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Abstract

In this paper we discuss the parallel asynchronous implementation of the Hungarian method for solving the
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1. Introduction

1. INTRODUCTION

We consider the classical problem of optimal assignment of n persons to n objects, whereby given
a benefit aij that person i associates with object j, we want to find an assignment of persons to
objects, on a one-to-one basis, that maximizes the total benefit. The classical method for solving
this problem is Kuhn’s Hungarian method [Kuh55]. This method is of major theoretical interest
and is still used widely. It maintains a price for each object and an (incomplete) assignment of
persons and objects. At each iteration, the method chooses an unassigned person and computes a
shortest augmenting path from this person to the set of unassigned objects, using reduced costs as
arc lengths. An augmentation is then performed along the path and the object prices are adjusted
to maintain complementary slackness; the process is repeated until there are no unassigned persons
left. There are several discussions and implementations of this algorithm in the literature, some
of which are referred to as sequential shortest path methods [CMT88], [Der85], [Eng82], [GGK82],
[Hal56], [JoV87], [Law76], [McG83], [Pas82], [Roc84].

The classical version of the Hungarian method is serial in nature; only one shortest augmenting
path is computed at a time. In a recent paper, Balas, Miller, Pekny, and Toth [BMP89] introduced
an interesting and original idea for parallelization of the Hungarian method. In particular, they
proposed the parallel construction of several shortest augmenting paths, each starting from a different
unassigned person. They have shown that if these paths are pairwise disjoint, they can all be used
to enlarge the current assignment; to preserve complementary slackness, the object prices should be
raised to the maximum of the levels that would result from each individual shortest path calculation.
Balas et al [BMP89] described an implementation of their parallel algorithm on the Butterfly Plus
computer. Their computational results indicate a modest speedup (of the order of about 2) for the
shortest path portion of their algorithm.

An obstacle in the way of a substantial speedup using the method of Balas et al is the synchro-
nization required at the end of the parallel shortest path construction. To increase concurrency, a
substantial number of shortest augmenting paths must be constructed at each iteration. However,
these paths cannot be incorporated in the current assignment (and taken into account in subsequent
shortest path calculations) until the end of the iteration. As a result, processors which have com-
pleted their computations must wait idly for other processors to complete their computations. In
this paper, we rectify this shortcoming by developing a theory of asynchronous parallel Hungarian
algorithms in which there is no concept of iteration and processors can proceed with the compu-
tation of new shortest paths regardless of the progress of other processors. We prove the validity
of the corresponding asynchronous implementation and we demonstrate its merit by computational
experimentation. As a special case, we recover both the algorithm of Balas et al [BMP89] and their
convergence result. Our analysis extends nontrivially the analysis of [BMP89].

In the next section we describe an asynchronous algorithm that includes the classical Hungarian
method as well as the synchronous parallel algorithm of Balas et al [BMP89] as special cases. In
Section 3 we prove the validity of this asynchronous method, showing that it terminates with an
optimal assignment in a finite number of steps, assuming existence of at least one feasible assignment.
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2. The Parallel Asynchronous Algorithm

In Section 4 we discuss a variety of synchronous and asynchronous implementations and we report
on the results of our computational tests.

2. THE PARALLEL ASYNCHRONOUS ALGORITHM

In the assignment problem that we consider, n persons wish to allocate among themselves n

objects, on a one-to-one basis. Each person i must select his object from a given subset A(i). There
is a given benefit aij that i associates with each object j ∈ A(i). An assignment is a set of k

person-object pairs S =
{
(i1, j1), . . . , (ik, jk)

}
, such that 0 ≤ k ≤ n, jm ∈ A(im) for all k, and

the persons i1, . . . , ik and objects j1, . . . , jk are all distinct. The total benefit of the assignment is
the sum

∑k
m=1 aimjm of the benefits of the assigned pairs. An assignment is called complete (or

incomplete) if it contains k = n (or k < n, respectively) person-object pairs. We want to find a
complete assignment with maximum total benefit, assuming that there exists at least one complete
assignment.

The dual assignment problem is given by (see e.g. [BeT89], [PaS82], [Roc84])

minimize
n∑

j=1

pj +
n∑

i=1

πi

subject to pj + πi ≥ aij , ∀ (i, j) with j ∈ A(i).

(1)

Since we have πi = maxj∈A(i){aij − pj} at the optimum, the dual variables πi can be eliminated,
thereby obtaining the following equivalent unconstrained problem

minimize
n∑

j=1

pj +
n∑

i=1

max
j∈A(i)

{aij − pj}

subject to no constraints on pj , j = 1, . . . , n.

(2)

We refer to pj as the price of object j. For a given price vector p = (p1, ..., pn), the reduced cost
of arc (i, j) is the nonnegative scalar rij given by

rij = max
m∈A(i)

{aim − pm} − (aij − pj).

We say that a price vector p and an assignment S satisfy complementary slackness (or CS for short)
if the corresponding reduced costs of the assigned arcs are zero,

rij = 0, ∀ (i, j) ∈ S.

A classical optimality condition states that an assignment-price pair (S, p) solve the primal and dual
problems, respectively, if and only if S is complete and satisfies CS together with p.

We now consider two operations that form the building blocks of our asynchronous algorithm.
They operate on an assignment-price pair (S, p) and produce another assignment-price pair (Ŝ, p̂).
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2. The Parallel Asynchronous Algorithm

The first operation is augmentation, which is familiar from the theory of the Hungarian method.
Here we have a person-object sequence (i, j1, i1, j2, i2, . . . , jk, ik, j), called an augmenting path, with
the following properties:

(a) i and j are unassigned under S.

(b) (im, jm) ∈ S, for all m = 1, . . . , k.

(c) j1 ∈ A(i), jm ∈ A(im−1), for all m = 1, . . . , k, and j ∈ A(ik).

(d) rij1 = ri1j2 = · · · = rik−1jk
= rikj = 0.

The augmentation operation leaves the price vector unaffected (p = p̂), and yields an assignment Ŝ

obtained from S by replacing (im, jm), m = 1, . . . , k with (i, j1), (i1, j2), . . . , (ik−1, jk), (ik, j).
The second operation is called price rise. Here we have a set of assigned person-object pairs

{
(i1, j1), . . . (ik, jk)

}
⊂ S

such that there is at least one i and j ∈ A(i) with i ∈ {i1, . . . , ik} and j /∈ {j1, . . . , jk}, and such
that the scalar γ given by

γ = min
{
rij | i ∈ {i1, . . . , ik}, j �∈ {j1, . . . , jk}

}
is positive. The operation consists of leaving S unchanged (S = Ŝ) and setting

p̂j =
{

pj , if j /∈ {j1, . . . , jk}
pj + γ if j ∈ {j1, . . . , jk}. (3)

It can be seen that the following hold for the two operations just described:

(a) When an operation is performed on a pair (S, p) satisfying CS, it produces a pair (Ŝ, p̂)
satisfying CS.

(b) As a result of an operation on (S, p), object prices cannot decrease (i.e., p ≤ p̂), and the
price of an unassigned object cannot change (i.e., pj = p̂j if j is unassigned under S).

(c) An object that is assigned prior to an operation remains assigned after the operation.

We define a generic iteration on a pair (S, p) to be either an augmentation, or several price rises
in succession followed by an augmentation. One way to implement the Hungarian method, given
in [Law76], p. 206, consists of a sequence of generic iterations starting from a pair (S, p) satisfying
CS. From this particular implementation it follows that if (S, p) satisfies CS, and S is an incomplete
assignment, then it is possible to perform a generic iteration on (S, p).

A mathematically equivalent alternative implementation of the Hungarian method is based on
constructing a shortest path from a single unassigned person to the set of unassigned sources using
reduced costs as arc lengths; see e.g. [BMP89], [Der85], [JoV87]. In particular, at each iteration,
given (S, p) satisfying CS, the residual graph is considered, which is the same as the bipartite graph
of the assignment problem except that the direction of the assigned arcs (i, j) ∈ S is reversed; the
length of each arc is set to its reduced cost with respect to p. Then an unassigned person i is selected
and the shortest path problem from i to the set of objects j /∈ S is solved. Let vj be the shortest
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2. The Parallel Asynchronous Algorithm

distance from i to object j, let j = arg minj /∈S vj , let v = vj , and let P be the corresponding shortest
path from i to j. The successive shortest path iteration consists of the price change

p̂j = pj + max{0, v − vj}, j = 1, . . . , n, (4)

followed by an augmentation along the path P . The labeling process of the implementation in
[Law76], p. 206, referred to earlier, amounts to the use of Dijkstra’s method for the shortest path
calculation. In particular, the price change of Eq. (4) can be decomposed into the sequence of price
changes of the “permanently labeled” node sets in Dijkstra’s method, and each of these price changes
is a price rise operation in the sense of Eq. (3). Thus, a successive shortest path iteration may be
viewed as a generic iteration of the type defined above.

We now describe the asynchronous algorithm. The assignment-price pair at the times

k = 1, 2, 3, . . .

is denoted by
(
S(k), p(k)

)
. The initial pair

(
S(1), p(1)

)
must satisfy CS. At each time k, a generic

iteration is performed on a pair
(
S(τk), p(τk)

)
, where τk is a positive integer with τk ≤ k, to produce a

pair
(
Ŝ(k), p̂(k)

)
. We say that the iteration (and the corresponding augmenting path) is incompatible

if this path is not an augmenting path with respect to S(k); in this case we discard the results of
the iteration, that is, we set

S(k + 1) = S(k), p(k + 1) = p(k).

Otherwise, we say that the iteration (and the corresponding augmenting path) is compatible, and
we set

pj(k + 1) = max
{
pj(k), p̂j(k)

}
, ∀ j = 1, . . . , n, (5)

and we obtain S(k + 1) from S(k) by performing the augmentation of the iteration. The algorithm
terminates after at most n compatible iterations when S(k) is complete.

We note that the definition of the asynchronous algorithm is not yet rigorous, because we have
not yet proved that a generic iteration can be performed at any time prior to termination. This will
be shown in the next section when we prove that all pairs

(
S(k), p(k)

)
generated by the algorithm

satisfy CS, so as discussed earlier, a generic iteration can be performed on
(
S(k), p(k)

)
as long as

the assignment S(k) is incomplete.
The implementation of the asynchronous algorithm in a parallel shared memory machine is quite

straightforward. A detailed description will be given in Section 4. The main idea is to maintain a
“master” copy of the current assignment-price pair in the shared memory. To execute an iteration, a
processor copies from the shared memory the current master assignment-price pair; during this copy
operation the master pair is locked, so no other processor can modify it. The processor performs
a generic iteration using the copy obtained, and then locks the master pair (which may by now
differ from the copy obtained earlier). The processor checks if the iteration is compatible, and if
so it modifies accordingly the master assignment-price pair. The processor then unlocks the master
pair, possibly after retaining a copy to use at a subsequent iteration. The times when the master
pair is copied and modified by processors correspond to the indexes τk and k of the asynchronous
algorithm, respectively, as illustrated in Fig. 1.
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Processor 1
copies the 
master pair (S,p)

Processor 1 executes
a generic iteration based
on the copied pair

Processor 1
modifies the
master pair (S,p)

Times when processors 2, 3, ...
modify the master pair (S,p)

3. Validity of the Asynchronous Algorithm

Figure 1: Operation of the asynchronous algorithm in a shared memory machine. A processor copies the
master assignment-price pair at time τk , executes between times τk and k a generic iteration using the copy,
and modiÆesaccordingly the master assignment-price pair at time k. Other processors may have modiÆed
unpredictably the master pair between times τk and k.

3. VALIDITY OF THE ASYNCHRONOUS ALGORITHM

We want to show that the asynchronous algorithm maintains CS throughout its course. We first
introduce some definitions and then we break down the main argument of the proof in a few lemmas.

An alternating path with respect to an assignment S is a sequence (i1, j1, . . . , ik, jk, j) such that

(im, jm) ∈ S, m = 1, . . . , k,

jm+1 ∈ A(im), m = 1, . . . , k − 1,

and j ∈ A(ik). We say that the alternating path starts at j1 and ends at j.
Define the cost length of an alternating path P by

C(P ) =
k−1∑
m=1

aimjm+1 + aikj −
k∑

m=1

aimjm

and for a given price p, the reduced cost length of P by

R(p, P ) =
k−1∑
m=1

rimjm+1 + rikj .

These definitions are useful in relating the prices of the start and end objects of an alternating path.

Lemma 1: Assume that (S, p) satisfies CS. Let P = (i1, j1, . . . , ik, jk, j) be an alternating path
with respect to S. Then

pj = pj1 + C(P ) + R(p, P ).
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3. Validity of the Asynchronous Algorithm

Proof: Since by CS we have aimjm − pjm = maxj∈A(im){aij − pj} for all m,

rimjm+1 =
(
aimjm − pjm

)
−

(
aimjm+1 − pjm+1

)
, m = 1, . . . , k − 1,

rikj =
(
aikjk

− pjk

)
−

(
aikj − pj

)
.

Adding these relations, we obtain the result. Q.E.D.

Let (S, p) be a pair satisfying CS, and let j be an assigned object under S. The distance of j with
respect to (S, p), is the minimum of the reduced cost lengths of alternating paths starting at j and
ending at some unassigned object; if there is no such path, the distance of j is defined to be ∞. For
all objects j that are unassigned under S, the distance of j is defined to be zero. We denote for all
k and j,

dj(k) = Distance of j with respect to
(
S(k), p(k)

)
.

The object distances play a central role in our analysis and are important for understanding how
the algorithm works. To get a sense of their significance, consider a pair (S, p) satisfying CS, fix an
object j which is assigned under S, and let Pj(S) be the set of all alternating paths starting at j

and ending at an object which is unassigned under S. By Lemma 1, the distance of j is

dj = min
P∈Pj(S)

R(p, P ) = min
P∈Pj(S)

{
pj(P ) − pj − C(P )

}
,

where j(P ) is the end object of the alternating path P . Thus we have

pj + dj = min
P∈Pj(S)

{
pj(P ) − C(P )

}
,

and we see that the quantity pj + dj depends only on the assignment S and the prices of the
unassigned nodes under S (not on the prices of the assigned objects under S). With a little thought
it can be seen that, at least when all problem data and the vector p are integer, {pj+dj | j = 1, . . . , n}
is the maximum set of prices that can be obtained from (S, p) by executing price rise operations
exclusively (no augmentations). Thus pj + dj may be viewed as a ceiling price that bounds from
above the corresponding prices p̂j obtained by a generic iteration; part (a) of the following lemma
shows this fact. The lemma also proves two more properties: first, that if an object is part of an
augmenting path of a generic iteration, its price becomes equal to the ceiling price prior to the
iteration (Lemma 2(b)); second, that the ceiling prices are monotonically nondecreasing during the
algorithm (Lemma 2(c)). The former property is important in showing that the parallel synchronous
version of the algorithm, that is, the algorithm of Balas et al [BMP89], preserves CS. The latter
property is important in showing that the same is true for the asynchronous algorithm.

Lemma 2: Let k ≥ 1 be given and assume that
(
S(t), p(t)

)
satisfies CS for all t ≤ k. Then:

(a) For all objects j and all t ≤ k, there holds

p̂j(t) ≤ pj(τt) + dj(τt). (6)
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3. Validity of the Asynchronous Algorithm

(b) For t ≤ k, if S(t+1) �= S(t) (i.e., iteration t is compatible), and j is an object which belongs
to the corresponding augmenting path, then we have

pj(t) + dj(t) = p̂j(t) = pj(t + 1). (7)

(c) For all objects j and all t ≤ k − 1, there holds

pj(t) + dj(t) ≤ pj(t + 1) + dj(t + 1). (8)

Proof: (a) If j is unassigned under S(τt), we have p̂j(t) = pj(τt) and the result holds. Thus,
assume that j is assigned under S(τt). Since either p̂(t) = p(τt) or else

(
S(τt), p̂(t)

)
is obtained

from
(
S(τt), p(τt)

)
through a finite sequence of price rises, it follows that

(
S(τt), p̂(t)

)
satisfies CS.

Consider any alternating path P from j to an object j, which is unassigned under S(τt). By Lemma
1, we have

pj(τt) = pj(τt) + C(P ) + R
(
p(τt), P

)
,

p̂j(t) = p̂j(t) + C(P ) + R
(
p̂(t), P

)
.

Since j is unassigned under S(τt), we have pj(τt) = p̂j(t) and it follows that

p̂j(t) = pj(τt) + R
(
p(τt), P

)
− R

(
p̂(t), P

)
≤ pj(τt) + R

(
p(τt), P

)
.

Taking the minimum of R
(
p(τt), P

)
over all alternating paths P , starting at j and ending at unas-

signed objects under S(τt) the result follows.
(b), (c) We prove parts (b) and (c) simultaneously, by first proving a weaker version of part (b)

(see Eq. (9) below), then proving part (c), and then completing the proof of part (b). Specifically, we
will first show that for t ≤ k, if S(t+1) �= S(t) and j is an object which belongs to the corresponding
augmenting path, then we have

pj(t) + dj(t) ≤ p̂j(t) = pj(t + 1). (9)

Indeed, if j is unassigned under S(t), Eq. (9) holds since we have pj(t) = p̂j(t) and dj(t) = 0.
Assume that j is assigned under S(t). Let the augmenting path of iteration t end at object j, and
let P be the corresponding alternating path that starts at j and ends at j. We have, using Lemma
1,

p̂j(t) = p̂j(t) + C(P ),

pj(t) = pj(t) + C(P ) + R
(
p(t), P

)
.

Since j is unassigned under all S(τ) with τ ≤ t, we have p̂j(t) = pj(t), and we obtain

p̂j(t) = pj(t) + R
(
p(t), P

)
≥ pj(t) + dj(t),

showing the left hand side of Eq. (9). Since dj(t) ≥ 0, this yields pj(t) ≤ p̂j(t), so p̂j(t) =
max{pj(t), p̂j(t)} = pj(t + 1), completing the proof of Eq. (9).
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3. Validity of the Asynchronous Algorithm

We now prove part (c), making use of Eq. (9). Let us fix object j. If j is unassigned under
S(t+1), we have pj(t) = pj(t+1) and dj(t) = dj(t+1) = 0, so the desired relation (8) holds. Thus,
assume that j is assigned to i under S(t + 1), and let P = (j, i, j1, i1, . . . , jk, ik, j) be an alternating
path with respect to S(t + 1), which is such that j is unassigned under S(t + 1) and

R
(
p(t + 1), P

)
= dj(t + 1).

There are three possibilities:

(1) All the objects j, j1, . . . , jk have the same assignment under S(t) as under S(t + 1). In this
case we have using Lemma 1,

pj(t + 1) = pj(t + 1) + C(P ) + R
(
p(t + 1), P

)
,

pj(t) = pj(t) + C(P ) + R
(
p(t), P

)
.

Since j is unassigned under S(t + 1), we have pj(t + 1) = pj(t), so we obtain

pj(t + 1) + R
(
p(t + 1), P

)
= pj(t) + R

(
p(t), P

)
.

Since R
(
p(t + 1), P

)
= dj(t + 1) and R

(
p(t), P

)
≥ dj(t), we obtain

pj(t) + dj(t) ≤ pj(t + 1) + dj(t + 1),

and the desired relation (8) is proved in this case.

(2) Iteration t is compatible and object j belongs to the augmenting path of iteration t, in which
case, by Eq. (9), we have

pj(t) + dj(t) ≤ pj(t + 1) ≤ pj(t + 1) + dj(t + 1),

and the desired relation (8) is proved in this case as well.

(3) Iteration t is compatible, and there is an object jm, m ∈ {1, . . . , k}, which belongs to the
augmenting path of iteration t, and is such that j and j1, . . . , jm−1 did not change assignment
at iteration t; see Fig. 2. Consider the following alternating paths with respect to S(t + 1)

P ′ = (j, i, j1, i1, . . . , jm−1, im−1, jm),

P ′′ = (jm, im, jm+1, im+1, . . . , jk, ik, j).

We have

R
(
p(t + 1), P ′) = R

(
p(t), P ′) +

(
pjm

(t + 1) − pjm
(t)

)
−

(
pj(t + 1) − pj(t)

)
,

and since by Eq. (9), pjm(t + 1) − pjm(t) ≥ djm(t), we obtain

R
(
p(t + 1), P ′) + pj(t + 1) ≥ R

(
p(t), P ′) + djm

(t) + pj(t). (10)

On the other hand, we have

R
(
p(t + 1), P

)
= R

(
p(t + 1), P ′) + R

(
p(t + 1), P ′′)
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and since R
(
p(t + 1), P ′′) ≥ 0, we obtain

R
(
p(t + 1), P

)
≥ R

(
p(t + 1), P ′). (11)

Combining Eqs. (10) and (11), we see that

R
(
p(t + 1), P

)
+ pj(t + 1) ≥ R

(
p(t), P ′) + djm

(t) + pj(t).

We have R
(
p(t), P ′) + djm(t) ≥ dj(t), and R

(
p(t + 1), P

)
= dj(t + 1), so it follows that

pj(t + 1) + dj(t + 1) ≥ pj(t) + dj(t),

and the proof of part (c) is complete.

To complete the proof of part (b), we note that by using Eqs. (6) and (8), we obtain

p̂j(t) ≤ pj(τt) + dj(τt) ≤ pj(t) + dj(t),

which combined with Eq. (9) yields the desired Eq. (8). Q.E.D.

Figure 2: Decomposition of alternating path P used in the proof of Lemma 3.

We need one more simple technical lemma. Let us denote:

rij(k): Reduced cost of arc (i, j) with respect to p(k),
r̂ij(k): Reduced cost of arc (i, j) with respect to p̂(k).

Lemma 3: Assume that the kth iteration is compatible. Then:

(a) p̂j(k) ≥ pj(k) =⇒ r̂ij(k) ≥ rij(k + 1).

(b) pj(k) ≥ p̂j(k) =⇒ rij(k) ≥ rij(k + 1).
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3. Validity of the Asynchronous Algorithm

Proof: (a) Since p̂j(k) = max{p̂j(k), pj(k)} = pj(k + 1), we have

aij − p̂j(k) = aij − pj(k + 1),

and since pm(k + 1) ≥ p̂m(k) for all m, we have

max
m∈A(i)

{
aim − p̂m(k)

}
≥ max

m∈A(i)

{
aim − pm(k + 1)

}
.

Subtracting the preceding two relations, we get

r̂ij(k) ≥ rij(k + 1).

(b) Very similar proof as for part (a). Q.E.D.

We can now prove that the asynchronous algorithm preserves CS.

Proposition 1: All pairs
(
S(k), p(k)

)
generated by the asynchronous algorithm satisfy CS.

Proof: By induction. Suppose all iterations up to the kth maintain CS, and let the kth iteration
be compatible. We will show that the pair

(
S(k + 1), p(k + 1)

)
satisfies CS, that is,

(i, j) ∈ S(k + 1) =⇒ rij(k + 1) = 0.

Let (i, j) ∈ S(k + 1). There are two possibilities:

(1) (i, j) belongs to the augmenting path of the kth iteration, in which case r̂ij(k) = 0. By
Lemma 2(b), we have p̂j(k) ≥ pj(k), so by Lemma 3(a), rij(k + 1) ≤ r̂ij(k) = 0.

(2) (i, j) does not belong to the augmenting path of the kth iteration, in which case, by the CS
property (cf. the induction hypothesis), we have (i, j) ∈ S(k) and rij(k) = 0. If pj(k) ≥
p̂j(k), by Lemma 3(b) we have rij(k + 1) ≤ rij(k) = 0 and we are done. Assume therefore
that p̂j(k) > pj(k), in which case there are two possibilities: (a) We have (i, j) ∈ S(τk), in
which case r̂ij(k) = 0. By Lemma 3(a) we then obtain rij(k + 1) ≤ r̂ij(k) = 0. (b) We have
(i, j) �∈ S(τk). We will show that this case cannot arise. In particular, we will assume that
for some (i, j) ∈ S(k) we have

(i, j) �∈ S(τk) and p̂j(k) > pj(k)

and arrive at a contradiction, thereby completing the proof. We first note that j must be
assigned under S(τk), for otherwise we would have

p̂j(k) = pj(τk) ≤ pj(k),

contradicting the hypothesis p̂j(k) > pj(k). Let t1 be the first iteration index such that
τk < t1 ≤ k and (i, j) ∈ S(t1). Then by parts (a) and (c) of Lemma 2, we have

p̂j(k) ≤ pj(τk) + dj(τk) ≤ pj(t1 − 1) + dj(t1 − 1),

11
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while by Lemma 2(b), we have

pj(t1 − 1) + dj(t1 − 1) = pj(t1)

Since object prices cannot decrease, we have pj(t1) ≤ pj(k), and the preceding two inequal-
ities yield p̂j(k) ≤ pj(k), arriving at a contradiction. Q.E.D.

Proposition 1 shows that if the asynchronous algorithm terminates, the assignment-price pair
obtained satisfies CS. Since the assignment obtained at termination is complete, it must be optimal.
To guarantee that the algorithm terminates, we impose the condition

lim
k→∞

τk = ∞.

This is a natural and essential condition, stating that the algorithm iterates with increasingly more
recent information.

Proposition 2: If limk→∞ τk = ∞, the asynchronous algorithm terminates with an optimal
assignment.

Proof: There can be at most n compatible iterations, so if the algorithm does not terminate, all
iterations after some index k̄ are incompatible, and S(k) = S(k̄) for all k ≥ k̄. On the other hand,
since limk→∞ τk = ∞, we have that τk ≥ k̄ for all k sufficiently large, so that S(τk) = S(k) for all
k ≥ k̄. This contradicts the incompatibility of the kth iteration. Q.E.D.

4. COMPUTATIONAL RESULTS

In order to evaluate the relative performance of parallel synchronous and asynchronous Hungarian
methods, we developed three different variations of the successive shortest path algorithm, the first
two of which are synchronous and the third is asynchronous. These variations differ in the amount
of work to be done by a processor in each iteration before the results of the processor’s computation
are used to change the current assignment and prices. These variations are:
(1) Single path synchronous augmentation: Here, at each iteration, every processor finds a single

shortest augmenting path from an unassigned person to an unassigned object. When the num-
ber U of unassigned persons becomes less than the number of processors P , P − U processors
become idle.

(2) Self-scheduled synchronous augmentation: Here, at each iteration, every processor finds a vari-
able number of shortest augmenting paths sequentially until the total number of augmenting
paths equals some threshold number, which depends on the number of unassigned persons and
the number of processors.

(3) Single path asynchronous augmentation: Here, at each iteration, each processor finds a sin-
gle shortest augmenting path from an unassigned person to an unassigned object, but the
processors execute the iterations asynchronously.

12
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In the subsequent subsections, we describe in greater detail the above three algorithms, and we
compare their performance on a shared-memory Encore Multimax for assignment problems with
1000 persons and varying density.

The three algorithms were developed by suitably modifying the sequential shortest path portion
of the code of Jonker and Volgenant [JoV87] for sparse assignment problems. This code is described
in terms of four phases in [JoV87]:

(1) Column Reduction

(2) Reduction Transfer

(3) Augmenting Row Reduction

(4) Successive Shortest Paths

The Column Reduction and Reduction Transfer phases are initialization phases, which obtain
an initial set of prices p and an initial assignment S satisfying complementary slackness. A brief
description of these two phases is as follows:

(a) S : empty;

(b) pj = max{i|j∈A(i)} aij , j = 1, . . . , n;

(c) i∗(j) = min {i | j ∈ A(i), aij = pj}, j = 1, . . . , n;

(d) j∗(i) =
{

min
{
j | i∗(j) = i

}
if {j | i∗(j) = i}: nonempty

0 otherwise
i = 1, . . . , n;

(e) For i = 1, . . . , n, if j∗(i) > 0, then S = S ∪
(
i, j∗(i)

)
.

(f) For (i, j) ∈ S, set pj := pj − max{j′|j′∈A(i),j′ �=j}{aij′ − pj′}.

The Augmenting Row Reduction phase does not consist of Hungarian iterations but rather it
is a sequence of single-person relaxation iterations as proposed in [Ber81]; equivalently, it may be
viewed as a sequence of auction algorithm iterations where ε = 0 (see [Ber87], [BeT89], [BeC89]).
Thus, to obtain a purely Hungarian method we discarded the Augmenting Row Reduction phase.
The Successive Shortest Paths phase is a straightforward implementation of Dijkstra’s shortest path
algorithm that uses no special data structures such as D-heaps or R-heaps. Thus, our codes may
be viewed as parallel versions of the code of [JoV87] except that the Augmenting Row Reduction
phase has been eliminated.

Synchronous Single-Path Augmentation Algorithm (SS)

At each iteration of the synchronous single-path augmentation algorithm, each processor selects
a different unassigned person and finds a shortest augmenting path from that person to the set
of unassigned objects. The algorithm is synchronous because all of the processors use the same
assignment and price data: the ones produced by the previous iteration. Once a processor finds an
augmenting path, it checks for compatibility of this path versus the paths already incorporated in
the assignment by other processors; if the path is compatible, the assignment and prices are updated
as described in Section 2; otherwise, the path is discarded. The processor then waits until all the
other processors complete their augmenting path computations before starting a new iteration.

13



4. Computational Results

For a more precise description, let (S(k), p(k)) be the assignment-price pair available at the start
of the kth iteration, and let Mk be the minimum of the number of processors and the number of
unassigned persons under S(k). Then, each processor m = 1, . . . , Mk selects a different person im

from the queue of unassigned persons according to S(k), and computes a shortest augmenting path
Pm from im to the set of unassigned objects under S(k), and a corresponding price vector p̂m(k).
Without loss of generality, assume that the order in which the processors complete this computation
is 1, 2, . . . , Mk. Then, (S(k), p(k)) is updated as follows:

(S′, p′) := (S(k), p(k)) (12)

Do m = 1, . . . , Mk

If Pm is an augmenting path with respect to S′, update S′

by performing the corresponding augmentation and set

p′j := max{p′j , p̂m
j (k)}, j = 1, . . . , n.

(13)

End do

S(k + 1) := S′, p(k + 1) := p′ (14)

The temporary pair (S′, p′) is maintained for checking the compatibility of each new augmenting
path with the previous augmenting paths. After all processors have completed their compatibility
check and attendant updating of (S′, p′), the master assignment-price pair is set to (S′, p′).

The overall logic of the synchronous single-person augmentation algorithm is illustrated in Fig.
3. In our implementation, the master pair (S(k), p(k)) and the temporary pair (S′, p′) are stored in
shared memory. The set of unassigned persons under S(k) is maintained in a queue; a lock on this
queue is used in order to guarantee that each processor searches for an augmenting path starting at
a different person. Note the synchronization barrier at the end of each iteration, and the sequential
operation of copying the temporary assignments and prices to the permanent assignment and prices.
A single synchronization lock on the temporary assignment and prices is used to guarantee that
the updates of Eq. (13) are done in a sequential manner. Note that, whenever an augmentation is
deemed incompatible with the temporary assignment, the unassigned person associated with that
augmentation is reinserted into the unassigned persons queue.

The two principal drawbacks of the synchronous single-person augmentation algorithm are the
idle time spent by each processor at the barrier while other processors are still computing aug-
menting paths, and the overhead required for copying the temporary assignments and prices onto
the permanent assignments and prices. The second drawback can be alleviated by using additional
processors, since less iterations will be required for convergence. However, increasing the number of
processors will increase the variability of the computation times for the different augmentations in
each iteration, and thus increase the overall percentage of time that a processor spends waiting at
the barrier.

Table 1 illustrates the performance of the parallel synchronous single-path augmentation algo-
rithm for a 1000 person fully dense assignment problem with cost range [1,1000] as a function of
the number of processors used in the Encore Multimax. The table contains the time required for
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# Proc. 1 2 4 6 8
Time,  

Run # 1
104  86.14  76.04  69.32  73.2

Time,  
Run # 2

 103.3  85.59  85.07  60.3  69.98

Time,  
Run # 3

 103.68  85.331  80.9  63.64  70.88

Rejected augmentations,   
Run # 1

0 4 24  28  44

Rejected augmentations,   
Run # 2

0 4  25 24 44

Rejected augmentations,   
Run # 3

 0  4  28 24  44

4. Computational Results

Figure 3: Design of parallel synchronous single-path augmentation algorithm.

the Successive Shortest Paths phase of three different runs and the number of incompatible aug-
mentations as a function of the number of processors used. The total number of unassigned persons
at the beginning of the Successive Shortest Paths phase was 397; thus, the overhead for incompat-
ible augmentations is a small fraction of the overall computation in these experiments. Note the
variability of the run times for different runs; this is due to randomness in the order of completion
of the individual processors, which can lead to differences as to which augmentations are declared
incompatible.

Table 1: Run times for the synchronous single-path augmentation algorithm

Table 1 suggests that the synchronous single-path augmentation algorithm can achieve a relatively
limited speedup. There are two potential reasons for this: the synchronization overhead arising
from processors waiting at the barrier for other processors to complete their computations, and
the sequential part of the computation which arises at the last iteration when there is only one
unassigned person remaining. In order to verify these hypotheses, we measured the total number
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# Proc. 1 2 4 6 8
Average Wait Time,  

Run # 1
0  17.3  17.57  18 17.06

Average Wait Time,  
Run # 2

0 18.6  17.75 14.24 14.4

Average Wait Time,  
Run # 3

0 15.4 17.48  16.95 16.42

Sequential Computation
Time,  Run # 1

NA 11.7 0  11.3  11.3

Sequential Computation
Time , Run # 2

NA 11.6 11.1 11.3 11.3

Sequential Computation
Time, Run # 3

 NA  11.2  0 11.8  12

4. Computational Results

of seconds that each processor spent waiting for other processors to complete their computations
averaged across processors (the average wait time), and the number of seconds taken by the last
iteration assuming only one person was assigned at the last iteration (this is called the sequential
computation time); if the last iteration involves more than one path, the sequential computation
time is zero. The sequential computation time is an indication of the amount of sequential work in
the Successive Shortest Paths phase which was not parallelizable.

As Table 2 indicates, the average wait time of each processor when using multiple processors is
close to 17% of the single-processor computation time! This additional synchronization overhead
reduces the multiprocessor efficiency of the asynchronous algorithm. In addition, the sequential
computation time is also nearly 11% of the single-processor computation time, further limiting the
obtainable speedup. The last augmenting path is typically one of the longest. Note that, for some
of the runs using four processors, the sequential computation time was 0; this corresponds to the
case where the last two paths are found simultaneously in the last iteration without conflict, and
depends critically on the sample path followed by the computations.

It is interesting that the average wait time does not increase significantly with the number of
processors. The reason is that, although there is increased variability in the computation times of
the different augmentations by different processors, the number of times for which the processors
need to be synchronized is reduced (because more augmenting paths are found in parallel); these
two effects appear to cancel each other out, leading to a nearly constant average wait time.

Table 2: Average wait and sequential computation times for the synchronous single-path algorithm

Self-Scheduled Synchronous Augmentation Algorithm (SSS)

One of the main limitations in efficiency of the synchronous single-path augmentation algorithm
is the average wait time incurred by each processor after finding an augmenting path. In order to
reduce this limitation, the self-scheduled synchronous augmentation algorithm allows each processor
to find several augmenting paths before attempting to synchronize the results with the compu-
tations of other processors. Specifically, during each iteration, each processor selects a different
unassigned person and finds a shortest augmenting path from that person to the set of unassigned
objects. The algorithm is synchronous because all of the processors use the same assignment-price
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pair
(
S(k), p(k)

)
. Once a processor finds an augmenting path, it checks for the compatibility of this

augmentation versus augmentations already found by other processors, and updates the temporary
pair (S′, p′) as in the synchronous single-path augmentation algorithm. However, instead of pro-
ceeding to a barrier and waiting for the remaining processors to complete their computations, the
processor checks whether the total number of unassigned persons considered during this iteration
is less than a threshold T (k) (which is iteration-dependent). If the number is less than T (k), the
processor retrieves another unassigned person, finds another augmenting path, and repeats the pro-
cess; otherwise, the processor proceeds to a barrier and waits for other processors to complete their
computations.

Figure 4 illustrates the overall logic of the self-scheduled synchronous augmentation algorithm.
As before, our implementation stores the permanent pair

(
S(k), p(k)

)
and temporary pair (S′, p′)

in shared memory. The set of unassigned persons in the assignment S(k) is maintained in a queue
(with a shared lock) and a synchronization barrier is used at the end of each iteration k.

Figure 4: Design of parallel self-scheduled synchronous augmentation algorithm.

The iterations of the self-scheduled synchronous augmentation algorithm are similar to those
described in Eqs. (12)-(14). The only difference is that each processor can modify the temporary
assignments S′ and the temporary prices p′ more than once. The total number of augmentations
at iteration k is determined by the threshold T (k), which was chosen as follows: Let U(k) denote
the number of unassigned persons at the beginning of iteration k, and let P denote the number of
processors. Then

T (k) =

{
max

{⌊
U(k)

3

⌋
, P

}
if U(k) > P

U(k) otherwise.

This is similar to the approach used in Balas et al [BMP89].
Table 3 illustrates the performance of the parallel self-scheduled synchronous algorithm for the

same 1000 person dense assignment problem with cost range [1,1000] used previously, as a function
of the number of processors used. The table contains the time required for the Successive Shortest
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# Proc. 1 2 4 6 8
Time,  

Run # 1
198.4  94.9  83.1  69.3 68.5

Time,  
Run # 2

 199.5  99.5  81.6  53.6 68.3

Time,  
Run # 3

 200  99.5  83  53 68.3

Rejected augmentations,   
Run # 1

112 100 103  96 103

Rejected augmentations,   
Run # 2

112 100 103 104 103

Rejected augmentations,   
Run # 3

 112 100 103 104  103

# Proc. 1 2 4 6 8
Average Wait Time,  

Run # 1
0  11  11  10.2 14

Average Wait Time,  
Run # 2

0 8  10.1 11.1 13

Average Wait Time,  
Run # 3

0 9 11  11.1 13

Sequential Computation
Time,  Run # 1

NA 0 11  12.2  11.4

Sequential Computation
Time , Run # 2

NA 0 11.5 0 11.5

Sequential Computation
Time, Run # 3

 NA  0  11.5 0  11.6

4. Computational Results

Paths phase of three different runs and the number of incompatible augmentations, as well as the
average results. The total number of unassigned persons at the beginning of the Successive Shortest
Paths phase was 397. Here the incompatible augmentations represent a significant fraction of the
required work; this is easily seen by comparing the single processor times in Table 1 with those
in Table 3, which indicate an increase of nearly 90% additional computation. The increase in
incompatible augmentations is indicative of the use of older assignment-price pair information.

Table 3: Run times for the self-scheduled synchronous augmentation algorithm

The results of Table 3 indicate that parallelization of the self-scheduled synchronous augmentation
algorithm is more efficient than parallelization of the synchronous single-path augmentation algo-
rithm, in spite of the increased computation load associated with a larger number of augmentations.
Table 4 illustrates the average wait time and the sequential computation time associated with the
above runs. Contrasting the results of Tables 2 and 4, we see that the average wait times in Table
4 are nearly 40% smaller than the comparable times in Table 2, in spite of the greater number of
augmenting paths computed. The sequential computation times are similar in both tables; note,
however, that the 0 sequential computation times using 6 processors lead to very efficient timings in
the self-scheduled synchronous augmentation algorithm. Unfortunately, this event is a function of
the sample path followed by the computations, rather than an inherent property of the algorithm.

Table 4: Average wait and sequential computation times for the self-scheduled synchronous algorithm
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Single-Path Asynchronous Augmentation Algorithm (AS)

One of the major factors which limited the speedup of the previous parallel synchronous algorithms
was the average wait time incurred by each processor. The single-path asynchronous augmentation
algorithm was designed to reduce this overhead by allowing processors to directly augment the
permanent assignment S(k) and modify the price vector p(k) without waiting for other processors
to complete their computations. In this algorithm, each processor selects a different unassigned
person, and finds an augmenting path from this person to the set of unassigned objects. Once a
processor finds an augmenting path, it checks the compatibility of the path with the current state of
the network (as described in Section 2), and augments the assignment and raises the object prices
if the augmentation is compatible. The processor then obtains a copy of the current network state,
selects another unassigned person and proceeds to find another augmenting path using the updated
state of the network.

Figure 5 illustrates the logic of the single-path asynchronous augmentation algorithm. In contrast
with the previous synchronous algorithms, there is no barrier at the end of each iteration where
processors must wait for other processors to complete their computations. Instead, each processor
locks the master copy of the current assignment-price pair, modifies it according to the compatibility
of its augmenting path, and releases the lock on the master copy. The processor then repeats the
process with a new unassigned person.

Figure 5: Design of parallel asynchronous single-path augmentation algorithm.

Thus, the asynchronous algorithm maintains M + 1 copies (where M is the number of processors
currently used) of the assignment-price pair (S, p). In our implementation, a master copy is main-
tained in shared memory, and local copies are maintained in the local memory of each processor.
In contrast, the synchronous algorithms discussed previously maintain 2 copies of (S, p) (permanent
and temporary), both in shared-memory.

Table 5 illustrates the performance of the single-path asynchronous augmentation algorithm for
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# Proc. 1 2 4 6 8
Time,   

Run # 1
107  64.5  60.4  64.9 64.5

Time,  
Run # 2

 107  73.5  58.5  52.2 66.3

Time,  
Run # 3

 106  63.4  58.9  61.6 62.7

Rejected augmentations,   
Run # 1

0 13 31  44 60

Rejected augmentations,   
Run # 2

0 15 30 45 62

Rejected augmentations,   
Run # 3

 0 13 30 43  52

4. Computational Results

the same 1000 person dense assignment problem described previously. Again, the computation
times reported are the times for the Successive Shortest Paths phase. Contrasting Table 5 with
the corresponding results in Tables 1 and 3, we see that the asynchronous algorithm tends to be
faster than the corresponding synchronous algorithms; however, the improvement in run-time is
greater for smaller numbers of processors. Note that the number of augmenting paths rejected
increases rapidly as the number of processors increases, thereby increasing the computation load.
Surprisingly, this number is larger than the corresponding number for the single-path synchronous
augmentation algorithm (although in principle the asynchronous algorithm is using more recent
information concerning the assignments and prices).

Table 5: Run times for the asynchronous single-path augmentation algorithm

Although there is no synchronization barrier, there is some delay associated with acquiring a lock
on the master copy of the assignment-price pair due to possible conflicts with other processors which
are also trying to write or copy this pair. Thus, we define the average wait time per processor to
be the total amount of time (averaged across processors) that a processor spent waiting to acquire
access to locked data structures. This time increases with the number of processors and therefore
limits the achievable speedup.

Table 6 contains the average wait time and sequential computation time of the single-path asyn-
chronous augmentation algorithm. Comparing the results of Table 6 with the corresponding results
of Table 2, we see that the average wait time in the single-path asynchronous augmentation al-
gorithm was reduced considerably relative to the corresponding synchronous algorithm, leading to
substantial reductions in computation time. However, this computation advantage is often limited
because of an increase in sequential computation time in the asynchronous algorithm. This increase
is due to the asynchronous nature of the algorithm, which may require that the last augmenting
path be computed twice (because of potential incompatibility due to the use of old assignment in-
formation); in contrast, the synchronous algorithms guarantee that the last augmenting path need
only be computed once. Note the substantial variability in nonzero sequential computation times
for the asynchronous algorithm when compared to those of the synchronous algorithms in Tables 2
and 4.
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# Proc. 1 2 4 6 8
Average Wait Time,  

Run # 1
0  .12 .31 .6 1

Average Wait Time,  
Run # 2

0 .1  .26 .67 .95

Average Wait Time,  
Run # 3

0 .13 .3  .7 1

Sequential Computation
Time, Run # 1

NA 12.1 14.9 18.7 23.7

Sequential Computation
Time, Run # 2

NA 15.2 .75 0 16

Sequential Computation
Time, Run # 3

 NA  12  .6 15  13

4. Computational Results

Table 6: Average wait and sequential computation times for the asynchronous single-path algorithm

Performance of Parallel Hungarian Algorithms for Sparse Assignment Problems

The performance results in the previous subsections were obtained using a dense 1000-person
assignment problem. For such problems, the ratio of the time required to find a shortest path (from
an unassigned person to the set of unassigned objects) to the time required to make a copy of the
current assignment-price pair is large. As the density of the assignment problem decreases, this
ratio is likely to decrease because the time required to make a copy of the current assignment-price
pair remains constant (depending only on the number of objects), while the time required to find
a shortest path will decrease by exploiting sparsity. In this subsection, we illustrate the effects of
sparsity on the relative performance of the three parallel Hungarian algorithms discussed previously.

Figure 6 illustrates the computation time in the Successive Shortest Paths phase (averaged across
three runs) of the three parallel Hungarian algorithms for a 1000 person, 30% dense assignment
problem, cost range [1,1000]. When a single processor is used, the self-scheduled synchronous aug-
mentation algorithm is the slowest because it must find additional shortest paths (as a result of
incompatibility problems). The asynchronous algorithm is the fastest because of the reduced syn-
chronization overhead. Similarly, the self-scheduling synchronous augmentation algorithm is faster
than the synchronous single-path augmentation algorithm because of the reduced synchronization
overhead.

Figure 7 illustrates the average wait time for each of the algorithms in Fig. 6. These curves
illustrate the dramatic reductions in synchronization overhead which can be achieved by the asyn-
chronous algorithm. The average wait time of the asynchronous algorithm grows almost linearly
with the number of processors but is a small fraction of the overall computation time (less than
10%).

Figure 8 illustrates the computation time in the Successive Shortest Paths phase (averaged across
three runs) of the three algorithms for a 1000-person, 2% dense assignment problem, with cost
range [1,1000]. As in Fig. 6, the asynchronous algorithm makes very effective use of a small number
of processors (≤ 2). However, as the number of processors increases, the speedup achievable by
the asynchronous algorithm is much smaller than the speedup achievable by the two synchronous
algorithms. The principal reason for this is a relative increase in the average wait time per processor
for the asynchronous algorithm.
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4. Computational Results

Figure 6: Computation time of parallel Hungarian algorithm for 1000 person, 30% dense assignment problem,
with cost range [1,1000], as a function of the number of processors used on the Encore Multimax.

Figure 7: Average wait time per processor for 1000 person, 30% dense assignment problem, with cost range
[1,1000], as a function of the number of processors used on the Encore Multimax.

Figure 9 describes the variation of the average wait time per processor as a function of the
number of processors for the three algorithms. As the figure illustrates, the average wait times for
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4. Computational Results

Figure 8: Computation time of parallel Hungarian algorithms for 1000 person, 2% dense assignment problem,
with cost range [1,1000], as a function of the number of processors used on the Encore Multimax.

the synchronous algorithms is bounded as the number of processors increases, and is much smaller
than the corresponding times in Fig. 7. In contrast, the average wait time for the asynchronous
algorithm grows almost linearly with the number of processors and is larger than the corresponding
time in Fig. 7! These phenomena are due to the reduced computation time for an augmenting path in
the sparser (2% vs 30%) network. The main cause of average wait time in the synchronous algorithms
is the variability in computation time for different augmenting paths computed synchronously by
each processor. Thus, a reduction in the computation time of each augmenting path correspondingly
reduces the average wait time of each processor; as Fig. 9 indicates, the average wait times of the
synchronous algorithms are now smaller than those of the asynchronous algorithm when six or more
processors are used.

The growth of the average wait time of the asynchronous algorithm is due to the implementation
of the algorithm on the Encore Multimax and could be qualitatively different in another parallel
architecture. As Fig. 5 illustrates, a maximum of one processor can be either reading or modifying
the assignment-price pair at any one time. The number of copies which must be made by the
asynchronous algorithm increases with the number of processors, and each copy must be made in
a sequential manner. In contrast, the synchronous algorithms need only make a single copy of the
assignment-price pair (into shared memory); thus, the synchronous algorithms are more efficient
when the time required to copy the assignment-price pairs is significant compared to the total
computation time of the algorithm. This is the case for the 2% dense problem, where the time
required for synchronization of the read/write operations is nearly 30% of the overall computation
time.
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Figure 9: Average wait time per processor for 1000 person, 2% dense assignment problem, with cost range
[1,1000], as a function of the number of processors used on the Encore Multimax.
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