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Abstract. We consider a class of subgradient methods for minimizing a convex function that
consists of the sum of a large number of component functions. This type of minimization arises in a
dual context from Lagrangian relaxation of the coupling constraints of large scale separable problems.
The idea is to perform the subgradient iteration incrementally, by sequentially taking steps along
the subgradients of the component functions, with intermediate adjustment of the variables after
processing each component function. This incremental approach has been very successful in solving
large differentiable least squares problems, such as those arising in the training of neural networks,
and it has resulted in a much better practical rate of convergence than the steepest descent method.

In this paper, we establish the convergence properties of a number of variants of incremental
subgradient methods, including some that are stochastic. Based on the analysis and computational
experiments, the methods appear very promising and effective for important classes of large problems.
A particularly interesting discovery is that by randomizing the order of selection of component
functions for iteration, the convergence rate is substantially improved.
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1. Introduction. Throughout this paper, we focus on the problem

minimize f(x) =

m∑
i=1

fi(x)

subject to x ∈ X,
(1.1)

where fi : �n → � are convex functions, and X is a nonempty, closed, and convex
subset of �n. We are primarily interested in the case where f is nondifferentiable. A
special case of particular interest is when f is the dual function of a primal separable
combinatorial problem of the form

maximize

m∑
i=1

c′iyi

subject to yi ∈ Yi, i = 1, . . . ,m,

m∑
i=1

Aiyi ≥ b,

where prime denotes transposition, ci are given vectors in �p, Yi is a given finite
subset of �p, Ai are given n × p matrices, and b is a given vector in �n. Then, by
viewing x as a Lagrange multiplier vector for the coupling constraint

∑m
i=1Aiyi ≥ b,

we obtain a dual problem of the form (1.1), where

fi(x) = max
yi∈Yi

(ci +A
′
ix)

′yi − β′ix, i = 1, . . . ,m,(1.2)
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βi are vectors in �n such that β1 + · · · + βm = b, and X is the positive orthant
{x ∈ �n | x ≥ 0}. It is well known that solving dual problems of the type above,
possibly in a branch-and-bound context, is one of the most important and challenging
algorithmic areas of optimization.

A principal method for solving problem (1.1) is the subgradient method

xk+1 = PX

[
xk − αk

m∑
i=1

di,k

]
,(1.3)

where di,k is a subgradient of fi at xk, αk is a positive stepsize, and PX denotes
projection on the set X. There is an extensive theory for this method (see, e.g.,
the textbooks by Dem’yanov and Vasil’ev [DeV85], Shor [Sho85], Minoux [Min86],
Polyak [Pol87], Hiriart-Urruty and Lemaréchal [HiL93], and Bertsekas [Ber99]). In
many important applications, the set X is simple enough so that the projection can
be easily implemented. In particular, for the special case of the dual problem (1.1),
(1.2), the set X is the positive orthant and projecting on X is not expensive.

The incremental subgradient method is similar to the standard subgradient method
(1.3). The main difference is that at each iteration, x is changed incrementally,
through a sequence of m steps. Each step is a subgradient iteration for a single
component function fi, and there is one step per component function. Thus, an iter-
ation can be viewed as a cycle of m subiterations. If xk is the vector obtained after
k cycles, the vector xk+1 obtained after one more cycle is

xk+1 = ψm,k,(1.4)

where ψm,k is obtained after the m steps

ψi,k = PX [ψi−1,k − αkgi,k] , gi,k ∈ ∂fi(ψi−1,k), i = 1, . . . ,m,(1.5)

starting with

ψ0,k = xk,(1.6)

where ∂fi(ψi−1,k) denotes the subdifferential (set of all subgradients) of fi at the
point ψi−1,k. The updates described by (1.5) are referred to as the subiterations of
the kth cycle.

Incremental gradient methods for differentiable unconstrained problems have a
long tradition, most notably in the training of neural networks, where they are known
as backpropagation methods. They are related to the Widrow–Hoff algorithm [WiH60]
and to stochastic gradient/stochastic approximation methods, and they are supported
by several recent convergence analyses (Luo [Luo91], Gaivoronski [Gai94], Grippo
[Gri94], Luo and Tseng [LuT94], Mangasarian and Solodov [MaS94], Bertsekas and
Tsitsiklis [BeT96], Bertsekas [Ber97], Tseng [Tse98], Bertsekas and Tsitsiklis [BeT00]).
It has been experimentally observed that incremental gradient methods often con-
verge much faster than the steepest descent method when far from the eventual limit.
However, near convergence, they typically converge slowly because they require a di-
minishing stepsize (e.g., αk = O(1/k)) for convergence. If αk is instead taken to be a
small enough constant, “convergence” to a limit cycle occurs, as first shown by Luo
[Luo91]. In the special case where all the stationary points of f are also stationary
points of all the component functions fi, the limit cycle typically reduces to a single
point and convergence is obtained; this is the subject of the paper by Solodov [Sol98].
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In general, however, the limit cycle consists of m points, each corresponding to one
of the subiterations of (1.5), and these m points are usually distinct.

Incremental subgradient methods exhibit behavior similar to that of incremental
gradient methods and are similarly motivated by rate of convergence considerations.
They were studied first by Kibardin [Kib80] and more recently by Solodov and Za-
vriev [SoZ98], Nedić and Bertsekas [NeB99], [NeB00], and Ben-Tal, Margalit, and
Nemirovski [BMN00]. An asynchronous parallel version of the incremental subgra-
dient method was proposed by Nedić, Bertsekas, and Borkar [NBB00]. Incremental
subgradient methods that are somewhat different from the ones in this paper have
been proposed by Kaskavelis and Caramanis [KaC98] and Zhao, Luh, and Wang
[ZLW99], while a parallel implementation of related methods was proposed by Kiwiel
and Lindberg [KiL00]. These methods share with ours the characteristic of computing
a subgradient of only one component fi per iteration, but differ from ours in that the
direction used in an iteration is the sum of the (approximate) subgradients of all the
components fi.

In this paper, we study the convergence properties of the incremental subgradient
method for three types of stepsize rules: a constant stepsize rule, a diminishing step-
size rule (where αk → 0), and a dynamic stepsize rule (where αk is based on exact
or approximate knowledge of the optimal cost function value). Earlier convergence
analyses of incremental subgradient methods have focused only on the diminishing
stepsize rule. Some understanding into the convergence process is gained by viewing
the incremental subgradient method as an approximate subgradient method (or a
subgradient method with errors). In particular, we have for all z ∈ �n

(
m∑
i=1

gi,k

)′
(z − xk) =

m∑
i=1

g′i,k(z − ψi−1,k) +

m∑
i=1

g′i,k(ψi−1,k − xk)

≤
m∑
i=1

(
fi(z)− fi(ψi−1,k)

)
+

m∑
i=1

||gi,k|| · ||ψi−1,k − xk||

= f(z)− f(xk) +
m∑
i=2

(
fi(xk)− fi(ψi−1,k)

)

+

m∑
i=2

||gi,k|| · ||ψi−1,k − xk||

≤ f(z)− f(xk) +
m∑
i=2

(||g̃i,k||+ ||gi,k||
)||ψi−1,k − xk||

≤ f(z)− f(xk) +
m∑
i=2

(||g̃i,k||+ ||gi,k||
)αk

i−1∑
j=1

‖g̃i,k‖



≤ f(z)− f(xk) + εk,
where g̃i,k ∈ ∂fi(xk), gi,k ∈ ∂fi(ψi−1,k), and

εk = 2αk

m∑
i=2

Ci


i−1∑

j=1

Cj


 , Ci = sup

k≥0

{||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
}
.

Thus if the subgradients g̃i,k, gi,k are bounded so that the Ci are finite, εk is bounded
and diminishes to zero if αk → 0. It follows that if a diminishing stepsize rule (αk → 0)
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is used and some additional conditions hold, such as
∑∞

k=0 αk = ∞, some of the
convergence properties of the incremental method can be derived from known results
on ε-subgradient methods (see, e.g., Dem’yanov and Vasil’ev [DeV85], Polyak [Pol87,
p. 144], Correa and Lemaréchal [CoL93], Hiriart-Urruty and Lemaréchal [HiL93], and
Bertsekas [Ber99]). However, the connection with ε-subgradient methods is not helpful
for the convergence analysis under the other stepsize rules that we consider (constant
and dynamic), because for these rules αk need not tend to 0, and the same is true
for εk. As a consequence, there are no convergence results for ε-subgradient methods
under these rules, which can be applied to our analysis.

We also propose a randomized version of the incremental subgradient method
(1.4)–(1.6), where the component function fi in (1.5) is chosen randomly among the
components f1, . . ., fm, according to a uniform distribution. This method may be
viewed as a stochastic subgradient method for the problem

min
x∈X

Eω

{
fω(x)

}
,

where ω is a random variable that is uniformly distributed over the index set {1, . . . ,m}.
Thus some of the insights and analysis from the stochastic subgradient methods can
be brought to bear (see e.g., Ermoliev [Erm69], [Erm76], [Erm83], [Erm88], Shor
[Sho85, p. 46], and Bertsekas and Tsitsiklis [BeT96]). Nonetheless, the idea of using
randomization in the context of deterministic nondifferentiable optimization is origi-
nal and much of our analysis, particularly the part that relates to the constant and
the dynamic stepsize rules in section 3, is also original. An important conclusion,
based on Propositions 2.1 and 3.1, is that randomization has a significant favorable
effect on the method’s performance; see also the discussion in section 3 and Nedić and
Bertsekas [NeB99], [NeB00] which provide convergence rate estimates.

The paper is organized as follows. In the next section, we analyze the conver-
gence of the incremental subgradient method under the three types of stepsize rules
mentioned above. In section 3, we establish the convergence properties of randomized
versions of the method. Finally, in section 4, we present some computational results.
In particular, we compare the performance of the ordinary subgradient method with
that of the incremental subgradient method, and we compare different order rules for
processing the component functions fi within a cycle. The computational results in-
dicate a substantial performance advantage for the randomized processing order over
the fixed order. We trace the reason for this to a substantially better error estimate
for the randomized order (compare Propositions 2.1 and 3.1).

2. Convergence analysis of the incremental subgradient method. Through-
out this paper, we use the notation

f∗ = inf
x∈X

f(x), X∗ = {x ∈ X | f(x) = f∗}, dist(x,X∗) = inf
x∗∈X∗

‖x− x∗‖,

where ‖ · ‖ denotes the standard Euclidean norm. Our convergence results in this
section use the following assumption.

Assumption 2.1 (subgradient boundedness). There exist scalars C1, . . . , Cm such
that

||g|| ≤ Ci ∀ g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k), i = 1, . . . ,m, k = 0, 1, . . . .
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We note that Assumption 2.1 is satisfied if each fi is polyhedral (i.e., fi is the
pointwise maximum of a finite number of affine functions). In particular, Assumption
2.1 holds for the dual problem (1.1), (1.2), where for each i and all x the set of
subgradients ∂fi(x) is the convex hull of a finite number of points. More generally,
since each component fi is real-valued and convex over the entire space �n, the
subdifferential ∂fi(x) is nonempty and compact for all x and i. If the set X is
compact or the sequences {ψi,k} are bounded, then Assumption 2.1 is satisfied since
the set ∪x∈B∂fi(x) is bounded for any bounded set B (see, e.g., Bertsekas [Ber99,
Prop. B.24]).

The following lemma gives an estimate that will be used repeatedly in the subse-
quent convergence analysis.

Lemma 2.1. Let Assumption 2.1 hold and let {xk} be the sequence generated by
the incremental subgradient method (1.4)–(1.6). Then for all y ∈ X and k ≥ 0, we
have

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk

(
f(xk)− f(y)

)
+ α2

kC
2,(2.1)

where C =
∑m

i=1 Ci and Ci is as in Assumption 2.1.
Proof. Using the nonexpansion property of the projection, the subgradient bound-

edness (cf. Assumption 2.1), and the subgradient inequality for each component func-
tion fi, we obtain for all y ∈ X

||ψi,k − y||2 = ||PX [ψi−1,k − αkgi,k]− y||2
≤ ||ψi−1,k − αkgi,k − y||2
≤ ||ψi−1,k − y||2 − 2αkg

′
i,k(ψi−1,k − y) + α2

kC
2
i

≤ ||ψi−1,k − y||2 − 2αk

(
fi(ψi−1,k)− fi(y)

)
+ α2

kC
2
i ∀ i, k.

By adding the above inequalities over i = 1, . . . ,m, we have for all y ∈ X and k

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk

m∑
i=1

(
fi(ψi−1,k)− fi(y)

)
+ α2

k

m∑
i=1

C2
i

= ||xk − y||2 − 2αk

(
f(xk)− f(y) +

m∑
i=1

(
fi(ψi−1,k)− fi(xk)

))

+ α2
k

m∑
i=1

C2
i .

By strengthening the above inequality, we have for all y ∈ X and k

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk

(
f(xk)− f(y)

)
+ 2αk

m∑
i=1

Ci||ψi−1,k − xk||+ α2
k

m∑
i=1

C2
i

≤ ||xk − y||2 − 2αk

(
f(xk)− f(y)

)
+ α2

k


2

m∑
i=2

Ci


i−1∑

j=1

Cj


+

m∑
i=1

C2
i




= ||xk − y||2 − 2αk

(
f(xk)− f(y)

)
+ α2

k

(
m∑
i=1

Ci

)2

= ||xk − y||2 − 2αk

(
f(xk)− f(y)

)
+ α2

kC
2,
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where in the first inequality we use the relation

fi(xk)− fi(ψi−1,k) ≤ ||g̃i,k|| · ||ψi−1,k − xk|| ≤ Ci||ψi−1,k − xk||
with g̃i,k ∈ ∂fi(xk), and in the second inequality we use the relation

||ψi,k − xk|| ≤ αk

i∑
j=1

Cj , i = 1, . . . ,m, k ≥ 0,

which follows from (1.4)–(1.6) and Assumption 2.1.
Among other things, Lemma 2.1 guarantees that given the current iterate xk and

some other point y ∈ X with lower cost than xk, the next iterate xk+1 will be closer to
y than xk, provided the stepsize αk is sufficiently small (less than 2

(
f(xk)−f(y)

)
/C2).

This fact is used repeatedly, with a variety of choices for y, in what follows.

2.0.1. Constant stepsize rule. We first consider the case of a constant stepsize
rule.

Proposition 2.1. Let Assumption 2.1 hold. Then, for the sequence {xk} gener-
ated by the incremental method (1.4)–(1.6) with the stepsize αk fixed to some positive
constant α, we have the following:

(a) If f∗ = −∞, then

lim inf
k→∞

f(xk) = −∞.
(b) If f∗ > −∞, then

lim inf
k→∞

f(xk) ≤ f∗ + αC2

2
,

where C =
∑m

i=1 Ci.
Proof. We prove (a) and (b) simultaneously. If the result does not hold, there

must exist an ε > 0 such that

lim inf
k→∞

f(xk) > f
∗ +

αC2

2
+ 2ε.

Let ŷ ∈ X be such that

lim inf
k→∞

f(xk) ≥ f(ŷ) + αC2

2
+ 2ε,

and let k0 be large enough so that for all k ≥ k0 we have

f(xk) ≥ lim inf
k→∞

f(xk)− ε.
By adding the preceding two relations, we obtain for all k ≥ k0

f(xk)− f(ŷ) ≥ αC2

2
+ ε.

Using Lemma 2.1 for the case where y = ŷ together with the above relation, we obtain
for all k ≥ k0,

||xk+1 − ŷ||2 ≤ ||xk − ŷ||2 − 2αε.

Thus we have

||xk+1−ŷ||2 ≤ ||xk−ŷ||2−2αε ≤ ||xk−1−ŷ||2−4αε ≤ · · · ≤ ||xk0−ŷ||2−2(k+1−k0)αε,
which cannot hold for k sufficiently large, a contradiction.
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2.0.2. Diminishing stepsize rule. The next result is the analog of a classical
convergence result for the ordinary subgradient method of Ermoliev [Erm66] (see also
Polyak [Pol67]).

Proposition 2.2. Let Assumption 2.1 hold and assume that the stepsize αk is
such that

αk > 0, lim
k→∞

αk = 0,

∞∑
k=0

αk = ∞.

Then, for the sequence {xk} generated by the incremental method (1.4)–(1.6), we have

lim inf
k→∞

f(xk) = f
∗.

Proof. The proof uses Lemma 2.1 and Proposition 1.2 of Correa and Lemaréchal
[CoL93].

If we assume in addition that X∗ is nonempty and bounded, Proposition 2.2 can
be strengthened as in the next proposition. This proposition is similar to a result
of Solodov and Zavriev [SoZ98], which was proved by different methods under the
stronger assumption that X is a compact set.

Proposition 2.3. Let Assumption 2.1 hold, and let X∗ be nonempty and bounded.
Also, assume that the stepsize αk is such that

αk > 0, lim
k→∞

αk = 0,

∞∑
k=0

αk = ∞.

Then, for the sequence {xk} generated by the incremental subgradient method (1.4)–
(1.6), we have

lim
k→∞

dist(xk, X
∗) = 0, lim

k→∞
f(xk) = f

∗.

Proof. The idea is to show that once xk enters a certain level set, it cannot get
too far away from that set. Fix a γ > 0, and let k0 be such that γ ≥ αkC

2 for all
k ≥ k0. We distinguish two cases:

Case 1. f(xk) > f
∗ + γ. From Lemma 2.1 we obtain for all x∗ ∈ X∗ and all k

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2αk

(
f(xk)− f∗

)
+ α2

kC
2.(2.2)

Hence

||xk+1 − x∗||2 < ||xk − x∗||2 − 2γαk + α
2
kC

2

= ||xk − x∗||2 − αk(2γ − αkC
2)

≤ ||xk − x∗||2 − αkγ,

so that

dist(xk+1, X
∗) ≤ dist(xk, X∗)− αkγ.(2.3)

Case 2. f(xk) ≤ f∗ + γ. This case must occur for infinitely many k, in view of
(2.3) and the fact

∑∞
k=0 αk = ∞. Since xk belongs to the level set

Lγ =
{
y ∈ X | f(y) ≤ f∗ + γ},



116 ANGELIA NEDIĆ AND DIMITRI P. BERTSEKAS

which is bounded (in view of the boundedness of X∗), we have

dist(xk, X
∗) ≤ d(γ) <∞,(2.4)

where we denote

d(γ) = max
y∈Lγ

dist(y,X∗).

From the iteration (1.4)–(1.6), we have ||xk+1 − xk|| ≤ αkC, so for all x∗ ∈ X∗

||xk+1 − x∗|| ≤ ||xk − x∗||+ ||xk+1 − xk|| ≤ ||xk − x∗||+ αkC.

By taking the minimum over x∗ ∈ X∗ and by using (2.4), we obtain

dist(xk+1, X
∗) ≤ d(γ) + αkC.(2.5)

Combining (2.3), which holds when f(xk) > f
∗ + γ (Case 1 above), with (2.5),

which holds for the infinitely many k for which f(xk) ≤ f∗ + γ (Case 2 above), we
see that

dist(xk, X
∗) ≤ d(γ) + αkC ∀ k ≥ k0.

Therefore, since αk → 0,

lim sup
k→∞

dist(xk, X
∗) ≤ d(γ) ∀ γ > 0.

In view of the continuity of f and the compactness of its level sets, we have limγ→0 d(γ)
= 0, so that limk→∞ dist(xk, X∗) = 0. This relation also implies that limk→∞ f(xk) =
f∗.

The assumption that X∗ is nonempty and bounded holds, for example, if all
infx∈X fi(x) are finite and at least one of the components fi has bounded level sets (see
Rockafellar [Roc 70, Theorem 9.3]. Proposition 2.3 does not guarantee convergence
of the entire sequence {xk}. With slightly different assumptions that include an
additional mild restriction on the stepsize sequence, this convergence is guaranteed,
as indicated in the following proposition.

Proposition 2.4. Let Assumption 2.1 hold and let the optimal set X∗ be
nonempty. Also assume that the stepsize αk is such that

αk > 0,

∞∑
k=0

αk = ∞,
∞∑
k=0

α2
k <∞.

Then the sequence {xk} generated by the incremental subgradient method (1.4)–(1.6)
converges to some optimal solution.

Proof. Use Lemma 2.1 with y ∈ X∗ and Proposition 1.3 of Correa and Lemaréchal
[CoL93].

In Propositions 2.2–2.4, we use the same stepsize αk in all subiterations of a cycle.
As shown by Kibardin in [Kib80] and by Nedić, Bertsekas, and Borkar in [NBB00]
(for a more general incremental method), the convergence can be preserved if we vary
the stepsize αk within each cycle, provided that the variations of αk in the cycles are
suitably small.
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2.0.3. Dynamic stepsize rule for known f∗. The preceding results apply to
the constant and the diminishing stepsize choices. An interesting alternative for the
ordinary subgradient method is the dynamic stepsize rule

αk = γk
f(xk)− f∗

||gk||2 ,

with gk ∈ ∂f(xk), 0 < γ ≤ γk ≤ γ < 2, introduced by Polyak in [Pol69] (see
also discussions in Shor [Sho85], Brännlund [Brä93], and Bertsekas [Ber99]). For the
incremental method, to avoid the calculation of gk we propose a variant of this stepsize
where ||gk|| is replaced by an upper bound C:

αk = γk
f(xk)− f∗

C2
, 0 < γ ≤ γk ≤ γ < 2,(2.6)

where

C =

m∑
i=1

Ci(2.7)

and

Ci ≥ sup
k≥0

{||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
}
, i = 1, . . . ,m.(2.8)

For this choice of stepsize we must be able to calculate suitable upper bounds Ci,
which can be done, for example, when the components fi are polyhedral.

We first consider the case where f∗ is known. We later modify the stepsize, so
that f∗ can be replaced by a dynamically updated estimate.

Proposition 2.5. Let Assumption 2.1 hold and let the optimal set X∗ be
nonempty. Then the sequence {xk} generated by the incremental subgradient method
(1.4)–(1.6) with the dynamic stepsize rule (2.6)–(2.8) converges to some optimal solu-
tion.

Proof. From Lemma 2.1 with y = x∗ ∈ X∗, we have

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − 2αk

(
f(xk)− f∗

)
+ α2

kC
2 ∀ x∗ ∈ X∗, k ≥ 0,

and by using the definition of αk (cf. (2.6)), we obtain

||xk+1 − x∗||2 ≤ ||xk − x∗||2 − γ(2− γ)
(
f(xk)− f∗

)2
C2

∀ x∗ ∈ X∗, k ≥ 0.

Therefore {xk} is bounded. Furthermore, f(xk) → f∗, since otherwise we would have
||xk+1−x∗|| ≤ ||xk−x∗||−ε for some suitably small ε > 0 and infinitely many k. Hence
for any limit point x of {xk}, we have x ∈ X∗, and since the sequence {||xk − x∗||} is
decreasing, it converges to ||x− x∗|| for every x∗ ∈ X∗. If there are two distinct limit
points x̃ and x of {xk}, we must have x̃ ∈ X∗, x ∈ X∗, and ||x̃− x∗|| = ||x− x∗|| for
all x∗ ∈ X∗, which is possible only if x̃ = x.

2.0.4. Dynamic stepsize rule for unknown f∗. In most practical problems
the value f∗ is not known. In this case we may modify the dynamic stepsize (2.6) by
replacing f∗ with an estimate. This leads to the stepsize rule

αk = γk
f(xk)− f lev

k

C2
, 0 < γ ≤ γk ≤ γ < 2, ∀ k ≥ 0,(2.9)
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where C is defined by (2.7), (2.8), and f lev
k is an estimate of f∗.

We discuss two procedures for updating f lev
k . In both procedures f lev

k is equal
to the best function value min0≤j≤k f(xj) achieved up to the kth iteration minus a
positive amount δk which is adjusted based on the algorithm’s progress. The first ad-
justment procedure (new even when specialized to the ordinary subgradient method)
is simple but is guaranteed to yield only a δ-optimal objective function value with δ
positive and arbitrarily small (unless f∗ = −∞ in which case the procedure yields the
optimal function value). The second adjustment procedure for f lev

k is more complex
but is guaranteed to yield the optimal value f∗ in the limit. This procedure is based
on the ideas and algorithms of Brännlund [Brä93] and Goffin and Kiwiel [GoK99].

In the first adjustment procedure, f lev
k is given by

f lev
k = min

0≤j≤k
f(xj)− δk,(2.10)

and δk is updated according to

δk+1 =

{
ρδk if f(xk+1) ≤ f lev

k ,

max
{
βδk, δ

}
if f(xk+1) > f

lev
k ,

(2.11)

where δ0, δ, β, and ρ are fixed positive constants with β < 1 and ρ ≥ 1. Thus in this
procedure we essentially “aspire” to reach a target level that is smaller by δk over the
best value achieved thus far. Whenever the target level is achieved, we increase δk
or we keep it at the same value depending on the choice of ρ. If the target level is
not attained at a given iteration, δk is reduced up to a threshold δ. This threshold
guarantees that the stepsize αk of (2.9) is bounded away from zero, since from (2.10)
we have f(xk)− f lev

k ≥ δ and hence

αk ≥ γ δ

C2
.

As a result, the method’s behavior resembles the one with a constant stepsize (cf.
Proposition 2.1), as indicated by the following proposition.

Proposition 2.6. Let Assumption 2.1 hold. Then, for the sequence {xk} gen-
erated by the incremental method (1.4)–(1.6) and the dynamic stepsize rule (2.9) with
the adjustment procedure (2.10)–(2.11), we have

(a) If f∗ = −∞, then

inf
k≥0

f(xk) = f
∗.

(b) If f∗ > −∞, then

inf
k≥0

f(xk) ≤ f∗ + δ.

Proof. To arrive at a contradiction, assume that

inf
k≥0

f(xk) > f
∗ + δ.(2.12)

Each time the target level is attained (i.e., f(xk) ≤ f lev
k−1), the current best function

value min0≤j≤k f(xj) decreases by at least δ (cf. (2.10) and (2.11)), so in view of
(2.12), the target value can be attained only a finite number of times. From (2.11) it
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follows that after finitely many iterations, δk is decreased to the threshold value and
remains at that value for all subsequent iterations; i.e., there is an index k such that

δk = δ, ∀ k ≥ k.(2.13)

In view of (2.12), there exists y ∈ X such that infk≥0 f(xk) − δ ≥ f(y). From
(2.10) and (2.13), we have

f lev
k = min

0≤j≤k
f(xj)− δ ≥ inf

k≥0
f(xk)− δ ≥ f(y) ∀ k ≥ k,

so that

αk

(
f(xk)− f(y)

) ≥ αk

(
f(xk)− f lev

k

)
= γk

(
f(xk)− f lev

k

C

)2

∀ k ≥ k.

By using Lemma 2.1 with y = y, we have

||xk+1 − y||2 ≤ ||xk − y||2 − 2αk

(
f(xk)− f(y)

)
+ α2

kC
2 ∀ k ≥ 0.

By combining the preceding two relations and the definition of αk (cf. (2.9)), we
obtain

||xk+1 − y||2 ≤ ||xk − y||2 − 2γk

(
f(xk)− f lev

k

C

)2

+ γ2
k

(
f(xk)− f lev

k

C

)2

= ||xk − y||2 − γk(2− γk)
(
f(xk)− f lev

k

C

)2

≤ ||xk − y||2 − γ(2− γ) δ
2

C2
∀ k ≥ k,

where the last inequality follows from the facts γk ∈ [γ, γ] and f(xk) − f lev
k ≥ δ for

all k. By summing the above inequalities over k, we have

||xk − y||2 ≤ ||xk − y||2 − (k − k)γ(2− γ) δ
2

C2
∀ k ≥ k,

which cannot hold for large k—a contradiction.
When m = 1, the incremental subgradient method (1.4)–(1.6) becomes the ordi-

nary subgradient method

xk+1 = PX [xk − αkgk] ∀ k ≥ 0.

The dynamic stepsize rule (2.9) using the adjustment procedure of (2.10)–(2.11) (with
C = ||gk||), and the convergence result of Proposition 2.6 are new to our knowledge
for this method.

We now consider the second procedure for adjusting f lev
k , which guarantees that

f lev
k → f∗, and convergence of the associated method to the optimum. In this proce-
dure we reduce δk whenever the method “travels” for a long distance without reaching
the corresponding target level.

Path-Based Incremental Target Level Algorithm.
Step 0 (Initialization): Select x0, δ0 > 0, and B > 0. Set σ0 = 0, f rec

−1 = ∞. Set
k = 0, l = 0, and k(l) = 0 [k(l) will denote the iteration number when the lth update
of f lev

k occurs].
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Step 1 (Function evaluation): Calculate f(xk). If f(xk) < f
rec
k−1, then set f rec

k =
f(xk). Otherwise set f

rec
k = f rec

k−1 [so that f rec
k keeps the record of the smallest value

attained by the iterates that are generated so far, i.e., f rec
k = min0≤j≤k f(xj)].

Step 2 (Sufficient descent): If f(xk) ≤ f rec
k(l) − δl

2 , then set k(l + 1) = k, σk = 0,
δl+1 = δl, increase l by 1, and go to Step 4.

Step 3 (Oscillation detection): If σk > B, then set k(l+1) = k, σk = 0, δl+1 =
δl
2 ,

and increase l by 1.
Step 4 (Iterate update): Set f lev

k = f rec
k(l) − δl. Select γk ∈ [γ, γ] and calculate

xk+1 via (1.4)–(1.6) with the stepsize (2.9).
Step 5 (Path length update): Set σk+1 = σk + αkC. Increase k by 1 and go to

Step 1.
The algorithm uses the same target level f lev

k = f rec
k(l) − δl for k = k(l), k(l) +

1, . . . , k(l+ 1)− 1. The target level is updated only if sufficient descent or oscillation
is detected (Step 2 or Step 3, respectively). It can be shown that the value σk is an
upper bound on the length of the path traveled by iterates xk(l), . . . , xk for k < k(l+1).
Whenever σk exceeds the prescribed upper bound B on the path length, the parameter
δl is decreased, which increases the target level f lev

k .
We will show that infk≥0 f(xk) = f∗ even if f∗ is not finite. First, we give a

preliminary result showing that the target values f lev
k are updated infinitely often

(i.e., l→ ∞), and that infk≥0 f(xk) = −∞ if δl is nondiminishing.
Lemma 2.2. Let Assumption 2.1 hold. Then for the path-based incremental target

level algorithm we have l→ ∞, and either infk≥0 f(xk) = −∞ or liml→∞ δl = 0.
Proof. Assume that l takes only a finite number of values, say l = 0, 1, . . . , l. In

this case we have σk + αkC = σk+1 ≤ B for all k ≥ k(l), so that limk→∞ αk = 0.
But this is impossible, since for all k ≥ k(l) we have

αk = γk
f(xk)− f lev

k

C2
≥ γ δl

C2
> 0.

Hence l→ ∞.
Let δ = liml→∞ δl. If δ > 0, then from Steps 2 and 3 it follows that for all l large

enough, we have δl = δ and

f rec
k(l+1) − f rec

k(l) ≤ −δ
2
,

implying that infk≥0 f(xk) = −∞.
We have the following convergence result. In the special case of the ordinary

subgradient method, this result was proved by Goffin and Kiwiel [GoK99] using a
different (and much longer) proof.

Proposition 2.7. Let Assumption 2.1 hold. Then, for the sequence {xk} gener-
ated by the path-based incremental target level algorithm, we have

inf
k≥0

f(xk) = f
∗.

Proof. If liml→∞ δl > 0, then, according to Lemma 2.2, we have infk≥0 f(xk) =
−∞ and we are done, so assume that liml→∞ δl = 0. Let L be given by

L =

{
l ∈ {1, 2, . . .}

∣∣∣ δl = δl−1

2

}
.
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Then, from Steps 3 and 5, we obtain

σk = σk−1 + αk−1C =

k−1∑
j=k(l)

Cαj ,

so that k(l + 1) = k and l + 1 ∈ L whenever
∑k−1

j=k(l) αjC > B at Step 3. Hence

k(l)−1∑
j=k(l−1)

αj >
B

C
∀ l ∈ L,

and, since the cardinality of L is infinite, we have

∞∑
j=0

αj ≥
∑
l∈L

k(l)−1∑
j=k(l−1)

αj >
∑
l∈L

B

C
= ∞.(2.14)

Now, in order to arrive at a contradiction, assume that infk≥0 f(xk) > f
∗, so that

for some ŷ ∈ X and some ε > 0

inf
k≥0

f(xk)− ε ≥ f(ŷ).(2.15)

Since δl → 0, there is a large enough l̂ such that δl ≤ ε for all l ≥ l̂, so that for all
k ≥ k(l̂)

f lev
k = f rec

k(l) − δl ≥ inf
k≥0

f(xk)− ε ≥ f(ŷ).

Using this relation, Lemma 2.1 for y = ŷ, and the definition of αk, we obtain

||xk+1 − ŷ||2 ≤ ||xk − ŷ||2 − 2αk

(
f(xk)− f(ŷ)

)
+ α2

kC
2

≤ ||xk − ŷ||2 − 2αk

(
f(xk)− f lev

k

)
+ α2

kC
2

= ||xk − ŷ||2 − γk(2− γk)
(
f(xk)− f lev

k

)2
C2

≤ ||xk − ŷ||2 − γ(2− γ)
(
f(xk)− f lev

k

)2
C2

∀ k ≥ k(l).

By summing these inequalities over k ≥ k(l̂), we have
γ(2− γ)
C2

∞∑
k=k(l̂)

(
f(xk)− f lev

k

)2 ≤ ||xk(l̂) − ŷ||2,

and consequently
∑∞

k=k(l̂) α
2
k < ∞ (see the definition of αk in (2.9)). Since αk → 0

and
∑∞

k=0 αk = ∞ (cf. (2.14)), according to Proposition 2.2, we must have

lim inf
k→∞

f(xk) = f
∗.

Hence infk≥0 f(xk) = f
∗, which contradicts (2.15).

In an attempt to improve the efficiency of the path-based incremental target level
algorithm, one may introduce parameters β, τ ∈ (0, 1) and ρ ≥ 1 (whose values will
be fixed at Step 0), and modify Steps 2 and 3 as follows:
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Step 2′ If f(xk) ≤ f rec
k(l) − τδl, then set k(l + 1) = k, σk = 0, δl+1 = ρδl, increase

l by 1, and go to Step 4.
Step 3′ If σk > B, then set k(l+1) = k, σk = 0, δl+1 = βδl, and increase l by 1.
It can be seen that the result of Proposition 2.7 still holds for this modified

algorithm. If we choose ρ > 1 at Step 3′, then in the proofs of Lemma 2.2 and
Proposition 2.7 we have to replace liml→∞ δl with lim supl→∞ δl.

Let us remark that there is no need to keep the path bound B fixed. Instead, as
the method progresses, we can decrease B in such a way that

∑
l∈LBl = ∞ holds,

which ensures that the convergence result of Proposition 2.7 is preserved (cf. (2.14)).
It can be verified that all the results presented in this section are valid for the

incremental method that does not use projections within the cycles but rather employs
projections at the end of cycles:

ψi,k = ψi−1,k − αkgi,k, gi,k ∈ ∂fi(ψi−1,k), i = 1, . . . ,m,

where ψ0,k = xk and the iterate xk+1 is given by

xk+1 = PX [ψm,k].

This method and its modifications, including additive-type errors on subgradients,
synchronous parallelization, and a momentum term is given by Solodov and Zavriev
[SoZ98] and is analyzed for the case of a compact set X and a diminishing stepsize
rule.

3. An incremental subgradient method with randomization. It can be
verified that the preceding convergence analysis goes through assuming any order for
processing the component functions fi, as long as each component is taken into ac-
count exactly once within a cycle. In particular, at the beginning of each cycle k, we
could reorder the components fi by either shifting or reshuffling and then proceed with
the calculations until the end of the cycle. However, the order used can significantly
affect the rate of convergence of the method. Unfortunately, determining the most
favorable order may be very difficult in practice. A popular technique for incremental
gradient methods (for differentiable components fi) is to reshuffle randomly the order
of the functions fi at the beginning of each cycle. A variation of this method is to
pick randomly a function fi at each iteration rather than to pick each fi exactly once
in every cycle according to a randomized order. This variation can be viewed as a
gradient method with random errors, as shown in Bertsekas and Tsitsiklis [BeT96,
p. 143] (see also [BeT00]). Similarly, the corresponding incremental subgradient
method at each step picks randomly a function fi to be processed next. For the
case of a diminishing stepsize, the convergence of the method follows from known
stochastic subgradient convergence results (e.g., Ermoliev [Erm69], [Erm88], Polyak
[Pol87, p. 159])—see the subsequent Proposition 3.2. In this section, we also analyze
the method for the constant and dynamic stepsize rules. This analysis is new and has
no counterpart in the available stochastic subgradient literature.

The formal description of the randomized method is as follows:

xk+1 = PX

[
xk − αkg(ωk, xk)

]
,(3.1)

where ωk is a random variable taking equiprobable values from the set {1, . . . ,m} and
g(ωk, xk) is a subgradient of the component fωk

at xk. This simply means that if the
random variable ωk takes a value j, then the vector g(ωk, xk) is a subgradient of fj
at xk.
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Throughout this section we assume the following regarding the randomized method
(3.1).

Assumption 3.1.
(a) The sequence {ωk} is a sequence of independent random variables, each uni-

formly distributed over the set {1, . . . ,m}. Furthermore, the sequence {ωk} is inde-
pendent of the sequence {xk}.

(b) The set of subgradients
{
g(ωk, xk) | k = 0, 1, . . .

}
is bounded, i.e., there exists

a positive constant C0 such that with probability 1

||g(ωk, xk)|| ≤ C0 ∀ k ≥ 0.

Note that if the set X is compact or the components fi are polyhedral, then
Assumption 3.1(b) is satisfied. The proofs of several propositions in this section rely
on the supermartingale convergence theorem as stated, for example, in Bertsekas and
Tsitsiklis [BeT96, p. 148].

Theorem 3.1 (supermartingale convergence theorem). Let Yk, Zk, and Wk,
k = 0, 1, 2, . . ., be three sequences of random variables and let Fk, k = 0, 1, 2, . . ., be
sets of random variables such that Fk ⊂ Fk+1 for all k. Suppose that

(a) the random variables Yk, Zk, and Wk are nonnegative, and are functions of
the random variables in Fk;

(b) for each k, we have E
{
Yk+1 | Fk

} ≤ Yk − Zk +Wk;
(c) there holds

∑∞
k=0Wk <∞.

Then we have
∑∞

k=0 Zk < ∞, and the sequence Yk converges to a nonnegative
random variable Y , with probability 1.

3.0.5. Constant stepsize rule.
Proposition 3.1. Let Assumption 3.1 hold. Then, for the sequence {xk} gener-

ated by the randomized incremental method (3.1), with the stepsize αk fixed to some
positive constant α, we have the following:

(a) If f∗ = −∞, then with probability 1

inf
k≥0

f(xk) = f
∗.

(b) If f∗ > −∞, then with probability 1

inf
k≥0

f(xk) ≤ f∗ + αmC2
0

2
.

Proof. By adapting Lemma 2.1 to the case where f is replaced by fωk
, we have

||xk+1 − y||2 ≤ ||xk − y||2 − 2α
(
fωk

(xk)− fωk
(y)
)
+ α2C2

0 ∀ y ∈ X, k ≥ 0.

By taking the conditional expectation with respect to Fk = {x0, . . . , xk}, the method’s
history up to xk, we obtain for all y ∈ X and k

E
{||xk+1 − y||2 | Fk

} ≤ ||xk − y||2 − 2αE
{
fωk

(xk)− fωk
(y) | Fk

}
+ α2C2

0

= ||xk − y||2 − 2α

m∑
i=1

1

m

(
fi(xk)− fi(y)

)
+ α2C2

0

= ||xk − y||2 − 2α

m

(
f(xk)− f(y)

)
+ α2C2

0 ,

(3.2)
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where the first equality follows since ωk takes the values 1, . . . ,m with equal proba-
bility 1/m.

Now, fix a nonnegative integer N , consider the level set LN defined by

LN =



{
x ∈ X | f(x) < −N + 1 +

αmC2
0

2

}
if f∗ = −∞,{

x ∈ X | f(x) < f∗ + 2
N +

αmC2
0

2

}
if f∗ > −∞,

and let yN ∈ X be such that

f(yN ) =

{
−N if f∗ = −∞,
f∗ + 1

N if f∗ > −∞.

Note that yN ∈ LN by construction. Define a new process {x̂k} as follows

x̂k+1 =

{
PX

[
x̂k − αg(ωk, x̂k)

]
if x̂k /∈ LN ,

yN otherwise,

where x̂0 = x0. Thus the process {x̂k} is identical to {xk}, except that once xk enters
the level set LN , the process terminates with x̂k = yN (since yN ∈ LN ). Using (3.2)
with y = yN , we have

E
{||x̂k+1 − yN ||2 | Fk

} ≤ ||x̂k − yN ||2 − 2α

m

(
f(x̂k)− f(yN )

)
+ α2C2

0 ,

or equivalently

E
{||x̂k+1 − yN ||2 | Fk

} ≤ ||x̂k − yN ||2 − zk,(3.3)

where

zk =

{
2α
m

(
f(x̂k)− f(yN )

)− α2C2
0 if x̂k /∈ LN ,

0 if x̂k = yN .

(a) Let f∗ = −∞. Then if x̂k /∈ LN , we have

zk =
2α

m

(
f(x̂k)− f(yN )

)− α2C2
0 ≥ 2α

m

(
−N + 1 +

αmC2
0

2
+N

)
− α2C2

0 =
2α

m
.

Since zk = 0 for x̂k ∈ LN , we have zk ≥ 0 for all k, and by (3.3) and the supermartin-
gale convergence theorem,

∑∞
k=0 zk <∞, implying that x̂k ∈ LN for sufficiently large

k, with probability 1. Therefore, in the original process we have

inf
k≥0

f(xk) ≤ −N + 1 +
αmC2

0

2

with probability 1. Letting N → ∞, we obtain infk≥0 f(xk) = −∞ with probability
1.

(b) Let f∗ > −∞. Then if x̂k /∈ LN , we have

zk =
2α

m

(
f(x̂k)−f(yN )

)−α2C2
0 ≥ 2α

m

(
f∗ +

2

N
+
αmC2

0

2
− f∗ − 1

N

)
−α2C2

0 =
2α

mN
.
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Hence, zk ≥ 0 for all k, and by the supermartingale convergence theorem, we have∑∞
k=0 zk < ∞ implying that x̂k ∈ LN for sufficiently large k, so that in the original

process

inf
k≥0

f(xk) ≤ f∗ + 2

N
+
αmC2

0

2

with probability 1. Letting N → ∞, we obtain infk≥0 f(xk) ≤ f∗ + αmC2
0/2.

From Proposition 3.1(b), it can be seen that when f∗ > −∞, the randomized
method (3.1) with a fixed stepsize has a better error bound (by a factor m, since
C2 ≈ m2C2

0 ) than the one of the nonrandomized method (1.4)–(1.6) with the same
stepsize (cf. Proposition 2.1). This indicates that when randomization is used, the
stepsize αk should generally be chosen larger than in the nonrandomized methods of
section 2. This can also be observed from our experimental results. Being able to
use a larger stepsize suggests a potential rate of convergence advantage in favor of
the randomized methods, which is consistent with our experimental results. A more
precise result is shown in Nedić and Bertsekas [NeB00]: given any ε > 0, by using

m
(
dist(x0, X

∗)
)2
/αε iterations of the nonrandomized method we are guaranteed a

cost function value that is within a tolerance (αm2C2
0 + ε)/2 from the optimum f∗,

while by using the same expected number of iterations of the randomized method
we are guaranteed a cost function value that is within the potentially much smaller
tolerance (αmC2

0 + ε)/2 from f∗.

3.0.6. Diminishing stepsize rule. As mentioned earlier, the randomized meth-
od (3.1) with a diminishing stepsize can be viewed as a special case of a stochastic
subgradient method. Consequently, we just state the main convergence result and
refer to the literature for its proof.

Proposition 3.2. Let Assumption 3.1 hold and let the optimal set X∗ be
nonempty. Also assume that the stepsize αk in (3.1) is such that

αk > 0,

∞∑
k=0

αk = ∞,
∞∑
k=0

α2
k <∞.

Then the sequence {xk} generated by the randomized method (3.1) converges to some
optimal solution with probability 1.

Proof. See Theorem 1 of Ermoliev [Erm69] (also [Erm76, p. 97], [Erm83]).

3.0.7. Dynamic stepsize rule for known f∗. One possible version of the
dynamic stepsize rule for the method (3.1) has the form

αk = γk
f(xk)− f∗
mC2

0

, 0 < γ ≤ γk ≤ γ < 2,

where {γk} is a deterministic sequence, and requires knowledge of the cost function
value f(xk) at the current iterate xk. However, it would be inefficient to compute
f(xk) at each iteration since that iteration involves a single component fi, while the
computation of f(xk) requires all the components. We thus modify the dynamic
stepsize rule so that the value of f and the parameter γk that are used in the stepsize
formula are updated everyM iterations, whereM is any fixed positive integer, rather
than at each iteration. In particular, assuming f∗ is known, we use the stepsize

αk = γp
f(xMp)− f∗
mMC2

0

,

0 < γ ≤ γp ≤ γ < 2, k =Mp, . . . ,M(p+ 1)− 1, p = 0, 1, . . . ,(3.4)
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where {γp} is a deterministic sequence. We can choose M greater than m if m is
relatively small, or we can select M smaller than m if m is very large.

Proposition 3.3. Let Assumption 3.1 hold and let X∗ be nonempty. Then
the sequence {xk} generated by the randomized method (3.1) with the stepsize (3.4)
converges to some optimal solution with probability 1.

Proof. By adapting Lemma 2.1 to the case where y = x∗ ∈ X∗ and f is replaced
by fωk

, we have

||xk+1−x∗||2 ≤ ||xk−x∗||2−2αk

(
fωk

(xk)−fωk
(x∗)

)
+α2

kC
2
0 ∀ x∗ ∈ X∗, k ≥ 0.

By summing this inequality over k =Mp, . . . ,M(p+1)−1 (i.e., over theM iterations
of a cycle), we obtain for all x∗ ∈ X∗ and all p

||xM(p+1) − x∗||2 ≤ ||xMp − x∗||2 − 2αMp

M(p+1)−1∑
k=Mp

(
fωk

(xk)− fωk
(x∗)

)
+Mα2

MpC
2
0 ,

since αk = αMp for k =Mp, . . . ,M(p+1)− 1. By taking the conditional expectation
with respect to Gp = {x0, . . . , xM(p+1)−1}, we have for all x∗ ∈ X∗ and p

E
{||xM(p+1) − x∗ || 2 | Gp

} ≤ ||xMp − x∗||2(3.5)

− 2αMp

M(p+1)−1∑
k=Mp

E
{
fωk

(xk)− fωk
(x∗) | xk

}
+M2α2

MpC
2
0 ≤ ||xMp − x∗||2

− 2αMp

m

M(p+1)−1∑
k=Mp

(
f(xk)− f∗

)
+M2α2

MpC
2
0 .

We now relate f(xk) and f(xMp) for k =Mp, . . . ,M(p+ 1)− 1. We have

f(xk)− f∗ =
(
f(xk)− f(xMp)

)
+
(
f(xMp)− f∗

)
≥ g̃′Mp(xk − xMp) + f(xMp)− f∗

≥ f(xMp)− f∗ −mC0||xk − xMp||,

(3.6)

where g̃Mp is a subgradient of f at xMp and in the last inequality we use the fact

||g̃Mp|| =
∥∥∥∥∥

m∑
i=1

g̃i,Mp

∥∥∥∥∥ ≤ mC0

(cf. Assumption 3.1(b)) with g̃i,Mp being a subgradient of fi at xMp. Furthermore,
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we have for all p and k =Mp, . . . ,M(p+ 1)− 1

||xk − xMp|| ≤ ‖xk − xk−1‖+ ‖xk−1 − xMp‖

≤ αk−1‖g(ωk−1, xk−1)‖+ ‖xk−1 − xMp‖

≤ · · ·

≤ αMp

k−1∑
l=Mp

||g(ωl, xl)||

≤ (k −Mp)αMpC0,

(3.7)

which when substituted in (3.6) yields

f(xk)− f∗ ≥ f(xMp)− f∗ −
(
k −Mp)mαMpC

2
0 .

From the preceding relation and (3.5) we have

E
{||xM(p+1) − x∗||2 | Gp+1

} ≤ ||xMp − x∗||2 −
2MαMp

m

(
f(xMp)− f∗

)

+2α2
MpC

2
0

M(p+1)−1∑
k=Mp

(
k −Mp)+Mα2

MpC
2
0 .

(3.8)

Since

2α2
MpC

2
0

M(p+1)−1∑
k=Mp

(
k −Mp)+Mα2

MpC
2
0 = 2α2

MpC
2
0

M−1∑
l=1

l +Mα2
MpC

2
0 =M2α2

MpC
2
0 ,

it follows that for all x∗ ∈ X∗ and p

E
{||xM(p+1) − x∗||2 | Gp

} ≤ ||xMp − x∗||2 −
2MαMp

m

(
f(xMp)− f∗

)
+M2α2

MpC
2
0 .

This relation and the definition of αk (cf. (3.4)) yield

E
{||xM(p+1) − x∗||2 | Gp

} ≤ ||xMp − x∗||2 − γp
(
2− γp

)(f(xMp)− f∗
mC0

)2

.

By the supermartingale convergence theorem, we have

∞∑
k=0

γp
(
2− γp

)(f(xMp)− f∗
mC0

)2

<∞

and for each x∗ ∈ X∗ the sequence {||xMp − x∗||} is convergent, with probability 1.
Because γp ∈ [γ, γ] ⊂ (0, 2), it follows that with probability 1

lim
p→∞

(
f(xMp)− f∗

)
= 0.

Let {vi} be a countable subset of the relative interior ri(X∗) that is dense in X∗.
Such a set exists since ri(X∗) is a relatively open subset of the affine hull of X∗; an
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example of such a set is the intersection of X∗ with the set of the form x∗+
∑l

i=1 riξi,
where x∗ ∈ X∗, r1, . . . , rl are rational numbers, and ξ1, . . . , ξl are basis vectors for the
affine hull of X∗. For each i, let Ωvi be a set of sample paths such that the sequence
{||xMp − vi||} converges. Then the intersection

Ω = ∩∞
i=1Ωvi

has probability 1, since its complement Ω is equal to ∪∞
i=1Ωvi

and

P
(
∪∞
i=1 Ωvi

)
≤

∞∑
i=1

P (Ωvi) = 0.

For each sample path in Ω, the sequence {||xMp− vi||} converges for all i, so that
{xMp} is bounded. Since f(xMp) → f∗ and f is continuous, all limit points of {xMp}
belong to X∗. Because {vi} is a dense subset of X∗ and the sequences {||xMp − vi||}
converge, {xMp} must have a unique limit point and hence converges to some x ∈
X∗.

3.0.8. Dynamic stepsize rule for unknown f∗. In the case where f∗ is not
known, we modify the dynamic stepsize (3.4) by replacing f∗ with a target level
estimate f lev

p . Thus the stepsize is

αk = γp
f(xMp)− f lev

p

mMC2
0

,(3.9)

0 < γ ≤ γp ≤ γ < 2, k =Mp, . . . ,M(p+ 1)− 1, p = 0, 1, . . . .

To update the target values f lev
p , we may use the adjustment procedures described in

section 2.
In the first adjustment procedure, f lev

p is given by

f lev
p = min

0≤j≤p
f
(
xMj

)− δp,(3.10)

and δp is updated according to

δp+1 =

{
δp if f

(
xM(p+1)

) ≤ f lev
p ,

max
{
βδp, δ

}
if f
(
xM(p+1)

)
> f lev

p ,
(3.11)

where δ and β are fixed positive constants with β < 1. Thus all the parameters of the
stepsize are updated everyM iterations. Note that here the parameter ρ of (2.11) has
been set to 1. Our proof relies on this (relatively mild) restriction. Since the stepsize
is bounded away from zero, the method behaves similarly to the one with a constant
stepsize (cf. Proposition 3.1). More precisely, we have the following result.

Proposition 3.4. Let Assumption 3.1 hold. Then, for the sequence {xk} gener-
ated by the randomized method (3.1) and the stepsize rule (3.9) with the adjustment
procedure (3.10)–(3.11), we have the following:

(a) If f∗ = −∞, then with probability 1

inf
k≥0

f(xk) = f
∗.

(b) If f∗ > −∞, then with probability 1

inf
k≥0

f(xk) ≤ f∗ + δ.
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Proof. (a) Define the events

H1 =

{
lim
p→∞ δp > δ

}
, H2 =

{
lim
p→∞ δp = δ

}
.

Given that H1 occurred there is an integer R such that δR > δ and

δp = δR ∀ p ≥ R.
We let R be the smallest integer with the above property and we note that R is a
discrete random variable taking nonnegative integer values. In view of (3.11), we have
for all p ≥ R

f
(
xM(p+1)

) ≤ f lev
p .

Then from the definition of f lev
p (cf. (3.10)), the relation min0≤j≤p f

(
xMj

) ≤ f(xMp

)
,

and the fact δp = δR for all p ≥ R, we obtain
f
(
xM(p+1)

) ≤ f(xMp

)− δR ∀ p ≥ R.
Summation of the above inequalities yields

f
(
xMp

) ≤ f(xMR)− (p−R)δR ∀ p ≥ R.
Therefore, given that H1 occurred, we have infp≥0 f(xMp) ≥ infp≥0 f(xMp) = −∞
with probability 1, i.e.,

P

{
inf
p≥0

f(xMp) = −∞
∣∣∣ H1

}
= 1.(3.12)

Now assume that H2 occurred. The event H2 occurs if and only if, after finitely
many iterations, δp is decreased to the threshold value δ and remains at that value
for all subsequent iterations. Thus H2 occurs if and only if there is an index S such
that

δp = δ ∀ p ≥ S.(3.13)

Let S be the smallest integer with the above property, and note that we have H2 =
∪s≥0Bs, where Bs =

{
S = s

}
for all integers s ≥ 0.

Similar to the proof of Proposition 3.3 (cf. (3.8)), we have for all y ∈ X and p

E
{||xM(p+1) − y||2 | Gp, Bs

}
= E

{||xM(p+1) − y||2 | Gp

}

≤ ||xMp − y||2 − 2γp
f(xMp)− f lev

p

m2C2
0

(
f(xMp)− f(y)

)

+γ2
p

(
f(xMp)− f lev

p

)2
m2C2

0

,

(3.14)
where Gp = {x0, . . . , xMp−1}. Now, fix an N and let yN ∈ X be such that

f(yN ) = −N − δ,
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where N is a nonnegative integer. Consider a new process {x̂k} defined by

x̂k+1 =

{PX

[
x̂k − αkg(ωk, x̂k)

]
if f(x̂Mp) ≥ −N,

yN otherwise

for k =Mp, . . . ,M(p+1)−1, p = 0, 1, . . ., and x̂0 = x0. The process {x̂k} is identical
to {xk} up to the point when xMp enters the level set

LN = {x ∈ X | f(x) < −N} ,
in which case the process {x̂k} terminates at the point yN . Therefore, given Bs, the
process {x̂Mp} satisfies (3.14) for all p ≥ s and y = yN , i.e., we have

E
{||x̂M(p+1) − yN ||2 | Gp

} ≤ ||x̂Mp − yN ||2 − 2γp
f(x̂Mp)− f lev

p

m2C2
0

(
f(x̂Mp)− f(yN )

)

+ γ2
p

(
f(x̂Mp)− f lev

p

)2
m2C2

0

,

or equivalently

E
{||x̂M(p+1) − yN ||2 | Gp

} ≤ ||x̂Mp − yN ||2 − zp,
where

zp =


2γp

f(x̂Mp)− f lev
p

m2C2
0

(
f(x̂Mp)− f(yN )

)− γ2
p

(
f(x̂Mp)− f lev

p

)2
m2C2

0

if x̂Mp /∈ LN ,

0 if x̂Mp = yN .

By using the definition of f lev
p (cf. (3.10)) and the fact δp = δ for all p ≥ s (cf.

(3.13)), we have for p ≥ s and x̂Mp /∈ LN

f(yN ) ≤ min
0≤j≤p

f(x̂Mj)− δ = f lev
p ,

which, when substituted in the preceding relation, yields for p ≥ s and x̂Mp /∈ LN

zp ≥ γp
(
2− γp

)(f(x̂Mp)− f lev
p

)2
m2C2

0

≥ γ(2− γ) δ2

m2C2
0

.

The last inequality above follows from the facts γp ∈ [γ, γ] and f(x̂Mp) − f lev
p ≥ δ

for all p (cf. (3.10)–(3.11)). Hence zp ≥ 0 for all k, and by the supermartingale
convergence theorem, we obtain

∑∞
p=s zp < ∞ with probability 1. Thus, given Bs

we have x̂Mp ∈ LN for sufficiently large p, with probability 1, implying that in the
original process

P

{
inf
p≥0

f(xMp) ≤ −N
∣∣∣ Bs

}
= 1.

By letting N → ∞ in the preceding relation, we obtain

P

{
inf
p≥0

f(xMp) = −∞
∣∣∣ Bs

}
= 1.
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Since H2 = ∪s≥0Bs, it follows that

P
{
infp≥0 f(xMp) = −∞

∣∣∣ H2

}
=
∑∞

s=0 P
{
infp≥0 f(xMp) = −∞

∣∣∣ Bs

}
P (Bs)

=
∑∞

s=0 P (Bs) = 1.

Combining (3.12) with the preceding relation, we have with probability 1

inf
p≥0

f(xMp) = −∞,

so that infk≥0 f(xk) = −∞ with probability 1.
(b) Using the proof of part (a), we see that if f∗ > −∞, then H2 occurs with

probability 1. Thus, as in part (a), we have H2 = ∪s≥0Bs, where Bs = {S = s} for
all integer s ≥ 0 and S is as in (3.13).

Fix an N and let yN ∈ X be such that

f(yN ) = f∗ +
1

N
,

where N is a positive integer. Consider the process {x̂k} defined by

x̂k+1 =

{
PX

[
x̂k − αkg(ωk, x̂k)

]
if f(x̂Mp) ≥ f∗ + δ + 1

N ,

yN otherwise

for k = Mp, . . . ,M(p + 1) − 1, p = 0, 1, . . ., and x̂0 = x0. The process {x̂k} is the
same as the process {xk} up to the point where xMp enters the level set

LN =

{
x ∈ X

∣∣∣ f(x) < f∗ + δ + 1

N

}
,

in which case the process {x̂k} terminates at the point yN . The rest follows similarly
to the proof of part (a).

The target level f lev
p can also be updated according to the second adjustment

procedure discussed in section 2. In this case, it can be shown that the result of
Proposition 2.7 holds with probability 1. We omit the lengthy details.

4. Experimental results. In this section we report some of the numerical re-
sults with a certain type of test problem: the dual of a generalized assignment problem
(see Martello and Toth [MaT90, p. 189], and Bertsekas [Ber98, p. 362]. The problem
is to assign m jobs to n machines. If job i is performed at machine j, it costs aij and
requires pij time units. Given the total available time tj at machine j, we want to
find the minimum cost assignment of the jobs to the machines. Formally the problem
is

minimize

m∑
i=1

n∑
j=1

aijyij

subject to

n∑
j=1

yij = 1, i = 1, . . . ,m,

m∑
i=1

pijyij ≤ tj , j = 1, . . . , n,

yij = 0 or 1, for all i, j,
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where yij is the assignment variable, which is equal to 1 if the ith job is assigned to
the jth machine and is equal to 0 otherwise. In our experiments we chose n equal to
4 and m equal to the four values 500, 800, 4000, and 7000.

By relaxing the time constraints for the machines, we obtain the dual problem

maximize f(x) =
m∑
i=1

fi(x)

subject to x ≥ 0,

(4.1)

where

fi(x) = min∑n

j=1
yij=1, yij=0 or yij=1

n∑
j=1

(aij + xjpij)yij − 1

m

n∑
j=1

tjxj , i = 1, . . . ,m.

Since aij + xjpij ≥ 0 for all i, j, we can easily evaluate fi(x) for each x ≥ 0:

fi(x) = aij∗ + xj∗pij∗ − 1

m

n∑
j=1

tjxj ,

where j∗ is such that

aij∗ + xj∗pij∗ = min
1≤j≤n

{aij + xjpij}.

In the same time, at no additional cost, we obtain a subgradient g of fi at x:

g = (g1, . . . , gn)
′, gj =

{
− tj

m if j �= j∗,
pij∗ − tj∗

m if j = j∗.

The experiments are divided in two groups, each with a different goal. The first
group was designed to compare the performance of the ordinary subgradient method
(1.3) and the incremental subgradient method (1.4)–(1.6) for solving the test problem
(4.1) when using different stepsize choices while keeping fixed the order of processing
of the components fi. The second group of experiments was designed to evaluate
the incremental method when using different rules for the order of processing the
components fi, while keeping fixed the stepsize choice.

In the first group of experiments the data for the problems (i.e., the matrices
{aij}, {pij}) were generated randomly according to a uniform distribution over differ-
ent intervals. The values tj were calculated according to the formula

tj =
t

n

m∑
i=1

pij , j = 1, . . . , n,(4.2)

with t taking one of the three values 0.5, 0.7, or 0.9. We used two stepsize rules:
(1) A diminishing stepsize that has the form

αkN = · · · = α(k+1)N−1 =
D

k + 1
∀ k ≥ 0,

where D is some positive constant, and N is some positive integer that represents
the number of cycles during which the stepsize is kept at the same value. To guard
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Table 1
n = 4, m = 800, f∗ ≈ 1578.47, f̃ = 1578.

Ordinary subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.08/2/7/ > 500 0.03/0.97/12× 105/ > 500

(0,0,0,0) 0.1/2/7/ > 500 0.5/0.98/2× 104/ > 500

(0,0,0,0) 0.07/3/10/ > 500 0.5/0.95/3× 104/ > 500

(0,0,0,0) 0.01/10/7/ > 500 0.3/0.95/5× 104/ > 400

(0,0,0,0) 0.09/1/7/ > 500 0.1/0.9/106/ > 200

(0,0,0,0) 0.03/5/500/ > 500 0.2/0.93/5× 104/ > 300

(0,0,0,0) 0.08/4/7/ > 500 0.8/0.97/12× 103/ > 500

(0,0,0,0) 0.09/5/10/ > 500 0.03/0.95/106/ > 500

(1.2,1.1,2,1.04) 0.005/2/5/ > 500 0.4/0.975/2× 104/ > 200

(1.2,1.1,2,1.04) 0.009/1/5/ > 500 0.5/0.97/4× 103/ > 50

(0.4, 0.2, 1.4, 0.1) 0.009/2/5/ > 500 0.4/0.8/2700/ > 500

(0.4, 0.2, 1.4, 0.1) 0.005/5/500/ > 500 0.5/0.9/1300/ > 500

against an unduly large value of c we implemented an adaptive feature, whereby if
within some (heuristically chosen) number S of consecutive iterations the current best
cost function value is not improved, then the new iterate xk+1 is set equal to the point
at which the current best value is attained.

(2) The stepsize rule given by (2.9) and the path-based procedure. This is essen-
tially the target level method, in which the path bound is not fixed but rather the
current value for B is multiplied by a certain factor ξ ∈ (0, 1) whenever an oscillation
is detected (see the remark following Proposition 2.7). The initial value for the path
bound was B = r||x0 − x1|| for some (heuristically chosen) positive constant r.

We report in the following tables the number of iterations required for various
methods and parameter choices to achieve a given threshold cost f̃ . The notation
used in the tables is as follows:

> k× 100 for k = 1, 2, 3, 4 means that the value f̃ has been achieved or exceeded
after k × 100 iterations, but in less than (k + 1)× 100 iterations.

> 500 means that the value f̃ has not been achieved within 500 iterations.
D/N/S/iter gives the values of the parameters D, N , and S for the diminishing

stepsize rule, while iter is the number of iterations (or cycles) needed to achieve or
exceed f̃ .

r/ξ/δ0/iter describes the values of the parameters and number of iterations for
the target level stepsize rule.

Tables 1 and 2 show the results of applying the ordinary and incremental sub-
gradient methods to problem (4.1) with n = 4, m = 800, and t = 0.5 in (4.2). The
optimal value of the problem is f∗ ≈ 1578.47. The threshold value is f̃ = 1578. The
tables show when the value f̃ was attained or exceeded.

Tables 3 and 4 show the results of applying the ordinary and incremental sub-
gradient methods to problem (4.1) with n = 4, m = 4000, and t = 0.7 in (4.2). The
optimal value of the problem is f∗ ≈ 6832.3 and the threshold value is f̃ = 6831.5. The
tables show the number of iterations needed to attain or exceed the value f̃ = 6831.5.

Tables 1 and 2 demonstrate that the incremental subgradient method performs
substantially better than the ordinary subgradient method. As m increases, the per-
formance of the incremental method improves as indicated in Tables 3 and 4. The
results obtained for other problems that we tested are qualitatively similar and con-
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Table 2
n = 4, m = 800, f∗ ≈ 1578.47, f̃ = 1578.

Incremental subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.05/3/500/99 3/0.7/5× 106/97

(0,0,0,0) 0.09/2/500/ > 100 2/0.6/55× 105/ > 100

(0,0,0,0) 0.1/1/500/99 0.7/0.8/55× 105/ > 100

(0,0,0,0) 0.1/1/10/99 0.4/0.95/107/80

(0,0,0,0) 0.05/5/7/ > 100 0.3/0.93/107/ > 100

(0,0,0,0) 0.07/3/10/ > 100 0.5/0.9/107/ > 200

(0,0,0,0) 0.01/7/7/ > 500 0.3/0.93/15× 106/30

(0,0,0,0) 0.009/5/7/ > 500 2/0.8/5× 106/ > 100

(1.2,1.1,2,1.04) 0.05/1/500/40 0.4/0.97/12× 106/ > 100

(1.2,1.1,2,1.04) 0.04/3/500/35 0.3/0.975/107/27

(0.4,0.2,1.4,0.1) 0.07/1/500/48 0.4/0.975/12× 106/100

(0.4,0.2,1.4,0.1) 0.048/1/500/39 0.5/0.94/12× 106/ > 100

Table 3
n = 4, m = 4000, f∗ ≈ 6832.3, f̃ = 6831.5.

Ordinary subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.01/2/7/ > 500 1/0.9/5000/58

(0,0,0,0) 0.001/5/7/ > 300 2/0.99/5500/ > 100

(0,0,0,0) 0.0008/5/10/ > 300 1.3/0.98/4800/54

(0,0,0,0) 0.0005/5/7/ > 200 1.5/0.98/2000/88

(0,0,0,0) 0.0001/5/10/99 0.5/0.8/4000/99

(0,0,0,0) 0.0001/2/500/ > 100 0.4/0.9/4000/89

(0,0,0,0) 0.0001/5/10/ > 200 0.5/0.9/3000/88

(0,0,0,0) 0.00009/5/500/100 0.5/0.95/2000/98

(0.5,0.9,1.3,0.4) 0.0005/3/500/ > 100 0.5/0.98/2000/95

(0.5,0.9,1.3,0.4) 0.0002/7/7/ > 100 0.4/0.97/3000/98

(0.26,0.1,0.18,0.05) 0.0002/5/7/100 0.3/0.98/3000/90

(0.26,0.1,0.18,0.05) 0.00005/7/7/30 0.095/0.985/10/50

Table 4
n = 4, m = 4000, f∗ ≈ 6832.3, f̃ = 6831.5.

Incremental subgradient method
Initial point Diminishing Target level

x0 D/N/S/iter r/ξ/δ0/iter

(0,0,0,0) 0.005/2/500/46 5/0.99/106/7

(0,0,0,0) 0.007/1/500/37 8/0.97/11× 105/5

(0,0,0,0) 0.001/2/500/95 2/0.99/7× 105/ > 100

(0,0,0,0) 0.0008/1/500/30 0.8/0.4/9× 105/6

(0,0,0,0) 0.0002/2/500/21 0.7/0.4/106/7

(0,0,0,0) 0.0005/2/500/40 0.1/0.9/106/15

(0,0,0,0) 0.0002/2/7/21 0.08/0.9/15× 105/18

(0,0,0,0) 0.0003/1/500/21 0.25/0.9/2× 106/20
(0.5,0.9,1.3,0.4) 0.001/1/500/40 0.07/0.9/106/7
(0.5,0.9,1.3,0.4) 0.0004/1/500/30 0.04/0.9/106/26

(0.26,0.1,0.18,0.05) 0.00045/1/500/20 0.04/0.9/15× 105/10
(0.26,0.1,0.18,0.05) 0.00043/1/7/20 0.045/0.91/1.55× 106/10
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Table 5
n = 4, m = 800, f∗ ≈ 1672.44, f̃ = 1672.

Incremental subgradient method/Diminishing stepsize
Initial point Sorted order Sorted/Shifted order Random order

x0 D/N/iter D/N/K/iter D/N/iter

(0,0,0,0) 0.005/1/ > 500 0.007/1/9/ > 500 0.0095/4/5

(0,0,0,0) 0.0045/1/ > 500 0.0056/1/13/ > 500 0.08/1/21

(0,0,0,0) 0.003/2/ > 500 0.003/2/7/ > 500 0.085/1/7

(0,0,0,0) 0.002/3/ > 500 0.002/2/29/ > 500 0.091/1/17

(0,0,0,0) 0.001/5/ > 500 0.001/6/31/ > 500 0.066/1/18

(0,0,0,0) 0.006/1/ > 500 0.0053/1/3/ > 500 0.03/2/18

(0,0,0,0) 0.007/1/ > 500 0.00525/1/11/ > 500 0.07/1/18

(0,0,0,0) 0.0009/7/ > 500 0.005/1/17/ > 500 0.054/1/17

(0.2,0.4,0.8,3.6) 0.001/1/ > 500 0.001/1/17/ > 500 0.01/1/13

(0.2,0.4,0.8,3.6) 0.0008/3/ > 500 0.0008/3/7/ > 500 0.03/1/8

(0,0.05,0.5,2) 0.0033/1/ > 400 0.0037/1/7/ > 400 0.033/1/7

(0,0.05,0.5,2) 0.001/4/ > 500 0.0024/2/13/ > 500 0.017/1/8

sistently show substantially and often dramatically faster convergence for the incre-
mental method.

We suspected that the random generation of the problem data induced a behavior
of the (nonrandomized) incremental method that is similar to the one of the random-
ized version. Consequently, for the second group of experiments, the coefficients {aij}
and {pij} were generated as before and then were sorted in nonincreasing order, in
order to create a sequential dependence among the data. In all runs we used the
diminishing stepsize choice (as described earlier) with S = 500, while the order of
components fi was changed according to three rules:

(1) Sorted . After the data have been randomly generated and sorted, the com-
ponents are processed in the fixed order 1, 2, . . . ,m.

(2) Sorted/Shifted . After the data have been randomly generated and sorted,
they are cyclically shifted by some number K. The components are processed in the
fixed order 1, 2, . . . ,m.

(3) Random. The index of the component to be processed is chosen randomly,
with each component equally likely to be selected.

To compare fairly the randomized methods with the other methods, we count as
an “iteration” the processing of m consecutively and randomly chosen components
fi. In this way, an “iteration” of the randomized method is equally time-consuming
as a cycle or “iteration” of any of the nonrandomized methods.

Table 5 shows the results of applying the incremental subgradient method with
order rules (1)–(3) for solving the problem (4.1) with n = 4, m = 800, and t = 0.9 in
(4.2). The optimal value is f∗ ≈ 1672.44 and the threshold value is f̃ = 1672. The
table shows the number of iterations needed to attain or exceed f̃ .

Table 6 shows the results of applying the incremental subgradient method with
order rules (1)–(3) for solving the problem (4.1) with n = 4, m = 7000, and t = 0.5
in (4.2). The optimal value is f∗ ≈ 14601.38 and the threshold value is f̃ = 14600.
The tables show when the value f̃ was attained or exceeded.

Tables 5 and 6 show how an unfavorable fixed order can have a dramatic effect
on the performance of the incremental subgradient method. Note that shifting the
components at the beginning of every cycle did not improve the convergence rate
of the method. However, the randomization of the processing order resulted in fast
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Table 6
n = 4, m = 7000, f∗ ≈ 14601.38, f̃ = 14600.

Incremental subgradient method/Diminishing stepsize
Initial point Sorted order Sorted/Shifted order Random order

x0 D/N/iter D/N/K/iter D/N/iter

(0,0,0,0) 0.0007/1/ > 500 0.0007/1/3/ > 500 0.047/1/18

(0,0,0,0) 0.0006/1/ > 500 0.0006/1/59/ > 500 0.009/1/10

(0,0,0,0) 0.00052/1/ > 500 0.00052/1/47/ > 500 0.008/1/2

(0,0,0,0) 0.0008/1/ > 500 0.0005/1/37/ > 500 0.023/1/34

(0,0,0,0) 0.0004/2/ > 500 0.0004/2/61/ > 500 0.0028/1/10

(0,0,0,0) 0.0003/2/ > 500 0.0003/2/53/ > 500 0.06/1/22

(0,0,0,0) 0.00025/3/ > 500 0.00025/3/11/ > 500 0.05/1/18

(0,0,0,0) 0.0009/1/ > 500 0.00018/3/79/ > 500 0.007/1/10

(0,0.1,0.5,2.3) 0.0005/1/ > 500 0.0005/1/79/ > 500 0.004/1/10

(0,0.1,0.5,2.3) 0.0003/1/ > 500 0.0003/1/51/ > 500 0.0007/1/18

(0,0.2,0.6,3.4) 0.0002/1/ > 500 0.0002/1/51/ > 500 0.001/1/10

(0,0.2,0.6,3.4) 0.0004/1/ > 500 0.00007/2/93/ > 500 0.0006/1/10

convergence. The results for the other problems that we tested are qualitatively
similar and also demonstrated the superiority of the randomized method.

5. Conclusions. We have proposed several variants of incremental subgradient
methods, we have analyzed their convergence properties, and we have evaluated them
experimentally. The methods that employ the constant and the dynamic stepsize
rules are analyzed here for the first time. The subgradient methods of section 3 are
the first incremental methods that use randomization in the context of deterministic
nondifferentiable optimization, and their computational performance is particularly
interesting. A similar randomization in the context of deterministic differentiable
optimization, proposed by Bertsekas and Tsitsiklis [BeT96, p. 143], seems to have
a qualitatively different computational performance, as suggested by examples (see
Bertsekas [Ber99, p. 113 and p. 616].

Several of the ideas of this paper merit further investigation, some of which will
be presented in future publications. In particular, we will discuss in a separate paper
variants of the incremental subgradient method involving a momentum term, alter-
native stepsize rules, the use of ε-subgradients, and some other features.
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