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Constrained Optimization Problem

We focus on the problem

minimize f (x) subject to x ∈ X , gj(x) ≤ 0, j = 1, . . . , r ,

where f : <n 7→ <, gj : <n 7→ <, and X ⊂ <n. The Lagrangian function

L(x , µ) = f (x) +
r∑

j=1

µjgj(x)

involves the multiplier vector µ = (µ1, . . . , µr ).

We aim to find µ (Langange multipliers) that facilitate analysis or algorithms.
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Salient Properties of Lagrange Multipliers

They enter in optimality conditions: They convert the problem to an unconstrained
or less constrained “optimization" of the Lagrangian

They are central in sensitivity analysis: They quantify the rate of cost improvement
as the constraint level is perturbed. Lagrange multipliers are some sort of
“derivative" of the primal function

p(u) = inf
x∈X , g(x)≤u

f (x)

This talk will revolve around these two properties.
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Fritz John Conditions: A Classical Line of Development of L-Multiplier
Theory

There are several different lines of development of L-multiplier theory (forms of the
implicit function theorem, forms of Farkas lemma, penalty functions, etc)

FJ conditions is a classical line but not the most popular

This talk will be in the direction of strengthening this line

Our starting point
A more powerful version of the classical FJ conditions

They include extra conditions that narrow down the candidate multipliers

It is based on the combination of two related but complementary works: Hestenes
(1975) and Rockafellar (1993)

The line of proof is based on penalty functions; goes back to a 4-page paper by
McShane (1973)
Allows:

I An “easy" development of unifying constraint qualifications
I A direct connection to sensitivity
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References for this Overview Talk

Joint and individual works with Asuman Ozdaglar and Paul Tseng
Bertsekas and Ozdaglar, 2002. “Pseudonormality and a Lagrange Multiplier
Theory for Constrained Optimization," J. Opt. Th. and Appl.

Ozdaglar and Bertsekas, 2004. “The Relation Between Pseudonormality and
Quasiregularity in Constrained Optimization," Optimization Methods and Software.

Bertsekas, 2005. “Lagrange Multipliers with Optimal Sensitivity Properties in
Constrained Optimization," in Proc. of the 2004 Erice Workshop on Large Scale
Nonlinear Optimization, Erice, Italy, Kluwer.

Bertsekas, Ozdaglar, and Tseng, 2006. “Enhanced Fritz John Optimality
Conditions for Convex Programming," SIAM J. on Optimization.

An umbrella reference is the book
Bertsekas, D. P., Nedić, A., and Ozdaglar, A. E., 2003. Convex Analysis and
Optimization, Athena Scientific, Belmont, MA.

But it does not contain some refinements in the last three papers.
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Outline

1 Enhanced FJ Conditions for Nonconvex/Differentiable Problems

2 Pseudonormality: A Unifying Constraint Qualification

3 Sensitivity for Nonconvex/Differentiable Problems

4 Convex Problems

5 Sensitivity Analysis for Convex Problems
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Lagrange Multipliers for Nonconvex Differentiable Problems

minimize f (x) subject to x ∈ X , gj(x) ≤ 0, j = 1, . . . , r ,

where f : <n 7→ <, gj : <n 7→ <, are cont. differentiable, and X ⊂ <n is closed. The
Lagrangian function is

L(x , µ) = f (x) +
r∑

j=1

µjgj(x)

We focus at a local minimum x∗

A L-multiplier at x∗ is a µ∗ = (µ∗1 , . . . , µ
∗
r ) ≥ 0 such that L(·, µ∗) is stationary at x∗ and

gj(x∗) = 0 ∀ j with µ∗j > 0, Complementary Slackness (CS)

Meaning of stationarity

Case X = <n: ∇x L(x∗, µ∗) = 0

Case X 6= <n: ∇x L(x∗, µ∗)′y ≥ 0 for all y ∈ Tx(x∗), the tangent cone of X at x∗

(we will define this later).
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FJ Necessary Conditions for Case X = <n (Hestenes 1975)

There exists (µ∗0 , µ
∗) ≥ (0, 0) such that (µ∗0 , µ

∗) 6= (0, 0) and
1 µ∗0∇f (x∗) +

∑r
j=1 µ

∗
j ∇gj(x∗) = 0

2 In every neighborhood of x∗ there exists x such that

f (x) < f (x∗), and gj(x) > 0 ∀ j with µ∗j > 0

Condition (2) (called CV, for complementary violation) =⇒ CS

Two Cases

µ∗0 = 0. Then µ∗ 6= 0 and satisfies
∑r

j=1 µ
∗
j ∇gj(x∗) = 0 and the stronger CV

condition. This greatly facilitates proofs that µ∗0 6= 0 under various constraint
qualifications.

µ∗0 = 1. Then µ∗ is a L-multiplier and the positive µ∗j indicate the constraints j that
need to be violated to effect cost improvement - a sensitivity property.

9 / 27



An Example

A problem with equality constraint h(x) = 0 split as −h(x) ≤ 0 and h(x) ≤ 0
h(x)  0 and �h(x)  0
rh(x⇤) rf(x⇤) rg(x⇤) x⇤ y z h(x) = 0 �y �z y z

Length 1/vy Length 1/vz �rT (x⇤) Constraint g(x)  0

m ēf 0 � E�cient Frontier � = ↵m + �

rf(x⇤) a x⇤ + �x a0x = b + �b �x a0x = b x⇤

p(u) �1 0 u slope rp(0) = ��⇤ = �1

X rh(x⇤) rf(x⇤) x1 x2 x⇤ = (0, 0) (a) (b)

0 u1 u2 T✏ � Not Pseudonormal rhi: Linearly Indep. hi: A�ne

µ gj : Linearly Indep. gj : Concave

0 y a1 a2 Constraint set Cone generated by aj , j 2 A(x⇤) �rf(x⇤)

C =

8
<
:c

��� c =

rX

j=1

µjaj , µj � 0

9
=
; ,

C? = {y | a0
jy  0, j = 1, . . . , r}

{x | a0
jx  0, j = 1, . . . , r}

T (x) x1 x2 x = (0, 1) (a) (b) (1, 2)

Linear Constraints Regularity Slater constraint qualification Con-
cave Inequalities Mangasarian-Fromowitz Pseudonormality Quasinormality
Quasiregularity Existence of Lagrange multipliers

rh(x⇤) = (�2,�2) x⇤ = (�1,�1) rf(x⇤) = (1, 1) 0 x2 x1 h(x) = 0p
2

h1(x) = 0 h2(x) = 0 rh1(x⇤) = (�2, 0) rh2(x⇤) = (�4, 0)
rf(x⇤) = (1, 1) 1 2 x⇤ = (0, 0)

1
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1

CS requires that µ∗1 ≥ 0 and µ∗2 ≥ 0 (there is an infinite number of these)

CV requires that µ∗1 > 0 and µ∗2 = 0 (we cannot violate simultaneously both
constraints)

The multiplier satisfying CV is unique. Through its sign pattern indicates that the
constraint g1(x) ≤ 0 should be violated for cost reduction.
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Case X 6= <n (Rockafellar 1993)

Extension of FJ conditions with the Lagrangian stationarity at the local min x∗

expressed in terms of NX (x∗), the normal cone of X at x∗.

Definitions of Tangent Cone TX (x∗) and Normal Cone NX (x∗)

The tangent cone TX (x) at some x ∈ X is the set of all y such that y = 0 or there
exists a sequence {xk} ⊂ X such that xk 6= x for all k and

xk → x ,
xk − x
‖xk − x‖ →

y
‖y‖

The normal cone NX (x) at some x ∈ X is the set of all z such that there exist
sequences {xk} ⊂ X and {zk} such that xk → x , zk → z, and zk ∈ TX (xk )? [the polar
of TX (xk )]. Note that TX (x∗)? ⊂ NX (x∗). If equality holds, X is called regular at x∗ (if X
is convex, it is regular at all points).

) X

) TX(x)

) X = TX(x)

}
NX(x)

}
NX(x)} x = 0

} x = 0

Constraint to be violated for cost reduction TX(x)⋆ = {0}

Convex Not Regular Convex Not Regular
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FJ Conditions for Case X 6= <n (Rockafellar 1993)

Constrained optimization problem

minimize f (x) subject to x ∈ X , gj(x) ≤ 0, j = 1, . . . , r ,

where f : <n 7→ <, g : <n 7→ <, are cont. differentiable, and X ⊂ <n is closed.

FJ Conditions
There exists (µ∗0 , µ

∗) ≥ (0, 0) such that (µ∗0 , µ
∗) 6= (0, 0) and

1 −
(
µ∗0∇f (x∗) +

∑r
j=1 µ

∗
j ∇gj(x∗)

)
∈ NX (x∗)

2 gj(x∗) = 0 ∀ j with µ∗j > 0, i.e., CS holds.

If µ∗0 = 1 and X is regular at x∗, then NX (x∗) = TX (x∗)?, and condition (1) becomes∇f (x∗) +
r∑

j=1

µ∗j ∇gj(x∗)

′ y ≥ 0, ∀ y ∈ TX (x∗),

so µ∗ is a L-multiplier satisfying CS.
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Enhanced FJ Necessary Conditions for Case X 6= <n (B+O 2002)

Constrained optimization problem

minimize f (x) subject to x ∈ X , gj(x) ≤ 0, j = 1, . . . , r ,

where f : <n 7→ <, g : <n 7→ <, are cont. differentiable, and X ⊂ <n is closed.

There exists (µ∗0 , µ
∗) ≥ (0, 0) such that (µ∗0 , µ

∗) 6= (0, 0) and
1 −

(
µ∗0∇f (x∗) +

∑r
j=1 µ

∗
j ∇gj(x∗)

)
∈ NX (x∗)

2 In every neighborhood of x∗ there exists x such that

f (x) < f (x∗), and gj(x) > 0 ∀ j with µ∗j > 0

i.e., CV holds.

So if µ∗0 = 1 and X is regular at x∗, then µ∗ is a L-multiplier satisfying CV. We call such
a multiplier informative.
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Constraint Qualifications: Conditions Under Which µ∗0 6= 0

Pseudonormality: An umbrella constraint qualification (B+O 2002)

x∗ is a pseudonormal local min if there is no µ ≥ 0 and sequence {xk} ⊂ X with
xk → x∗ such that

−

 r∑
j=1

µj∇gj(x∗)

 ∈ NX (x∗),
r∑

j=1

µjgj(xk ) > 0, ∀ k .

Note: If x∗ is pseudonormal and X is regular at x∗ there is an informative L-multiplier.

All the principal constraint qualifications for existence of L-multipliers and some new
ones can be shown (very easily) to imply pseudonormality.

Linear Constraints Regularity Slater constraint qualification ConcaveLinear Constraints Regularity Slater constraint qualification Concave
Linear Constraints Regularity Slater constraint qualification Concave

Linear Constraints Regularity Slater constraint qualification Concave

cave Inequalities Mangasarian-Fromowitz Pseudonormality Quasinormality

Quasiregularity inequalities constraints

Quasiregularity inequalities constraints
L-Multipliers (satisfy CS) Linear Independence of constraint grad

L-Multipliers (satisfy CS) Linear independence Arrow-Hurwitz-Uza

Arrow-Hurwitz- Uzawa-Mangasarian
Arrow-Hurwitz- Uzawa-Mangasarian
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Sensitivity: A Hierarchy of L-Multipliers (B+O 2002, 2005)

Assume TX (x∗) is convex and the set of L-multipliers is nonempty. Then:

L-Multipliers (satisfy CS)

Informative L-Multipliers (satisfy CV)

Min-Norm L-Multiplier µ∗

Sensitivity Result

Cost improvement bound: For every sequence of infeasible vectors {xk} ⊂ X with
xk → x∗ we have

f (x∗)− f (xk ) ≤ ‖µ∗‖
∥∥g+(xk )

∥∥+ o
(
‖xk − x∗‖

)
,

where g+(x) =
(
g+

1 (x), . . . , g
+
r (x)

)
: constraint violation vector.

Optimal constraint violation direction: If µ∗ 6= 0, there exists infeasible sequence
{xk} ⊂ X with xk → x∗ and such that

lim
k→∞

f (x∗)− f (xk )∥∥g+(xk )
∥∥ = ‖µ∗‖, lim

k→∞

g+
j (x

k )∥∥g+(xk )
∥∥ =

µ∗j
‖µ∗‖ , j = 1, . . . , r .
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The Convex Case (B+O+T 2006)

Consider the problem

minimize f (x) subject to x ∈ X , gj(x) ≤ 0, j = 1, . . . , r ,

where f : <n 7→ <, g : <n 7→ <, are convex, and X ⊂ <n is convex and closed.

Primal function: p(u) = infx∈X , g(x)≤u f (x), Dual function: q(µ) = infx∈X L(x , µ)

Optimal primal value: f ∗ = p(0), Optimal dual value: q∗ = supµ≥0 q(µ)

Duality gap: f ∗ − q∗

µ is Lagrange multiplier if f ∗ − q∗ = 0 and µ is a dual optimal solution

Primal and dual FJ conditions adapted to convex programming
There exists (µ∗0 , µ

∗) ≥ (0, 0) such that (µ∗0 , µ
∗) 6= (0, 0), and

µ∗0 f ∗ = infx∈X

{
µ∗0 f (x) +

∑r
j=1 µ

∗
j gj(x)

}
(Primal FJ Conditions)

µ∗0q∗ = infx∈X

{
µ∗0 f (x) +

∑r
j=1 µ

∗
j gj(x)

}
(Dual FJ Conditions)

and CS holds (there are versions with CV also).
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Visualization with the Primal Function p(u) = infx∈X , g(x)≤u f (x)

(0, f∗) (0
) (µ∗

0, µ
∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1

The most favorable case: ∇p(0) exists, and µ∗ = ∇p(0) is the unique L-multiplier

Rate of cost improvement: The slope of the support hyperplane at (0, f ∗)
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Visualization with the Primal Function p(u) = infx∈X , g(x)≤u f (x)

(0, f∗) (0
) (µ∗

0, µ
∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1

p is subdifferentiable at 0. Set of L-multipliers = ∂p(0).

Optimal rate of cost improvement: The slope of the min norm support hyperplane at (0, f ∗)
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Visualization with the Primal Function p(u) = infx∈X , g(x)≤u f (x)

(0, f∗) (0

) (µ∗
0, µ

∗)

) u p

u p(u)

∗ 0 g(xk)

(0, f∗) (0
) (µ∗

0, µ
∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1 = 1 µ∗

0 = 0
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Visualization with the Primal Function p(u) = infx∈X , g(x)≤u f (x)

(0, f∗) (0
) (µ∗

0, µ
∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1

) (0, q∗) (

(0, f∗) (0

) (µ∗
0, µ

∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1

(0, f∗) (0

) (µ∗
0, µ

∗)

) u p

u p(u)

∗ 0 g(xk)

= 1 µ∗
0 = 0
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Visualization with the Primal Function p(u) = infx∈X , g(x)≤u f (x)

) (0, q∗) (

(0, f∗) (0

) (µ∗
0, µ

∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1

) (0, q∗) (

(0, f∗) (0

) u p

u p(u)

∗ 0 g(xk)

(0, f∗) (0

) (µ∗
0, µ

∗)

) (µ∗
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) u p

u p(u)

∗ 0 g(xk)

(0, f∗) (0
) (µ∗

0, µ
∗)

) u p

u p(u)

∗ 0 g(xk)

) µ∗
0 = 1 = 1 µ∗

0 = 0

= 1 µ∗
0 = 0
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Dual Sensitivity Result

Assume that −∞ < q∗ ≤ f ∗ <∞, and that the set of dual optimal solutions is
nonempty. Let µ∗ be the min norm dual optimal solution (may not be a L-multiplier):

Cost improvement bound: For all x ∈ X

q∗ − f (x) ≤ ‖µ∗‖
∥∥g+(x)

∥∥
If µ∗ 6= 0, there exists infeasible sequence {xk} ⊂ X such that

f (xk )→ q∗, g+(xk )→ 0,

the bound is asymptotically sharp,

q∗ − f (xk )∥∥g+(xk )
∥∥ → ‖µ∗‖.

Also µ∗ is the optimal constraint violation direction,

g+(xk )∥∥g+(xk )
∥∥ → µ∗

‖µ∗‖

[Note:
{

g+(xk )
}

may need to lie on a curve].
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Thank you!
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