Enhanced Fritz John Optimality Conditions and Sensitivity Analysis

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

March 2016
We focus on the problem

\[
\begin{align*}
\text{minimize} \quad & f(x) \\
\text{subject to} \quad & x \in X, \quad g_j(x) \leq 0, \quad j = 1, \ldots, r,
\end{align*}
\]

where \(f : \mathbb{R}^n \mapsto \mathbb{R} \), \(g_j : \mathbb{R}^n \mapsto \mathbb{R} \), and \(X \subset \mathbb{R}^n \). The Lagrangian function

\[
L(x, \mu) = f(x) + \sum_{j=1}^{r} \mu_j g_j(x)
\]

involves the multiplier vector \(\mu = (\mu_1, \ldots, \mu_r) \).

We aim to find \(\mu \) (Langange multipliers) that facilitate analysis or algorithms.
They enter in optimality conditions: They convert the problem to an unconstrained or less constrained “optimization" of the Lagrangian.

They are central in sensitivity analysis: They quantify the rate of cost improvement as the constraint level is perturbed. Lagrange multipliers are some sort of “derivative" of the primal function

\[p(u) = \inf_{x \in X, \ g(x) \leq u} f(x) \]

This talk will revolve around these two properties.
There are several different lines of development of L-multiplier theory (forms of the implicit function theorem, forms of Farkas lemma, penalty functions, etc)

FJ conditions is a classical line but not the most popular

This talk will be in the direction of strengthening this line

Our starting point

A more powerful version of the classical FJ conditions
They include extra conditions that narrow down the candidate multipliers
It is based on the combination of two related but complementary works: Hestenes (1975) and Rockafellar (1993)
The line of proof is based on penalty functions; goes back to a 4-page paper by McShane (1973)

Allows:
- An “easy” development of unifying constraint qualifications
- A direct connection to sensitivity
References for this Overview Talk

Joint and individual works with Asuman Ozdaglar and Paul Tseng

An umbrella reference is the book

But it does not contain some refinements in the last three papers.
Outline

1. Enhanced FJ Conditions for Nonconvex/Differentiable Problems
2. Pseudonormality: A Unifying Constraint Qualification
4. Convex Problems
5. Sensitivity Analysis for Convex Problems
Lagrange Multipliers for Nonconvex Differentiable Problems

minimize \(f(x) \) subject to \(x \in X, \quad g_j(x) \leq 0, \quad j = 1, \ldots, r, \)

where \(f : \mathbb{R}^n \rightarrow \mathbb{R}, \ g_j : \mathbb{R}^n \rightarrow \mathbb{R}, \) are cont. differentiable, and \(X \subset \mathbb{R}^n \) is closed. The Lagrangian function is

\[
L(x, \mu) = f(x) + \sum_{j=1}^{r} \mu_j g_j(x)
\]

We focus at a local minimum \(x^* \)

A L-multiplier at \(x^* \) is a \(\mu^* = (\mu_1^*, \ldots, \mu_r^*) \geq 0 \) such that \(L(\cdot, \mu^*) \) is stationary at \(x^* \) and

\[
g_j(x^*) = 0 \quad \forall \ j \text{ with } \mu_j^* > 0, \quad \text{Complementary Slackness (CS)}
\]

Meaning of stationarity

- Case \(X = \mathbb{R}^n: \nabla_x L(x^*, \mu^*) = 0 \)
- Case \(X \neq \mathbb{R}^n: \nabla_x L(x^*, \mu^*)' y \geq 0 \) for all \(y \in T_x(x^*) \), the tangent cone of \(X \) at \(x^* \) (we will define this later).
FJ Necessary Conditions for Case $X = \mathbb{R}^n$ (Hestenes 1975)

There exists $(\mu_0^*, \mu^*) \geq (0, 0)$ such that $(\mu_0^*, \mu^*) \neq (0, 0)$ and

1. $\mu_0^* \nabla f(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0$

2. In every neighborhood of x^* there exists x such that

$$f(x) < f(x^*), \quad \text{and} \quad g_j(x) > 0 \quad \forall \ j \text{ with } \mu_j^* > 0$$

Condition (2) (called CV, for complementary violation) \implies CS

Two Cases

- $\mu_0^* = 0$. Then $\mu^* \neq 0$ and satisfies $\sum_{j=1}^r \mu_j^* \nabla g_j(x^*) = 0$ and the stronger CV condition. This greatly facilitates proofs that $\mu_0^* \neq 0$ under various constraint qualifications.

- $\mu_0^* = 1$. Then μ^* is a L-multiplier and the positive μ_j^* indicate the constraints j that need to be violated to effect cost improvement - a sensitivity property.
A problem with equality constraint $h(x) = 0$ split as $-h(x) \leq 0$ and $h(x) \leq 0$

- CS requires that $\mu_1^* \geq 0$ and $\mu_2^* \geq 0$ (there is an infinite number of these)
- CV requires that $\mu_1^* > 0$ and $\mu_2^* = 0$ (we cannot violate simultaneously both constraints)
- The multiplier satisfying CV is unique. Through its sign pattern indicates that the constraint $g_1(x) \leq 0$ should be violated for cost reduction.
Case $X \neq \mathbb{R}^n$ (Rockafellar 1993)

Extension of FJ conditions with the Lagrangian stationarity at the local min x^* expressed in terms of $N_X(x^*)$, the normal cone of X at x^*.

Definitions of Tangent Cone $T_X(x^*)$ and Normal Cone $N_X(x^*)$

The tangent cone $T_X(x)$ at some $x \in X$ is the set of all y such that $y = 0$ or there exists a sequence $\{x^k\} \subset X$ such that $x^k \neq x$ for all k and

$$x^k \to x, \quad \frac{x^k - x}{\|x^k - x\|} \to \frac{y}{\|y\|}$$

The normal cone $N_X(x)$ at some $x \in X$ is the set of all z such that there exist sequences $\{x^k\} \subset X$ and $\{z^k\}$ such that $x^k \to x$, $z^k \to z$, and $z^k \in T_X(x^k)^*$ [the polar of $T_X(x^k)$]. Note that $T_X(x^*)^* \subset N_X(x^*)$. If equality holds, X is called regular at x^* (if X is convex, it is regular at all points).
Constrained optimization problem

\[
\text{minimize } f(x) \quad \text{subject to } \quad x \in X, \quad g_j(x) \leq 0, \quad j = 1, \ldots, r,
\]

where \(f : \mathbb{R}^n \mapsto \mathbb{R}, \ g : \mathbb{R}^n \mapsto \mathbb{R} \), are cont. differentiable, and \(X \subset \mathbb{R}^n \) is closed.

FJ Conditions

There exists \((\mu_0^*, \mu^*) \geq (0, 0)\) such that \((\mu_0^*, \mu^*) \neq (0, 0)\) and

1. \(-\left(\mu_0^* \nabla f(x^*) + \sum_{j=1}^{r} \mu_j^* \nabla g_j(x^*)\right) \in N_X(x^*)\)
2. \(g_j(x^*) = 0 \quad \forall j \text{ with } \mu_j^* > 0\), i.e., CS holds.

If \(\mu_0^* = 1\) and \(X\) is regular at \(x^*\), then \(N_X(x^*) = T_X(x^*)^*\), and condition (1) becomes

\[
\left(\nabla f(x^*) + \sum_{j=1}^{r} \mu_j^* \nabla g_j(x^*)\right)' y \geq 0, \quad \forall y \in T_X(x^*),
\]

so \(\mu^*\) is a L-multiplier satisfying CS.
Enhanced FJ Necessary Conditions for Case $X \neq \mathbb{R}^n$ (B+O 2002)

Constrained optimization problem

$$\text{minimize } f(x) \quad \text{subject to} \quad x \in X, \quad g_j(x) \leq 0, \quad j = 1, \ldots, r,$$

where $f : \mathbb{R}^n \rightarrow \mathbb{R}$, $g : \mathbb{R}^n \rightarrow \mathbb{R}$, are cont. differentiable, and $X \subset \mathbb{R}^n$ is closed.

There exists $(\mu_0^*, \mu^*) \geq (0, 0)$ such that $(\mu_0^*, \mu^*) \neq (0, 0)$ and

1. $- (\mu_0^* \nabla f(x^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(x^*)) \in N_X(x^*)$

2. In every neighborhood of x^* there exists x such that

$$f(x) < f(x^*), \quad \text{and} \quad g_j(x) > 0 \quad \forall \ j \text{ with } \mu_j^* > 0$$

i.e., CV holds.

So if $\mu_0^* = 1$ and X is regular at x^*, then μ^* is a L-multiplier satisfying CV. We call such a multiplier informative.
Pseudonormality: An umbrella constraint qualification (B+O 2002)

x^* is a pseudonormal local min if there is no $\mu \geq 0$ and sequence $\{x^k\} \subset X$ with $x^k \to x^*$ such that

$$- \left(\sum_{j=1}^{r} \mu_j \nabla g_j(x^*) \right) \in N_X(x^*), \quad \sum_{j=1}^{r} \mu_j g_j(x^k) > 0, \quad \forall k.$$

Note: If x^* is pseudonormal and X is regular at x^* there is an informative L-multiplier.

All the principal constraint qualifications for existence of L-multipliers and some new ones can be shown (very easily) to imply pseudonormality.
Assume $T_X(x^*)$ is convex and the set of L-multipliers is nonempty. Then:

<table>
<thead>
<tr>
<th>L-Multipliers (satisfy CS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informative L-Multipliers (satisfy CV)</td>
</tr>
<tr>
<td>Min-Norm L-Multiplier μ^*</td>
</tr>
</tbody>
</table>

Sensitivity Result

- **Cost improvement bound:** For every sequence of infeasible vectors $\{x^k\} \subset X$ with $x_k \to x^*$ we have
 \[
 f(x^*) - f(x^k) \leq \|\mu^*\| \|g^+(x^k)\| + o(\|x^k - x^*\|),
 \]
 where $g^+(x) = (g_1^+(x), \ldots, g_r^+(x))$: constraint violation vector.

- **Optimal constraint violation direction:** If $\mu^* \neq 0$, there exists infeasible sequence $\{x^k\} \subset X$ with $x^k \to x^*$ and such that
 \[
 \lim_{k \to \infty} \frac{f(x^*) - f(x^k)}{\|g^+(x^k)\|} = \|\mu^*\|, \quad \lim_{k \to \infty} \frac{g_j^+(x^k)}{\|g^+(x^k)\|} = \frac{\mu_j^*}{\|\mu^*\|}, \quad j = 1, \ldots, r.
 \]
Consider the problem

\[\text{minimize } f(x) \quad \text{subject to } \quad x \in X, \quad g_j(x) \leq 0, \quad j = 1, \ldots, r, \]

where \(f : \mathbb{R}^n \rightarrow \mathbb{R}, \) \(g : \mathbb{R}^n \rightarrow \mathbb{R}, \) are convex, and \(X \subset \mathbb{R}^n \) is convex and closed.

Primal function: \(p(u) = \inf_{x \in X, \ g(x) \leq u} f(x), \)

Dual function: \(q(\mu) = \inf_{x \in X} L(x, \mu) \)

Optimal primal value: \(f^* = p(0), \)

Optimal dual value: \(q^* = \sup_{\mu \geq 0} q(\mu) \)

Duality gap: \(f^* - q^* \)

\(\mu \) is Lagrange multiplier if \(f^* - q^* = 0 \) and \(\mu \) is a dual optimal solution.

Primal and dual FJ conditions adapted to convex programming

There exists \((\mu_0^*, \mu^*) \geq (0, 0) \) such that \((\mu_0^*, \mu^*) \neq (0, 0), \) and

- \(\mu_0^* f^* = \inf_{x \in X} \left\{ \mu_0^* f(x) + \sum_{j=1}^{r} \mu_j^* g_j(x) \right\} \) \hspace{1cm} (Primal FJ Conditions)

- \(\mu_0^* q^* = \inf_{x \in X} \left\{ \mu_0^* f(x) + \sum_{j=1}^{r} \mu_j^* g_j(x) \right\} \) \hspace{1cm} (Dual FJ Conditions)

and CS holds (there are versions with CV also).
Visualization with the Primal Function $p(u) = \inf_{x \in X, g(x) \leq u} f(x)$

The most favorable case: $\nabla p(0)$ exists, and $\mu^* = \nabla p(0)$ is the unique L-multiplier

Rate of cost improvement: The slope of the support hyperplane at $(0, f^*)$
Visualization with the Primal Function $p(u) = \inf_{x \in X, g(x) \leq u} f(x)$

p is subdifferentiable at 0. Set of L-multipliers = $\partial p(0)$.

Optimal rate of cost improvement: The slope of the min norm support hyperplane at $(0, f^*)$
Visualization with the Primal Function \(p(u) = \inf_{x \in X, g(x) \leq u} f(x) \)
Visualization with the Primal Function \(p(u) = \inf_{x \in X} g(x) \leq u f(x) \)
Visualization with the Primal Function $p(u) = \inf_{x \in X, g(x) \leq u} f(x)$
Assume that $-\infty < q^* \leq f^* < \infty$, and that the set of dual optimal solutions is nonempty. Let μ^* be the min norm dual optimal solution (may not be a L-multiplier):

- **Cost improvement bound:** For all $x \in X$
 \[q^* - f(x) \leq \| \mu^* \| \| g^+(x) \| \]

- If $\mu^* \neq 0$, there exists infeasible sequence $\{x^k\} \subset X$ such that
 \[f(x^k) \to q^*, \quad g^+(x^k) \to 0, \]
 the bound is asymptotically sharp,
 \[\frac{q^* - f(x^k)}{\| g^+(x^k) \|} \to \| \mu^* \|. \]

Also μ^* is the optimal constraint violation direction,

\[\frac{g^+(x^k)}{\| g^+(x^k) \|} \to \frac{\mu^*}{\| \mu^* \|} \]

[Note: $\{g^+(x^k)\}$ may need to lie on a curve].
Thank you!