of ΠA with |ν| = 1, and let ζ be a
corresponding eigenvector. We claim that Aζ must have both real and imaginary components in the subspace
S. If this were not so, we would have Aζ 6= ΠAζ, so that

‖Aζ‖ξ > ‖ΠAζ‖ξ = ‖νζ‖ξ = |ν| ‖ζ‖ξ = ‖ζ‖ξ,

which contradicts the fact ‖Az‖ξ ≤ ‖z‖ξ for all z, shown earlier. Thus, the real and imaginary components
of Aζ are in S, which implies that Aζ = ΠAζ = νζ, so that ν is an eigenvalue of A. This is a contradiction
because |ν| = 1, while the eigenvalues of A are strictly within the unit circle. Q.E.D.

† We use here the fact that if a square matrix has eigenvalues strictly within the unit circle, then there exists a

norm with respect to which the linear mapping defined by the matrix is a contraction. Also in the following argument,

the projection Πz of a complex vector z is obtained by separately projecting the real and the imaginary components

of z on S. The projection norm for a complex vector x + iy is defined by

‖x + iy‖ξ =
√
‖x‖2

ξ + ‖y‖2
ξ.
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Note that under the assumptions of Prop. 2, T and ΠT need not be contractions with respect to the
norm ‖ · ‖ξ. For a counterexample, take ai,i+1 = 1 for i = 1, . . . , n − 1, and an,1 = 1/2, with every other
entry of A equal to 0. Take also pi,i+1 = 1 for i = 1, . . . , n − 1, and pn,1 = 1, with every other entry of P

equal to 0, so ξi = 1/n for all i. Then for z = (0, 1, . . . , 1)′ we have Az = (1, . . . , 1, 0)′ and ‖Az‖ξ = ‖z‖ξ, so
A is not a contraction with respect to ‖ · ‖ξ. Taking S to be the entire space <n, we see that the same is
true for ΠA.

The next proposition uses different assumptions than Props. 1 and 2, and applies to cases where there
is no special index i such that

∑n
j=1 |aij | < 1. In fact A may itself be a transition probability matrix, so

that I − A need not be invertible, and the original system may have multiple solutions; see the subsequent
Example 3. The proposition suggests the use of a damped version of the T mapping in various methods, and
is closely connected to a result on approximate DP methods for average cost problems ([YuB06], Prop. 3).

Proposition 3: Assume that there are no transient states corresponding to P , that ξ is an invariant
distribution of P , and that |A| ≤ P . Assume further that I − ΠA is invertible. Then the mapping
ΠTγ , where

Tγ = (1− γ)I + γT,

is a contraction with respect to ‖ · ‖ξ for all γ ∈ (0, 1).

Proof: A slight modification of the argument of the proof of Prop. 1 shows that the condition |A| ≤ P ,
implies that A is nonexpansive with respect to the norm ‖ · ‖ξ. Furthermore, since I −ΠA is invertible, we
have z 6= ΠAz for all z 6= 0. Hence for all γ ∈ (0, 1),

‖(1− γ)z + γΠAz‖ξ < (1− γ)‖z‖ξ + γ‖ΠAz‖ξ ≤ (1− γ)‖z‖ξ + γ‖z‖ξ = ‖z‖ξ, ∀ z ∈ <n, (3.3)

where the strict inequality follows from the strict convexity of the norm, and the weak inequality follows
from the nonexpansiveness of ΠA. If we define

ργ = sup
{
‖(1− γ)z + γΠAz‖ξ | ‖z‖ ≤ 1

}
,

and note that the supremum above is attained by Weierstrass’ Theorem, we see that Eq. (3.3) yields ργ < 1
and

‖(1− γ)z + γΠAz‖ξ ≤ ργ‖z‖ξ, ∀ z ∈ <n.

From the definition of Tγ , we have for all x, y ∈ <n,

ΠTγx−ΠTγy = ΠTγ(x− y) = (1− γ)Π(x− y) + γΠA(x− y) = (1− γ)Π(x− y) + γΠ
(
ΠA(x− y)

)
,

so defining z = x− y, and using the preceding two relations and the nonexpansiveness of Π, we obtain

‖ΠTγx−ΠTγy‖ξ = ‖(1− γ)Πz + γΠ(ΠAz)‖ξ ≤ ‖(1− γ)z + γΠAz‖ξ ≤ ργ‖z‖ξ = ργ‖x− y‖ξ,

for all x, y ∈ <n. Q.E.D.

Note that the mappings ΠTγ and ΠT have the same fixed points, so under the assumptions of Prop. 3,
there is a unique fixed point Φr∗ of ΠT . However, if T has a nonempty linear manifold of fixed points, there
arises the question of how close Φr∗ is to this manifold. It may be possible to address this issue in specialized
contexts; in particular, it has been addressed in [TsV99a] in the context of average cost DP problems (cf.
the subsequent Example 3).

We now discuss examples of choices of ξ and P in some interesting special cases.
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Example 1: (Discounted DP)

As mentioned in Section 1, Bellman’s equation for the cost vector of a stationary policy in an n-state discounted

Markovian decision problem has the form

x = αPx + g,

where g is the vector of single-stage costs associated with the n states, P is the transition probability matrix of

the associated Markov chain, and α ∈ (0, 1) is the discount factor. If P is an irreducible Markov chain, and ξ

is chosen to be its unique invariant distribution, the equation approximation method based on Eq. (2.5) yields

a popular policy evaluation method known as LSTD(0) (see the references given in Section 1). It generates a

single infinitely long trajectory {i0, i1, . . .} of the Markov chain, and at time t, it solves the equation

t∑
k=0

φ(ik)
(
φ(ik)− αφ(ik+1)

)′
r =

t∑
k=0

φ(ik)gik
. (3.4)

The solution rt converges to r∗ with probability 1. Furthermore, since condition (1) of Prop. 1 is satisfied, it

follows that ΠT is a contraction with respect to ‖ · ‖ξ, the error bound (1.6) holds, and the Jacobi/fixed point

method (1.7) applies. These results are well-known in the approximate DP literature (see the references given

in Section 1).

Example 2: (Stochastic Shortest Path Problems)

Consider the equation x = Ax + b, for the case where A is a substochastic matrix (aij ≥ 0 for all i, j and∑n

j=1
aij ≤ 1 for all i). This is Bellman’s equation for the cost vector of a stationary policy of a DP problem of

the stochastic shortest path type, involving a Markov chain with states 1, . . . , n, plus an additional absorbing

state denoted 0 (see e.g., [Ber07]). Here aij is the transition probability from state i 6= 0 to state j 6= 0,

and 1 −
∑n

j=1
aij is the transition probability from state i 6= 0 to the absorbing state 0. If the stationary

policy is proper in the sense that from any state i 6= 0 there exists a path of positive probability transitions

from i to the absorbing state 0, the matrix P = |A| + (e − |A|e)q′ [cf. Eq. (3.2)] is irreducible, provided q has

positive components. As a result, the conditions of Prop. 1 under condition (2) are satisfied, and T and ΠT are

contractions with respect to ‖ · ‖ξ. It is also possible to use a restart probability vector q whose components

are not all positive, as long as P is irreducible, in which case Prop. 2 applies.

Example 3: (Average Cost DP Problems)

Consider the equation

x = Px + b,

where P is an irreducible transition probability matrix, with invariant distribution ξ. This is related to Bellman’s

equation for the differential cost vector of a stationary policy of an average cost DP problem involving a Markov

chain with transition probability matrix P . Then, if the unit vector e is not contained in the subspace S spanned

by the basis functions, it can be shown that the matrix I−ΠP is invertible (see Tsitsiklis and Van Roy [TsV99a],

who also give a related error bound). As a result, Prop. 3 applies and shows that the mapping (1− γ)I + γP,

is a contraction with respect to ‖ · ‖ξ for all γ ∈ (0, 1). The corresponding equation approximation approach

and approximate Jacobi method are discussed in [YuB06].
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Example 4: (Weakly Diagonally Dominant Systems)

Consider the solution of the system

Cx = d,

where d ∈ <n and C is an n× n matrix that is weakly diagonally dominant, i.e., its components satisfy

cii 6= 0,
∑
j 6=i

|cij | ≤ |cii|, i = 1, . . . , n. (3.5)

By dividing the ith row by cii, we obtain the equivalent system x = Ax + b, where the components of A and b

are

aij =

{
0 if i = j,

− cij
cii

if i 6= j,
bi =

di

cii
, i = 1, . . . , n.

Then, from Eq. (3.5), we have

n∑
j=1

|aij | =
∑
j 6=i

|cij |
|cii|

≤ 1, i = 1, . . . , n,

so Props. 1-3 may be used under the appropriate conditions. In particular, if the matrix P given by Eq. (3.2)

has no transient states and there exists an index i such that
∑n

j=1
|aij | < 1, Prop. 1 applies and shows that

ΠT is a contraction with respect to ‖ · ‖ξ.

Alternatively, instead of Eq. (3.5), assume the somewhat more restrictive condition

|1− cii|+
∑
j 6=i

|cij | ≤ 1, i = 1, . . . , n, (3.6)

and consider the equivalent system x = Ax + b, where

A = I − C, b = d.

Then, from Eq. (3.6), we have

n∑
j=1

|aij | = |1− cii|+
∑
j 6=i

|cij | ≤ 1, i = 1, . . . , n,

so again Prop. 1-3 apply under appropriate conditions.

Example 5: (Discretized Poisson’s Equation)

Diagonally dominant linear systems arise in many contexts, including discretized partial differential equations,

finite element methods, and economics applications. As an example, consider a discretized version of Poisson’s

equation over a two-dimensional square grid of N2 points with fixed boundary conditions, which has the form

xi,j =
1

4
(xi+1,j + xi−1,j + xi,j+1 + xi,j−1) + gi,j , i, j = 1, . . . , N,

where gi,j are given scalars, and by convention xN+1,j = x0,j = xi,N+1 = xi,0 = 0. A subset of the points

(i, j) in the square grid are “boundary points,” where xi,j is fixed and given. The problem is to compute the

values xi,j at the remaining points, which are referred to as “interior points.” Thus, we have one equation

for each interior grid point. Clearly, this is a special case of Examples 2 and 4, with the row components of

A corresponding to (i, j) being 1/4 for each neighboring interior point of (i, j), and 0 otherwise. If from any

19



Approximate Jacobi Methods

interior point it is possible to arrive to some boundary point through a path of adjacent interior points, then

clearly based on the graph-geometric structure of the problem, one can construct an irreducible P satisfying

|A| ≤ P .

We finally address a question that was left largely unresolved by the preceding analysis and examples.
Given a matrix A with

∑n
j=1 |aij | ≤ 1 for all i, is it possible to find P such that |A| ≤ P and the corresponding

Markov chain has no transient states, or even more, is irreducible? Clearly, there are cases where every P

with |A| ≤ P is irreducible (e.g., when |A| is itself irreducible), and there are cases where there is no such P

(e.g., when |A| is the transition probability matrix of a chain with some transient states). To analyze this
issue, consider the set

I =

i

∣∣∣∣∣
n∑

j=1

|aij | < 1

 ,

and assume that I is nonempty (otherwise we must have P = |A|). Let Ĩ be the set of i such that there
exists a sequence of nonzero components aij1 , aj1j2 , . . . , ajmi such that i ∈ I, and let Î = {i | i /∈ I ∪ Ĩ} (we
allow here the possibility that Ĩ or Î may be empty). Note that the square submatrix of |A| corresponding
to Î is a transition probability matrix, and that we have aij = 0 for all i ∈ Î and j /∈ Î.

We can now choose P = |A|+ (e− |A|e)q′ with qj > 0 if and only if j ∈ Ī ∪ Ĩ [cf. Eq. (3.2)] to create a
positive transition probability from every i ∈ Ī to every j ∈ Ī ∪ Ĩ. In this way, the submatrix corresponding
to Ī∪ Ĩ will be an irreducible transition probability matrix, while any states that are transient in the Markov
chain corresponding to Î will remain transient after the modification. It can thus be seen that there exists
P with |A| ≤ P and no transient states if and only if the Markov chain corresponding to Î has no transient
states. Furthermore, there exists an irreducible P with |A| ≤ P if and only if Î is empty . Note that the
preceding construction of P requires explicit knowledge of Î, which may be unavailable. Furthermore, when
Î is nonempty, such a P will have multiple recurrent classes, even if it can be found. In this case, multiple
simulation trajectories are necessary, with at least one starting within each recurrent class, as discussed in
Section 2. This underscores the importance of being able to use an irreducible P .

4. APPROXIMATE JACOBI METHODS

We will now focus on the iteration

Φrt+1 = ΠT (Φrt), t = 0, 1, . . . , (4.1)

[cf. Eq. (1.7)], which we refer to as projected Jacobi method (PJ for short). We assume throughout this
section that ΠT is a contraction with respect to some norm, and note that Props. 1-3 provide tools for
verifying that this is so. Our simulation-based approximation to the PJ iteration descends from the LSPE
methods of approximate DP, referred to in Section 1.

By expressing the projection as a least squares minimization, we can write the PJ iteration (4.1) as

rt+1 = arg min
r∈<s

∥∥Φr − T (Φrt)
∥∥2

ξ
,

or equivalently

rt+1 = arg min
r∈<s

n∑
i=1

ξi

φ(i)′r −
n∑

j=1

aijφ(j)′rt − bi

2

. (4.2)
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By setting the gradient of the cost function above to 0 and using a straightforward calculation, we have

rt+1 =

(
n∑

i=1

ξi φ(i)φ(i)′
)−1 n∑

i=1

ξi φ(i)

 n∑
j=1

aijφ(j)′rt + bi

 . (4.3)

Similar to the equation approximation methods of Section 2, we observe that this iteration involves two
expected values with respect to the distribution ξ, and we approximate these expected values by sample
averages. Thus, we approximate iteration (4.3) with

rt+1 =

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
(

aikjk

pikjk

φ(jk)′rt + bik

)
, (4.4)

which we refer to as the approximate projected Jacobi method (APJ for short). Here again {i0, i1, . . .}
is a state sequence, and {(i0, j0), (i1, j1), . . .} is a transition sequence satisfying Eqs. (2.3) and (2.4) with
probability 1

As in Section 2, we connect the PJ iteration (4.3) with the APJ iteration (4.4) by viewing

φ(ik)φ(ik)′ as a sample whose steady-state expected value is the matrix
n∑

i=1

ξiφ(i)φ(i)′,

aikjk

pikjk

φ(ik)φ(jk)′ as a sample whose steady-state expected value is the matrix
n∑

i=1

ξiφ(i)
n∑

j=1

aijφ(j)′,

φ(ik)bik as a sample whose steady-state expected value is the vector
n∑

i=1

ξiφ(i)bi.

In particular, we write Eq. (4.4) as

rt+1 =

(
n∑

i=1

ξ̂i,t φ(i)φ(i)′
)−1 n∑

i=1

ξ̂i,t φ(i)

 n∑
j=1

p̂ij,t
aij

pij
φ(j)′rt + bi

 , (4.5)

where ξ̂i,t and p̂ij,t are defined by

ξ̂i,t =
∑t

k=0 δ(ik = i)
t + 1

, p̂ij,t =
∑t

k=0 δ(ik = i, jk = j)∑t
k=0 δ(ik = i)

.

We then note that by Eqs. (2.3) and (2.4), ξ̂i,t and p̂ij,t converge (with probability 1) to ξi and pij , respectively,
so by comparing Eqs. (4.3) and (4.5), we see that they asymptotically coincide. Since Eq. (4.3) is a contracting
fixed point iteration that converges to r∗, it follows with a simple argument that the same is true for iteration
(4.5) (with probability 1).

To streamline and efficiently implement the APJ iteration (4.4), we introduce the matrices

Bt =
t∑

k=0

φ(ik)φ(ik)′, Ct =
t∑

k=0

φ(ik)
(

aikjk

pikjk

φ(jk)− φ(ik)
)′

,

and the vector

dt =
t∑

k=0

φ(ik)bik .
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We then write Eq. (4.4) compactly as

rt+1 = rt + B−1
t (Ctrt + dt), (4.6)

and also note that Bt, Ct, and dt can be efficiently updated using the formulas

Bt = Bt−1 + φ(it)φ(it)′, Ct = Ct−1 + φ(it)
(

aitjt

pitjt

φ(jt)− φ(it)
)′

, (4.7)

dt = dt−1 + φ(it)bit . (4.8)

Let us also observe that Eq. (2.5), the first equation approximation method of Section 2, can be written
compactly as

Ctr + dt = 0. (4.9)

We can use this formula to establish a connection between the equation approximation and APJ approaches.
In particular, suppose that we truncate the state and transition sequences after t transitions, but continue
the APJ iteration with Bt, Ct, and dt held fixed, i.e., consider the iteration

rm+1 = rm + B−1
t (Ctrm + dt), m = t, t + 1, . . . . (4.10)

Then, since APJ approximates PJ and ΠT is assumed to be a contraction, it follows that with probability
1, for sufficiently large t, the matrix I + B−1

t Ct will be a contraction and iteration (4.10) will converge, by
necessity to the solution r̂t of Eq. (4.9). The conclusion is that, for large t, the APJ iteration (4.6) can be
viewed as a single/first iteration of the algorithm (4.10) that solves the approximate projected equation (4.9).

Another issue of interest is the rate of convergence of the difference rt − r̂t of the results of the two
approaches. An interesting result within the appropriate DP context is that under some natural assumptions,
rt − r̂t converges to 0 faster than the error differences rt − r∗ and r̂t − r∗ (see [BBN04], [YuB06]). Within
the more general context of the present paper, a similar analysis is possible, but is outside the scope of the
present paper and will be reported elsewhere.

We finally note a variant of the APJ iteration (4.4) that does not require simulated transitions, similar
to iteration (2.9). This variant has the form [cf. Eq. (4.4)]

rt+1 =

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)

 n∑
j=1

aikjφ(j)′rt + bik

 ,

and may be suitable for sparse problems where only few components of each row of A are nonzero.

5. MULTISTEP VERSIONS

An interesting possibility within our context is to replace T with another mapping that has the same fixed
points, such as T l with l > 1, or T (λ) given by

T (λ) = (1− λ)
∞∑

l=0

λlT l+1,

where λ ∈ (0, 1). In connection with T (λ), we assume throughout this section that the eigenvalues of λA lie
strictly within the unit circle, so that the preceding infinite series is convergent. The replacement of T by
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something like T l or T (λ) is seldom considered in traditional fixed point methods, because either the gain in
rate of convergence is offset by increased overhead per iteration, or the implementation becomes cumbersome,
or both. However, in the context of our simulation-based methods, this replacement is possible, and in fact
has a long history in DP approximation methods, as mentioned in Section 1.

As motivation, note that if T is a contraction, the modulus of contraction may be enhanced through the
use of T l or T (λ). In particular, if α ∈ [0, 1) is the modulus of contraction of T , the modulus of contraction
of T l is αl, while the modulus of contraction of T (λ) is

α(λ) = (1− λ)
∞∑

k=0

λlαl+1 =
α(1− λ)
1− αλ

.

Furthermore, for all λ ∈ (0, 1), αl < α and α(λ) < α. Thus the error bounds (1.6) or (1.5) are enhanced.
Moreover, there are circumstances where T (λ) is a contraction, while T is not, as we will demonstrate shortly
(see the following Prop. 4).

To gain some understanding into the properties of T (λ), let us write it as

T (λ)(x) = A(λ)x + b(λ),

where from the equations T l+1(x) = Al+1x +
∑l

m=0 Amb and T (λ) = (1− λ)
∑∞

l=0 λlT l+1, we have

A(λ) = (1− λ)
∞∑

l=0

λlAl+1, b(λ) = (1− λ)
∞∑

l=0

λl

l∑
m=0

Amb = (1− λ)
∞∑

l=0

Alb
∞∑

m=l

λm =
∞∑

l=0

λlAlb. (5.1)

The following proposition provides some interesting properties of A(λ), which in turn determine contraction
and other properties of T (λ). We denote by a

(λ)
ij the components of A(λ), and by σ(A) and σ

(
A(λ)

)
the

spectral radius of A and A(λ), respectively. Note that σ(M) ≤ ‖M‖, where for any n × n matrix M and
norm ‖ · ‖ of <n, we denote by ‖M‖ the corresponding matrix norm of M : ‖M‖ = max‖z‖≤1 ‖Mz‖. Note
also that for a transition probability matrix P , having as an invariant distribution a vector ξ with positive
components, we have σ(P ) = ‖P‖ξ = 1. This is well-known, and can be shown with a simple modification
of the proof of Prop. 1.

Proposition 4: Assume that I −A is invertible and σ(A) ≤ 1.

(a) For λ ∈ (0, 1), σ(A(λ)) decreases monotonically as λ increases, and we have σ(A(λ)) < 1 and
limλ→1 σ

(
A(λ)

)
= 0.

(b) Assume further that |A| ≤ P , where P is a transition probability matrix with invariant distri-
bution a vector ξ with positive components. Then,

|A(λ)| ≤ P (λ), ‖A(λ)‖ξ ≤ ‖P (λ)‖ξ = 1, ∀ λ ∈ [0, 1),

where P (λ) = (1 − λ)
∑∞

l=0 λlP l+1. Furthermore, for all λ ∈ (0, 1) the eigenvalues of ΠA(λ) lie
strictly within the unit circle, where Π denotes projection on S with respect to ‖ · ‖ξ.
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Proof: (a) From Eq. (5.1), we see that the eigenvalues of A(λ) have the form

(1− λ)
∞∑

l=0

λlβl+1 =
β(1− λ)
1− βλ

,

where β is an eigenvalue of A. To show that σ(A(λ)) < 1 we must show that |β|(1 − λ) < |1 − βλ|, for all
complex numbers β with |β| ≤ 1 but β 6= 1. This can be proved with a triangle geometry argument on
the two-dimensional circle; see Fig. 5.1 (an algebraic proof is also quite straightforward). The monotonic
decrease of σ(A(λ)) and the fact limλ→1 σ

(
A(λ)

)
= 0 are also evident from the figure.

(b) To see that |A(λ)| ≤ P (λ), note that for all l > 1, the components of |A|l are no greater than the
corresponding components of P l, since they can be written as products of corresponding components of |A|
and P , and by assumption, we have |aij | ≤ pij for all i, j = 1, . . . , n. We have ‖P (λ)‖ξ = 1 because P (λ) is
a transition probability matrix and ξ is an invariant distribution of P (λ). The inequality ‖A(λ)‖ξ ≤ ‖P (λ)‖ξ

follows by a simple modification of the proof of Prop. 1.

Since ‖A(λ)‖ξ ≤ ‖P (λ)‖ξ = 1 and Π is nonexpansive with respect to ‖ ·‖ξ, it follows that ‖ΠA(λ)‖ξ ≤ 1,
so all eigenvalues of ΠA(λ) lie within the unit circle. Furthermore, by Lemma 1 of [YuB06], all eigenvalues
ν of ΠA(λ) with |ν| = 1 must also be eigenvalues of A(λ). Since by part (a) we have σ(A(λ)) < 1 for λ > 0,
there are no such eigenvalues. Q.E.D.

(1−λ)|β|

λβ

1
CB

A

O
λ|β|

|1−λβ|

Figure 5.1. Proof of the inequality (1 − λ)|β| < |1 − βλ|. We consider the complex plane, an

eigenvalue β of A, and the complex number λβ. We note that |β| ≤ 1, β 6= 1, and λ|β| < 1 by

assumption. If β = 0, the desired inequality holds, and if β is in the left-hand side of the plane or

the vertical axis, we have

(1− λ)|β| < 1 ≤ |1− βλ|,

so it is sufficient to consider the case where β 6= 0 and the real part of β is nonnegative, as shown

in the figure. We consider the isoskeles triangle OAB, and note that the angles bordering the side

AB are less than 90 degrees. It follows that the angle ABC is greater than 90 degrees, so the side

AC of the triangle ABC is strictly larger than the side BC. This is equivalent to the desired result.

Note from Prop. 4(a) that T (λ) is a contraction for λ > 0 even if T is not, provided that I − A is
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invertible and σ(A) ≤ 1. This is not true for T l, l > 1, since the eigenvalues of Al are βl where β is an
eigenvalue of A, so that σ(Al) = 1 if σ(A) = 1.† Furthermore, under the assumptions of Prop. 4(b), ΠT (λ)

is a contraction for λ > 0. This suggests an advantage for using λ > 0, and the fact limλ→1 σ
(
A(λ)

)
= 0 also

suggests an advantage for using λ close to 1. However, as we will discuss later, there is also a disadvantage
in our simulation-based methods for using λ close to 1, because of increased simulation noise.

We will now develop the formulas for various multistep methods. The detailed verification of these
formulas is somewhat tedious, and will only be sketched. The key idea is that the ith component (Amg)(i)
of a vector of the form Amg, where g ∈ <n, can be computed by generating a sequence of states {i0, i1, . . .}
of a Markov chain with invariant distribution ξ and transition probabilities pij , and by forming the average
of wk,mgik+m over all indices k such that ik = i, where

wk,m =
{ aikik+1

pikik+1

aik+1ik+2
pik+1ik+2

· · ·
aik+m−1ik+m
pik+m−1ik+m

if m ≥ 1,

1 if m = 0.
(5.2)

In short

(Amg)(i) ≈
∑t

k=0 δ(ik = i)wk,mgik+m∑t
k=0 δ(ik = i)

. (5.3)

The justification is that, assuming

lim
t→∞

∑t
k=0 δ(ik = i, ik+1 = j1, . . . , ik+m = jm)∑t

k=0 δ(ik = i)
= pij1pj1j2 · · · pjm−1jm , (5.4)

the limit of the right-hand side of Eq. (5.3) can be written as

lim
t→∞

∑t

k=0
δ(ik = i)wk,mgik+m∑t

k=0
δ(ik = i)

= lim
t→∞

∑t

k=0

∑n

j1=1
· · ·
∑n

jm=1
δ(ik = i, ik+1 = j1, . . . , ik+m = jm)wk,mgik+m∑t

k=0
δ(ik = i)

=

n∑
j1=1

· · ·
n∑

jm=1

lim
t→∞

∑t

k=0
δ(ik = i, ik+1 = j1, . . . , ik+m = jm)∑t

k=0
δ(ik = i)

wk,mgik+m

=

n∑
j1=1

· · ·
n∑

jm=1

aij1aj1j2 · · · ajm−1jmgjm

= (Amg)(i),

where the third equality follows using Eqs. (5.2) and (5.4). By using the approximation formula (5.3), it is
possible to construct complex simulation-based approximations to formulas that involve powers of A. The
subsequent multistep methods in this section and the basis construction methods of Section 6 rely on this
idea.

l-Step Methods

Let us now develop simulation methods based on the equation Φr = ΠT l(Φr), corresponding to T l with
l > 1. Consider the projected Jacobi iteration

Φrt+1 = ΠT l(Φrt) = Π

(
AlΦrt +

l−1∑
m=0

Amb

)
.

† What is happening here is that individual powers of eigenvalues of A may lie on the unit circle, but taking a

mixture/linear combination of many different powers of an eigenvalue β of A to form the corresponding eigenvalue

(1− λ)
∑∞

l=0
λlβl+1 of A(λ), results in a complex number that lies in the interior of the unit circle.
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Equivalently,

rt+1 = arg min
r

n∑
i=1

ξi

(
φ(i)′r −

(
T l(Φrt)

)
(i)
)2

= arg min
r

n∑
i=1

ξi

(
φ(i)′r − (AlΦ)(i)rt −

(
l−1∑
m=0

Amb

)
(i)

)2

,

where (AlΦ)(i) is the ith row of the matrix AlΦ, and
(
T l(Φrt)

)
(i) and

(∑l−1
m=0 Amb

)
(i) are the ith com-

ponents of the vectors T l(Φrt) and
∑l−1

m=0 Amb, respectively. By solving for the minimum over r, we finally
obtain

rt+1 =

(
n∑

i=1

ξi φ(i)φ(i)′
)−1 n∑

i=1

ξi φ(i)

(
(AlΦ)(i)rt +

(
l−1∑
m=0

Amb

)
(i)

)
. (5.5)

We propose the following approximation to this iteration:

rt+1 =

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)

(
wk,lφ(ik+l)′rt +

l−1∑
m=0

wk,mbik+m

)
(5.6)

where wk,m is given by Eq. (5.2). Its validity is based on Eq. (5.3), and on the fact that each index i is sampled
with probability ξi, and each transition (i, j) is generated with probability pij , as part of the infinitely long
sequence of states {i0, i1, . . .} of a Markov chain whose invariant distribution is ξ and transition probabilities
are pij . In particular, similar to Section 4, we view

φ(ik)φ(ik)′ as a sample whose steady-state expected value is the matrix
n∑

i=1

ξiφ(i)φ(i)′,

wk,lφ(ik)φ(ik+l)′ as a sample whose steady-state expected value is the matrix
n∑

i=1

ξiφ(i)(AlΦ)(i),

wk,mφ(ik)bik+m as a sample whose steady-state expected value is the vector
n∑

i=1

ξiφ(i)(Amb)(i).

As in Section 4, we can express the l-step APJ iteration (5.6) in compact form. In particular, we can
write Eq. (5.6) as

rt+1 = rt + B−1
t (Ctrt + ht), (5.7)

where

Ct =
t∑

k=0

φ(ik)
(
wk,lφ(ik+l)− φ(ik)

)′
, Bt =

t∑
k=0

φ(ik)φ(ik)′,

ht =
t∑

k=0

φ(ik)
l−1∑
m=0

wk,mbik+m .

Note that to calculate Ct and ht, it is necessary to generate the future l states it+1, . . . , it+l. Note also that
Ct, Bt, and ht can be efficiently updated via

Ct = Ct−1 + φ(tt)
(
wt,lφ(it+l)− φ(it)

)′
, Bt = Bt−1 + φ(it)φ(it)′,

ht = ht−1 + φ(it)zt,
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where zt is given by

zt =
l−1∑
m=0

wt,mbit+m ,

and can be updated by

zt =
zt−1 − bit−1

wt−1,1
+ wt,l−1bit+l−1 .

We can also write the l-step APJ iteration (5.6) in an alternative form by using the scalars

dt(ik+m) = bik+m +
aik+mik+m+1

pik+mik+m+1

φ(ik+m+1)′rt − φ(ik+m)′rt, t ≥ 0, m ≥ 0, (5.8)

which we call temporal differences, their recognized name within the specialized context of approximate DP
(see the references given in Section 1). In particular, we can rewrite the last parenthesized expression in
iteration (5.6) in terms of temporal differences, and obtain

rt+1 =

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)

(
φ(ik)′rt +

l−1∑
m=0

wk,mdt(ik+m)

)
,

or

rt+1 = rt +

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
l−1∑
m=0

wk,mdt(ik+m). (5.9)

To see this, note that the sum over m in Eq. (5.6) can be expressed, using the definition (5.8), as

l−1∑
m=0

wk,m

(
bik+m +

aik+mik+m+1

pik+mik+m+1

φ(ik+m+1)′rt − φ(ik+m)′rt

)
,

which by canceling and collecting terms, using the definition (5.2) of wk,m, reduces to

wk,lφ(ik+l)′rt − φ(ik)′rt +
l−1∑
m=0

wk,mbik+m .

Substituting this expression in Eq. (5.9), we obtain Eq. (5.6). Using the temporal differences formula (5.9)
does not seem to result in any advantage over using the formula (5.6). In approximate DP, algorithms are
usually stated in terms of temporal differences.

An important observation is that compared to the case l = 1 [cf. Eqs. (4.4) and (2.1)], the term wk,l

multiplying φ(ik+l)′ and the terms wk,m multiplying bik+m in Eq. (5.6) tend to increase the variance of the
samples used in the approximations as l increases. This is a generic tradeoff in the multistep methods of this
section: by using equations involving greater dependence on more distant steps (larger values of l or λ) we
improve the modulus of contraction, but we degrade the quality of the simulation through greater variance
of the associated samples.

The preceding analysis also yields an equation approximation method corresponding to the APJ iter-
ation (5.7). It has the form

Ctr + ht = 0,

and we have r̂t → r∗ with probability 1, where r̂t is a solution to this equation.
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λ-Methods

We will now develop simulation methods based on the equation Φr = ΠT (λ)(Φr) for λ ∈ (0, 1). We will
express these methods using convenient recursive formulas that use temporal differences (this is standard
in approximate DP). However, we note that there are several alternative recursive formulas, of nearly equal
effectiveness, which do not involve temporal differences. We first express T (λ) in terms of temporal difference-
like terms:†

T (λ)(x) = x +
∞∑

m=0

λm(Amb + Am+1x−Amx).

Using the above expression, we write the projected Jacobi iteration as

Φrt+1 = ΠT (λ)(Φrt) = Π

(
Φrt +

∞∑
m=0

λm(Amb + Am+1Φrt −AmΦrt)

)
,

or equivalently

rt+1 = arg min
r

n∑
i=1

ξi

(
φ(i)′r − φ(i)′rt −

∞∑
m=0

λm
(
(Amb)(i) + (Am+1Φ)(i)rt − (AmΦ)(i)rt

))2

,

where (AkΦ)(i) denotes the ith row of the matrix AkΦ, and (Alb)(i) denotes the ith component of the vector
Alb, respectively. By solving for the minimum over r, we can write this iteration as

rt+1 = rt +

(
n∑

i=1

ξi φ(i)φ(i)′
)−1 n∑

i=1

ξi φ(i)

( ∞∑
m=0

λm
(
(Amb)(i) + (Am+1Φ)(i)rt − (AmΦ)(i)rt

))
. (5.10)

We approximate this iteration by

rt+1 = rt +

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
t∑

m=k

λm−kwk,m−kdt(im), (5.11)

where dt(im) are the temporal differences

dt(im) = bim +
aimim+1

pimim+1

φ(im+1)′rt − φ(im)′rt, t ≥ 0, m ≥ 0. (5.12)

† This can be seen from the following calculation [cf. Eq. (5.1)]:

T (λ)(x) =

∞∑
l=0

(1− λ)λl(Al+1x + Alb + Al−1b + · · ·+ b)

= x + (1− λ)

∞∑
l=0

λl

l∑
m=0

(Amb + Am+1x−Amx)

= x + (1− λ)

∞∑
m=0

(
∞∑

l=m

λl

)
(Amb + Am+1x−Amx)

= x +

∞∑
m=0

λm(Amb + Am+1x−Amx).
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Similar to earlier cases, the basis for this is to replace the two expected values in the right-hand side of Eq.
(5.10) with averages of samples corresponding to the states ik, k = 0, 1, . . .. In particular, we view

φ(ik)φ(ik)′ as a sample whose steady-state expected value is
n∑

i=1

ξiφ(i)φ(i)′,

φ(ik)
t∑

m=k

λm−kwk,m−kdt(im) as a sample whose steady-state expected value is approximately

n∑
i=1

ξi φ(i)
∞∑

m=0

λm
(
(Amb)(i) + (Am+1Φ)(i)rt − (AmΦ)(i)rt

)
.

Note that the summation of the second sample above is truncated at time t, but is a good approximation
when k is much smaller than t and also when λ is small. Proofs that rt → r∗ with probability 1 have been
given for special cases arising in approximate DP (see [NeB03], [BBN04], and [YuB06]), but they are beyond
the scope of the present paper.

By using the temporal difference formula (5.12), we can write iteration (5.11) in compact form as

rt+1 = rt + B−1
t (Ctrt + ht) , (5.13)

where

Bt =
t∑

k=0

φ(ik)φ(ik)′, (5.14)

Ct =
t∑

k=0

φ(ik)
t∑

m=k

λm−kwk,m−k

(
aimim+1

pimim+1

φ(im+1)− φ(im)
)′

, (5.15)

ht =
t∑

k=0

φ(ik)
t∑

m=k

λm−kwk,m−kbim . (5.16)

We now introduce the auxiliary vector

zk =
k∑

m=0

λk−mwm,k−mφ(im), (5.17)

and we will show that Ct and ht can be written as

Ct =
t∑

k=0

zk

(
aikik+1

pikik+1

φ(ik+1)− φ(ik)
)′

, (5.18)

ht =
t∑

k=0

zkbik . (5.19)

Thus, the quantities Bt, Ct, ht, and zt can be efficiently updated with the recursive formulas:

Bt = Bt−1 + φ(it)φ(it)′, Ct = Ct−1 + zt

(
aitit+1

pitit+1

φ(it+1)− φ(it)
)′

,

ht = ht−1 + ztbit , zt = λ
ait−1it

pit−1it

zt−1 + φ(it).
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Indeed, we write Eq. (5.15) as

Ct =
t∑

k=0

t∑
m=k

λm−kwk,m−kφ(ik)
(

aimim+1

pimim+1

φ(im+1)− φ(im)
)′

=
t∑

m=0

m∑
k=0

λm−kwk,m−kφ(ik)
(

aimim+1

pimim+1

φ(im+1)− φ(im)
)′

=
t∑

k=0

k∑
m=0

λk−mwm,k−mφ(im)
(

aikik+1

pikik+1

φ(ik+1)− φ(ik)
)′

=
t∑

k=0

zk

(
aikik+1

pikik+1

φ(ik+1)− φ(ik)
)′

,

thus proving Eq. (5.18). Similarly,

ht =
t∑

k=0

t∑
m=k

λm−kwk,m−kφ(ik)bim

=
t∑

m=0

m∑
k=0

λm−kwk,m−kφ(ik)bim

=
t∑

k=0

k∑
m=0

λk−mwm,k−mφ(im)bik

=
t∑

k=0

zkbik ,

thus proving Eq. (5.19).

We finally note that an equation approximation method corresponding to the APJ iteration (5.13) has
the form

Ctr + ht = 0.

The convergence r̂t → r∗, where r̂t is the solution to this equation, has been shown for special cases in
approximate DP (see [NeB03]). A convergence proof for the general case is again beyond the scope of the
present paper.

A Generalization of TD(λ)

Finally, let us indicate a generalized version of the TD(λ) method of approximate DP (Sutton [Sut88]). It
has the form

rt+1 = rt + γtztdt(it), (5.20)

where γt is a diminishing positive scalar stepsize, zt is given by Eq. (5.17), and dt(it) is the temporal difference
given by Eq. (5.12). The analysis of TD(λ) that is most relevant to our work is the one by Tsitsiklis and Van
Roy [TsV97]. Much of this analysis generalizes easily. In particular, the essence of the convergence proof of
[TsV97] is to write the algorithm as

rt+1 = rt + γt(Crt + h) + γt(Vtrt + vt), t = 0, 1, . . . ,

30



Using Basis Functions Involving Powers of A

where
C = Φ′Ξ(A(λ) − I)Φ, (5.21)

h is a some vector in <s, Ξ is the diagonal matrix having ξi, i = 1, . . . , n, on the diagonal, and Vt and vt

are random matrices and vectors, respectively, which asymptotically have zero mean. The essence of the
convergence proof of Tsitsiklis and Van Roy is that the matrix C is negative definite, in the sense that
r′Cr < 0 for all r 6= 0, so it has eigenvalues with negative real parts, which implies in turn that the matrix
I+γtC has eigenvalues strictly within the unit circle for sufficiently small γt. The following is a generalization
of this key fact (Lemma 9 of [TsV97]).

Proposition 5: For all λ ∈ [0, 1), if ΠT (λ) is a contraction on S with respect to ‖ · ‖ξ, then the
matrix C of Eq. (5.21) is negative definite.

Proof: By the contraction assumption, we have for some α ∈ [0, 1),

‖ΠA(λ)Φr‖ξ ≤ α‖Φr‖ξ, ∀ r ∈ <s. (5.22)

Also, Π is given in matrix form as Π = Φ(Φ′ΞΦ)−1Φ′Ξ, from which it follows that

Φ′Ξ(I −Π) = 0. (5.23)

Thus, we have for all r 6= 0,

r′Cr = r′Φ′Ξ(A(λ) − I)Φr

= r′Φ′Ξ
(
(I −Π)A(λ) + ΠA(λ) − I

)
Φr

= r′Φ′Ξ(ΠA(λ) − I)Φr

= r′Φ′ΞΠA(λ)Φr − ‖Φr‖2ξ
≤ ‖Φr‖ξ · ‖ΠA(λ)Φr‖ξ − ‖Φr‖2ξ
≤ (α− 1)‖Φr‖2ξ
< 0,

where the third equality follows from Eq. (5.23), the first inequality follows from the Cauchy-Schwartz
inequality applied with the inner product < x, y >= x′Ξy that corresponds to the norm ‖ · ‖ξ, and the
second inequality follows from Eq. (5.22). Q.E.D.

The preceding proposition supports the validity of the algorithm (5.20), and provides a starting point
for its analysis. However, the details are beyond the scope of the present paper.

6. USING BASIS FUNCTIONS INVOLVING POWERS OF A

We have assumed in the preceding sections that the columns of Φ, the basis functions, are known, and the
rows φ(i)′ of Φ are explicitly available to use in the various simulation-based formulas. We will now discuss
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a class of basis functions that may not be available, but may be approximated by simulation in the course of
our algorithms. Let us first consider basis functions of the form Amg, m ≥ 0, where g is some vector in <n.
Such basis functions are implicitly used in the context of Krylov subspace methods; see e.g., Saad [Saa03].
A simple justification is that the fixed point of T has an expansion of the form

x∗ =
∞∑

t=0

Atb,

provided the spectral radius of A is less than 1. Thus the basis functions b, Ab, . . . , Asb yield an approximation
based on the first s + 1 terms of the expansion. Also a more general expansion is

x∗ = x̄ +
∞∑

t=0

Atq,

where x̄ is any vector in <n and q is the residual vector

q = T (x̄)− x = Ax̄ + b− x̄;

this can be seen from the equation x∗− x̄ = A(x∗− x̄)+ q. Thus the basis functions x̄, q, Aq, . . . , As−1q yield
an approximation based on the first s + 1 terms of the preceding expansion. Note that we have

Amq = Tm+1(x̄)− Tm(x̄), ∀ m ≥ 0,

so the subspace spanned by these basis functions is the subspace spanned by x̄, T (x̄), . . . , T s(x̄).

Generally, to implement the methods of the preceding sections with basis functions of the form Amg,
m ≥ 0, one would need to generate the ith components (Amg)(i) for any given i, but these may be hard to
calculate. However, one can use instead single sample approximations of (Amg)(i), and rely on the formula

(Amg)(i) ≈
∑t

k=0 δ(ik = i)wk,mgik+m∑t
k=0 δ(ik = i)

(6.1)

[cf. Eq. (5.3)]. Thus in principle, to approximate the algorithms of earlier sections using such basis functions,
we only need to substitute each occurence of (Amg)(i) in the vector φ(i) by a sample wk,mgik+m generated
independently of the “main” Markov chain trajectory.

It is possible to use, in addition to g,Ag, . . . , Asg, other basis functions, whose components are available
with no error, or to use several sets of basis functions of the form g,Ag, . . . , Asg, corresponding to multiple
vectors g. However, for simplicity in what follows in this section, we assume that the only basis functions
are g,Ag, . . . , Asg for a single given vector g, so the matrix Φ has the form

Φ =
(
g Ag · · · Asg

)
. (6.2)

The ith row of Φ is
φ(i)′ =

(
g(i) (Ag)(i) · · · (Asg)(i)

)
.

We will focus on a version of the equation approximation method of Section 2, which uses single sample
approximations of these rows. The multistep methods of Section 5 admit similar versions, since the corre-
sponding formulas involve powers of A multiplying vectors, which can be approximated using Eq. (6.1).

32



Using Basis Functions Involving Powers of A

We recall [cf. Eq. (2.1)] that the projected equation Φr = Π(AΦr + b) has the form

n∑
i=1

ξiφ(i)

φ(i)−
n∑

j=1

aijφ(j)

′ r∗ =
n∑

i=1

ξiφ(i)bi, (6.3)

or equivalently, using Eq. (6.2),

n∑
i=1

ξi


g(i)

(Ag)(i)
...

(Asg)(i)


(

g(i)− (Ag)(i) (Ag)(i)− (A2g)(i) · · · (Asg)(i)− (As+1g)(i)
)

r∗ =
n∑

i=1

ξi


g(i)

(Ag)(i)
...

(Asg)(i)

 bi,

(6.4)
To approximate this equation, we generate a sequence of states {i0, i1, . . .} of the Markov chain such that
with probability 1,

lim
t→∞

∑t
k=0 δ(ik = i)

t + 1
= ξi, lim

t→∞

∑t
k=0 δ(ik = i, ik+1 = j)∑t

k=0 δ(ik = i)
= pij , i, j = 1, . . . , n.

For each ik, we also generate two additional mutually “independent” sequences{
(ik, îk,1), (̂ik,1, îk,2), . . . , (̂ik,s−1, îk,s)

}
,

{
(ik, ĩk,1), (̃ik,1, ĩk,2), . . . , (̃ik,s, ĩk,s+1)

}
, (6.5)

of lengths s and s+1, respectively, according to the transition probabilities pij , which are also “independent”
of the sequence {i0, i1, . . .}. At time t, we form the following linear equation to approximate Eq. (6.4):

t∑
k=0


gik

ŵk,1gîk,1

...

ŵk,sgîk,s


(

gik
− w̃k,1 gĩk+1

w̃k,1gĩk+1
− w̃k,2gĩk+2

· · · w̃k,sgĩk+s
− w̃k,s+1gĩk+s+1

)
r =

t∑
k=0


gik

ŵk,1gîk,1

...

ŵk,sgîk,s

 bik
,

(6.6)

where for all m,

ŵk,m =
aik îk,1

pik îk,1

aîk,1 îk,2

pîk,1 îk,2

· · ·
aîk,m−1 îk,m

pîk,m−1 îk,m

, w̃k,m =
aik ĩk,1

pik ĩk,1

aĩk,1 ĩk,2

pĩk,1 ĩk,2

· · ·
aĩk,m−1 ĩk,m

pĩk,m−1 ĩk,m

; (6.7)

[cf. Eq. (5.2)].

It is also possible to save some simulation overhead per time step by replacing the finite sequence
{(ik, ĩk,1), (̃ik,1, ĩk,2), . . . , (̃ik,s, ĩk,s+1)} with the infinite length sequence {(i0, i1), (i1, i2), . . .}, which is used to
generate successively the states ik. However, in this case the corresponding samples wk,mgk+m will generally
be correlated, because they correspond to (possibly overlapping) segments from the same trajectory, likely
increasing the variance of the simulation error. The device of using an extra independent sequence per time
step, may also be applied to reduce the simulation noise of the l-step methods of Section 5 [cf. Eq. (5.6)],
but is harder to use in the context of the λ-methods of that section.

To verify the validity of this approximation, we can use Eq. (6.1), and a similar analysis to the one of
Section 2. We omit the straightforward details. It is also possible to construct a corresponding approximate
Jacobi method along similar lines.
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The preceding methodology can be extended in a few different ways. First, the sequences (6.5) need
not be generated according to the same transition probabilities pij as the main sequence of states {i0, i1, . . .}.
Instead, any transition probabilities p̂ij can be used, as long as the basic condition

p̂ij > 0 if aij 6= 0,

is satisfied for all (i, j), and pij is replaced by p̂ij in the formula (6.7).

A second extension of the preceding methodology is to the case where the rows φ(i)′ of Φ represent
expected values with respect to some distribution depending on i, and can be calculated by simulation. In
this case the terms φ(i) and φ(i) −

∑n
j=1 aijφ(j) in Eq. (6.4) may be replaced by independently generated

samples, and the equation approximation formulas may be appropriately adjusted in similar spirit as Eq.
(6.6).

A third extension of the preceding methodology is to the approach of minimization of the equation
error norm. In particular, one may use of Eq. (2.18) as the basis for a method that involves simulation-based
approximation of basis functions. In this approach, in analogy with Eq. (6.6), we generate two additional
mutually “independent” sequences [cf. Eq. (6.5)] and we solve the equation

t∑
k=0


gik − ŵk,1gîk+1

ŵk,1gîk,1
− ŵk,2gîk+2

...
ŵk,sgîk,s

− ŵk,s+1gîk+s+1


(

gik − w̃k,1gĩk+1
w̃k,1gĩk+1

− w̃k,2gĩk+2
· · · w̃k,sgĩk+s

− w̃k,s+1gĩk+s+1

)
r

=
t∑

k=0


gik − ŵk,1gîk+1

ŵk,1gîk,1
− ŵk,2gîk+2

...
ŵk,sgîk,s

− ŵk,s+1gîk+s+1

 bik

where ŵk,m and w̃k,m are given by Eq. (6.7).

We note that constructing basis functions for subspace approximation is an important research issue,
and has received considerable attention recently in the approximate DP literature (see, e.g., Keller, Mannor,
and Precup [KMP06], Menache, Mannor, and Shimkin [MMS05], Parr et. al. [PPL07], Valenti [Val07]).
However, the methods of the present section are new, even within the context of approximate DP, and to
our knowledge, they are the first proposals to introduce sampling for basis function approximation directly
within the LSTD and LSPE-type methods.

We finally note a generic difficulty associated with the method of this section: even if a solution
r∗ = (r∗0 , r∗1 , . . . , r∗s) of the projected fixed point equation Φr = ΠT (Φr) is found, the approximation of the
ith component of x∗ has the form

φ(i)′r∗ =
s∑

m=0

r∗m(Amg)(i),

and requires the evaluation of the basis function components (Ag)(i), . . . , (Asg)(i). For this, additional
computation and simulation is needed, using the approximation formula (6.1).

7. EXTENSION TO SOME NONLINEAR FIXED POINT EQUATIONS
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In this section, we briefly discuss how some of the methods of earlier sections can be modified for the case of
some nonlinear systems of equations. One potential approach for the general fixed point equation x = T (x),
where T is a differentiable mapping, is to use Newton’s method to solve the projected equation. In this
approach, given rk, we generate rk+1 by using one of the simulation-based methods given earlier to solve a
linearized version (at rk) of the projected equation Φr = ΠT (Φr). This is the linear equation

Φrk+1 = Π
(
T (Φrk) + ∂T (Φrk)Φ(rk+1 − rk)

)
.

where ∂T (Φrk) is the Jacobian matrix of T , evaluated at Φrk. We do not discuss this approach further, and
focus instead on a few special cases involving contraction mappings, where convergence from any starting
point r0 is guaranteed.

Extension of Q-Learning for Optimal Stopping

We first consider a system of the form

x = T (x) = Af(x) + b,

where f : <n 7→ <n is a mapping with scalar function components of the form f(x) =
(
f1(x1), . . . , fn(xn)

)
.

We assume that each of the mappings fi : < 7→ < is nonexpansive in the sense that∣∣fi(xi)− fi(x̄i)
∣∣ ≤ |xi − x̄i|, ∀ i = 1, . . . , n, xi, x̄i ∈ <. (7.1)

This guarantees that T is a contraction mapping with respect to any norm ‖ · ‖ with the property

‖y‖ ≤ ‖z‖ if |yi| ≤ |zi|, ∀ i = 1, . . . , n,

whenever A is a contraction with respect to that norm. Such norms include weighted l1 and l∞ norms, the
norm ‖ · ‖ξ, as well as any scaled Euclidean norm ‖x‖ =

√
x′Qx, where Q is a positive definite symmetric

matrix with nonnegative components. Under the assumption (7.1), the theory of Section 3 applies and
suggests appropriate choices of a Markov chain for simulation.

An interesting special case has been studied in the context of an optimal stopping problem in [TsV99b],
which gave a Q-learning algorithm that is similar in spirit to TD(λ), but more complex since it involves a
nonlinear mapping. The following example outlines this context.

Example 6: (Optimal Stopping)

Consider the equation

x = T (x) = αPf(x) + b,

where P is an irreducible transition probability matrix with invariant distribution ξ, α ∈ (0, 1) is a scalar

discount factor, and f is a mapping with components

fi(xi) = min{ci, xi}, i = 1, . . . , n,

where ci are some scalars. This is the Q-factor equation corresponding to a discounted optimal stopping problem

with states i = 1, . . . , n, and a choice between two actions at each state i: stop at a cost ci, or continue at a

cost bi and move to state j with probability pij . The optimal cost starting from state i is min{ci, x
∗
i }, where
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x∗ is the fixed point of T , which is unique because T is a sup-norm contraction, as shown in [TsV99b]. As

a special case of Prop. 1, we obtain that ΠT is a contraction with respect to ‖ · ‖ξ, and the associated error

bounds apply. Similar results hold in the case where αP is replaced by a matrix A satisfying condition (2) of

Prop. 1, or the conditions of Prop. 3. The case where
∑n

j=1
|aij | < 1 for some index i, and 0 ≤ A ≤ P , where P

is an irreducible transition probability matrix, corresponds to an optimal stopping problem where the stopping

state will be reached from all other states with probability 1, even without applying the stopping action. In

this case, by Prop. 2, ΠA is a contraction with respect to some norm, and hence I − ΠA is invertible. Using

this fact, it follows by modifying the proof of Prop. 3 that Π
(
(1 − γ)I + γT

)
is a contraction with respect to

‖ · ‖ξ.

We will now describe an approximate Jacobi algorithm that extends the method proposed in [YuB07]
for the optimal stopping problem of the preceding example. Similar to Section 4, the projected Jacobi
iteration

Φrt+1 = ΠT (Φrt), t = 0, 1, . . . ,

takes the form

rt+1 =

(
n∑

i=1

ξi φ(i)φ(i)′
)−1 n∑

i=1

ξi φ(i)

 n∑
j=1

aijfj

(
φ(j)′rt

)
+ bi

 .

We approximate this iteration with

rt+1 =

(
t∑

k=0

φ(ik)φ(ik)′
)−1 t∑

k=0

φ(ik)
(

aikjk

pikjk

fjk

(
φ(jk)′rt

)
+ bik

)
. (7.2)

Here, as before, {i0, i1, . . .} is a state sequence, and {(i0, j0), (i1, j1), . . .} is a transition sequence satisfying
Eqs. (2.3) and (2.4) with probability 1. The justification of this approximation is very similar to the ones
given so far, and will not be discussed further.

A difficulty with iteration (7.2) is that the terms fjk

(
φ(jk)′rt

)
must be computed for all k = 0, . . . , t, at

every step t, thereby resulting in significant overhead. Methods to bypass this difficulty in the case of optimal
stopping are given in [YuB07]. These methods can be extended to the more general context of this paper.
We finally note that because of the nonlinearity of T , it is hard to implement the equation approximation
methods of Section 2, and there are no corresponding versions of the multistep methods of Section 5.

Approximating the Dominant Eigenvalue and Eigenvector of a Matrix

Consider the problem of finding an approximation of the dominant (i.e., real with maximum modulus)
eigenvalue of a square n × n matrix A and an approximation of the corresponding eigenvector within the
subspace of basis functions. We assume that such an eigenvalue exists: this can be guaranteed by the Perron-
Frobenius Theorem for various cases where A is nonnegative. One possible approach, proposed by Basu,
Bhattacharyya, and Borkar [BBB06], is to find instead the dominant eigenvalue λ̄ of ΠA and an associated
eigenvector θ̄. Note that if A is the transpose of an irreducible, aperiodic transition probability matrix Q,
then 1 is its dominant eigenvalue and the corresponding eigenvector, suitably normalized, is the invariant
distribution of Q.

The method of [BBB06] was proposed in the context of risk-sensitive DP, and is related to the projected
value iteration/LSPE methodology discussed in Section 1, but applies to the general case where A ≥ 0. In the
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proposal of [BBB06], it is guaranteed that ΠA ≥ 0 by a special choice of the basis functions (an aggregation-
type matrix Φ, with columns that are nonnegative and have positive components at nonoverlapping positions,
so that ΦΦ′ is diagonal). We will develop a similar method, except that we will just assume that ΠA has
a positive dominant eigenvalue λ̄, with |λ| < λ̄ for all other eigenvalues λ 6= λ̄ of ΠA (rather than require
that A ≥ 0 and ΠA ≥ 0). However, we do not know of any conditions, other than the ones of [BBB06],
guaranteeing that such λ̄ exists.

The following version of the power method

Φrt+1 =
ΠAΦrt

‖Φrt‖ξ
(7.3)

is known to converge at the rate of a geometric progression to λ̄θ̄, where θ̄ is a corresponding eigenvector
normalized so that ‖θ̄‖ξ = 1. To obtain a simulation-based approximation of this method, we use a Markov
chain with transition probability matrix P and invariant distribution ξ. We generate sequences of states
{i0, i1, . . .} and transitions {(i0, j0), (i1, j1), . . .} of the chain, satisfying Eqs. (2.3) and (2.4) with probability
1. We write Eq. (7.3) as

rt+1 =
r̄t√∑n

i=1 ξir′tφ(i)φ(i)′rt

,

where

r̄t = arg min
r

n∑
i=1

ξi

φ(i)′r −
n∑

j=1

aijφ(j)′rt

2

=

(
n∑

i=1

ξiφ(i)φ(i)′
)−1 n∑

i=1

ξiφ(i)
n∑

j=1

aijφ(j)′rt.

At time t, we approximate this iteration with

rt+1 =

(∑t
k=0 φ(ik)φ(ik)′

)−1∑t
k=0 φ(ik)

aikjk
pikjk

φ(jk)′rt√
(t + 1)−1r′t

(∑t
k=0 φ(ik)φ(ik)′

)
rt

. (7.4)

This method is closely related to the method of [BBB06], where a diminishing stepsize was used for a
convergence proof. If in their method, the stepsize is taken to be equal to 1, the method (7.4) would be
obtained, except for a slight difference in the denominator in Eqs. (7.3) and (7.4).

It is quite clear that Φrt → λ̄θ̄, so that ‖Φrt‖ξ → λ̄ with probability 1. Thus it appears that a stepsize
equal to 1 is a better practical choice than a diminishing stepsize. We have

(t + 1)−1r′t

(
t∑

k=0

φ(ik)φ(ik)′
)

rt → λ̄2

with probability 1. This is true for any P and Φ such that ΠA has a dominant eigenvalue. A very important
issue is how to choose P and Φ so that λ̄ and θ̄ are good approximations to the corresponding dominant
eigenvalue and eigenvector of A. Generally, the approximations can be arbitrarily poor. As an example,
take A to be diagonal with a11 = 1 and aii = εi for i 6= 1 and some ε ∈ (0, 1), take ξ = (1/n, . . . , 1/n)′,
and take S be the subspace that is orthogonal to the dominant eigenvector (1, 0, . . . , 0)′. Then the dominant
eigenvalue of A is 1 but the dominant eigenvalue of ΠA is ε.

The dominant eigenvalues of A and ΠA will be close to each other if the dominant eigenvector of A is
at small distance from S. One way to achieve this is by choosing vectors of the form Alx to be among the
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basis functions, where l is sufficiently large and x does not lie in the subspace spanned by the eigenvectors
corresponding to the nondominant eigenvalues of A. This is because Alx

‖Alx‖ξ
converges to a normalized

dominant eigenvector of A as l → ∞. While the components of the basis functions Alx are unlikely to be
explicitly available within our context, the method (7.4) can be suitably modified to use simulation-based
approximations, in the spirit of the methods of Section 6.

When A is a symmetric matrix, there is an alternative approach, which is to approximate the maximum
eigenvalue/eigenvector of A with the maximum eigenvalue/eigenvector of the matrix

Ã = Φ′AΦ =
n∑

i=1

n∑
j=1

aijφ(i)φ(j)′.

We can estimate Ã using an LSTD-type approach, similar to the ones of Section 2. In particular, we form
the matrix

Â =
1

t + 1

t∑
k=0

aikjk

pikjk

φ(ik)φ(jk)′, (7.5)

where {i0, i1, . . . , it} is generated according to a uniform distribution, and
{
(i0, j0), (i1, j1), . . . , (it, jt)

}
is a

sequence of simulated transitions generated according to transition probabilities pij . We then approximate
Ã with the symmetric matrix (Â + Â′)/2.

If A is positive semidefinite of the form A = C ′C, with C being an m × n matrix, and m << n, a
somewhat different method may be preferable. Again we consider the matrix

Ã = Φ′C ′CΦ =
m∑

i=1

 n∑
j=1

cijφ(j)

 n∑
j=1

cijφ(j)

′ ,
and approximate the maximum eigenvalue/eigenvector of A with the maximum eigenvalue/eigenvector of Ã.
However, instead of estimating Ã directly, we form for each i = 1, . . . ,m, a simulation-based estimate of

vi =
n∑

j=1

cijφ(j),

by using a sequence
{
(i, j0), (i, j1), . . . , (i, jti)

}
generated according to a set of transition probabilities pij :

ṽi =
1

ti + 1

ti∑
k=0

cijk

pijk

φ(jk).

We then estimate Ã by

Ã ≈
m∑

i=1

ṽiṽ′i. (7.6)

This method may be preferable to the one of Eq. (7.5), because its estimate of Ã will likely involve less
simulation noise [Eq. (7.5) involves averaging of n2 terms, while Eq. (7.6) involves averaging of n terms for
each i, for a total of mn terms]. It is possible to choose pij using an optimization approach. In particular,
it can be shown that for each i, the trace of the covariance of (cij/pij)φ(j) when the index j is chosen
with sampling probabilities pij , j = 1, . . . , n, is minimized when pij is proportional to |cij | ‖φ(j)‖. This is
consistent with the ideas of importance sampling (see e.g., [Liu01]).

38



References

8. CONCLUSIONS

In this paper we have shown how fixed point equations can be solved approximately by projection on a low-
dimensional subspace and simulation, thereby generalizing recent methods from the field of approximate DP.
We have given error bounds that apply to special types of contraction mappings, most prominently some
involving diagonally dominant matrices. However, our methods apply to any linear system of equations
whose projected solution is unique. While our simulation-based methods are likely not competitive with
other methods for moderately-sized problems, they provide an approach for addressing extremely large
problems, because they do not involve any vector operations or storage of size comparable to the original
problem dimension. Our methods have been motivated by recent analysis and computational experience in
approximate DP. Much remains to be done to apply them and to assess their potential in other fields.
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