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Lambda-Policy Iteration: A Review and a

New Implementation†

Dimitri P. Bertsekas ‡

Abstract

In this paper we discuss λ-policy iteration, a method for exact and approximate dynamic programming.
It is intermediate between the classical value iteration (VI) and policy iteration (PI) methods, and it is closely
related to optimistic (also known as modified) PI, whereby each policy evaluation is done approximately, using
a finite number of VI. We review the theory of the method and associated questions of bias and exploration
arising in simulation-based cost function approximation. We then discuss various implementations, which
offer advantages over well-established PI methods that use LSPE(λ), LSTD(λ), or TD(λ) for policy evaluation
with cost function approximation. One of these implementations is based on a new simulation scheme, called
geometric sampling, which uses multiple short trajectories rather than a single infinitely long trajectory.

1. INTRODUCTION

Approximate dynamic programming (DP for short) has attracted substantial research interest, and has a
wide range of applications, because of its potential to address large and complex problems that may not
be treatable in other ways. The literature on the subject is very extensive, and includes several textbooks,
research monographs, and surveys that relate to the computational context of this paper. For a nonexhaustive
list, we mention the books by Bertsekas and Tsitsiklis [BeT96], Sutton and Barto [SuB98], Gosavi [Gos03],
Cao [Cao07], Chang, Fu, Hu, and Marcus [CFH07], Meyn [Mey07], Powell [Pow07], Borkar [Bor08], Haykin
[Hay08], Busoniu, Babuska, De Schutter, and Ernst [BBD10], and the author’s text in preparation [Ber11a];
the edited volumes and special issues by White and Sofge [WhS92], Si, Barto, Powell, and Wunsch [SBP04],
Lewis, Lendaris, and Liu [LLL08], and the 2007-2009 Proceedings of the IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning; and the recent surveys by Borkar [Bor09], Lewis and
Vrabie [LeV09], Werbos [Wer09], Szepesvari [Sze10], and Bertsekas [Ber11b].

The purpose of this paper is to critically review and extend a class of methods for exact and approximate
DP, which are based on the λ-policy iteration (λ-PI) method, proposed by Bertsekas and Ioffe [BeI96]. This
method is intermediate between the classical value iteration (VI) and policy iteration (PI) methods, and
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it is closely related to optimistic (also known as modified) PI, whereby each policy evaluation is done
approximately, using a finite number of VI. It was originally used as the starting point for the development
of approximate simulation-based DP methods of the temporal difference (TD) type, such as LSPE(λ) (see
[BeI96], and also [BeT96], Sections 2.3.1 and 8.3). The emphasis in this paper is on implementations of λ-PI,
which provide alternatives to approximate PI methods that use other more established methods for policy
evaluation.

We will focus on the α-discounted n-state Markovian Decision Problem (MDP), although the main ideas
are more broadly applicable. The problem involves states 1, . . . , n, controls u ∈ U(i) at state i, transition
probabilities pij(u), and cost g(i, u, j) for transition from i to j under control u. A (stationary) policy µ is a
function from states i to admissible controls u ∈ U(i), and Jµ(i) is the cost starting from state i and using
policy µ. It is well-known (see e.g., Puterman [Put94] or Bertsekas [Ber07]) that the vector Jµ ∈ <n, which
has components Jµ(i),† is the unique fixed point of the mapping Tµ : <n 7→ <n, which maps J ∈ <n to the
vector TµJ ∈ <n that has components

(TµJ)(i) =
n∑
j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αJ(j)

)
, i = 1, . . . , n. (1.1)

Similarly, the optimal costs starting from i = 1, . . . , n, are denoted J∗(i), and the optimal cost vector
J∗ ∈ <n, which has components J∗(i), is the unique fixed point of the mapping T : <n 7→ <n defined by

(TJ)(i) = min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αJ(j)

)
, i = 1, . . . , n. (1.2)

An important property is that Tµ and T are sup-norm contractions. In particular, the iterations Jk+1 = TµJk

and Jk+1 = TJk converge to Jµ and J∗, respectively, from any starting point J0 - this is the VI method.

A major alternative to VI is PI. It produces a sequence of policies and associated cost functions through
iterations that have two phases: policy evaluation (where the cost function of a policy is evaluated), and
policy improvement (where a new policy is generated). In the exact form of the algorithm, the current policy
µ is improved by finding µ̄ that satisfies Tµ̄Jµ = TJµ [i.e., by minimizing in the right-hand side of Eq.
(1.2) with Jµ in place of J ]. The improved policy µ̄ is evaluated by solving the linear system of equations
Jµ̄ = Tµ̄Jµ̄, and (Jµ̄, µ̄) becomes the new cost vector-policy pair, which is used to start a new iteration.
Thus, the exact form of PI can be succinctly defined as

Tµk+1Jk = TJk, Jk+1 = Tµk+1Jk+1, (1.3)

with the equation on the left describing the policy improvement and the equation on the right describing
the evaluation of µk+1.

In a variant of the method, a policy µk+1 is evaluated by a finite number of applications of Tµk+1 to
an approximate evaluation of the preceding policy. This is known as “optimistic” or “modified” PI, and its
motivation is that in problems with a large number of states, the linear system Jk+1 = Tµk+1Jk+1 cannot
be practically solved directly by matrix inversion, so it is best solved iteratively by VI. The method can be
succinctly defined as

Tµk+1Jk = TJk, Jk+1 = T
mk
µk+1Jk. (1.4)

† In our notation, <n is the n-dimensional Euclidean space, all vectors in <n are viewed as column vectors, and

a prime denotes transposition. The identity matrix is denoted by I.
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If the number mk of applications of Tµk+1 is very large, the exact form of PI is essentially obtained, but
practice has shown that it is most efficient to use a moderate value of mk. In this case, the algorithm looks
like a hybrid of VI and PI, involving a sequence of alternate applications of T and Tµk , with µk changing
over time. Optimistic PI is generally believed to be more computationally efficient that either VI or PI. This
is particularly so for problems where n is very large and implementation of exact PI is difficult due to the
associated n×n matrix inversion, and also for problems with a large number of controls, where the overhead
due to minimization over all controls u ∈ U(i) in the mapping T [cf. Eq. (1.2)] is substantial.

We note that the convergence properties of the optimistic PI method (1.4) are quite complicated and
have been the subject of continuing research. The convergence Jk → J∗ has been established by Rothblum
[Rot79] (see also the more recent work by Canbolat and Rothblum [CaR11], which extends some of the results
of [Rot79]). On the other hand, when optimistic PI is implemented asynchronously (as it normally would
be when simulation is used), it may oscillate as shown by the convergence counterexamples of Williams and
Baird [WiB93]. Recent work of Bertsekas and Yu [BeY10a], [BeY10b], [YuB11] has developed convergent
variants of synchronous and asynchronous optimistic PI and Q-learning, based on a new way to perform
policy evaluation: by solving approximately an optimal stopping problem rather than a system of linear
equations.

The λ-PI method is a form of optimistic PI, given by

Tµk+1Jk = TJk, Jk+1 = T
(λ)
µk+1Jk, (1.5)

where for any µ and λ ∈ [0, 1), T (λ)
µ is the linear mapping given by

T
(λ)
µ = (1− λ)

∞∑
`=0

λ`T `+1
µ . (1.6)

Note that the mapping T (λ)
µ is central in much recent research on approximate DP, simulation-based PI, and

TD methods, as will be discussed in the sequel.

To compare the optimistic PI method (1.4) and the λ-PI method (1.5), note that both mappings
T
mk
µk+1 and T

(λ)
µk+1 appearing in Eqs. (1.4) and (1.5), involve multiple applications of the VI mapping Tµk+1 :

a fixed number mk in the former case (with mk = 1 corresponding to VI and mk → ∞ corresponding
to PI), and a geometrically weighted number in the latter case (with λ = 0 corresponding to VI and
λ → 1 corresponding to PI). Thus optimistic PI and λ-PI are similar: they just control the accuracy of
the approximation Jk+1 ≈ Jµk+1 by applying VI in different ways. In a classical DP/non-simulation-based
setting, λ-PI is far more complicated relative to optimistic PI, since exact computations using the mapping
T

(λ)
µ are unwieldy. However, this advantage of optimistic PI is dissipated in a simulation context, where

computations involving T (λ)
µ can be performed conveniently, as extensive analytical and experimental work

with TD methods has demonstrated.

Recent research on DP has focused on the use of simulation, in order to deal with model-free situations
where the transition probabilities and/or the cost per stage are not known explicitly, and also to deal with
the associated high-dimensional linear algebra operations. For problems with very large number of states,
the evaluation of various fixed points of mappings, such as Tµ or T (λ)

µ , is typically done by approximation
with a vector Φr from the subspace S = {Φr | r ∈ <s} that is spanned by the columns of an n× s matrix Φ.
In this paper we will focus on the projected equation approach, whereby given a generic mapping L : <n 7→ <n
(such as for example Tµ) we approximate its fixed point by solving the equation

Φr = ΠL(Φr),
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where Π denotes projection onto the subspace S. The projection is with respect to a Euclidean norm ‖ · ‖ξ,
weighted by a suitable vector ξ of positive weights. An alternative possibility is to solve instead the equation

Φr = ΠL(ν)(Φr), (1.7)

where, similar to Eq. (1.6),

L(ν) = (1− ν)
∞∑
`=0

ν`L`+1,

and ν ∈ [0, 1) is a parameter [not necessarily the same as the λ parameter in Eqs. (1.5)-(1.6)]. In our context
we will encounter several different types of mappings L, and in all cases L is a contraction with respect to
the projection norm ‖ · ‖ξ, with fixed point Ĵ , while ΠL(ν) are contractions with respect to ‖ · ‖ξ for all
ν ∈ [0, 1). It is well-known that the fixed point of ΠL(ν), denoted Φr(ν), converges to ΠĴ as ν → 1. The
norm of the difference Φr(ν)−ΠĴ is known as the bias. Its size/norm depends on ν and is generally smaller
as ν gets closer to 1 (see [BeT96], [TsV97], [YuB10] for error bound analyses).

A common example of fixed point approximation in PI is when L = Tµ for a policy µ, in which case
the fixed point of ΠL or ΠL(ν) is an approximation to the fixed point of Tµ, i.e., the cost vector Jµ. If the
Markov chain corresponding to µ is irreducible and ξ is the corresponding steady-state distribution vector,
the mapping ΠT (λ)

µ is a contraction with respect to ‖ · ‖ξ for all λ ∈ [0, 1), and is unique fixed point, denoted
Φrµ(λ), converges to ΠJµ as λ → 1. Generally, the projected equation Φr = ΠT (λ)

µ (Φr) is solved by a
simulation process that generates a sequence of states according to a sampling scheme to be discussed later,
and then by matrix inversion [this is the Least Squares Temporal Differences [LSTD(λ)] method, proposed
by Bradtke and Barto [BrB96]], or by iteration, using the TD(λ) method, proposed by Sutton [Sut87]
and analyzed by Tsitsiklis and VanRoy [TsV97] among others, or the Least Squares Policy Evaluation
[LSPE(λ)] method, proposed by Bertsekas and Ioffe [BeI96].† These methods are extensively discussed in
the literature, and exhibit complex and sometimes pathological behavior, particularly when embedded within
PI (see [Ber95], [SzL06], [ThS09] for some notable failures, and [Ber10] for a recent assessment). Moreover
matrix inversion and iterative methods, like TD(λ), LSTD(λ), and LSPE(λ), can be used for solving not
only the projected equation Φr = ΠT (λ)

µ (Φr), but also the more general equation Φr = ΠL(ν)(Φr) of Eq.
(1.7), as long as L is a linear mapping that is convenient for the use of simulation [and in the case of TD(λ)
and LSPE(λ), ΠL(ν) is a contraction; see [BeY09] or [Ber11c]].

In this paper we will review some of the basic issues in approximate PI using the projected equation
approach, thereby setting the stage for assessing the relative strengths and weaknesses of the λ-PI method-
ology. We will then focus on three alternative implementations of λ-PI, which involve simulation and cost

† The paper [BeI96] as well as the book [BeT96] used the name “λ-policy iteration” for both the lookup table

and the compact representation versions of the method described here, and tested a compact representation version

on the game of tetris, a challenging SSP problem. The name “LSPE” was first used in the subsequent paper by

Nedić and Bertsekas [NeB03] to describe a specific iterative implementation of the λ-PI method with cost function

approximation for discounted MDP (essentially the discounted version of the implementation used in [BeI96] and

[BeT96] for the aforementioned tetris case study). Reference [NeB03] proved convergence of the LSPE(λ) method,

as described in Section 3.1, for the case of a diminishing stepsize. Convergence for a stepsize equal to 1 was proved

shortly afterwards by Bertsekas, Borkar, and Nedić [BBN04]. The use of two different names for essentially the same

method has been a source of some confusion. While in practical implementations these two names refer to algorithms

that are closely related, we reserve the name “λ-policy iteration” for the more abstract form (1.5)-(1.6), and we will

view LSPE(λ) as an implementation of λ-PI (see Section 4.1).

4



function approximation. The first is basically the LSPE(λ) method as implemented in [BeI96]. The second
is an interesting recent proposal by Thiery and Scherrer [ThS10a], who gave extensive and quite successful
computational results, as well as error bounds [ThS10b]. The third implementation is new and may have
some advantages over the first two. We will argue that it deals better with the combined issues of bias
and exploration. This implementation embodies a new idea for λ-methods: a simulation scheme, called
geometric sampling , that uses multiple short trajectories with random geometrically distributed length, and
exploration-enhanced restart, rather than a single infinitely long trajectory.

The three implementations are described in Section 4, following a discussion of the generic properties
of exact λ-PI in Section 2, and the LSTD(λ) and LSPE(λ) methods in Section 3. In our description,
these implementations are model-based and use cost function approximation, but there are versions that are
model-free and use Q-factor approximation; these can be straightforwardly constructed by the reader.

2. LAMBDA-POLICY ITERATION WITHOUT COST FUNCTION APPROXIMATION

We first recall a central result from [BeI96]. It provides a helpful characterization of the λ-PI method (1.5),
which will later become the basis for cost function approximations.

Proposition 2.1: Given λ ∈ [0, 1), Jk, and µk+1, consider the mapping Wk defined by

WkJ = (1− λ)Tµk+1Jk + λTµk+1J. (2.1)

(a) Wk is a sup-norm contraction of modulus λα.

(b) The vector Jk+1 = T
(λ)
µk+1Jk generated next by the λ-PI method (1.5) is the unique fixed point

of Wk.

Proof: (a) For any two vectors J and J̄ , using the definition (2.1) of Wk, we have

‖WkJ −WkJ̄‖ =
∥∥λ(Tµk+1J − Tµk+1 J̄)

∥∥ = λ‖Tµk+1J − Tµk+1 J̄‖ ≤ λα‖J − J̄‖,

where ‖ · ‖ denotes the sup-norm, so Wk is a sup-norm contraction with modulus λα.

(b) We have

Jk+1 = T
(λ)
µk+1Jk = (1− λ)

∞∑
`=0

λ`T `+1
µk+1Jk,

so the fixed point property to be shown, Jk+1 = WkJk+1, is written as

(1− λ)
∞∑
`=0

λ`T `+1
µk+1Jk = (1− λ)Tµk+1Jk + λTµk+1(1− λ)

∞∑
`=0

λ`T `+1
µk+1Jk,

and evidently holds. Q.E.D.
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From part (b) of the preceding proposition, we see that Jk+1 = WkJk+1, or equivalently

Jk+1(i) =
n∑
j=1

pij
(
µk+1(i)

)(
g
(
i, µk+1(i), j

)
+ (1− λ)αJk(j) + λαJk+1(j)

)
, i = 1, . . . , n. (2.2)

The solution of this fixed point equation can be obtained by viewing it as Bellman’s equation for two
equivalent MDP.

(a) As Bellman’s equation for an infinite-horizon λα-discounted MDP where µk+1 is the only policy, and
the cost per stage is

g
(
i, µk+1(i), j

)
+ (1− λ)αJk(j).

(b) As Bellman’s equation for an infinite-horizon stopping problem where µk+1 is the only policy. In
particular, Jk+1 is the cost vector of policy µk+1 in a stopping problem that is derived from the given
α-discounted problem by introducing transitions from each state j to an artificial termination state
as follows: at state i we first make a transition to j with probability pij

(
µk+1(i)

)
and transition cost

g
(
i, µk+1(i), j

)
; then we either stay at j and wait for the next transition (this occurs with probability

λ), or else we move from j to the termination state with an additional termination cost αJk(j) (this
occurs with probability 1 − λ). All transition costs as well as the termination cost are discounted by
an additional factor α with each transition.

The convergence and rate of convergence of the λ-PI method (1.5) was given in [BeI96] and also in
[BeT96], Prop. 2.8. We will simply quote the results for completeness.

Proposition 2.2: Assume that λ ∈ [0, 1), and let {Jk, µk} be the sequence generated by the λ-PI
method (1.5). Then Jk converges to J∗. Furthermore, for all k greater than some index k̄, µk is
optimal.

Proposition 2.3: Let the assumptions of Prop. 2.2 hold and let k̄ be the index such that for all
k ≥ k̄, µk is optimal. The sequence {Jk} generated by the λ-PI method (1.5) satisfies for all k > k̄

‖Jk+1 − J∗‖ ≤
α(1− λ)
1− λα

‖Jk − J∗‖, (2.3)

where ‖ · ‖ denotes the sup-norm.

Note that the convergence rate estimate (2.3) holds only for k ≥ k̄, essentially after an optimal policy
has been identified, as per Prop. 2.2. Nonetheless, this rate estimate is qualitatively correct, and supports
the empirical observation that the iterates (Jk, µk) generated by λ-PI converge faster as λ increases. Indeed
in the limit, as λ→ 1, λ-PI becomes exact PI, and converges to the optimum in a finite number of iterations.
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On the other hand, the computation of Jk+1 = T
(λ)
µk+1Jk [cf. Eq. (1.5)] becomes more time-consuming as λ

increases, particularly when simulation is used, because the simulation-based calculation of T (λ)
µk+1Jk involves

more simulation noise as λ gets larger.

We finally note that Props. 2.2 and 2.3 apply to synchronous implementations of λ-PI. When imple-
mented asynchronously, λ-PI has similar convergence difficulties to optimistic PI. To see this, note that
asynchronous implementations of these two methods essentially coincide when mk = 1 in Eq. (1.5) and
λ = 0 in Eq. (1.4), and the counterexamples of Williams and Baird [WiB93] apply. Thus the development
of convergent versions of asynchronous λ-PI is an open research question.

3. APPROXIMATE POLICY EVALUATION USING PROJECTED EQUATIONS

In PI methods with cost function approximation, we evaluate µ by approximating Jµ with a vector Φrµ from
the subspace S = {Φr | r ∈ <s}, spanned by the columns of an n × s matrix Φ, which may be viewed as
basis functions. We generate an “improved” policy µ̄ using the formula Tµ̄(Φrµ) = T (Φrµ), i.e.,

µ̄(i) ∈ arg min
u∈U(i)

n∑
j=1

pij(u)
(
g(i, u, j) + αφ(j)′rµ

)
, i = 1, . . . , n,

where φ(j)′ is the row of Φ that corresponds to state j [the method terminates with µ if Tµ(Φrµ) = T (Φrµ)].
We then repeat with µ replaced by µ̄. For the purposes of this paper, we assume that Φ has rank s, and
that the Markov chain corresponding to µ is irreducible.

As noted earlier, in the projected equation approach to approximate PI, we approximate Jµ with a
vector of the form Φrµ(λ) that solves the fixed point problem

Φr = ΠT (λ)
µ (Φr). (3.1)

Here Π denotes projection onto the subspace S with respect to a weighted Euclidean norm ‖ · ‖ξ, where
ξ = (ξ1, . . . , ξn) is a probability distribution with positive components (i.e., ‖J‖2ξ =

∑n
i=1 ξix

2
i , where

ξi > 0 for all i). In nonoptimistic PI methods, the projected equation (3.1) is solved exactly, while in
optimistic PI methods it is solved approximately. We note that this approach has a long history in the
context of Galerkin methods for the approximate solution of high-dimensional or infinite-dimensional linear
equations (partial differential, integral, inverse problems, etc; see e.g., [Kra72], [Fle84]). In fact some of the
policy evaluation theory referred to in this paper applies to general projected equations arising in contexts
beyond DP (see [BeY09], [Ber09], [Yu10a,b], [Ber11c]). However, Monte Carlo simulation is not part of the
Galerkin methodology, as currently practiced in the numerical analysis field. For this reason much of the
extensive available knowledge about Galerkin methods does not apply to the approximate DP context, which
is primarily simulation-oriented.

We now discuss some of the issues relating to projected equations. While we focus on Eq. (3.1), much
of our discussion also applies to the more general projected equations.

Exploration-Contraction Tradeoff

An important choice in the projected equation approach is the distribution ξ that defines the projection
norm ‖ · ‖ξ. This distribution is sometimes chosen to be the steady-state probability vector ξµ of the Markov
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chain corresponding to µ, in which case the mapping ΠT (λ)
µ can be shown to be a contraction with respect

to ‖ · ‖ξµ with modulus

αλ =
α(1− λ)
1− λα

(3.2)

(see [BeT96], Lemma 6.6, or [Ber07], Prop. 6.3.3).

On the other hand the choice of ξ is related to exploration, i.e., the need to collect an adequately rich
set of samples from a broad and representative set of states. This is a critical issue in simulation-based PI,
and results in a well-known tradeoff: to evaluate a policy µ, we may need to generate cost samples using
µ, but this may affect the simulation results by underrepresenting states that are unlikely to occur under
µ (more weight is placed on states that are visited more frequently under µ). As a result, the cost-to-go
estimates of the underrepresented states may be highly inaccurate, causing potentially serious errors in the
calculation of the improved control policy.

A well-known approach for exploration is to choose ξ to be a mixture of the form

ξ = (1− β)ξµ + βξ̃, (3.3)

where β ∈ (0, 1) and ξ̃ is another distribution (often referred to as the off-policy distribution), which is added
to enhance exploration (see the discussion of Section 1). Unfortunately, with such a choice the contraction
property of ΠT (λ)

µ comes into doubt: it depends on the size of the parameters λ and β [it can be shown
that ΠT (λ)

µ is a contraction for any β ∈ [0, 1) provided λ is close enough to 1, and it is a contraction for any
λ ∈ [0, 1) provided β is close enough to 0]. This is important because for convergence of iterative methods
such as TD(λ) and some forms of LSPE(λ), it is critical that ΠT (λ)

µ be a contraction. Thus there is a tradeoff
between exploration enhancement using the mixture distribution (3.3) and ability to use a broader range of
methods for solution of the projected equation.

Bias

While the Bellman equation J = T
(λ)
µ J has the same fixed point Jµ for all λ ∈ [0, 1), the fixed point Φrµ(λ)

of the projected version (3.1) depends on λ. The difference of Φrµ(λ) and the closest point of S to Jµ,
Φrµ(λ)−ΠJµ, is generally nonzero. Its norm, the bias, tends to decrease to 0 as λ ↑ 1 and tends to increase
as λ ↓ 0. It is known that the bias can be very large and may seriously degrade the practical value of the
approximate policy evaluation for small values of λ; see [Ber95] for some examples.

The following is a well-known error bound for the case ξ = ξµ:

‖Jµ − Φrµ(λ)‖ξµ ≤
1√

1− α2
λ

‖Jµ −ΠJµ‖ξµ , (3.4)

where αλ is given by Eq. (3.2), and ‖ · ‖ξµ is the weighted Euclidean norm corresponding to ξ = ξµ, the
steady-state probability vector of the Markov chain corresponding to µ. Thus the error bound becomes worse
as λ decreases (and αλ increases), suggesting a larger size of bias. While the bound is rather conservative,
the paper by Yu and Bertsekas [YuB10] (see also Scherrer [Sch10]) derives sharper error bounds, which also
apply to cases where ξ 6= ξµ and ΠT (λ)

µ is not a contraction. These error bounds and the bound (3.4) are
consistent in suggesting that the bias increases as λ decreases, and they are also largely consistent with the
results of computational experimentation.
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Bias-Variance Tradeoff

In simulation-based methods for solving the projected equation (3.1), one must deal with the effects of
simulation error. Generally as λ increases, the methods become more vulnerable to simulation noise, and
hence require more sampling for good performance. Indeed, the noise in a simulation sample of an `-stages
cost vector T `µJ tends to be larger as ` increases, and from the formula

T
(λ)
µ = (1− λ)

∞∑
`=0

λ`T `+1
µ

it can be seen that simulation samples of T (λ)
µ (Φrk) tend to contain more noise as λ increases. This is

consistent with practical experience, and gives rise to the so called bias-variance tradeoff: a large value
of λ to reduce bias results in slower and less reliable computation because of higher simulation noise (and
consequently, a larger number of samples to achieve the same accuracy of various simulation-based estimates).
Generally, there is no rule of thumb for selecting λ, which is usually chosen with some trial and error.

In summary, the preceding discussion suggests that if simulation noise is not an issue (i.e., one can
afford many simulation samples) one should choose large values of λ, since then the bias is reduced and
one may afford greater exploration without losing the contraction property of ΠT (λ)

µ . In the contrary case,
however, the degradation of the estimate of Jµ due to simulation noise may offset whatever bias/contraction
benefits a large value of λ may bring.

3.1 TD Methods

Most of the simulation-based methods for solving the projected equation use explicitly or implicitly the
notion of temporal difference (TD), which originated in reinforcement learning with the works of Samuel
[Sam59], [Sam67] on a checkers-playing program. The first TD method is TD(λ), which can be viewed as
an iterative stochastic approximation-type algorithm. The LSTD(λ) method is based on batch simulation:
it first generates a batch of state and cost samples, it approximates the projected equation Φr = ΠT (λ)

µ (Φr)
using these samples, and then solves the equation directly by matrix inversion. Another TD method is
LSPE(λ), which while being more iterative, shares much of the simulation philosophy of LSTD(λ).

To describe more specifically the LSTD(λ) and LSPE(λ) methods, we first note that the orthogonality
condition that characterizes the projection in the projected equation Φr = ΠT (λ)

µ (Φr) is

Φ′Ξ
(
Φr − T (λ)

µ (Φr)
)

= 0, (3.5)

where Ξ is the diagonal matrix with the vector ξ along the diagonal (see e.g., [Ber07]). Thus the projected
equation (3.1) is equivalent to the lower-dimensional equation (3.5), which can in turn be written in matrix
form as

C(λ)r = d(λ), (3.6)

with
C(λ) = Φ′Ξ

(
I − P (λ)

µ

)
Φ, d(λ) = Φ′Ξg(λ)

µ , (3.7)

and

P
(λ)
µ = (1− λ)

∞∑
`=0

λ`α`+1P `+1
µ , g

(λ)
µ =

∞∑
`=0

λ`α`P `µgµ, (3.8)
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where Pµ and gµ are the transition probability matrix and expected single-stage cost vector corresponding
to µ. The LSTD(λ) and LSPE(λ) methods use simulation-based approximations of C(λ) and d(λ). This is
done by simulating a state sequence (i0, . . . , it) and corresponding transition cost sequence, using the current
policy µ (perhaps with exploration enhancement, as discussed earlier). Then after each simulated state i`,
` = 0, . . . , t, is generated, estimates C(λ)

` and d
(λ)
` are obtained using the simulation samples up to time

`, using formulas that we will not give here, as they are not important for our purposes. Such formulas,
in various alternative forms, can be found in several sources, including the textbooks cited earlier. The
papers [NeB03], [BeY09], [Yu10a], [Yu10b] discuss the conditions for the convergence lim`→∞ C

(λ)
` = C(λ),

lim`→∞ d
(λ)
` = d(λ) to hold with probability 1.

The LSTD(λ) method is based on simple matrix inversion: after the last state it of the simulation
trajectory is generated, it computes the solution

r̂ =
(
C

(λ)
t

)−1
d

(λ)
t (3.9)

of the corresponding simulation-based approximation to Eq. (3.6),

C
(λ)
t r = d

(λ)
t , (3.10)

and approximates the cost vector Jµ by Φr̂. An important point is that r̂ can be obtained regardless of
whether ΠT (λ)

µ is a contraction. It is only required that C(λ)
t is invertible, a much less restrictive condition.

One version of the LSPE(λ) method consists of iterative solution of the system (3.10). It approximates
the cost vector Jµ by Φrt+1, where rt+1 is obtained at the last step of the iteration

r`+1 = r` − γG`
(
C

(λ)
` r` − d(λ)

`

)
, ` = 0, . . . , t, (3.11)

where r0 is some initial vector, likely the vector obtained from the preceding policy evaluation, γ is a positive
stepsize, G` is the matrix

G` =

(
1
`

`−1∑
m=0

φ(im)φ(im)′
)−1

, ` = 0, . . . , t, (3.12)

and as earlier, φ(i)′ denotes the ith row of the matrix Φ. In the original proposal of [BeI96] the stepsize is
γ = 1; convergence of Φrt to the fixed point of ΠT (λ)

µ for this stepsize was shown in [BBN04]. The matrix G`
is a simulation-based approximation of (Φ′ΞΦ)−1 (alternative choices of G` have been discussed recently in
[Ber11b], [Ber11c]). There is also an equivalent implementation of this iteration, which is based on solution
of a least squares problem (see Section 4.1).

The choice (3.12) for G` and the use of γ = 1 are based on a view of the method as an approximation
to the projected value iteration method

Φr`+1 = ΠT (λ)
µ (Φr`),

which after some calculation can be written as

Φr`+1 = Φ
(
r` − (Φ′ΞΦ)−1

(
C(λ)r` − d(λ))

)
,

or equivalently, since Φ has full rank, as

r`+1 = r` − (Φ′ΞΦ)−1
(
C(λ)r` − d(λ)

)
;

10



cf. Eq. (3.11)-(3.12) with γ = 1.

Note that the matrix inversion in Eq. (3.12) is not so onerous, because it can be formed incrementally,
with a rank-one correction as each sample becomes available. On the other hand, contrary to LSTD(λ) [and
similar to TD(λ)], the LSPE(λ) method (3.11)-(3.12) requires that ΠT (λ)

µ be a contraction for convergence.
Indeed if the simulation is performed using the steady-state distribution ξµ, it can be shown that ΠT (λ)

µ is a
contraction, but if the simulation is performed using a mixture/off-policy distribution (3.3) for the purpose
of exploration-enhancement, the contraction property may be lost and repeated iterations of the form (3.11)
may diverge.

We finally note that in iteration (3.11) the underlying assumption is that we update r as simulation
samples are collected and used to form ever improving approximations to C and d. An alternative is to
use batch simulation, like in LSTD: first simulate to obtain C

(λ)
t , d(λ)

t , and Gt, and then solve the system
C

(λ)
t r = d

(λ)
t iteratively rather than through the direct matrix inversion (3.9), by using any number of

iterations of the type (3.11). In fact, we may use only one iteration, in which case the method takes the
form

r1 = r0 − γGt
(
C

(λ)
t r0 − d(λ)

t

)
. (3.13)

A single (or very few) iterations may be sufficient if λ is close to 1, since then the contraction modulus of
ΠT (λ)

µ is close to 0 (see e.g., [BeT96], Lemma 6.6, or [Ber07], Prop. 6.3.3), so a single iteration with ΠT (λ)
µ is

very effective, yielding a vector that is close to its fixed point. We will return to this variant of the method
later.

3.2 Comparison of LSTD(λ) and LSPE(λ)

There has been speculation about the relative merits of LSTD(λ) and LSPE(λ). Generally speaking, it is
difficult to reach definitive conclusions, as there are several complex factors to consider, such as the length
of the simulation sequence (i0, . . . , it), and the potential near-singularity of C(λ), which affects the error in
the matrix inversion in the LSTD(λ) formula (3.9). As an illustration, consider a few different situations:

(a) Assume, as an idealization, that an infinite number of samples is collected. Then both methods yield
in the limit the same result, the fixed point of the projected equation J = ΠT (λ)

µ J. However, in contrast
to LSTD(λ), in order to guarantee convergence, LSPE(λ) requires that ΠT (λ)

µ is a contraction, which
interferes with the freedom to do exploration, as discussed earlier.

(b) Assume that C(λ) is invertible, but is nearly singular. Then the matrix inversion in the LSTD(λ)
formula (3.9) may require a very large number of samples to yield a reasonably accurate solution of
C(λ)r = d(λ).† To correct the sensitivity of LSTD(λ) to simulation noise, it may be necessary to turn

† It is well-known from fundamental error analyses of linear equation solvers that small errors in a nearly singular

matrix C(λ) will cause large errors in the solution of C(λ)r = d(λ). Near-singularity of C(λ) may be due either to

the columns of Φ being nearly linearly dependent or to the matrix Ξ(I − αP (λ)) being nearly singular [cf. Eq. (3.7)].

Near-linear dependence of the columns of Φ will not affect the error in the solution of the high-dimensional projected

equation, which can be written as ΦC(λ)r = Φd(λ). The reason is that this error depends only on the subspace S and

not its representation in terms of the matrix Φ. In particular, if we replace Φ with a matrix ΦB where B is an s× s
invertible scaling matrix, the subspace S will be unaffected and the error in the solution of the projected equation

will also be unaffected. On the other hand, near singularity of the matrix I−αP (λ) may affect significantly the error.

Note that I − αP (λ) is nearly singular in the case where α is very close to 1, or in the corresponding undiscounted
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it into an iterative method through some form of regularization, which then brings it close to a form of
LSPE(λ) (see [Ber09], [WPB09], [Ber11a], [Ber11b], [Ber11c] for such regularization methods and their
connection to LSPE). Of course, the situation becomes even more complex if C(λ) is singular, perhaps
due to inadvertent rank deficiency of Φ (see [WaB11a], [WaB11b] for a discussion of this possibility).

(c) When LSTD(λ) and LSPE(λ) are embedded within a PI framework, the number of samples collected
using any one policy is often relatively small. Then the behavior of the two methods becomes very
complicated, and it is hard to reach any kind of reliable conclusion [Ber10]. Computational studies
indicate that LSPE(λ) being an iterative method, is less sensitive to the matrix inversion errors that
afflict LSTD(λ) in the presence of high simulation noise.

The preceding discussion is also relevant to the implementations of λ-PI to be discussed in the next section,
since these implementations bear strong relations to both LSTD(λ) and LSPE(λ).

4. LAMBDA-POLICY ITERATION WITH COST FUNCTION APPROXIMATION

We saw in Section 2 that the policy evaluation portion of λ-PI,

Jk+1 = T
(λ)
µk+1Jk, (4.1)

[cf. Eq. (1.5)] can be implemented in two ways:

(1) By computing T (λ)
µk+1Jk.

(2) By finding the fixed point of the mapping Wk [cf. Eq. (2.1)] through solution of the equation

J = WkJ, (4.2)

which can be viewed as Bellman’s equation associated with the current policy for the two equivalent
DP problems discussed in Section 2 [cf. Eq. (2.2)]: a λα-discounted problem and a stopping problem.

Let us now consider approximation of λ-PI on the subspace S = {Φr | r ∈ <s}. A natural possibility
is to introduce projection in the preceding approaches. In particular, we may approximate the λ-PI iterate
Jk+1 of Eq. (4.1) by Φrk+1 in three ways:

(a) By using a single projected value iteration for the original α-discounted problem,

Φrk+1 = ΠT (λ)
µk+1(Φrk). (4.3)

This is the original proposal of [BeI96]. It is the variant of the LSPE(λ) method (3.11)-(3.12), which
involves just the last iteration.

(b) By solving a projected version of Eq. (4.2), viewing it as Bellman’s equation for the λα-discounted
problem of Section 2, and setting rk+1 equal to its solution. This is the proposal of [ThS10a], and
implements by simulation the solution of this projected equation, essentially by applying LSTD(0) to
Bellman’s equation for the λα-discounted problem formulated in Section 2.

case where α = 1 and P is substochastic with some eigenvalues very close to 1. Large variations in the size of the

diagonal components of Ξ may also affect significantly the error, although this dependence is complicated by the fact

that Ξ appears not only in the formula C(λ) = Φ′Ξ(I − αP (λ))Φ but also in the formula d(λ) = Φ′Ξg(λ).
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(c) By solving a projected version of Eq. (4.2), viewing it as Bellman’s equation for the stopping problem
formulated in Section 2, and setting rk+1 equal to its solution.

In the following three subsections, we will describe three alternative implementations of λ-PI corre-
sponding to the possibilities (a)-(c) above. Of course when linear cost function approximation of the form
Φrk is used to represent Jk, the λ-PI method need not converge, and the cost vectors Jµk of the generated
policies typically oscillate within some suboptimality threshold from J∗. We do not address this issue, but
we note that related error bounds, which also apply to other forms of optimistic PI are given by Bertsekas
and Yu [BeY10a], Thiery and Scherrer [ThS10b], and Scherrer [Sch11].

4.1 The LSPE(λ) Implementation

A variant of the LSPE(λ) method (3.11)-(3.12) is to form batches of simulation samples and perform iteration
(3.11) at the end of each batch. In an extreme case, we treat the entire simulation trajectory (i0, . . . , it) as
a single simulation batch, and we perform a single iteration (3.11), for ` = t, yielding the method

rk+1 = rk −Gt
(
C

(λ)
t rk − d(λ)

t

)
, (4.4)

where Φrk is the approximate evaluation of the cost vector of the preceding policy µk [cf. Eq. (3.13)]. As
t→∞ and the simulation becomes exact in the limit, i.e.,

lim
t→∞

C
(λ)
t = C(λ), lim

t→∞
d

(λ)
t = d(λ),

and if Gt is given by the formula (3.12), it can be verified that

Φrk+1 → ΠT (λ)
µk+1(Φrk). (4.5)

Thus the method (4.4) with Gt given by Eq. (3.12) can be viewed as a simulation-based implementation of
Eq. (4.3), the projected version of λ-PI, which becomes exact in the limit as t → ∞. In practice of course
t is finite, and one may consider variants of the method, whereby multiple iterations of the form (4.4) are
performed, with each iteration using additional simulation samples.

We note a mathematically equivalent description of this method, which is given in terms of a least-
squares optimization (see [Ber07], Section 6.3.3 for a more detailed textbook account): we set

rk+1 = arg min
r∈<s

t∑
`=0

(
φ(i`)′r − φ(i`)′rk −

t∑
m=`

(λα)m−`q(im, im+1)

)2

, (4.6)

where q(im, im+1) is the temporal difference

q(im, im+1) = g
(
im, µk+1(im), im+1

)
+ αφ(im+1)′rk − φ(im)′rk, m = 0, . . . , t. (4.7)

In fact this is how the method was originally described in [BeI96] and [BeT96].

A positive aspect of this method is that it approximates directly ΠT (λ)
µk+1(Φrk), so it is not subject to

bias in the evaluation of the fixed point of Wk; cf. Eq. (4.5). However, in the form given here, the method
does not address the issue of exploration. Despite this fact, this implementation [in the form (4.6)] has been
successful in several challenging computational studies, including the one involving the game of tetris in the
original paper [BeI96] and some followup works, and a recent one by Foderaro et. al. [FRF11] involving the
game of pac-man, a benchmark problem of pursuit-evasion.
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4.2 λ-PI(0) - An Implementation Based on a Discounted MDP

This implementation, suggested and tested by Thiery and Scherrer [ThS10a], [ThS10b], is based on the fixed
point property of Jk+1 [cf. Prop. 2.1(b)]. It produces an approximation Φrk+1 to Jk+1 within the subspace
S, by solving the projected equation

Φr = ΠWk(Φr),

with Wk given by
WkJ = (1− λ)Tµk+1(Φrk) + λTµk+1J, J ∈ <n. (4.8)

We may find the solution rk+1 of this equation by using an LSTD(0)-like simulation approach. In particular,
rk+1 satisfies the orthogonality condition

Cr = d(k),

where
C = Φ′Ξ(I − λαPµk+1)Φ, d(k) = Φ′Ξ

(
gµk+1 + (1− λ)αPµk+1Φrk

)
,

so that
rk+1 = C−1d(k). (4.9)

We refer to this method as λ-PI(0) to distinguish it notationally from the method of the next subsection
(the name LSλPI was introduced for this method in [ThS10a]).

In a simulation-based implementation, the matrix C and the vector d(k) are approximated by estimates
Ct and dt(k). Thus this method does not require that ΠT (λ)

µk+1 is a contraction, and like LSTD, it can deal well
with the issue of exploration. The simulation samples need not depend on the policy µk+1 being evaluated, so
they can be generated only once within a PI process. On the other hand the objective of the implementation
is to approximate the next iterate of λ-PI, i.e., T (λ)

µk+1(Φrk), and it is not clear that it is doing this well. To
see this, suppose that the iteration (4.9), or equivalently Φrk+1 = ΠWk(Φrk), is repeated an infinite number
of times so it converges to a limit r̄, which must satisfy Φr̄ = ΠWk(Φr̄). Then using Eq. (4.8), we have

Φr̄ = (1− λ)ΠTµk+1(Φr̄) + λΠTµk+1(Φr̄),

which shows that Φr̄ = ΠTµk+1(Φr̄). Thus λ-PI(0) aims at r̄, which is the limit of TD(0) independent of
the value of λ. Indeed as λ→ 1, ΠWk tends to ΠTµk+1 [cf. Eq. (4.8)], so its fixed point Φrk+1 tends to the
fixed point of ΠTµk+1 , i.e., the limit of TD(0). It follows that while this implementation deals well with the
issue of exploration, it may be subject to significant bias-related error.

4.3 λ-PI(1) - An Implementation Based on a Stopping Problem

The third implementation is based on the property mentioned in Section 2: the fixed point equation J = WkJ

[or equivalently, Eq. (2.2)] is Bellman’s equation for the policy µk+1 in the context of a stopping problem.
Here there is an artificial termination state 0, and for all states j, there is probability 1−λ that a transition
to j will be followed by an immediate transition to state 0, with cost αJk(j), cf. Eq. (2.2). Note that if λ
is not too close to 1, the trajectories of this problem tend to be short, and in fact if λ = 0 all trajectories
consist of a single transition.

To compute an approximation Φrk+1 to the fixed point of Wk by using the stopping problem, we may
use any policy evaluation algorithm with cost function approximation over the subspace S = {Φr | r ∈ <s}.
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An interesting choice is to use the LSPE(1) method, which consists of a least squares fit of Φr to the
simulated costs of the trajectories of the stopping problem whose Bellman equation mapping is Wk. The use
of LSPE(1) not only involves minimum bias relative to all LSPE(ν) methods with ν ∈ [0, 1], but also leads
to a simple least squares implementation.

To this end, we introduce a simulation procedure, called geometric sampling , which departs from the
single infinitely long simulation trajectory format of the implementation of Section 4.1, and has the following
characteristics:

(a) It uses multiple relatively short simulation trajectories.

(b) The initial state of each trajectory is chosen essentially as desired, thereby allowing flexibility to generate
a richer mixture of state visits.

(c) The length of each trajectory is random and is determined by a λ-dependent geometric distribution [a
probability (1− λ)λ` that the number of transitions is `+ 1].

In particular, given the current representation Φrk of Jk and the current policy µk+1, we update
the parameter vector from rk to rk+1 after generating t simulated trajectories. The states of a trajectory
are generated according to the transition probabilities pij

(
µk+1(i)

)
, the transition cost is discounted by an

additional factor α with each transition, and following each transition to a state j, the trajectory is terminated
with probability 1− λ and with an extra cost αφ(i)′rk. Once a trajectory is terminated, an initial state for
the next trajectory is chosen according to a fixed probability distribution ζ0 =

(
ζ0(1), . . . , ζ0(n)

)
, and the

process is repeated. Note that the sequence of restart states need not depend on the policy being evaluated,
so that it can be simulated only once within a PI process. Of course, the simulated trajectories have to be
recalculated for each new policy. The details are as follows.

Let the mth trajectory, m = 1, . . . , t, have the form (i0,m, i1,m, . . . , iNm,m), where i0,m is the initial
state, and iNm,m is the state at which the trajectory is completed (the last state prior to termination). For
each state i`,m, ` = 0, . . . , Nm − 1, of the mth trajectory, the simulated cost is

c`,m(rk) = αNm−`φ(iNm,m)′rk +
Nm−1∑
q=`

αq−`g(iq,m, uq,m, iq+1,m), (4.10)

where
uq,m = µk+1(iq,m), m = 1, . . . , t, q = 0, . . . , Nm − 1.

Once the costs c`,m(rk) are computed for all states i`,m of the mth trajectory and all trajectories m = 1, . . . , t,
the vector rk+1 is obtained by a least squares fit of these costs:

rk+1 = arg min
r∈<s

t∑
m=1

Nm−1∑
`=0

(
φ(i`,m)′r − c`,m(rk)

)2
, (4.11)

cf. Eqs. (4.6)-(4.7). Equivalently, we can write the solution of the least squares problem explicitly as

rk+1 =

(
t∑

m=1

Nm−1∑
`=0

φ(i`,m)φ(i`,m)′
)−1 t∑

m=1

Nm−1∑
`=0

φ(i`,m)c`,m(rk). (4.12)

We refer to the resulting implementation as λ-PI(1).

Note the extreme special case when λ = 0. Then all the simulated trajectories consist of a single
transition, and there is a restart at every transition. This means that the simulation samples are from states
that are generated independently according to the restart distribution ζ0.
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Convergence of the Simulation Process

We will now show that in the limit, as t→∞, the vector rk+1 of Eq. (4.12) satisfies

Φrk+1 = Π̂T (λ)
µk+1(Φrk), (4.13)

where Π̂ denotes projection with respect to the weighted sup-norm ‖·‖ζ with weight vector ζ =
(
ζ(1), . . . , ζ(n)

)
,

where

ζ(i) =
ζ̂(i)∑n
j=1 ζ̂(j)

, i = 1, . . . , n, (4.14)

and

ζ̂(i) =
∞∑
`=0

ζ`(i),

with ζ`(i) being the probability of the state being i after ` transitions of a randomly chosen simulation
trajectory. This is the underlying norm in TD methods such as LSTD, LSPE, and TD, as applied to SSP
problems (see [BeT96], Section 6.3.4). Note that ζ(i) is the long-term occupancy probability of state i

during the simulation process. We assume that the restart distribution ζ0 is chosen so that ζ(i) > 0 for all
i = 1, . . . , n, implying that ‖ · ‖ζ is a legitimate norm [this is guaranteed if we require that ζ0(i) > 0 for all
i].

Indeed, let us view T `+1
µk+1J as the vector of total discounted costs over a horizon of (`+ 1) stages with

the terminal cost function being J , and write

T `+1
µk+1J = α`+1P `+1

µk+1J +
∑̀
q=0

αqP qµk+1gµk+1 ,

where Pµk+1 and gµk+1 are the transition probability matrix and cost vector, respectively, under µk+1. As
a result the vector T (λ)

µk+1J = (1− λ)
∑∞
`=0 λ

`T `+1
µk+1J can be expressed as

(
T

(λ)
µk+1J

)
(i) =

∞∑
`=0

(1− λ)λ`E

{
α`+1J(i`+1) +

∑̀
q=0

αqg
(
iq, µk+1(iq), iq+1

) ∣∣∣ i0 = i

}
, i = 1, . . . , n.

Thus
(
T

(λ)
µk+1J

)
(i) may be viewed as the expected value of the (`+ 1)-stages cost of policy µk+1 starting at

state i, with the number of stages being random and geometrically distributed with parameter λ [probability
of κ+1 transitions is (1−λ)λκ, κ = 0, 1, . . .]. It follows that the cost samples c`,m(rk) of Eq. (4.10), produced
by the simulation process described earlier, can be used to estimate

(
T

(λ)
µk+1(Φrk)

)
(i) for all i by Monte Carlo

averaging. The estimation formula is

Dt(i) =
1∑t

m=1

∑Nm−1
`=0 δ(i`,m = i)

·
t∑

m=1

Nm−1∑
`=0

δ(i`,m = i)c`,m(rk), (4.15)

where δ(i`,m = i) = 1 if i`,m = i and δ(i`,m = i) = 0 otherwise, and we have(
T

(λ)
µk+1(Φrk)

)
(i) = lim

t→∞
Dt(i), i = 1, . . . , n,

(see also the discussion on the consistency of Monte Carlo simulation for policy evaluation in [BeT96], Section
5.2).
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Let us now compare the λ-PI iteration (4.13) with the simulation-based implementation (4.12). Using
the definition of projection, Eq. (4.13) can be written as

rk+1 = arg min
r∈<s

n∑
i=1

ζ(i)
(
φ(i)′r −

(
T

(λ)
µk+1(Φrk)

)
(i)
)2

,

or equivalently

rk+1 =

(
n∑
i=1

ζ(i)φ(i)φ(i)′
)−1 n∑

i=1

ζ(i)φ(i)
(
T

(λ)
µk+1(Φrk)

)
(i). (4.16)

Let ζ̃(i) be the empirical relative frequency of state i during the simulation, given by

ζ̃(i) =
1

N1 + · · ·+Nt

t∑
m=1

Nm−1∑
`=0

δ(i`,m = i). (4.17)

Then the simulation-based estimate (4.12) can be written as

rk+1 =

(
t∑

m=1

Nm−1∑
`=0

φ(i`,m)φ(i`,m)′
)−1 t∑

m=1

Nm−1∑
`=0

φ(i`,m)c`,m(rk)

=

(
n∑
i=1

t∑
m=1

Nm−1∑
`=0

δ(i`,m = i)φ(i)φ(i)′
)−1 n∑

i=1

t∑
m=1

Nm−1∑
`=0

δ(i`,m = i)φ(i)c`,m(rk)

=

(
n∑
i=1

ζ̃(i)φ(i)φ(i)′
)−1 n∑

i=1

1
N1 + · · ·+Nt

· φ(i) ·
t∑

m=1

Nm−1∑
`=0

δ(i`,m = i)c`,m(rk)

=

(
n∑
i=1

ζ̃(i)φ(i)φ(i)′
)−1 n∑

i=1

∑t
m=1

∑Nm−1
`=0 δ(i`,m = i)

N1 + · · ·+Nt
· φ(i)·

· 1∑t
m=1

∑Nm−1
`=0 δ(i`,m = i)

·
t∑

m=1

Nm−1∑
`=0

δ(i`,m = i)c`,m(rk)

and finally, using Eqs. (4.15) and (4.17),

rk+1 =

(
n∑
i=1

ζ̃(i)φ(i)φ(i)′
)−1 n∑

i=1

ζ̃(i)φ(i)Dt(i). (4.18)

We can now compare the λ-PI iteration (4.16) and the simulation-based implementation (4.18). Since(
T

(λ)
µk+1(Φrk)

)
(i) = limt→∞Dt(i) and ζ(i) = limt→∞ ζ̃(i), we see that these two iterations asymptotically

coincide.

The expression (4.18) provides some insight on how λ-PI(1) approximates the λ-PI iteration (4.16) [or
equivalently Φrk+1 = Π̂T (λ)

µk+1(Φrk); cf. Eq. (4.13)]. Generally the simulation process of λ-PI(1) (many short
trajectories) involves more noise than the simulation process of the other implementations (a single long
trajectory), because the length of each simulation trajectory is random (exponentially distributed). This
can be seen from iteration (4.18), which involves considerable simulation noise due to the presence of ζ̃(i)
and Dt(i). However, we will argue that from a practical point of view much of this noise does not play a
significant role. To see this, first note that the deviation of ζ̃(i) from ζ(i), is not important since ζ̃(i) simply
redefines the projection norm. Next note that Dt(i) can be written as

Dt(i) =
∞∑
`=0

f̃`(i)Ẽ`(i), (4.19)
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where f̃`(i) and Ẽ`(i) are the following empirical averages over the entire simulation process:

(a) f̃`(i) is the empirical relative frequency of cost samples that start at state i, and correspond to tra-
jectories consisting of ` + 1 transitions. As t → ∞ it converges to (1 − λ)λ` based on the way the
simulation is structured.

(b) Ẽ`(i) is the Monte Carlo estimate of the cost of trajectories that start at state i, consist of ` + 1
transitions, and have terminal cost vector Φrk. As t→∞ it converges to T `+1

µk+1(Φrk)(i).

While both f̃`(i) and Ẽ`(i) contribute to the variance of Dt(i), only Ẽ`(i) has practical significance. To see
this note that based on Eq. (4.19), Dt(i) can also be viewed as an estimate of

T̃µk+1(Φrk)(i) =
∞∑
`=0

f̃`(i)T `+1
µk+1(Φrk)(i). (4.20)

Thus iteration (4.18) may also be viewed as a simulation-based implementation of the optimistic PI method

Φrk+1 = Π̃T̃µk+1(Φrk),

where Π̃ is projection with respect to the weighted sup-norm defined by ζ̃. From a practical point of view,
this iteration and the λ-PI iteration Φrk+1 = Π̂T (λ)

µk+1(Φrk) perform similarly: there is only a difference in
the projection norm (Π̃ rather than Π̂), and a difference in the weights of the terms T `+1

µk+1 [f̃`(i) rather than
(1− λ)λ`]; compare T̃µk+1(Φrk)(i) as given by Eq. (4.20) with

T
(λ)
µk+1(Φrk)(i) =

∞∑
`=0

(1− λ)λ`T `+1
µk+1(Φrk)(i),

the definition of T (λ)
µk+1 . Neither difference should affect significantly the quality of the obtained approximation

Φrk+1.

In conclusion, with the λ-PI(1) implementation (4.10)-(4.12), as t→∞, we obtain in the limit the λ-PI
iteration Eq. (4.13), with comparable performance degradation due to simulation noise as for the LSPE(λ)
implementation of Section 4.1. A key characteristic of the implementation is that it deals with the issue of
exploration flexibly and effectively. Since a trajectory of the stopping problem is completed at each transition
with the potentially large probability 1 − λ, a restart with a new initial state i0 is frequent and the length
of each of the simulated trajectories is relatively small. The restart mechanism can be used as a “natural”
form of exploration, by choosing appropriately the restart distribution ζ0 so that ζ(i) reflects a “substantial”
weight for all states i. Thus λ-PI(1) is like LSPE(λ) (Section 4.1), but with built-in exploration enhancement.
Compared to λ-PI(0) (Section 4.2) it involves reduced bias since it aims to find the limit point of TD(λ),
not TD(0). In particular, as λ→ 1, it produces an evaluation Φrk+1 that tends to the fixed point of TD(1),
i.e., the projection Π̂Jµk+1 .

4.4 Comparison with Alternative Approximate PI Methods

The preceding λ-PI implementations are in direct competition with approximate PI methods that use
LSTD(λ) for policy evaluation. A popular method, often referred to as LSPI (Lagoudakis and Parr [LaP03]),
can be simply described as approximate PI combined with LSTD(0) for policy evaluation. The LSPI and
λ-PI(0) methods have been compared in [ThS10a] in terms of four characteristics.
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(a) Bias: Both methods are subject to qualitatively similar bias [they aim to find the limit point of TD(0)].

(b) Sample efficiency : Both methods can reuse the same set of sample state trajectories over all policies. (In
the model-free case where Q-factors are approximated, again the set of sample state-control trajectories
is reusable.)

(c) Exploration: Both methods provide the same options for exploration, since the validity of these methods
does not depend on whether the simulation trajectories are obtained by using the current policy [in
fact these trajectories are reusable as per (b) above].

(d) Optimistic operation: Since λ-PI(0) has an iterative character (rk+1 depends on rk), it is less susceptible
to simulation noise and has an advantage over LSPI in the case where the number of samples per policy
is low. Indeed this assertion is made by Thiery and Scherrer [ThS10a] based on experimentation, who
also found that the effect of the choice of λ is more pronounced in this case.

Note that (b) and (c) above are the advantages of LSPI and λ-PI(0) over the LSPE(λ) implementation of
Section 4.1 (which in turn involves less bias because of the use of λ > 0, and also has an optimistic character).

Let us now compare λ-PI(1) with LSPI and λ-PI(0) in terms of the characteristics (a)-(d) above. It
has better bias characteristics as noted earlier. It has worse sample efficiency as it cannot reuse simulation
trajectories (it can only reuse the restart state sequence). It deals with exploration about as well, thanks
to the restart mechanism of the SSP formulation. Finally, like λ-PI(0), λ-PI(1) has an optimistic character,
and has a similar advantage over LSPI in this regard, cf. (d) above.

4.5 Exploration-Enhanced LSTD(λ) with Geometric Sampling

The geometric sampling idea underlying the λ-PI(1) implementation of Eqs. (4.10)-(4.12) may also be mod-
ified to obtain an exploration-enhanced version of LSTD(λ). In particular, we use the same simulation
procedure, and in analogy to Eq. (4.10) we define

c`,m(r) = αNm−`φ(iNm,m)′r +
Nm−1∑
q=`

αq−`g(iq,m, uq,m, iq+1,m).

We then obtain an approximation Φr̂ to the solution of the projected equation

Φr = Π̂T (λ)
µk+1(Φr),

[cf. Eq. (4.13)] by finding r̂ such that

r̂ = arg min
r∈<s

t∑
m=1

Nm−1∑
`=0

(
φ(i`,m)′r − c`,m(r̂)

)2
. (4.21)

By writing the optimality condition

t∑
m=1

Nm−1∑
`=0

φ(i`,m)
(
φ(i`,m)′r̂ − c`,m(r̂)

)
= 0

for the least squares minimization in Eq. (4.21) and solving for r̂, we obtain the following implementation
of LSTD(λ):

r̂ = Ĉ−1d̂, (4.22)
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where

Ĉ =
t∑

m=1

Nm−1∑
`=0

φ(i`,m)
(
φ(i`,m)− αNm−`φ(iNm,m)

)′
, (4.23)

and

d̂ =
t∑

m=1

Nm−1∑
`=0

φ(i`,m)
Nm−1∑
q=`

αq−`g(iq,m, uq,m, iq+1,m). (4.24)

For a large number of trajectories t, the exploration-enhanced LSTD(λ) method (4.21) [or equivalently
(4.22)-(4.24)] and λ-PI(1) [cf. Eq. (4.12)] yield similar results, particularly when λ ≈ 1. However, λ-PI(1)
has an iterative character (rk+1 depends on rk), so it is reasonable to expect that it is less susceptible to
simulation noise in an optimistic PI setting where the number of samples per policy is low.

As an example, when λ = 0, all the simulation trajectories consist of a single transition, so Nm = 1 for
all m = 1, . . . , t. Then, using Eqs. (4.23) and (4.24), the equation Ĉr = d̂ becomes

t∑
m=1

φ(i0,m)
(
φ(i0,m)− αφ(i1,m)

)′
r =

t∑
m=1

φ(i0,m)g(i0,m, u0,m, i1,m).

It yields the same vector r̂ = Ĉ−1d̂ as the LSTD(0) method that simulates t independent transitions ac-
cording to the restart distribution ζ0, rather than simulating a single long trajectory. In fact this is the
policy evaluation process in the LSPI method mentioned in Section 4.4. The geometric sampling procedure
described here allows exploration-enhancement for any λ.

5. CONCLUSIONS

We discussed a few implementations of λ-PI with linear cost function approximation, which have different
strengths and weaknesses with respect to dealing with the critical issues of bias and exploration. Out of the
three implementations, the one of Section 4.3, λ-PI(1), is new and seems capable of dealing well with both
issues, although it has worse sample complexity than the λ-PI(0) implementation of Section 4.2.

On the other hand, our discussion has been somewhat speculative, and our assessments, while relying on
past computational experience, still require supportive experimentation. Moreover, the λ-PI implementations
should be compared to other approximate PI methods based on projected equations, such as the exploration-
enhanced LSTD(λ) method for policy evaluation, discussed in Section 3, and the LSPI method discussed
in Section 4.4. A computational comparison of λ-PI(0) with this latter method is given in [ThS10a], and a
similar comparison with λ-PI(1) would be desirable.

Fundamentally, λ-PI(1) is based on geometric sampling, a new simulation idea for λ-methods that uses
multiple short trajectories with exploration-enhanced restart, rather than a single infinitely long trajectory.
This idea can also be applied to LSTD(λ), thereby obtaining a new exploration-enhanced version of this
method, which has been described in Section 4.5.
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