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Abstract

We consider minimization of the sum of a large number of convex functions, and we propose an incre-

mental aggregated version of the proximal algorithm, which bears similarity to the incremental aggregated

gradient and subgradient methods that have received a lot of recent attention. Under cost function differ-

entiability and strong convexity assumptions, we show linear convergence for a sufficiently small constant

stepsize. This result also applies to distributed asynchronous variants of the method, involving bounded

interprocessor communication delays.

We then consider dual versions of incremental proximal algorithms, which are incremental augmented

Lagrangian methods for separable equality-constrained optimization problems. Contrary to the standard

augmented Lagrangian method, these methods admit decomposition in the minimization of the augmented

Lagrangian, and update the multipliers far more frequently. Our incremental aggregated augmented La-

grangian methods bear similarity to several known decomposition algorithms, most of which, however, are

not incremental in nature: the augmented Lagrangian decomposition algorithm of Stephanopoulos and West-

erberg [StW75], and the related methods of Tadjewski [Tad89] and Ruszczynski [Rus95], and the alternating

direction method of multipliers (ADMM) and more recent variations. We compare these methods in terms

of their properties, and highlight their potential advantages and limitations.

We also address the solution of separable inequality-constrained optimization problems through the use

of nonquadratic augmented Lagrangians such as the exponential, and we dually consider a corresponding

incremental aggregated version of the proximal algorithm that uses nonquadratic regularization, such as an

entropy function. We finally propose a closely related linearly convergent method for minimization of large

differentiable sums subject to an orthant constraint, which may be viewed as an incremental aggregated

version of the mirror descent method.

1. INCREMENTAL GRADIENT, SUBGRADIENT, AND PROXIMAL METHODS

We consider optimization problems with a cost function that consists of additive components:

minimize F (x)
def
=

m∑
i=1

fi(x)

subject to x ∈ X,
(1.1)

† Dimitri Bertsekas is with the Dept. of Electr. Engineering and Comp. Science, and the Laboratory for Infor-

mation and Decision Systems, M.I.T., Cambridge, Mass., 02139.
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where fi : <n 7→ <, i = 1, . . . ,m, are convex real-valued functions, and X is a closed convex set. We focus

on the case where the number of components m is very large, and there is an incentive to use incremental

methods that operate on a single component fi at each iteration, rather than on the entire cost function F .

Problems of this type arise often in various practical contexts and have received a lot of attention recently.

Suitable algorithms include the incremental subgradient method (abbreviated IS), where a cost com-

ponent fik is selected at iteration k, and an arbitrary subgradient ∇̃fik(xk) of fik is used in place of a full

subgradient of F at xk:†

xk+1 = PX
(
xk − αk∇̃fik(xk)

)
, (1.2)

where αk is a positive stepsize, and PX(·) denotes projection on X. It is important here that all components

are taken up for iteration with equal long-term frequency, using either a cyclic or a random selection scheme.

Methods of this type and their properties have been studied for a long time, and the relevant literature,

beginning in the 60’s, is too voluminous to list here. The author’s survey [Ber10] discusses the history of this

algorithm, its convergence properties, and its connections with stochastic approximation methods. Generally,

a diminishing stepsize αk is needed for convergence, even when the components fi are differentiable. Moreover

the convergence rate properties are generally better when the index ik is selected by randomization over the

set {1, . . . ,m} than by a deterministic cyclic rule, as first shown by Nedić and Bertsekas [NeB01]; see also

[BNO03].

Another method, introduced by the author in [Ber10] and further studied in [Ber11], [Ber12], is the

incremental proximal method (abbreviated IP),

xk+1 ∈ arg min
x∈X

{
fik(x) +

1

2αk
‖x− xk‖2

}
. (1.3)

This method relates to the proximal algorithm (Martinet [Mar70], Rockafellar [Roc76a]) in the same way

that the IS method (1.2) relates to the classical nonincremental subgradient method. Similar to the IS

method, it is important that all components are taken up for iteration with equal long-term frequency. The

theoretical convergence properties of the IS and IP algorithms are similar, but it is generally believed that

IP is more robust, a property inherited from its nonincremental counterpart.

It turns out that the structures of the IS and IP methods (1.2) and (1.3) are quite similar. An important

fact in this regard is that the IP method (1.3) can be equivalently written as

xk+1 = PX
(
xk − αk∇̃fik(xk+1)

)
, (1.4)

† Throughout the paper, we will operate within the n-dimensional space <n with the standard Euclidean norm,

denoted ‖ · ‖. All vectors are considered column vectors and a prime denotes transposition, so x′x = ‖x‖2. The scalar

coordinates of an optimization vector such as x are denoted by superscripts, x = (x1, . . . , xn), while sequences of

iterates are indexed by subscripts. We use ∇̃f(x) to denote a subgradient of a convex function f at a vector x ∈ <n,

i.e, a vector such that f(z) ≥ f(x) + ∇̃f(x)′(z − x) for all z ∈ <n. The choice of ∇̃f(x) from within the set of all

subgradients at x will be clear from the context. If f is differentiable at x, ∇̃f(x) is the gradient ∇f(x).
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where ∇̃fik(xk+1) is a special subgradient of fik at the new point xk+1 (see Bertsekas [Ber10], Prop. 2.1,

[Ber11], Prop. 1, or [Ber15], Prop. 6.4.1). This special subgradient is determined from the optimality

conditions for the proximal maximization (1.3). For example if X = <n, we have

∇̃fik(xk+1) =
xk − xk+1

αk
,

which is consistent with Eq. (1.4). Thus determining the special subgradient ∇̃fik(xk+1) may be a difficult

problem, and in most cases it is preferable to implement the iteration in the proximal form (1.3) rather than

the projected form (1.4). However, the equivalent form of the IP iteration (1.4), when compared with the

IS iteration (1.2), suggests the close connection between the IS and IP iterations. In fact this connection

is the basis for a combination of the two methods to provide flexibility for the case where some of the cost

components fi are well suited for the proximal minimization of Eq. (1.3), while others are not; see [Ber10],

[Ber11], [Ber12].

Incremental Aggregated Gradient and Subgradient Methods

Incremental aggregated methods aim to provide a better approximation of a subgradient of the entire cost

function F , while preserving the economies accrued from computing a single component subgradient at each

iteration. In particular, the aggregated subgradient method (abbreviated IAS), has the form

xk+1 = PX

(
xk − αk

m∑
i=1

∇̃fi(x`i)

)
, (1.5)

where ∇̃fi(x`i) is a “delayed” subgradient of fi at some earlier iterate x`i . We assume that the indexes `i

satisfy

k − b ≤ `i ≤ k, ∀ i, k, (1.6)

where b is a fixed nonnegative integer. Thus the algorithm uses outdated subgradients from previous itera-

tions for the components fi, i 6= ik, and need not compute a subgradient of these components at iteration

k.

The IAS method was first proposed, to our knowledge, by Nedić, Bertsekas, and Borkar [NBB01]. It

was motivated primarily by distributed asynchronous solution of dual separable problems, similar to the ones

to be discussed in Section 2 (in a distributed asynchronous context, it is natural to assume that subgradients

are used with some delays). A convergence result was shown in [NBB01] assuming that the stepsize sequence

{ak} is diminishing, and satisfies the standard conditions

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞. (1.7)

This result covers the case of iteration (1.5) for the case X = <n; the more general case where X 6= <n

admits a similar analysis. We note that distributed algorithms that involve bounded delays in the iterates
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have a long history, and are common in various distributed asynchronous computation contexts, including

gradient-like and coordinate descent methods; see [BeT89], Sections 7.5-7.8.

Note a limitation of this iteration over the IS iteration: one has to store the past subgradients ∇̃fi(x`i),

i 6= ik. Moreover, whatever effect the use of previously computed subgradients has, it will not be fully

manifested until a subgradient of each component has been computed; this is significant when the number of

components m is large. We note also that there are other approaches for approximating a full subgradient

of the cost function, which aim at computational economies, such as ε-subgradient methods (see Nedić and

Bertsekas [NeB10] and the references quoted there), and surrogate subgradient methods (see Bragin et. al

[BLY15] and the references quoted there).

The IAS method (1.5) contains as a special case the incremental aggregated gradient method (abbre-

viated IAG) for the case where the components fi are differentiable:

xk+1 = xk − αk
m∑
i=1

∇fi(x`i), (1.8)

where `i ∈ [k−b, k] for all i and k. This method has attracted considerable attention thanks to a particularly

interesting convergence result. For the favorable case where the component gradients ∇fi are Lipschitz

continuous and F is strongly convex, it has been shown that the IAG method is linearly convergent to the

solution with a sufficiently small but constant stepsize αk ≡ α. This result was first given by Blatt, Hero,

and Gauchman [BHG08], for the case where the cost components fi are quadratic and the delayed indexes

`i satisfy certain restrictions that are consistent with a cyclic selection of components for iteration (see also

[AFB06]). The linear convergence result has been subsequently extended for nonquadratic problems and

for various forms of the method by several other authors, including Schmidt, Le Roux, and Bach [SLB13],

Mairal [Mai13], [Mai14], and Defazio, Caetano, and Domke [DCD14]. Several schemes have been proposed

to address the limitation of having to store the past subgradients ∇̃fi(x`i), i 6= ik. Moreover, several

experimental studies have confirmed the theoretical convergence rate advantage of the IAG method over the

corresponding incremental gradient method under the preceding favorable conditions. The use of arbitrary

indexes `i ∈ [k − b, k] in the IAG method was introduced in the paper by Gurbuzbalaban, Ozdaglar, and

Parillo [GOP15], who gave a simple linear convergence analysis.

Incremental Aggregated Proximal Algorithm

In this paper, we consider an incremental aggregated proximal algorithm (abbreviated IAP), which has the

form

xk+1 ∈ arg min
x∈X

fik(x) +
∑
i 6=ik

∇̃fi(x`i)′(x− xk) +
1

2αk
‖x− xk‖2

 , (1.9)

where ∇̃fi(x`i) is a “delayed” subgradient of fi at some earlier iterate x`i . We assume that the indexes `i
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satisfy the boundedness condition `i ∈ [k − b, k], cf. Eq. (1.6). Intuitively, the idea is that the term∑
i6=ik

∇̃fi(x`i)′(x− xk)

in the proximal minimization (1.9) is a linear approximation to the term∑
i 6=ik

fi(x)

[minus the constant
∑
i 6=ik fi(xk)], which would be used in the standard proximal algorithm

xk+1 ∈ arg min
x∈X

{
F (x) +

1

2αk
‖x− xk‖2

}
. (1.10)

It is straightforward to verify the following equivalent form of the IAP iteration (1.9):

xk+1 ∈ arg min
x∈X

{
fik(x) +

1

2αk
‖x− zk‖2

}
, (1.11)

where

zk = xk − αk
∑
i 6=ik

∇̃fi(x`i). (1.12)

In this form the algorithm is executed as a two-step process: first use xk and preceding subgradients to

compute zk via Eq. (1.12), and then execute an IP iteration starting from zk. Note a limitation of this

iteration over the IP iteration, which is shared with other incremental aggregated methods: to keep updating

the vector zk, one has to store the past subgradients ∇̃fi(x`i), i 6= ik.

Similar to the IP iteration (1.4), the IAP iteration (1.9) and its equivalent form (1.11)-(1.12) can be

written as

xk+1 = PX
(
zk − αk∇̃fik(xk+1)

)
, (1.13)

so when executing the iteration, we typically can obtain the subgradient ∇̃fik(xk+1), which can be used in

subsequent IAP iterations. For example, in the unconstrained case where X = <n, from Eq. (1.13), we see

that

∇̃fik(xk+1) =
zk − xk+1

αk
.

It is possible to prove various convergence results for the IAP iteration (1.9), or its equivalent forms

(1.11)-(1.12) and (1.12)-(1.13), for the case where the stepsize αk is diminishing and satisfies the standard

conditions (1.7). These results are in line with similar results for the IP method, given in [Ber10], [Ber11],

and for the IAS method (1.5), given in [NBB01]. Since the difference between the IAP and IAS methods

is the use of ∇̃fik(xk+1) in IAP in place of ∇̃fik(x`ik
) in IAS, intuitively, for a diminishing stepsize, the

asymptotic performance of the two methods should be similar, and indeed the convergence proofs for the

two methods are fairly similar, under comparable assumptions. We will thus not go into this convergence

analysis.
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Incremental Aggregated Proximal Algorithm for Unconstrained Problems

In the unconstrained case where X = <n and the component functions fi are differentiable, the IAP iteration

(1.13) can be written as

xk+1 = xk − αk

∇fik(xk+1) +
∑
i6=ik

∇fi(x`i)

 . (1.14)

In this case, one may expect similar convergence behavior for the IAP and IAG methods, under favorable

conditions which allow the use of a constant stepsize αk ≡ α. In particular, we prove the following for the

IAP method.

Proposition 1.1: Assume that X = <n and that the functions fi are convex and differentiable,

and satisfy ∥∥∇fi(x)−∇fi(z)
∥∥ ≤ Li‖x− z‖, ∀ x, z ∈ <n,

for some constants Li. Assume further that the function F =
∑m
i=1 fi is strongly convex with unique

minimum denoted x∗. Then there exists α > 0 such that for all α ∈ (0, α], the sequence {xk} generated

by the IAP iteration (1.14) with constant stepsize αk ≡ α converges to x∗ linearly, in the sense that

‖xk − x∗‖ ≤ γρk for some scalars γ > 0 and ρ ∈ (0, 1), and all k.

The proof, given in Section 3 relies on the similarity of the iterations (1.14) and (1.8) [the use of the

term ∇fik(xk+1) in place of the term ∇fik(x`ik
)]. A key idea is to view the IAP iteration (1.14) as a gradient

method with errors in the calculation of the gradient, i.e.,

xk+1 = xk − αk
(
∇F (xk) + ek

)
, (1.15)

where ∇F (xk) =
∑m
i=1∇fi(xk), and

ek = ∇fik(xk+1)−∇fik(xk) +
∑
i 6=ik

(
∇fi(x`i)−∇fi(xk)

)
, (1.16)

and then to appropriately bound the size of the errors ek. This is similar to known lines of convergence

proofs for gradient and subgradient methods with errors. The proof of Section 3 applies also to a diagonally

scaled version of IAP, where a separate but constant stepsize is used for each coordinate.

We note that the line of proof of Prop. 1.1 does not readily extend to the constrained case when X 6= <n,

nor is it clear whether and under what conditions linear convergence can be proved. In Section 4, however,

we will consider an incremental aggregated proximal algorithm that uses a nonquadratic regularization term

and seems to cope better with the case of nonnegativity constraints, i.e., X = {x | x ≥ 0}.

6



We finally return to the similarity of the IAP method (1.9) with the IAS method (1.5), and note that

the two methods admit similar distributed asynchronous implementations, which was described in the paper

[NBB01]. In this context, we have a central processor that executes the proximal iteration (1.9) for some

selected component fik , while other processors compute subgradients for other components fi at points x`i ,

which are supplied by the central processor. These subgradients involve a “delay” that may be unpredictable,

hence the asynchronous character of the computation.

Local Versions of Proximal Algorithms

While the analysis of this paper requires that fi and X are convex, there is a straightforward way to extend

our incremental proximal methods to nonconvex problems involving twice differentiable functions, which we

will describe briefly. The idea is to use a local version of the proximal algorithm, proposed in the author’s

paper [Ber79] and based on a local version of the Fenchel duality framework given in [Ber78]. The algorithm

applies to the problem
minimize f(x)

subject to g(x) = 0,
(1.17)

where f : <n 7→ < and g : <n 7→ <r are twice continuously differentiable functions, such that f is “locally

convex” over the set
{
x | g(x) = 0

}
(this is defined in terms of assumptions that relate to second order

sufficiency conditions of nonlinear programming; see [Ber78], [Ber79]). The local proximal algorithm has the

form

xk+1 ∈ arg min
g(x)=0

{
f(x) +

1

2αk
‖x− xk‖2

}
, (1.18)

where αk is sufficiently small to ensure that the function minimized in Eq. (1.18) is convex over <n [not just

locally over the set
{
x | g(x) = 0

}
]. A Newton-like version of this algorithm was also given in [Ber79].

There is an incremental version of the local proximal iteration (1.18) for problems involving sums of

functions. In particular, consider the problem

minimize

m∑
i=1

fi(x)

subject to g(x) = 0,

(1.19)

where fi : <n 7→ < and g : <n 7→ <r are twice continuously differentiable functions, such that each fi is

“locally convex” over the set
{
x | g(x) = 0

}
, for all i. This incremental local proximal iteration is

xk+1 ∈ arg min
g(x)=0

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (1.20)

where ik is the index of the cost component that is iterated on. One may also consider an aggregated form

of this incremental iteration. The convergence properties of these algorithms are an interesting subject for

investigation, which lies, however, outside the scope of the present paper.
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There is also another way to combine local proximal and incremental ideas for the case of the (non-

convex) separable problem in the vector x = (x1, . . . , xm),

minimize f(x)
def
=

m∑
i=1

fi(xi)

subject to g(x)
def
=

m∑
i=1

gi(xi) = 0,

(1.21)

where fi : <ni 7→ < and gi : <ni 7→ <r are twice continuously differentiable functions, and are such that

the problem admits a solution-Lagrange multiplier pair (x∗, λ∗) satisfying standard second order sufficiency

conditions. In this approach, also developed in [Ber78], [Ber79], the problem (1.21) is converted to the

equivalent problem

minimize φγ(z)
def
= min

g(x)=0

{
f(x) +

1

2γ
‖x− z‖2

}
subject to z ∈ <n1+···+nm ,

(1.22)

where γ is sufficiently small so that for fixed z, f(x) + 1
2γ ‖x − z‖2 is convex in x locally, for all x in a

suitably small neighborhood of x∗, i.e., γ should be such that 1
γ I +∇2f(x∗) is positive definite. Since the

minimization problem (1.22), which defines φγ(z), is separable of the form

minimize

m∑
i=1

(
fi(xi) +

1

2γ
‖xi − zi‖2

)

subject to x ∈ <n1+···+nm ,
m∑
i=1

gi(xi) = 0,

(1.23)

and locally convex in x, for fixed z and suitably small values of γ, it can be solved using the augmented

Lagrangian-based methods of the next section. Denoting x(z, γ) the optimal solution of this problem for

given z and γ, it is shown in [Ber79] (Prop. 2.1) (see also [Ber78], Prop. 2) that φγ is differentiable and

∇φγ(z) =
1

γ

(
z − x(z, γ)

)
.

Thus the gradient algorithm

zk+1 = zk − γ∇φγ(zk), (1.24)

can be written as zk+1 = x(zk, γ) or equivalently, using Eqs. (1.22) and (1.23), in the (local) proximal form

xk+1 ∈ arg min∑m

i=1
gi(x

i)=0

{
m∑
i=1

(
fi(xi) +

1

2γ
‖xi − xik‖2

)}
. (1.25)

Note that the above minimization is amenable to decomposition, including solution using the incremental

aggregated augmented Lagrangian and ADMM methods of the next section, assuming γ is sufficiently small to

induce the required amount of convexification to make problem (1.25) convex (locally within a neighborhood

of x∗).

8



The convergence properties of this algorithm are developed in [Ber79], based on a local theory of

conjugate functions and Fenchel duality developed in [Ber78]. We refer to these papers for a discussion of

the local aspects of the minimization (1.25), as well as for the implementation of the Newton iteration

zk+1 = zk −
(
∇2φγ(zk)

)−1∇φγ(zk), (1.26)

in analogy with the gradient method (1.24). A further analysis is again outside the scope of the present

paper, and is an interesting subject for investigation.

2. INCREMENTAL AUGMENTED LAGRANGIAN METHODS

A second objective of this paper is to consider the application of the IP and IAP methods in a dual setting,

where they take the form of incremental augmented Lagrangian algorithms for the separable constrained

optimization problem

minimize

m∑
i=1

hi(yi)

subject to yi ∈ Yi, i = 1, . . . ,m,

m∑
i=1

(Aiyi − bi) = 0,

(2.1)

as shown in [Ber15], Section 6.4.3. Here hi : <ni 7→ < are convex functions (ni is a positive integer, which

may depend on i), Yi are nonempty closed convex subsets of <ni , Ai are given r × ni matrices, and bi ∈ <r

are given vectors. The optimization vector is y = (y1, . . . , ym), and our objective is to consider algorithms

that allow decomposition in the minimization of the augmented Lagrangian, so that m separate augmented

Lagrangian minimizations are performed, each with respect to a single component yi. Note that the problem

(2.1) is unaffected by redefinition of the scalars bi, as long as
∑m
i=1 bi is not changed. It may be beneficial

to adjust the scalars bi so that the residuals Aiyi − bi are small near the optimal, and this may in fact be

attempted in the course of some algorithms as a form of heuristic.

Following a standard analysis, the dual function for problem (2.1) is given by

Q(λ) = inf
yi∈Yi, i=1,...,m

{
m∑
i=1

(
hi(yi) + λ′(Aiyi − bi)

)}
, (2.2)

where λ ∈ <r is the dual vector. By decomposing the minimization over the components yi, Q can be

expressed in the additive form

Q(λ) =

m∑
i=1

qi(λ),

where qi is the concave function

qi(λ) = inf
yi∈Yi

{
hi(yi) + λ′(Aiyi − bi)

}
, i = 1, . . . ,m. (2.3)
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Dual Gradient-Like Methods for Separable Problems

Assuming that the dual function components qi are real-valued (which is true for example if Yi is compact),

the dual function Q(λ) can be minimized with the classical subgradient method.† This method takes the

form

λk+1 = λk + αk

m∑
i=1

∇̃qi(λk), (2.4)

where αk > 0 is the stepsize and the subgradients ∇̃qi(λk) are obtained as

∇̃qi(λk) = Aiyik+1 − bi, i = 1, . . . ,m,

with all components yi updated according to

yik+1 ∈ arg min
yi∈Yi

{
hi(yi) + λ′k(Aiyi − bi)

}
, i = 1, . . . ,m.

The additive form of the dual function Q makes it suitable for application of incremental methods,

including the IAS method described in Section 1, which in fact was proposed in [NBB01] with the separable

problem (2.1) in mind. In the case where the components qi are differentiable [which is true if the infimum

in the definition (2.3) is attained uniquely for all λ], one may also use the IAG method with a constant

but sufficiently small stepsize. This is an incremental aggregated version of a classical dual gradient method

proposed in the 60s and often attributed to Everett [Eve63]. It takes the form

λk+1 = λk + α

∇qik(λk) +
∑
i 6=ik

∇qi(λ`i)

 ; (2.5)

cf. Eq. (1.8). The gradient of the dual function component qi is given by

∇qi(λ) = Aiyi(λ)− bi,

where yi(λ) is the minimizer over Yi of

fi(yi) + λ′Aiyi,

which is assumed to be unique for differentiability of qi. By streamlining the computations using the preceding

relations, we see that the iteration has the following form.

† In the case where qi is not real-valued, the dual function can be maximized over the set ∩m
i=1Λi, where Λi ={

λ | qi(λ > −∞
}

. This can be done by using incremental constraint projection methods involving projection or

proximal maximization over a single set Λi at a time. Methods of this type have been proposed in [Ber11], [Ned11],

[WaB13], [WaB15], but their discussion is beyond the scope of the present paper.
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Incremental Aggregated Dual Gradient Iteration (IADG)

Select a component index ik, and update the single component yik according to

y
ik
k+1 ∈ arg min

yik∈Yik

{
hik(yik) + λ′kAiky

ik
}
, (2.6)

while keeping the others unchanged, yik+1 = yik for all i 6= ik. Then update λ according to

λk+1 = λk + α

Aikyikk+1 +
∑
i6=ik

Aiyi`i − b

 . (2.7)

The convergence properties of the method are governed by the known results for the IAG method,

which were noted in Section 1. In particular, we obtain linear convergence with a constant sufficiently small

stepsize α, assuming Lipschitz continuity of ∇qi and strong convexity of Q, and that the long-term frequency

of updating yi is the same for all i. Note, however, that this linear convergence result cannot be used when

the primal problem (2.1) has additional convex inequality constraints, because then the corresponding dual

problem involves nonnegativity constraints.

Augmented Lagrangian-Based Algorithms for Separable Problems

The nonincremental and incremental subgradient and gradient methods just described are convenient for the

purposes of decomposition, but their convergence properties tend to be fragile. On the other hand, the more

stable augmented Lagrangian methods have a major drawback: when a quadratic penalty term is added to

the Lagrangian function, the resulting augmented Lagrangian

m∑
i=1

(
hi(yi) + λ′(Aiyi − bi)

)
+
αk
2

∥∥∥∥∥
m∑
i=1

(Aiyi − bi)

∥∥∥∥∥
2

is not separable any more, and is not amenable to minimization by decomposition. This is a well-known

limitation of the augmented Lagrangian approach that has been addressed by a number of authors with

various algorithmic proposals, which we will now survey.

The first proposal of this type was the paper by Stephanopoulos and Westerberg [StW75], which was

based on enforced decomposition: minimizing the augmented Lagrangian separately with respect to each

component vector yi, while holding the other components fixed at some estimated values. Minimization over

the components yi is followed by a multiplier update (using the standard augmented Lagrangian formula).
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The decomposition method of [StW75] attracted considerable attention and motivated further research,

including the similarly structured methods by Tadjewski [Tad89] and by Ruszczynski [Rus95], which include

convergence analyses and give references to earlier works. Our incremental aggregated proximal algorithm

bears similarity with the methods of [StW75], [Tad89], and [Rus95]. We note, however, that the methods

of [StW75] and [Tad89] were motivated by nonconvex separable problems for which there is a duality gap,

while our analysis requires a convex programming structure, where there is no duality gap. The method of

[Rus95] is applied to convex separable problems, including linear programming.

Another method for convex separable problems that uses augmented Lagrangian minimizations is

given by Deng, Lai, Peng, and Yin [DLP14], who give several related references, including the paper by

Chen and Teboulle [ChT94]. The method is based on the use of primal proximal terms in the augmented

Lagrangian (in addition to the quadratic penalty term). This is in the spirit of Rockafellar’s proximal

method of multipliers [Roc76b], and involves two separate penalty parameters, which for convergence should

satisfy certain restrictions. The papers by Hong and Luo [HoL13], and Robinson and Tappenden [RoT15]

also propose algorithms that use primal proximal terms and two penalty parameters, but differ from the

algorithm of [DLP14] in that they update the primal variables in Gauss-Seidel rather than Jacobi fashion,

while requiring additional assumptions (see also Dang and Lan [DaL15] for a related algorithm). Gauss-

Seidel updating is somewhat similar to the incremental mode of iteration of this paper, and based on the

results of experiments in [WHM13] and [RoT15], it appears to be beneficial.

A different possibility to deal with nonconvex separable problems is based on the convexification pro-

vided by the local proximal algorithm that was discussed at the end of the preceding section. Its application

to nonconvex separable problems is described in [Ber79]; see also Tanikawa and Mukai [TaM85], who proposed

a method that aims at improved efficiency relative to the approach of [Ber79]. A discussion of additional

proposals of decomposition methods that use augmented Lagrangians is given in the recent paper by Hamdi

and Mishra [HaM11].

Still another approach that has been used to exploit the structure of the separable problem (2.1) is

the alternating direction method of multipliers (ADMM), a popular method for convex programming, first

proposed by Glowinskii and Morocco [GIM75], and Gabay and Mercier [GaM76], and further developed by

Gabay [Gab79], [Gab83]. This method applies to the problem

minimize f1(x) + f2(z)

subject to x ∈ <n, z ∈ <m, Ax = z,
(2.8)

where f1 : <n 7→ (−∞,∞] and f2 : <m 7→ (−∞,∞] are closed convex functions, and A is a given m × n

matrix. The method is better suited than the augmented Lagrangian method for exploiting special structures,

including separability, and is capable of decoupling the vectors x and z in the augmented Lagrangian

f1(x) + f2(z) + λ′(Ax− z) +
α

2
‖Ax− z‖2.
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For a discussion of the properties and the many applications of the method, we refer to its extensive literature,

including the books [BeT89], Section 3.4.4, [Ber15], Section 5.4, and [BPC11], which give many references.

The form of the ADMM for separable problems to overcome the coupling of variables in the augmented

Lagrangian minimization was first derived in Bertsekas and Tsitsiklis [BeT89], Section 3.4, pp. 249-254 (see

also [Ber15], Section 5.4.2). We will describe the form of this specialized ADMM later in this section.

We will now consider the incremental proximal methods IP [cf. Eq. (1.3)] and IAP [cf. Eq. (1.9)] for

maximizing the dual function
∑m
i=1 qi(λ). Taking into account the concavity of the components qi, the IP

method takes the form

λk+1 ∈ arg max
λ∈<r

{
qik(λ)− 1

2αk
‖λ− λk‖2

}
, (2.9)

where ik is the index of the component chosen for iteration and αk is a positive parameter. This method was

given in [Ber15], Section 6.4.3, where it was shown that it can be implemented through the use of decoupled

augmented Lagrangian minimizations, each involving a single component vector yi. The IAP method takes

the form

λk+1 ∈ arg max
λ∈<r

qik(λ) +
∑
i 6=ik

∇̃qi(λ`i)′(λ− λk)− 1

2αk
‖λ− λk‖2

 , (2.10)

and has not been considered earlier within the dual separable constrained optimization context of this section.

The convergence results noted in Section 1 apply to this method. In particular, by Prop. 1.1, the IAP method

(2.10) is convergent with a sufficiently small constant stepsize, assuming that each qi is differentiable with

Lipschitz continuous gradient and Q is strongly concave. Of course, the differentiability of qi is a restrictive

assumption, and it amounts to attainment of the minimum at a unique point yi ∈ Yi in the definition (2.3)

of qi(λ) for all λ ∈ <r.

We will now describe how the incremental proximal methods IP and IAP can be implemented in terms

of augmented Lagrangian minimizations, which decompose with respect to components yi and have an

incremental character. To this end, we will review the well-known Fenchel duality relation between proximal

and augmented Lagrangian iterations, given first by Rockafellar [Roc73], [Roc76b], and subsequently in many

sources, including the author’s monograph and textbook accounts [Ber82], Chapter 5, and [Ber15], Section

5.2.1.

Duality Between Proximal and Augmented Lagrangian Iterations

Given a proper convex function P : <r 7→ (−∞,∞], let Q : <r 7→ [−∞,∞) be the closed proper concave

function defined by†

Q(λ) = inf
u∈<r

{
P (u) + λ′u

}
. (2.11)

† Here and later, for concave functions Q, we use terminology used for convex functions as applied to −Q.

13



This is a conjugacy relation, since Q(λ) = −P ?(−λ), where P ? is the conjugate convex function of P .

Moreover, if P is closed, it can be recovered from Q using the conjugacy theorem,

P (u) = P ??(u) = sup
λ∈<r

{
λ′u+Q(−λ)

}
, (2.12)

where P ?? is the conjugate convex function of P ? (see, e.g., [Ber09], Prop. 1.6.1).

A key fact, assuming that P is closed, is that the proximal iteration

λk+1 ∈ arg max
λ∈<r

{
Q(λ)− 1

2αk
‖λ− λk‖2

}
, (2.13)

can be equivalently implemented in two steps as

uk+1 ∈ arg min
u∈<r

{
P (u) + λ′ku+

αk
2
‖u‖2

}
, (2.14)

followed by

λk+1 = λk + αkuk+1; (2.15)

see, e.g., [Ber15], Section 5.2.1. Moreover, uk+1 is a subgradient of Q at λk+1:

uk+1 = ∇̃Q(λk+1). (2.16)

These relations are shown by straightforward application of the Fenchel duality theorem to the maximization

of Eq. (2.13), which involves the sum of the concave functions Q and −(1/2αk)‖λ− λk‖2. The closedness of

P is used both to ensure that the duality relation (2.12) holds, and to guarantee that the minimum in Eq.

(2.14) is attained. Note that Eq. (2.14) has the form of an augmented Lagrangian minimization relating to

the (somewhat contrived) problem of minimizing P subject to the equality constraint u = 0.

Augmented Lagrangian Method

We will now translate the duality between the proximal and augmented Lagrangian iterations just described

to the constrained optimization context, setting the stage for using this duality in an incremental context.

Consider a generic convex programming problem of the form

minimize H(y)

subject to y ∈ Y, Ay − b = 0,
(2.17)

where H : <n 7→ < is a convex function, Y is a convex set, A is an r × n matrix, and b ∈ <r. Consider also

the corresponding primal and dual functions

P (u) = inf
y∈Y,Ay−b=u

H(y), Q(λ) = inf
y∈Y

{
H(y) + λ′(Ay − b)

}
,
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which are convex and concave, respectively. We assume that P is closed and proper, and that the optimal

value of the problem is finite, so that Q is also closed proper and concave, and there is no duality gap (see

[Ber09], Section 4.2).

There is a well-known relation between the primal and dual functions. In particular, Q has the equiv-

alent form

Q(λ) = inf
u∈<r

inf
y∈Y,Ay−b=u

{
H(y) + λ′(Ay − b)

}
= inf
u∈<r

{
P (u) + λ′u

}
,

so P and Q satisfy the conjugacy relation (2.11). Based on the preceding discussion [cf. (2.11)-(2.16)], it

follows that the proximal iteration (2.13) can be equivalently written as the two-step process (2.14)-(2.15)

uk+1 ∈ arg min
u∈<r

{
P (u) + λ′ku+

αk
2
‖u‖2

}
, (2.18)

followed by

λk+1 = λk + αkuk+1. (2.19)

Moreover, from Eqs. (2.15) and (2.16), we have

uk+1 =
λk+1 − λk

αk
= ∇̃Q(λk+1). (2.20)

We will now write the iteration (2.18)-(2.19) in terms of the augmented Lagrangian, and obtain the

classical (first order) augmented Lagrangian method. Using the definition of the primal function P , we see

that the minimization in Eq. (2.18) can be written as

inf
u∈<r

{
P (u) + λk

′u+
αk
2
‖u‖2

}
= inf
u∈<r

{
inf

y∈Y,Ay−b=u

{
H(y)

}
+ λk

′u+
αk
2
‖u‖2

}
= inf
u∈<r

inf
y∈Y,Ay−b=u

{
H(y) + λ′k(Ay − b) +

αk
2
‖Ay − b‖2

}
= inf
y∈Y

{
H(y) + λ′k(Ay − b) +

αk
2
‖Ay − b‖2

}
= inf
y∈Y

Lαk(y, λk),

where for any α > 0, Lα is the augmented Lagrangian function

Lα(y, λ) = H(y) + λ′(Ay − b) +
α

2
‖Ay − b‖2, y ∈ <n, λ ∈ <r. (2.21)

From the preceding calculation it also follows that for any yk+1 ∈ Y that minimizes the augmented La-

grangian over Y :

yk+1 ∈ arg min
y∈Y

Lαk(y, λk), (2.22)

we have uk+1 = Ayk+1 − b, and the iteration (2.19) can be equivalently written as the multiplier iteration

λk+1 = λk + αk(Ayk+1 − b). (2.23)
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This is precisely the (first order) augmented Lagrangian method. It is equivalent to the proximal iteration

λk+1 ∈ arg max
λ∈<r

{
Q(λ)− 1

2αk
‖λ− λk‖2

}
,

[cf. Eq. (2.13)]. In view of Eqs. (2.20) and (2.23), it can also be written in the gradient-like form

λk+1 = λk + αk∇̃Q(λk+1), (2.24)

where ∇̃Q(λk+1), the special subgradient of Q at λk+1, is given by

∇̃Q(λk+1) = Ayk+1 − b. (2.25)

Note that the minimizing yk+1 in Eq. (2.22) need not exist or be unique. Its existence must be assumed

in some way, e.g., by assuming that H has compact level sets. As an example, it can be verified that for

the two-dimensional/single constraint problem of minimizing H(y) = ey
1
, subject to y1 + y2 = 0, y1 ∈ <,

y2 ≥ 0, the dual optimal solution is λ∗ = 0, but there is no primal optimal solution. For this problem, the

augmented Lagrangian algorithm will generate sequences {λk} and {yk} such that λk → 0 and yk → −∞.

Incremental Augmented Lagrangian Methods

The duality between the proximal and augmented Lagrangian minimizations outlined above is generic, and

holds in other related contexts, based on a similar use of the Fenchel duality theorem. In the context of the

separable problem (2.1), it holds in an incremental form where Q(λ) is replaced by

qik(λ),

as in the IP iteration (2.9), or is replaced by

qik(λ) +
∑
i6=ik

∇̃qi(λ`i)′(λ− λk),

as in the IAP iteration (2.10). We refer to these two methods as the incremental augmented Lagrangian

method (abbreviated IAL), and the incremental aggregated augmented Lagrangian method (abbreviated

IAAL).

Based on the discussion of the algorithm (2.22)-(2.24), the IAL method,

λk+1 ∈ arg max
λ∈<r

{
qik(λ)− 1

2αk
‖λ− λk‖2

}
,

can be implemented as follows, as already noted in [Ber15], Section 6.4.3.
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Incremental Augmented Lagrangian Iteration (IAL)

Select a component index ik, and update the single component yik according to

y
ik
k+1 ∈ arg min

yik∈Yik

{
hik(yik) + λ′k(Aiky

ik − bik) +
αk
2
‖Aikyik − bik‖2

}
, (2.26)

while keeping the others unchanged, yik+1 = yik for all i 6= ik. Then update λ according to

λk+1 = λk + αk(Aiky
ik
k+1 − bik). (2.27)

As in the IP method, all component indexes should be selected for iteration in Eq. (2.26) with equal

long-term frequency. Note that the augmented Lagrangian minimization is decoupled with respect to the

components yi, thus overcoming the major limitation of the augmented Lagrangian approach for separable

problems.

To derive the IAAL method, we use the equivalent form (1.11)-(1.12) of the IAP algorithm. We see

then that the method has similar form to the IAL method, except that λk is first translated by a multiple

of the sum of the delayed subgradients. In particular, the IAAL iteration takes the form

λk+1 ∈ arg max
λ∈<r

{
qik(λ)− 1

2αk
‖λ− νk‖2

}
,

where

νk = λk + αk
∑
i 6=ik

∇̃qi(λ`i). (2.28)

Applying the relations (2.22)-(2.24), it follows that we can write the IAAL iteration in two steps: Select a

component index ik, and update the single component yik according to

y
ik
k+1 ∈ arg min

yik∈Yik

{
hik(yik) + ν′k(Aiky

ik − bik) +
αk
2
‖Aikyik − bik‖2

}
, (2.29)

while keeping the others unchanged, yik+1 = yik for all i 6= ik. Then update λ according to

λk+1 = νk + αk(Aiky
ik
k+1 − bik). (2.30)

Note that the subgradients ∇̃qi(λ`i), needed for the computation of νk in Eq. (2.28), are generated by

∇̃qi(λ`i) = Aiyi`i − bi, ∀ i 6= ik,
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[cf. Eq. (2.25)]. Thus by streamlining the preceding relations, we see that the IAAL updates are written as

y
ik
k+1 ∈ arg min

yik∈Yik

hik(yik) + λ′k(Aiky
ik − bik) +

αk
2

∥∥∥∥∥∥Aikyik − bik +
∑
i 6=ik

(Aiyi`i − bi)

∥∥∥∥∥∥
2
 ,

λk+1 = λk + αk

Aikyikk+1 − bik +
∑
i6=ik

(Aiyi`i − bi)

 .

If we denote b =
∑m
i=1 bi, and neglect the constant term −λ′kbik from the augmented Lagrangian, we can

write the iteration in a way that it depends on the scalars bi only through their sum b.

Incremental Aggregated Augmented Lagrangian (IAAL) Iteration

Select a component index ik, and update the single component yik according to

y
ik
k+1 ∈ arg min

yik∈Yik

hik(yik) + λ′kAiky
ik +

αk
2

∥∥∥∥∥∥Aikyik +
∑
i6=ik

Aiyi`i − b

∥∥∥∥∥∥
2
 , (2.31)

while keeping the others unchanged, yik+1 = yik for all i 6= ik. Then update λ according to

λk+1 = λk + αk

Aikyikk+1 +
∑
i 6=ik

Aiyi`i − b

 . (2.32)

By comparing the IAL method (2.26)-(2.27) with the IAAL method (2.31)-(2.32), we see that they

require comparable computations per iteration. While the IAL method requires a diminishing stepsize αk

for convergence, the IAAL method can converge with a constant stepsize, assuming that the dual function

components have Lipschitz continuous gradients, and the dual function is strongly concave (cf. Prop. 1.1).

Intuitively, if it can use a constant stepsize, the IAAL method should be asymptotically more effective than

the IAL method. Of course, if Q is not strongly convex (as for example in the important case where Q

is polyhedral, which arises in integer programming), our analysis guarantees the convergence of the IAAL

method only if the stepsize αk is diminishing. In this case it is unclear which of the IAL and IAAL methods

is more effective on a given problem.

Both the IAL and IAAL algorithms require an initial multiplier λ0. Regarding the delayed indexes `i

in the IAAL algorithm, if the iteration is executed at a single processor, it is most appropriate to choose `i

to be the iteration index at which the component yi was last changed prior to the current index k, so `i ≤ k

(if a component yi has not yet been updated prior to k, we take `i = 0 and let yi0 be some initial choice
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for yi). In this case, the formal statement of the IAAL method is again given by Eqs. (2.29)-(2.30), with

`i replaced by k for all i 6= ik. However, a different value of `i may apply if the iteration is executed in a

distributed asynchronous computing environment, as in the corresponding IAS method of [NBB01].

Note that the multiplier λk is updated each time a component yi is updated, which suggests that

the stepsize αk should be chosen carefully, possibly through some experimentation. Moreover, the strong

convexity assumption of Q is essential for the convergence of the method with a constant stepsize. Indeed a

three-dimensional example by Chen, He, Ye, and Yuan [CHH14] can be used to show that the IAAL algorithm

need not converge for any value of constant stepsize if the strong convexity assumption is violated.† An

alternative possibility is to perform a batch of component updates yi of the form (2.29) between multiplier

updates of the form (2.30). For example, one may restructure the IAAL iteration so that it consists of a full

cycle of updates of y1, . . . , ym, sequentially according to Eq. (2.31), to obtain yik+1, i = 1, . . . ,m, and only

then to update λ according to

λk+1 = λk + αk

(
m∑
i=1

Aiyik+1 − b

)
.

Note that this sequential update of y1, . . . , ym according to Eq. (2.31) amounts to a cycle of coordinate

descent iterations for minimizing the augmented Lagrangian. Therefore, this variant of the IAAL iteration

may be viewed as an implementation of the augmented Lagrangian method with approximate minimization

of the augmented Lagrangian using coordinate descent. An algorithm of this type may be interesting and

has been suggested in the past (see Bertsekas and Tsitsiklis [BeT89], Example 4.4, and Eckstein [Eck12]).

Its linear convergence has been shown under certain assumptions by Hong and Luo [HoL13]. The algorithm

is worthy of further investigation, particularly in view of favorable computational results given by Wang,

Hong, Ma, and Luo [WHM13]. Let us also note that the work by Hong, Chang, Wang, Razaviyayn, Ma,

and Luo [HCW14] derives an algorithm for the separable problem (2.1) that is quite similar to the IAAL

algorithm, using different assumptions and line of development. The paper [HCW14] proves convergence but

not a linear convergence rate result.

Comparison with ADMM

We will now compare the IAAL iteration with the ADMM. We note that there is a well-known connection

of the ADMM and augmented Lagrangian methods, which was clarified long ago through a series of papers.

In particular, Lions and Mercier [LiM79] proposed a splitting algorithm for finding a zero of the sum of two

maximal monotone operators, known as the Douglas-Ratchford algorithm. It turns out that this algorithm

† While the paper [CHH14] is entitled “The Direct Extension of ADMM for Multi-Block Convex Minimization

Problems ...,” it considers an algorithm that is not a special case of ADMM, so a convergence counterexample is

possible. A correct specialization of ADMM for separable problems (dating from 1989 but unknown to the authors

of [CHH14]) will be given shortly, and is convergent under the same broadly applicable conditions as ADMM.
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contains as a special case the ADMM, as shown in [Gab83]. The paper by Eckstein and Bertsekas [EcB92]

showed that the general form of the proximal algorithm for finding a zero of maximal monotone operator,

proposed by Rockafellar [Roc76a], [Roc76b], contains as a special case the Douglas-Ratchford algorithm and

hence also the ADMM. Thus the ADMM and the augmented Lagrangian method have a common ancestry:

they are both special cases of the general form of the proximal algorithm for finding a zero of a maximal

monotone operator. The common underlying structure of the two methods is reflected in similar formulas,

but ADMM has the advantage of flexibility to allow decomposition, at the expense of a typically slower

practical convergence rate.

A convenient decomposition-based form of ADMM for the separable problem (2.1) was derived (together

with the corresponding coordinate descent version of the augmented Lagrangian method) in [BeT89], Section

3.4 and Example 4.4 (see also [Ber15], Section 5.4.2). Wang, Hong, Ma, and Luo [WHM13], apparently

unaware of this form of ADMM, give related algorithms (referred to as Algorithms 2 and 3 in their paper),

which, however, involve updating m multiplier vectors in place of the single multiplier update of the following

algorithm. At iteration k, and given λk, the ADMM algorithm of [BeT89] generates λk+1 as follows.

ADMM Iteration for Separable Problems

Perform a separate augmented Lagrangian minimization over yi, for each i = 1, . . . ,m,

yik+1 ∈ arg min
yi∈Yi

hi(yi) + λ′kAiy
i +

α

2

∥∥∥∥∥∥Aiyi −Aiyik +
1

m

 m∑
j=1

Ajy
j
k − b

∥∥∥∥∥∥
2
 , i = 1, . . . ,m,

(2.33)

and then update λk according to

λk+1 = λk +
α

m

(
m∑
i=1

Aiyik+1 − b

)
. (2.34)

Note that contrary to the augmented Lagrangian method, where the best strategy for adjusting α is

usually clear, see e.g., [Ber82], there is no clear way to adjust the parameter α to improve performance

in ADMM. As a result for efficiency α is often determined by trial and error. A closely related but more

refined form of ADMM, also derived in [BeT89a], Section 3.4, Example 4.4, aims to improve the parameter

selection by exploiting the structure of the matrices Ai. It uses a coordinate-dependent parameter α
mj

in

iteration (2.34), in place of α/m, where mj is the number of submatrices Ai that have nonzero jth row. In

this version, the multiplier update essentially involves diagonal scaling. The iteration maintains additional

vectors zik ∈ <r, i = 1, . . . ,m, which represent estimates of Aiyi at the optimum, and has the following form,
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where Aji denotes the jth row of the matrix Ai.

Diagonally Scaled ADMM Iteration for Separable Problems

Perform a separate augmented Lagrangian minimization over yi, for each i = 1, . . . ,m,

yik+1 ∈ arg min
yi∈Yi

{
hi(yi) + λ′kAiy

i +
α

2

∥∥Aiyi − zik∥∥2} , i = 1, . . . ,m, (2.35)

and then update λk and zk according to

λjk+1 = λjk +
α

mj

(
m∑
i=1

Ajiyik+1 − bj

)
, j = 1, . . . , r, (2.36)

zik+1 = Aiyik+1 +
λk − λk+1

α
, i = 1, . . . ,m. (2.37)

Note that the preceding two ADMM iterations coincide when there is no nonzero row in any of the

matrices Ai, i.e., mj = m for all j. In comparing the IAAL iteration (2.31)-(2.32), and the ADMM iterations

(2.33)-(2.34) and (2.35)-(2.37), we note that they involve fairly similar operations. In particular, the ADMM

mutiplier update (2.34) approximates an average (over a full cycle of m components) of the IAAL multiplier

updates (2.32), and is executed m times less frequently; this is reminiscent of the difference between the

proximal and incremental proximal iterations. The different multiplier update frequencies of IAAL and

ADMM suggests that assuming IAAL converges, its stepsize αk should be chosen much smaller than the

stepsize α in ADMM, say

αk ∈
[ α
m
,
α

m2

]
,

as a crude approximation, for comparable performance. There are also two other major differences:

(a) The ADMM iterations have guaranteed convergence for any constant stepsize α, and under weaker

conditions (differentiability of qi and strong convexity of Q are not required). On the other hand the

IAAL method requires a diminishing stepsize in general, or (under Lipschitz continuity of ∇qi and

strong convexity of Q) a constant stepsize that is not arbitrary, but must be sufficiently small.

(b) In the IAAL method a single component yi is updated at each iteration, while in the ADMM all

components yi are updated. For some problems, this may work in favor of IAAL, particularly for large

m, a case that generally seems to favor incremental methods.

Thus for the separable problems of this section, one may roughly view the IAAL method as an incremental

variant of ADMM, where the advantage of incrementalism may be offset by less solid convergence properties.
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A computational comparison of the two methods will be helpful in clarifying their relative merits.

The diagonally scaled ADMM iteration (2.35)-(2.37) suggests also a similar diagonal scaling for the

IAAL iteration. The simplest way to accomplish this is to use the IAAL method (2.31)-(2.32) after scaling

the constraints, i.e., after multiplying the r constraint equations with different scaling factors, which in turn

will introduce diagonal scaling for the dual variables. Proposition 1.1 will still apply under this form of

scaling, assuming Lipschitz continuity of ∇qi and strong convexity of Q.

Comparison with the Methods of Tadjewski [Tad89] and Ruszczynski [Rus95]

The methods of [Tad89] and [Rus95] are motivated by the earlier algorithm of [StW75], and apply to the

separable constrained optimization problem of this section. They are similar to each other, but use different

assumptions. The method of [Tad89] requires differentiability and second order sufficiency assumptions,

but applies to nonconvex separable problems that may have a duality gap, while the method of [Rus95]

applies to separable problems with convex, possibly nondifferentiable cost function. These methods are also

similar to our IAAL method (2.29)-(2.30), but they use different approximations of the quadratic penalty

terms. In particular, instead of the vectors yi`i that appear in Eqs. (2.29) and (2.30), they use other terms

that are iteratively adjusted, with the aim to improve the approximation of the quadratic penalty terms

of the standard augmented Lagrangian. Both papers [Tad89] and [Rus95] provide a convergence analysis,

involving suitable choices of various parameters, although the convergence results obtained are not as strong

as the ones for ADMM. A major difference of the methods of [Tad89] and [Rus95] from our IAAL method is

that, like the ADMM, they update all the components yi simultaneously at each iteration, so they are not

incremental in character.

3. PROOF OF PROPOSITION 1.1

Similar to other convergence proofs of incremental gradient methods, including the one of [GOP15] for the

IAG method, the proof of Prop. 1.1 is based on viewing the IAP iteration with constant stepsize αk ≡ α,

xk+1 = xk − α

∇fik(xk+1) +
∑
i 6=ik

∇fi(x`i)

 , (3.1)

as a gradient method with errors in the calculation of the gradient [cf. Eqs. (1.15), (1.16)]. To deal with the

delays in the iterates, we use the following lemma, due to Feyzmahdavian, Aytekin, and Johansson [FAJ14]:
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Lemma 3.1: Let {βk} be a nonnegative sequence satisfying

βk+1 ≤ pβk + q max
max{0,k−d}≤`≤k

β`, ∀ k = 0, 1, . . . ,

for some positive integer d and nonnegative scalars p and q such that p+ q < 1. Then we have

βk ≤ ρkβ0, ∀ k = 0, 1, . . . ,

where ρ = (p+ q)
1

1+d .

In the following proof we take the stepsize α as small as is needed for the various calculations to be

valid. Also for convenience in expressing various formulas involving delays, we consider the algorithm for

large enough iteration indexes, so that all the delayed iteration indexes in the following calculations are larger

than 0 (for this it will be sufficient to consider the algorithm as starting at an iteration k ≥ 2b). Note that

the Lipschitz condition on ∇fi implies a Lipschitz condition and a bound on ∇F . In particular, denoting

L =

m∑
i=1

Li,

we have for all x, z ∈ <n,

∥∥∇F (x)−∇F (z)
∥∥ =

∥∥∥∥∥
m∑
i=1

∇fi(x)−
m∑
i=1

∇fi(z)

∥∥∥∥∥ ≤
m∑
i=1

∥∥∇fi(x)−∇fi(z)
∥∥ ≤ m∑

i=1

Li‖x−z‖ = L‖x−z‖. (3.2)

As a special case, for z = x∗, where x∗ is the unique minimum of F , we have

∥∥∇F (x`)
∥∥ =

∥∥∇F (x`)−∇F (x∗)
∥∥ ≤ L‖x` − x∗‖, ∀ ` ≥ 0. (3.3)

We break down the proof of Prop. 1.1 in steps, first writing the iteration (3.1) as a gradient iteration

with errors, then carrying along the errors in a standard line of linear convergence analysis of gradient

methods without errors, then bounding the errors, and finally using Lemma 3.1:

(a) We write the iteration (3.1) as a gradient method with errors

xk+1 = xk − α
(
∇F (xk) + ek

)
, (3.4)

where the error term ek is given by

ek = ∇fik(xk+1)−∇fik(xk) +
∑
i 6=ik

(
∇fi(x`i)−∇fi(xk)

)
. (3.5)
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(b) We relate the gradient error ek to the distance ‖xk − x∗‖ by verifying the relation

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2α∇F (xk)′(xk − x∗) + α2
∥∥∇F (xk)

∥∥2 + Ek, (3.6)

where

Ek = α2‖ek‖2 − 2α
(
xk − α∇F (xk)− x∗

)′
ek. (3.7)

This is done by subtracting x∗ from both sides of Eq. (3.4), norm-squaring both sides, and carrying out the

straightforward calculation.

(c) We use Eq. (3.7) to bound |Ek| according to

|Ek| ≤ α2‖ek‖2 + 2α‖ek‖
∥∥xk − x∗∥∥, (3.8)

for all sufficiently small α. In particular, from Eq. (3.7), we have

|Ek| ≤ α2‖ek‖2 + 2α‖ek‖
∥∥xk − x∗ − α∇F (xk)

∥∥,
and Eq. (3.8) is obtained from the preceding relation by using the inequality∥∥xk − x∗ − α∇F (xk)

∥∥ ≤ ‖xk − x∗‖.
which holds for α sufficiently small; this is a consequence of the fact that under the gradient Lipschitz

assumption, a gradient iteration (with no error) reduces the distance to x∗ for α ∈ (0, 1/L] (see e.g., [Ber15],

Prop. 6.1.6).

(d) We use the strong convexity assumption(
∇F (x)−∇F (y)

)′
(x− y) ≥ σ‖x− y‖2, ∀ x, y ∈ <n, (3.9)

where σ is the coefficient of strong convexity and the Lipschitz condition (3.2), to invoke the relation

∇F (xk)′(xk − x∗) ≥
σL

σ + L
‖xk − x∗‖2 +

1

σ + L

∥∥∇F (xk)
∥∥2; (3.10)

see e.g., [Nes14], Th. 2.1.22, or [Ber15], Prop. 6.1.9(b). This will be used to bound the term ∇F (xk)′(xk−x∗)

of Eq. (3.6).

(e) We show that for α ≤ 2
σ+L , we have

‖xk+1 − x∗‖2 ≤
(

1− 2α
σL

σ + L

)
‖xk − x∗‖2 + |Ek|. (3.11)

In particular, using the relations (3.6) and (3.10), we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2α

(
σL

σ + L
‖xk − x∗‖2 +

1

σ + L

∥∥∇F (xk)
∥∥2)+ α2

∥∥∇F (xk)
∥∥2 + |Ek|

≤
(

1− 2α
σL

σ + L

)
‖xk − x∗‖2 + α

(
α− 2

σ + L

)∥∥∇F (xk)
∥∥2 + |Ek|,
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from which Eq. (3.11) follows.

(f) We prove that the error ek is proportional to the stepsize α, and to the maximum distance of the

iterates from x∗ over the past 2b iterates:

‖ek‖ ≤ O(α) max
k−2b≤`≤k

‖x` − x∗‖. (3.12)

This is straightforward, using the Lipschitz assumption on ∇fi and the bound (3.3) on ∇F .

In particular, from Eq. (3.5), we have

‖ek‖ ≤
∥∥∇fik(xk+1)−∇fik(xk)

∥∥+
∑
i6=ik

∥∥∇fi(x`i)−∇fi(xk)
∥∥

≤ Lik‖xk+1 − xk‖+
∑
i6=ik

Li‖xk − x`i‖

≤ Lik‖xk+1 − xk‖+
∑
i6=ik

Li
(
‖xk − xk−1‖+ · · ·+ ‖x`i+1 − x`i‖

)
.

(3.13)

Moreover from Eqs. (3.3) and (3.4),

‖x`+1 − x`‖ = α
∥∥∇F (x`)

∥∥+ α‖e`‖ ≤ αL‖x` − x∗‖+ α‖e`‖, ∀ ` ≥ 0. (3.14)

Using this relation for ` in the range [k − b, k] in Eq. (3.13), we obtain

(1− αLik)‖ek‖ ≤ O(α)

(
k∑

`=k−b

‖x` − x∗‖+

k−1∑
`=k−b

‖e`‖

)
,

where for p ≥ 1, we generically use O(αp) to denote any function of α such that for some scalar γ > 0, we

have
∣∣O(αp)

∣∣ ≤ γαp for all α in some bounded open interval containing the origin. Thus,

‖ek‖ ≤ O(α)

(
k∑

`=k−b

‖x` − x∗‖+

k−1∑
`=k−b

‖e`‖

)
. (3.15)

From Eq. (3.5), we also have

‖e`‖ ≤ Li`‖x`+1 − x`‖+
∑
i 6=i`

Li‖x` − x`i‖

≤ L

‖x`+1 − x∗‖+ ‖x` − x∗‖+
∑
i 6=i`

Li
(
‖x` − x∗‖+ ‖x`i − x∗‖

) .

(3.16)

Since for ` in the range [k − b, k − 1], `i lies in the range [k − 2b, k − 1], it follows that

‖e`‖ ≤ c max
k−2b≤`≤k

‖x` − x∗‖, ∀ ` ∈ [k − b, k − 1],

where c is some constant that is independent of k and `. Combining this with Eq. (3.15), we obtain Eq.

(3.12).
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(g) We use Eqs. (3.8), (3.11), and (3.12) to obtain

‖xk+1 − x∗‖2 ≤
(

1− 2α
σL

σ + L

)
‖xk − x∗‖2 +O(α2) max

k−2b≤`≤k
‖x` − x∗‖2. (3.17)

In particular, the two terms bounding |Ek| in Eq. (3.8) are α2‖ek‖2 and α‖ek‖
∥∥xk − x∗∥∥, which in view of

Eq. (3.12) are bounded by terms that are O(α4) and O(α2) times maxk−2b≤`≤k ‖x` − x∗‖2, respectively.

(h) We use Eq. (3.17) and Lemma 3.1, with d = 2b, βk = ‖xk − x∗‖2, p = 1− 2α σL
σ+L , and q = O(α2),

so that p + q < 1 for sufficiently small α. This shows that
√
βk = ‖xk − x∗‖ converges linearly to 0, and

completes the proof. Q.E.D.

Convergence Rate Comparison for Small Stepsizes

Note that Eq. (3.17) provides a more refined rate of convergence estimate. While this estimate is not very

precise, because of the second order term on the right in Eq. (3.17), it shows that the ratio

σL

σ + L
=

L

1 + L/σ

where L =
∑m
i=1 Li and σ is the coefficient of strong convexity, plays an important role, and in particular

the convergence rate is improved when the “condition number” L/σ is small. The role of the ratio L/σ

in determining the convergence rate of gradient methods (without error) is well-known; see e.g., [Nes04],

[Ber15].

Convergence rate estimates like the one of Eq. (3.17) can also be similarly derived for IAG, and for the

standard nonincremental gradient method [for which the error term |Ek| in Eq. (3.11) is equal to 0]. These

estimates, to first order [i.e., after neglecting the second order term in the right-hand side of Eq. (3.17)], are

identical for IAP, IAG, and for the standard nonincremental gradient method. This suggests that for very

small values of α, IAP and IAG perform comparably, while the nonincremental gradient method performs

much worse because it requires m times as much overhead per iteration to calculate the full gradient of the

cost function.

4. NONQUADRATIC INCREMENTAL PROXIMAL AND AUGMENTED LAGRANGIAN

METHODS

The augmented Lagrangian methods of Section 2 apply to linear equality constrained problems for which the

multiplier vector λ is unconstrained. This allows the application of the linear convergence result of Prop. 1.1.

We will now consider convex inequality constraints, whose multipliers must be nonnegative. As a result the

dual problem involves an orthant constraint, and the linear convergence result of Prop. 1.1 does not apply.
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Unfortunately, when there is an orthant constraint [i.e., X = {x | x ≥ 0} instead of X = <n in Eq. (1.9)],

the proof of Prop. 1.1 breaks down because the critical inequality (3.3) fails. In fact, to our knowledge, a

linear convergence rate result for the IAG method (1.8) applied with an orthant constraint is not currently

available. Moreover, the convergence of the augmented Lagrangian-like methods discussed in Section 2 has

been analyzed only for the equality-constrained case. In this section we will try to address this difficulty by

using a different (nonquadratic) proximal approach.

In particular, we will introduce incremental augmented Lagrangian methods for convex inequality con-

straints, where the quadratic penalty in the augmented Lagrangian is replaced by a suitable nonquadratic

penalty. One of our objectives is to develop linearly convergent methods that can exploit separability, similar

to the ones of Section 2. A second objective is to develop corresponding dual linearly convergent incremental

aggregated gradient and proximal methods for differentiable minimization subject to nonnegativity con-

straints.

Nonquadratic Augmented Lagrangian Methods for Inequality Constraints

Consider the convex programming problem

minimize H(y)

subject to y ∈ Y, Gj(y) ≤ 0, j = 1, . . . , r,
(4.1)

where H : <n 7→ (−∞,∞) and Gj : <n 7→ (−∞,∞) are convex functiona, and Y is a convex set. The

corresponding dual problem is
maximize Q(µ)

subject to µ ≥ 0,
(4.2)

where Q : <r 7→ [−∞,∞) is the concave function of the multiplier vector µ = (µ1, . . . , µr), given by

Q(µ) = inf
y∈Y

H(y) +

r∑
j=1

µjGj(y)

 , µ ∈ <r. (4.3)

We will apply an augmented Lagrangian method, first proposed by Kort and Bertsekas [KoB72], and

further developed in a number of subsequent works, including the monograph [Ber82] (Chapter 5). The

method makes use of a nonquadratic penalty function ψ : < 7→ < with the following properties:

(i) ψ is twice differentiable and ∇2ψ(t) > 0 for all t ∈ <,

(ii) ψ(0) = 0, ∇ψ(0) = 1,

(iii) limt→−∞ ψ(t) > −∞,

(iv) limt→−∞∇ψ(t) = 0 and limt→∞∇ψ(t) =∞.
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The most common and interesting special case is the exponential

ψ(s) = exp(s)− 1, s ∈ <. (4.4)

The corresponding exponential augmented Lagrangian method and its dual, a proximal algorithm known as

the entropy minimization algorithm, has been analyzed first in [KoB72] and [Ber82], and then by Tseng and

Bertsekas [TsB93]. Related classes of methods, which also contain the exponential and entropy methods as

special cases, were proposed and analyzed later by Iusem, Svaiter, and Teboulle [IST94]; see also the survey

by Iusem [Ius99], which contains followup work and many references.

The augmented Lagrangian algorithm corresponding to ψ and problem (4.2) maintains multipliers

µjk > 0, j = 1, . . . , r, for the inequality constraints, and consists of finding

yk+1 ∈ arg min
y∈Y

H(y) +
r∑
j=1

µjk
αjk
ψ
(
αjkGj(y)

) , (4.5)

where αjk > 0, j = 1, . . . , r, are penalty parameters, followed by the multiplier iteration

µjk+1 = µjk∇ψ
(
ajkGj(yk+1)

)
, j = 1, . . . , r. (4.6)

Alternatively and equivalently, based on the Fenchel duality theorem, one may show that the multiplier

iteration can be written in the proximal form

µk+1 ∈ arg max
µ∈<r

Q(µ)−
r∑
j=1

µjk
αjk
ψ?

(
µj

µjk

) , (4.7)

where Q is the dual function given by Eq. (4.3), and ψ? is the convex conjugate of ψ.

To see the equivalence of the expressions (4.6) and (4.7), let us write

ujk+1 = Gj(yk+1), j = 1, . . . , r,

and note that the augmented Lagrangian minimization (4.5) yields

uk+1 ∈ arg min
u=(u1,...,ur)∈<r

P (u) +

r∑
j=1

µjk
αjk
ψ(αjku

j)

 , (4.8)

where P is the primal function

P (u) = inf
y∈Y, Gj(y)≤uj , j=1,...,r

H(y).

Then the minimization in Eq. (4.8) is the Fenchel dual to the maximization (4.7). By applying the Fenchel

duality theorem, we have that the maximizing vector in Eq. (4.7) is equal to the gradient

∇

 r∑
j=1

µjk
αjk
ψ(αjku

j)

∣∣∣∣∣
u=uk+1

,
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so it is given by the formula (4.6).

Note that while the dual problem is to maximize Q(µ) subject to µ ≥ 0, the proximal maximization

(4.7) is unconstrained. The reason is that the conjugate ψ? takes the value ∞ outside the nonnegative

orthant, and has the character of a barrier function within the nonnegative orthant. As an example, for the

exponential function (4.4) the conjugate is the entropy function

ψ?(t) =


t
(

ln(t)− 1
)

+ 1 if t > 0,

1 if t = 0,

∞ if t < 0.

(4.9)

An important advantage of the nonquadratic augmented Lagrangian method versus its quadratic coun-

terpart, is that it leads to twice differentiable augmented Lagrangians. This advantage also carries over to

the incremental augmented Lagrangian methods to be presented next.

Nonquadratic Incremental Augmented Lagrangian Methods for Inequality Constraints

Consider now the separable constrained optimization problem

minimize

m∑
i=1

hi(yi)

subject to yi ∈ Yi, i = 1, . . . ,m,

m∑
i=1

gji(yi) ≤ 0,

(4.10)

where hi and gji are convex real-valued functions, and Yi are convex sets. Similar to the development of

Section 2, the corresponding incremental aggregated augmented Lagrangian method, which parallels IAAL,

maintains a vector µk > 0 and operates as follows.

Incremental Aggregated Augmented Lagrangian Iteration for Inequalities (IAALI)

Select a component index ik, and update the single component yik according to

y
ik
k+1 ∈ arg min

yik∈Yik

hik(yik) +

r∑
j=1

µjk
αjk
ψ

αjk
gjik(yik) +

∑
i 6=ik

gji(yi`i)

 , (4.11)

while keeping the others unchanged, yik+1 = yik for all i 6= ik. Then update µ according to

µjk+1 = µjk∇ψ

ajk
gjik(y

ik
k+1) +

m∑
i 6=ik

gji(yi`i)

 , j = 1, . . . , r. (4.12)
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Note that the minimization (4.11) is of low dimension, but involves the nonquadratic penalty function

ψ. Thus even when the component yik is one-dimensional, this minimization will likely require some form

of iterative line search. Note also that the update formula (4.12) can equivalently be written as

µk+1 ∈ arg max
µ∈<r

qik(µ) +
∑
i 6=ik

∇qi(µ`i)′(µ− µk)−
r∑
j=1

µjk
αjk
ψ?

(
µj

µjk

) , (4.13)

where qi are the dual function components, given by

qi(µ) = inf
yi∈Y i

hi(yi) +

r∑
j=1

µjgij(yi)

 , µ ∈ <r, i = 1, . . . ,m.

The form (4.13) of the method can be viewed as an incremental aggregated proximal method for maximizing

Q(µ) =
∑m
i=1 qi(µ) over µ ≥ 0, where

qi(µ) = inf
yi∈Yi

hi(yi) +

r∑
j=1

µjgji(yi)

 , i = 1, . . . ,m; (4.14)

cf. Eq. (2.3). The convergence properties of the IAALI and the corresponding incremental aggregated

proximal method (4.13) for solving the dual problem

maximize

m∑
i=1

qi(µ)

subject to µ ≥ 0,

are interesting research subjects, as we will now discuss.

Nonquadratic Incremental Aggregated Proximal Algorithm for Nonnegativity Constraints

Consider the minimization problem

minimize F (x)
def
=

m∑
i=1

fi(x)

subject to x ≥ 0,

(4.15)

where fi : <n 7→ <, i = 1, . . . ,m, are convex real-valued functions. When translated to this minimization

context, the algorithm (4.13) maintains a vector xk > 0 that is updated as follows.

Nonquadratic Incremental Aggregated Proximal Iteration for X = {x | x ≥ 0}

Select a component index ik, and obtain xk+1 as

xk+1 ∈ arg min
x∈<n

fik(x) +
∑
i 6=ik

∇fi(x`i)′(x− xk) +

n∑
j=1

xjk
αjk
ψ?

(
xj

xjk

) . (4.16)
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The analysis of the convergence properties of this algorithm is beyond the scope of this paper, and will

be the subject of a separate publication. In particular, it is interesting to investigate the linear convergence

of the method (4.16) when the parameters ajk are constant (but sufficiently small), under the appropriate

Lipschitz continuity and strong convexity assumptions, similar to Prop. 1.1. Note that by differentiating the

cost function in the minimization of Eq. (4.16), we obtain the optimality condition, which can be written as

∇fik(xk+1) +
∑
i 6=ik

∇fi(x`i) +


1
α1
k

∇ψ?
(
x1k+1

x1
k

)
...

1
αm
k
∇ψ?

(
xmk+1
xm
k

)
 = 0. (4.17)

This expression may be used in the line of proof of Section 3 in place of the corresponding formula (1.14)

for the unconstrained IAP algorithm (1.14), which can be written in the form

∇fik(xk+1) +
∑
i 6=ik

∇fi(x`i) +
xk+1 − xk

α
= 0. (4.18)

When ψ (and hence also ψ?) is quadratic and αjk ≡ α, the two preceding formulas coincide. However,

contrary to iteration (4.18), the iteration (4.17) preserves the strict positivity of the iterates (xk > 0 for all

k), and addresses the orthant-constrained problem (4.15).

Entropy-Based Incremental Aggregated Proximal Algorithm for Nonnegativity Constraints

For an illustration of the algorithm (4.16), consider the special case where ψ is the exponential function and

ψ? is the entropy function, so that

ψ(s) = exp(s)− 1, ψ?(t) =


t
(

ln(t)− 1
)

+ 1 if t > 0,

1 if t = 0,

∞ if t < 0,

∇ψ?(t) =

{
ln(t) if t > 0,

does not exist if t ≤ 0,

[cf. Eqs. (4.4) and (4.9)]. Then by using a constant stepsize αj for each coordinate, Eq. (4.17) takes the form

ln

(
xjk+1

xjk

)
= −αj

∂fik(xk+1)

∂xj
+
∑
i 6=ik

∂fi(x`i)

∂xj

 , j = 1, . . . , n, (4.19)

where ik is the component index selected for iteration k. We can write this iteration as

ln

(
xjk+1

xjk

)
= −αj

(
∂F (xk)

∂xj
+ ejk

)
, (4.20)

where ek = (e1k, . . . , e
n
k ) is the error vector

ek = ∇fik(xk+1)−∇fik(xk) +
∑
i 6=ik

(
∇fi(x`i)−∇fi(xk)

)
, (4.21)
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that played an important role in the proof of Prop. 1.1 [cf. Eq. (3.5)].

We will use the line of analysis of Section 3 to speculate about the linear convergence of iteration

(4.19) and its equivalent form (4.20)-(4.21). Assume that the minimum x∗ satisfies the strict complementary

slackness condition
∂F (x∗)

∂xj
> 0, ∀ j ∈ J0, (4.22)

where J0 =
{
j | (xj)∗ = 0

}
, and speculate on the behavior of {xk} in a small neighborhood around x∗.

Consider first the iterates xjk, j ∈ J0, in a small neighborhood around x∗. We note that the errors ejk

of Eq. (4.21) are near 0 and by Eq. (4.22), are negligible relative to the gradient components ∂F (xk)

∂xj
, for all

j ∈ J0. In view of the form of iteration (4.20) and the condition (4.22), the logarithms ln(xjk+1/x
j
k), j ∈ J0,

are negative, and hence the ratios xjk+1/x
j
k, j ∈ J0, are within [0, 1), so the sequences {xjk}, j ∈ J0, are

linearly decreasing towards 0.

Consider next the iterates xjk, j /∈ J0, in a small neighborhood around x∗. They are close to the

corresponding positive numbers (xj)∗, j /∈ J0, and they are iterated according to

ln(xjk+1) = ln(xjk)− αj
(
∂F (xk)

∂xj
+ ejk

)
, j /∈ J0, (4.23)

[cf. Eq. (4.20)]. This looks like an incremental aggregated gradient iteration in the logarithms ln(xj), j /∈ J0.

Indeed by making the transformation of variables zj = ln(xj), j = 1, . . . , n, for xj > 0, and introducing the

function

H(z1, . . . , zn) = F
(

exp(z1), . . . , exp(zn)
)
,

and its gradient, which is related to the gradient of F through the relation

∂H(z)

∂zj
= exp(zj)

∂F
(

exp(z1), . . . , exp(zn)
)

∂xj
= xj

∂F (x)

∂xj
, j = 1, . . . , n,

we see that the iteration (4.23) can be written as

zjk+1 = zjk −
αj

xjk

(
∂H(zk)

∂zj

)
+ αjejk, j /∈ J0,

where xjk = exp(zjk). Thus, neglecting the effect of the coordinates xj , j ∈ J0, that are fast diminishing to 0,

the iteration behaves like the IAP method restricted to the space of the coordinate logarithms zj = ln(xj),

j /∈ J0, with coordinate-dependent stepsizes αj

x
j
k

that are close to the positive constants αj

(xj)∗ , j ∈ J0, for xk

near x∗.

By combining the preceding argument with the proof of Prop. 1.1, we can show that the method

converges to x∗ locally, i.e., when started sufficiently close to x∗, assuming the strict complementarity

condition (4.22), and the appropriate stepsize, Lipschitz continuity, and strong convexity conditions. The

proof is long and will be deferred to a future publication. Moreover, for j /∈ J0,
{

ln(xjk)
}

converges to
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ln
(
(xj)∗

)
linearly, while for j ∈ J0, {xjk} also converges to (xj)∗ linearly. However, a more sophisticated

argument is needed to show global and linear convergence of {xk} to x∗, by combining the line of proof

of Prop. 1.1 with the existing convergence proofs of the entropy minimization algorithm and its dual, the

exponential method of multipliers.

Entropy-Based Incremental Aggregated Gradient Algorithm for Nonnegativity Constraints

Finally let us note the analog of the IAG method for nonnegativity constraints. In analogy with Eq. (4.19)

it has the form

ln

(
xjk+1

xjk

)
= −αj

m∑
i=1

∂fi(x`i)

∂xj
, j = 1, . . . , n,

or equivalently

xjk+1 = xjk exp

(
−αj

m∑
i=1

∂fi(x`i)

∂xj

)
, j = 1, . . . , n, (4.24)

[the difference from Eq. (4.19) is the use of
∂fik

(x`ik
)

∂xj
in place of

∂fik
(xk+1)

∂xj
]. This iteration should be

compared with the IAS method (1.5), for the case where the functions fi are differentiable, and the stepise

αk is a constant α:

xk+1 =

[
xk − α

m∑
i=1

∇fi(x`i)

]+
, (4.25)

where [·]+ denotes projection onto the nonnegative orthant. We may view the method (4.25) as the con-

strained version of the IAG method (1.8) with constant stepsize for which, however, no linear convergence

proof is presently available.†

The iteration (4.24) may also be viewed as an incremental version of the mirror descent method;

see Beck and Teboulle [BeT03], the surveys by Juditsky and Nemirovski [JuN11a], [JunN11b], and the

references quoted there, and the author’s presentation in [Ber15], Section 6.6. Using similar arguments to

the case of iteration (4.19), we can show that the iteration (4.24) converges linearly to x∗, when started

sufficiently close to x∗, assuming the strict complementarity condition (4.22), and the appropriate constant

stepsize, and other conditions. Note that the iteration (4.24) may be implemented more conveniently than

the proximal iteration (4.16), as it does not require a proximal minimization. However, the iteration (4.24)

is not suitable as the basis for the development of an incremental augmented Lagrangian method, such as

IAALI [cf. Eqs. (4.11)-(4.12)].

† A local linear convergence result for the constrained IAG method (4.25) is possible, assuming the strict comple-

mentarity condition (4.22). In particular, it can be shown that there is a sphere centered at x∗ such that if x0 belongs

to that sphere, then the sequence generated by iteration (4.25) stays within that sphere and converges linearly to

x∗. The idea of the proof is that after the first iteration, all the iterates satisfy xjk = 0 for all indices j ∈ J0, so the

method essentially reduces to the IAG method in the space of variables xj , j /∈ J0.
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A final comment relates to the choice of the stepsizes αj in iteration (4.24). For the coordinates that

are bounded away from 0 (i.e., for j /∈ J0) we have asymptotically
∑m
i=1

∂fi(x`i
)

∂xj
≈ 0, so from a Taylor

expansion of the exponential in Eq. (4.24), we obtain

xjk+1 = xjk

1 +

(
−αj

m∑
i=1

∂fi(x`i)

∂xj

)
+

1

2

(
−αj

m∑
i=1

∂fi(x`i)

∂xj

)2

+ · · ·

 .

By discarding the second and higher order terms for j /∈ J0, we see that approximately,

xjk+1 ≈ x
j
k − αjx

j
k

m∑
i=1

∂fi(x`i)

∂xj
, j /∈ J0.

This suggests scaling the stepsizes αj for j /∈ J0, so that αj is inversely proportional to the optimal value

(xj)∗. On the other hand, for j ∈ J0, it makes sense to choose αj large (subject to a positive lower bound)

in order to accelerate the convergence of xjk to (xj)∗ = 0. Thus a reasonable heuristic is to set

αj =
α

max{x̄j , δ}
, j = 1, . . . , n,

where x̄j is an estimate for the optimal coordinate value (xj)∗, α is some positive scalar, which corresponds

to the stepsize of the constrained IAG iteration (4.25), and δ is a small positive constant. One may also

consider updating the values αj in the course of the algorithm, as better estimates x̄j are obtained.

5. CONCLUDING REMARKS

In this paper we have proposed IAP, an incremental aggregated proximal method, and we have shown that

under favorable assumptions, it attains a linear convergence rate, using a constant (but sufficiently small)

stepsize. The application of this method in a dual context, to separable constrained optimization problems,

yields the IAAL method, an incremental augmented Lagrangian method that preserves and exploits the

separable structure. The principal difference of our method relative to the several alternative augmented

Lagrangian-based proposals, is its incremental character and its high update frequency of the multiplier λk;

the alternative methods, except Algorithm 1 of [WHM13] and the one of [RoT15], but including the proper

version of ADMM for separable problems, update all the primal variables yi, i = 1, . . . ,m, simultaneously

rather than sequentially, so they are not incremental in nature. Moreover, the alternative methods update

the multipliers m times less frequently than IAAL. A systematic computational comparison of our methods

with the nonincremental alternatives will be helpful in clarifying what advantages our incremental approach

may hold.

There are several analytical issues relating to the IAAL method, which require further investigation.

For example a more refined convergence rate analysis may point the way to adaptive stepsize adjustment

schemes, and/or forms of scaling based on second derivatives of the cost function and the matrices Ai. There
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are analyses of this type for ADMM; see the paper by Giselsson and Boyd [GiB15], and the references cited

there. Another possibility is to use a momentum term in the updating formula for the multiplier λ. A

third possibility is to control the degree of incrementalism by “batching” multiple augmented Lagrangian

iterations involving multiple components.

We have also proposed linearly converging extensions of IAAL for problems with convex inequality

constraints. These are based on a nonquadratic augmented Lagrangian approach such as the exponential,

and its dual version, which is an incremental aggregated entropy algorithm (4.19). The fuller investigation

of this method, as well as the method (4.24), which is the exponential analog of the IAG method for

nonnegativity constraints, are important research subjects.
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