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Abstract

We consider the problem

minimize

m
∑

i=1

fi(xi)

subject to x ∈ S,

where xi are multidimensional subvectors of x, fi are convex functions, and S is a subspace. Monotropic

programming, extensively studied by Rockafellar, is the special case where the subvectors xi are the scalar

components of x. We show a strong duality result that parallels Rockafellar’s result for monotropic pro-

gramming, and contains other known and new results as special cases. The proof is based on the use of

ǫ-subdifferentials and the ǫ-descent method, which is used here as an analytical vehicle.
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Introduction

1. INTRODUCTION

In this paper, we analyze a class of convex optimization problems, using the tools and terminology of convex

analysis, e.g., [Roc70], [BNO03]. In particular, we study the problem

minimize

m
∑

i=1

fi(xi)

subject to x ∈ S,

(1.1)

where x = (x1, . . . , xm) with xi ∈ ℜni , i = 1, . . . , m, each fi : ℜni 7→ (−∞,∞], i = 1, . . . , m, is a closed

proper convex function, and S is a subspace of ℜn1+···+nm .

We refer to this as an extended monotropic programming problem. The special case of problem (1.1)

where each component xi is one-dimensional (i.e., ni = 1) is the monotropic programming problem, intro-

duced and extensively analyzed by Rockafellar in his book [Roc84].

Note that problems involving general linear constraints and an additive convex cost function can be

converted to extended monotropic programming problems. In particular, the problem

minimize

m
∑

i=1

fi(xi)

subject to Ax = b,

(1.2)

where A is a given matrix and b is a given vector, is equivalent to

minimize

m
∑

i=1

fi(xi)

subject to Ax − z = 0, z = b,

where z is a vector of artificial variables. This is an extended monotropic programming problem, where the

constraint subspace is

S =
{

(x, z) | Ax − z = 0
}

,

and the indicator function of the set
{

(x, z) | z = b
}

is added to the cost function. When the functions fi

have the form

fi(xi) = x′
iQixi + c′ixi + δXi

(xi),

where Qi is a positive semidefinite symmetric matrix, ci is a vector, and δXi
(·) is the indicator function of

the nonnegative orthant, problem (1.2) reduces to a convex quadratic programming problem. In the special

case where Qi = 0, it reduces to a linear programming problem.

Note also that while the subvectors x1, . . . , xm appear independently in the cost function

m
∑

i=1

fi(xi),
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they may be coupled through the subspace constraint. For example, consider a cost function of the form

f(x) = h(x1, . . . , xm) +

m
∑

i=1

fi(xi), (1.3)

where h is a closed proper convex function of all the components xi. Then, by introducing an auxiliary

vector z ∈ ℜn1+···+nm , the problem of minimizing f(x) subject to x ∈ S can be transformed to the problem

minimize h(z) +

m
∑

i=1

fi(xi)

subject to (x, z) ∈ S,

where S is the subspace of ℜ2(n1+···+nm)

S =
{

(x, x) | x ∈ S
}

.

This problem is of the form (1.1).

Another problem that can be converted to the extended monotropic programming format (1.1) is

minimize

m
∑

i=1

fi(x)

subject to x ∈ S,

(1.4)

where fi : ℜn 7→ (−∞,∞] are closed proper convex functions, and S is a subspace of ℜn. This can be done

by introducing m copies of x, i.e., auxiliary vectors zi ∈ ℜn that are constrained to be equal, and write the

problem as

minimize

m
∑

i=1

fi(zi)

subject to (z1, . . . , zm) ∈ S,

where S is the subspace

S =
{

(x, . . . , x) | x ∈ S
}

.

The special case of problem (1.4) where m = 1 is the generic convex cost problem with linear constraints,

minimize f(x)

subject to x ∈ S,

where f : ℜn 7→ (−∞,∞] is a closed proper convex function, and S is a subspace of ℜn [cf. the earlier

discussion regarding problem (1.2)].

It can thus be seen that the extended monotropic programming problem contains as special cases broad

classes of important optimization problems. These problems share a powerful and symmetric duality theory
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that we will develop in this paper. In Section 2, we formulate the dual problem, and prepare for the proof

of our strong duality result. This result shows that for a feasible problem, strong duality holds if the set

{

(z1 + λ1, . . . , zm + λm) | (z1, . . . , zm) ∈ S⊥, λi ∈ ∂ǫfi(xi)
}

is closed for all feasible x = (x1, . . . , xm) and ǫ > 0, where ∂ǫfi(xi) is the ǫ-subdifferential of fi at xi.1 While

this is an unusual constraint qualification, it can be translated into readily verifiable conditions by using

standard results that address the preservation of closedness of the vector sum of closed convex sets.

To prepare the ground for the proof of our duality result, we discuss in Section 3 the ǫ-descent method,

introduced by Bertsekas and Mitter in [BeM71], [BeM73] as a general algorithm for convex nondifferentiable

optimization. We use a variant of the method (also given in [BeM71]), which involves projection on an outer

approximation of the ǫ-subdifferential. In Section 4, we use the ǫ-descent method to prove our strong duality

result. This line of proof is unusual, but a closely related line of proof was used by Rockafellar [1981], [1984]

to prove strong duality in the special case of monotropic programming. Rockafellar used a variant of the ǫ-

descent method that involves descent along elementary vectors of the subspace S. We modified his argument

in order to apply it to extended monotropic programming, both because elementary vectors are not useful

in our context, and also because of the need for a constraint qualification that takes the form of closedness

of a vector sum of ǫ-subdifferentials. In Section 4, we also discuss various special cases where our result may

be applied. As an example, we show that strong duality holds for broad classes of multicommodity network

flow problems, and for cost functions of the form (1.3), where h is a real-valued function. It seems hard

to extend our results to problems with nonlinear constraints. In particular, a notable result, due to Tseng

[Tse05], which asserts the absence of a duality gap in separable convex problems with nonlinear constraints,

does not seem to be easily extendable to nonseparable problems using our methodology.

In this paper, all vectors are finite dimensional, and are viewed as column vectors. A prime denotes

transposition, so x′y is the inner product of two vectors x and y. We adopt throughout the standard norm,

‖x‖ =
√

x′x. We use standard terminology, facts, and notation from convex analysis (see e.g., [Roc70],

[BNO03]). In summary, for a function f : ℜn 7→ (−∞,∞], the effective domain
{

x | f(x) < ∞
}

is denoted

by dom(f), the epigraph
{

(x, w) | f(x) ≤ w
}

is denoted by epi(f), and the closure of f [the function whose

epigraph is the closure of epi(f)] is denoted by cl f . We say that f is closed if epi(f) is closed and we say

that it is proper if epi(f) is nonempty and does not contain a vertical line. The conjugate function of a

closed proper convex function f is the closed proper convex function g : ℜn 7→ (−∞,∞] given by

g(λ) = sup
x∈ℜn

{

λ′x − f(x)
}

, λ ∈ ℜn.

1 The original version of the report had a flaw: the functions fi were assumed lower semicontinuous

within their domain, rather than closed. However, the stronger closedness assumption is needed for the

support function formula (3.2), as per [Roc70], p. 220, and hence is essential for our results.
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The Dual Problem

A basic fact for our purposes is that the conjugate of g is f . Furthermore, from the definition of the conjugate,

we have Fenchel’s inequality

f(x) + g(λ) ≥ λ′x, ∀ (x, λ) ∈ ℜ2n,

which holds as an equality if and only if λ belongs to the subdifferential ∂f(x) of f at x.

2. THE DUAL PROBLEM

To derive the appropriate dual problem, we introduce auxiliary vectors zi ∈ ℜni and we convert the extended

monotropic programming problem (1.1) to the equivalent form

minimize

m
∑

i=1

fi(zi)

subject to zi = xi, i = 1, . . . , m, x ∈ S.

We then assign a multiplier vector λi ∈ ℜni to the equality constraint zi = xi, thereby obtaining the

Lagrangian function

L(x, z, λ) =
m

∑

i=1

fi(zi) + λ′
i(xi − zi), (2.1)

where λ = (λ1, . . . , λm). The dual function is

q(λ) = inf
x∈S, zi∈ℜni

L(x, z, λ)

= inf
x∈S

λ′x +

m
∑

i=1

inf
zi∈ℜni

{

fi(zi) − λ′
izi

}

=

{

∑m
i=1 qi(λi) if λ ∈ S⊥,

−∞ otherwise,

where

qi(λi) = inf
zi∈ℜ

{

fi(zi) − λ′
izi

}

, i = 1, . . . , m, (2.2)

and S⊥ is the orthogonal subspace of S.

Note that since qi can be written as

qi(λi) = − sup
zi∈ℜ

{

λ′
izi − fi(zi)

}

,

it follows that −qi is the conjugate of fi, so −qi is a closed proper convex function. The dual problem is

maximize

m
∑

i=1

qi(λi)

subject to λ ∈ S⊥.

(2.3)
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Thus, with a change of sign to convert maximization to minimization, the dual problem has the same form

as the primal. In fact, assuming that the functions fi are closed, when the dual problem is dualized, it yields

the primal problem, and the duality is fully symmetric.

Since the extended monotropic programming problem can be viewed as a special case of a convex

programming problem with linear equality constraints, it is possible to obtain optimality conditions as a

special case of classical conditions, which state that (x, λ) is a pair of primal and dual optimal solutions

if and only if x is primal feasible, λ is dual feasible, and x minimizes the Lagrangian function (see e.g.,

[BNO03], Prop. 6.2.5). The Lagrangian minimization condition is in turn true if and only if xi attains the

infimum in the equation

qi(λi) = inf
zi∈ℜni

{

fi(zi) − λ′
izi

}

, i = 1, . . . , m,

or equivalently, by Fenchel’s inequality,

λi ∈ ∂fi(xi), i = 1, . . . , m.

We thus obtain the following.

Proposition 2.1: Let f∗ be the optimal value of problem (1.1) and assume that −∞ < f∗ < ∞.

The vectors x∗ and λ∗ are optimal primal and dual solutions, respectively, and the optimal primal

and dual costs are equal if and only if

x∗ ∈ S, λ∗ ∈ S⊥, λ∗
i ∈ ∂fi(x∗

i ), i = 1, . . . , m.

3. THE ǫ-DESCENT METHOD

Given a closed proper convex function f : ℜn 7→ (−∞,∞] and a scalar ǫ > 0, we say that a vector λ is an

ǫ-subgradient of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′λ − ǫ, ∀ z ∈ ℜn. (3.1)

The ǫ-subdifferential, denoted ∂ǫf(x), is the set of all ǫ-subgradients of f at x, and by convention, ∂ǫf(x) = ∅
for x /∈ dom(f).
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The properties of the ǫ-subdifferential have been discussed extensively; see e.g., Hiriart-Urruty and

Lemarechal [HiL93], and Hiriart-Urruty et al. [HMS95]. Let us provide a brief discussion of some of the

properties that are useful for our purposes:

(1) For any x ∈ dom(f) and ǫ > 0, ∂ǫf(x) is nonempty and closed, and it is also compact if x is in the

interior of dom(f).

(2) The support function of ∂ǫf(x) is given by the formula ([Roc70], p. 220)

sup
λ∈∂ǫf(x)

y′λ = inf
α>0

f(x + αy) − f(x) + ǫ

α
, y ∈ ℜn. (3.2)

(3) We say that a direction y is an ǫ-descent direction at x ∈ dom(f) if

inf
α>0

f(x + αy) < f(x) − ǫ.

By Eq. (3.2) it follows that

y is an ǫ-descent direction if and only if sup
λ∈∂ǫf(x)

y′λ < 0.

In particular, if 0 /∈ ∂ǫf(x) and λ is the projection of the origin on ∂ǫf(x), the vector −λ is an ǫ-descent

direction.

The ǫ-descent method is based on observation (3) above. It starts at some x0 ∈ dom(f) and generates

a sequence {xk} ⊂ dom(f). The kth iteration is

xk+1 = xk + αkyk, (3.3)

yk is an ǫ-descent direction (if one can be found) and αk is a positive stepsize that reduces the cost function

by more than ǫ, i.e.,

f(xk + αkyk) < f(xk) − ǫ.

The iteration can be implemented by finding the projection of the origin on ∂ǫf(xk),

λk = arg min
λ∈∂ǫf(xk)

‖λ‖.

If λk 6= 0, then by observation (3) above, −λk is an ǫ-descent direction, and can be used as the direction yk

in the iteration (3.3).

We will use a variant of this implementation where ∂ǫf(xk) is approximated by a closed set A(xk) such

that

∂ǫf(xk) ⊂ A(xk) ⊂ ∂γǫf(xk),
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where γ is a scalar with γ > 1. In this variant, the direction used in iteration (3.3) is yk = −λk, where

λk = arg min
λ∈A(xk)

‖λ‖

is the projection of the origin on A(xk). If λk = 0 [equivalently 0 ∈ A(xk)], the method stops, and it follows

that xk is within γǫ of being optimal. If λk 6= 0, it follows that by suitable choice of the stepsize αk, we can

move along the direction yk = −λk to decrease the cost function by more than ǫ. Thus for a fixed ǫ > and

assuming that f is bounded below, the method is guaranteed to terminate in a finite number of iterations

with a γǫ-optimal solution.

We now focus on the case where f is the sum of functions,

f(x) = f1(x) + · · · + fm(x).

The following proposition shows that we may use as approximation the closure of the vector sum of the

ǫ-subdifferentials:

A(x) = cl
(

∂ǫf1(x) + · · · + ∂ǫfm(x)
)

.

This case, and a corresponding ǫ-descent algorithm, were discussed in [BeM71] under the assumption that

the functions fi are real-valued, in which case the sets ∂ǫfi(x) are compact and the closure operation is

unnecessary in the preceding equation. Other versions of the following result are also known; see Hiriart-

Urruty et al. [HMS95], Th. 3.2.

Proposition 3.1: Let f be the sum of m closed proper convex functions fi : ℜn 7→ (−∞,∞],

i = 1, . . . , m,

f(x) = f1(x) + · · · + fm(x),

and let ǫ be a positive scalar. For a vector x ∈ dom(f)

∂ǫf(x) ⊂ cl
(

∂ǫf1(x) + · · · + ∂ǫfm(x)
)

⊂ ∂mǫf(x). (3.4)

Proof: Let λi ∈ ∂ǫfi(x) for i = 1, . . . , m. Then we have

fi(z) ≥ fi(x) + λ′
i(z − x) − ǫ, ∀ z ∈ ℜn, i = 1, . . . , m,

and by adding over all i, we obtain

f(z) ≥ f(x) + (λ1 + · · · + λm)′(z − x) − mǫ, ∀ z ∈ ℜn.
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Hence λ1 + · · · + λm ∈ ∂mǫf(x), and it follows that

∂ǫf1(x) + · · · + ∂ǫfm(x) ⊂ ∂mǫf(x).

Since ∂mǫf(x) is closed, this proves the right-hand side of Eq. (3.4).

To prove the left-hand side of Eq. (3.4), assume to arrive at a contradiction, that there exists a

λ ∈ ∂ǫf(x) such that

λ /∈ cl
(

∂ǫf1(x) + · · · + ∂ǫfm(x)
)

.

Then there exists a hyperplane strictly separating λ from the set cl
(

∂ǫf1(x)+ · · ·+∂ǫfm(x)
)

, i.e., there exist

a vector y and a scalar b such that

y′(λ1 + · · · + λm) < b < y′λ, ∀ λ1 ∈ ∂ǫf1(x), . . . , λm ∈ ∂ǫfm(x).

From this we obtain

sup
λ1∈∂ǫf1(x)

y′λ1 + · · · + sup
λm∈∂ǫfm(x)

y′λm < y′λ,

so that by Eq. (3.2),

inf
α>0

f1(x + αy) − f1(x) + ǫ

α
+ · · · + inf

α>0

fm(x + αy) − fm(x) + ǫ

α
< y′λ.

It follows that there exist positive scalars α1, . . . , αm such that

f1(x + α1y) − f1(x) + ǫ

α1
+ · · · + fm(x + αmy) − fm(x) + ǫ

αm
< y′λ. (3.5)

Let

α = min{α1, . . . , αm}.

By the convexity of fi, the ratio
(

fi(x + αy) − fi(x)
)

/α is monotonically nondecreasing in α. Thus, since

αi ≥ α, we have
fi(x + αiy) − fi(x)

αi
≥ fi(x + αy) − fi(x)

α
, i = 1, . . . , m,

and from Eq. (3.5) and the definition of α we obtain

y′λ >
f1(x + α1y) − f1(x) + ǫ

α1
+ · · · + fm(x + αmy) − fm(x) + ǫ

αm

≥ f1(x + αy) − f1(x) + ǫ

α
+ · · · + fm(x + αy) − fm(x) + ǫ

α

=
f(x + αy) − f(x) + ǫ

α

≥ inf
α>0

f(x + αy) − f(x) + ǫ

α
.

Since λ ∈ ∂ǫf(x), this contradicts Eq. (3.2), and proves the left-hand side of Eq. (3.4). Q.E.D.
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The potential lack of closure of the set ∂ǫf1(x) + · · · + ∂ǫfm(x) indicates a practical difficulty in

implementing the method. In particular, in order to find an ǫ-descent direction one will ordinarily minimize

‖λ1 + · · · + λm‖ over λi ∈ ∂ǫfi(x), i = 1, . . . , m, but an optimal solution to this problem may not exist.

Thus, it may be difficult to check algorithmically whether

0 ∈ cl
(

∂ǫf1(x) + · · · + ∂ǫfm(x)
)

,

which is the test for mǫ-optimality of x. We will see in the next section that the lack of closure of the set

∂ǫf1(x)+ · · ·+∂ǫfm(x) may be the cause of a duality gap in the extended monotropic programming context.

4. STRONG DUALITY THEOREM

We are now ready to prove the main result of the paper. Let f∗ and q∗ be the optimal values of the primal

and dual problems (1.1) and (2.3), respectively, and note that by weak duality, we have q∗ ≤ f∗. Let us

introduce the functions f i : ℜn1+···+nm 7→ (−∞,∞] of the vector x = (x1, . . . , xm), defined by

f i(x) = fi(xi), i = 1, . . . , m.

Note that the ǫ-subdifferentials of f i and fi are related by

∂ǫf i(x) =
{

(0, . . . , 0, λi, 0, . . . , 0) | λi ∈ ∂ǫfi(xi)
}

, i = 1, . . . , m, (4.1)

where the nonzero element in (0, . . . , 0, λi, 0, . . . , 0) is in the ith position. The following proposition gives

conditions for strong duality.

Proposition 4.1: Assume that the extended monotropic programming problem (1.1) is feasible,

and that for all feasible solutions x, the set

T (x, ǫ) = S⊥ + ∂ǫf1(x) + · · · + ∂ǫfm(x)

is closed for all ǫ > 0. Then q∗ = f∗.

Proof: If f∗ = −∞, then q∗ = f∗ by weak duality, so we may assume that f∗ > −∞. Let F denote the

feasible region of the primal problem:

F = S ∩
(

∩m
i=1dom(f i)

)

.
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We apply the ǫ-descent method based on outer approximation of the subdifferential (cf. Section 3) to the

minimization of the function

f(x) = δS(x) +

m
∑

i=1

f i(x) = δS(x) +

m
∑

i=1

fi(xi),

where δS is the indicator function of S. In this method, we start with a vector x0 ∈ F , and we generate

a sequence {xk} ⊂ F . At the kth iteration, given the current iterate xk, we find the vector of minimum

norm wk on the set T (xk, ǫ) (which is closed by assumption). If wk = 0 the method stops, verifying that

0 ∈ ∂mǫf(xk) (cf. Prop. 3.1). If wk 6= 0, we generate a vector xk+1 ∈ F of the form xk+1 = xk − αkwk, such

that

f(xk+1) < f(xk) − ǫ;

such a vector is guaranteed to exist, since 0 /∈ T (xk, ǫ) and hence 0 /∈ ∂ǫf(xk) by Prop. 3.1. Since f(xk) ≥ f∗

and we have assumed that f∗ > −∞, the method must stop at some iteration with a vector x = (x1, . . . , xm)

such that 0 ∈ T (x, ǫ). Thus some vector in ∂ǫf1(x)+ · · ·+ ∂ǫfm(x) must belong to S⊥. In view of Eq. (4.1),

it follows that there must exist vectors

λi ∈ ∂ǫfi(xi), i = 1, . . . , m,

such that

λ = (λ1, . . . , λm) ∈ S⊥.

From the definition of an ǫ-subgradient, we have [cf. Eqs. (2.2) and (3.1)]

fi(xi) ≤ qi(λi) + λ′
ixi + ǫ, i = 1, . . . , m,

and by adding over i and using the fact x ∈ S and λ ∈ S⊥, we obtain

m
∑

i=1

fi(xi) ≤
m

∑

i=1

qi(λi) + mǫ.

Since x is primal feasible and λ is dual feasible, it follows that

f∗ ≤ q∗ + mǫ.

Taking the limit as ǫ → 0, we obtain f∗ = q∗. Q.E.D.
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Some Special Cases

We now delineate some special cases where the assumptions of the preceding proposition are satisfied. We

first note that in view of Eq. (4.1), the set ∂ǫf i(x) is compact if ∂ǫfi(xi) is compact, and it is polyhedral if

∂ǫfi(xi) is polyhedral. Since the vector sum of a compact set and a polyhedral set is closed ([Roc70], Th.

20.3, [BMO03], p. 68), it follows that if each of the sets ∂ǫfi(xi) is either compact or polyhedral, then T (x, ǫ)

is closed, and by Prop. 4.1, we have q∗ = f∗. Furthermore, the set ∂ǫfi(xi) is compact if xi ∈ int
(

dom(fi)
)

(as in the case where fi is real-valued), and it is polyhedral if fi is polyhedral.1 There are some other

interesting special cases where ∂ǫfi(xi) is polyhedral, as we now describe.

One such special case is when fi depends on a single scalar component of x, as in the case of a

monotropic programming problem. The following definition introduces a more general case.

Definition 4.1: We say that a closed proper convex function h : ℜn 7→ (−∞,∞] is essentially

one-dimensional if it has the form

h(x) = h(a′x),

where a is a vector in ℜn and h : ℜ 7→ (−∞,∞] is a scalar closed proper convex function.

The following proposition establishes the main associated property for our purposes. A proof may be

obtained by using general results on the ǫ-subdifferential of the composition of a convex function and a linear

function (see Hiriart-Urruty et al. [HMS95], Th. 7.1). We give here a simpler specialized proof.

Proposition 4.2: Let h : ℜn 7→ (−∞,∞] be a closed proper convex essentially one-dimensional

function. Then for all x ∈ dom(h) and ǫ > 0, the ǫ-subdifferential ∂ǫh(x) is nonempty and polyhedral.

Proof: Let h(x) = h(a′x), where a is a vector in ℜn and h is a scalar closed proper convex function. If

a = 0, then h is a constant function, and ∂ǫh(x) is equal to {0}, a polyhedral set. Thus, we may assume

that a 6= 0. We note that λ ∈ ∂ǫh(x) if and only if

h(a′z) ≥ h(a′x) + (z − x)′λ − ǫ, ∀ z ∈ ℜn.

1 In our use of the term, a polyhedral set is a nonempty set that is specified by a finite number of affine inequalities

(as defined in [BNO03]). A polyhedral function is an extended real-valued function whose epigraph is a polyhedral

set.
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Writing λ in the form λ = ξa + v with ξ ∈ ℜ and v ⊥ a, we have

h(a′z) ≥ h(a′x) + (z − x)′(ξa + v) − ǫ, ∀ z ∈ ℜn,

and by taking z = γa + δv with γ, δ ∈ ℜ and γ chosen so that γ‖a‖2 ∈ dom(h), we obtain

h
(

γ‖a‖2
)

≥ h(a′x) + (γa + δv − x)′λ − ǫ = h(a′x) + (γa − x)′λ − ǫ + δv′λ, ∀ δ ∈ ℜ.

Since v′λ = ‖v‖2 and δ can be arbitrarily large, this relation implies that v = 0, so it follows that every

λ ∈ ∂ǫh(x) must be a scalar multiple of a. Since ∂ǫh(x) is also a closed convex set, it must be a nonempty

closed interval in ℜn, and hence is polyhedral. Q.E.D.

Another interesting special case is described in the following definition.

Definition 4.2: We say that a closed proper convex function h : ℜn 7→ (−∞,∞] is domain one-

dimensional if the affine hull of dom(h) is either a single point or a line, i.e.,

aff
(

dom(h)
)

= {γa + b | γ ∈ ℜ},

where a and b are some vectors in ℜn.

The following proposition parallels Prop. 4.2.

Proposition 4.3: Let h : ℜn 7→ (−∞,∞] be a closed proper convex domain one-dimensional

function. Then for all x ∈ dom(h) and ǫ > 0, the ǫ-subdifferential ∂ǫh(x) is nonempty and polyhedral.

Proof: Denote by a and b the vectors associated with the domain of h as per Definition 4.2. We note that

for γa + b ∈ dom(h), we have λ ∈ ∂ǫh(γa + b) if and only if

h(γa + b) ≥ h(γa + b) + (γ − γ)a′λ − ǫ, ∀ γ ∈ ℜ,

or equivalently, if and only if a′λ ∈ ∂ǫh(γ), where h is the one-dimensional convex function

h(γ) = h(γa + b), γ ∈ ℜ.

13



Strong Duality Theorem

Thus,

∂ǫh(γa + b) =
{

λ | a′λ ∈ ∂ǫh(γ)
}

.

Since ∂ǫh(γ) is a nonempty closed interval (h is closed because h is), it follows that ∂ǫh(γa + b) is nonempty

and polyhedral [if a = 0, it is equal to ℜn, and if a 6= 0, it is the vector sum of two polyhedral sets: the

interval
{

γa | γ‖a‖2 ∈ ∂ǫh(γ)
}

and the subspace that is orthogonal to a]. Q.E.D.

By combining the preceding two propositions with Prop. 4.1, we obtain the following.

Proposition 4.4: Assume that the extended monotropic programming problem (1.1) is feasible,

and that each function fi is real-valued, or is polyhedral, or is essentially one-dimensional, or is domain

one-dimensional. Then q∗ = f∗.

Here is an example of a class of problems where strong duality is implied by Prop. 4.4.

Example 4.1: (Multicommodity Network Flow Problems)

Consider a directed graph consisting of a set N of nodes and a set A of directed arcs. The flows on the arcs

are of K different types (commodities). We denote by xij(k) the flow of kth type on arc (i, j) (k = 1, . . . , K).

These flows must satisfy conservation of flow and supply/demand constraints of the form

∑

{j|(i,j)∈A}

xij(k) −
∑

{j|(j,i)∈A}

xji(k) = si(k), ∀ i ∈ N , k = 1, . . . , K, (4.2)

where si(k) is the amount of flow of type k entering the network at node i [si(k) > 0 indicates supply, and

si(k) < 0 indicates demand]. The supplies/demands si(k) are given and for the problem to be feasible, they

must satisfy
∑

i∈N

si(k) = 0, k = 1, . . . , K, (4.3)

(total supply and total demand of each type should be equal).

The problem is to minimize
∑

(i,j)∈A

fij(xij)

subject to the constraints (4.2), where fij : ℜ 7→ (−∞,∞] are closed proper convex functions of the total flow

on arc (i, j), i.e., the sum

xij = xij(1) + · · · + xij(K). (4.4)

In typical applications in communication and transportation contexts (see e.g, [BeG92], [Ber98]), the function

fij is monotonically increasing, thus representing a penalty for a large amount of total flow xij on arc (i, j).

Furthermore, fij may embody a capacity constraint, whereby xij should lie within certain bounds.
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We can formulate the problem into the extended monotropic programming format (1.1) by introducing an

additional variable zi(k) for each i ∈ N and k = 1, . . . , K, and by converting the conservation of flow constraint

(4.2) to the subspace constraint

∑

{j|(i,j)∈A}

xij(k) −
∑

{j|(j,i)∈A}

xji(k) − zi(k) = 0, ∀ i ∈ N , k = 1, . . . , K,

while changing the cost function to

∑

(i,j)∈A

fij(xij) +

K
∑

k=1

∑

i∈N

dik

(

zi(k)
)

, (4.5)

where dik is the function

dik(z) =

{

0 if z = si(k),

∞ otherwise.

It can be seen, using the definition (4.4) of xij , that the cost function (4.5) is the sum of closed proper

convex functions that are essentially one-dimensional. It follows from Prop. 4.4 that if the optimal value of

the problem is finite, there is no duality gap. This conclusion holds also for some more general versions of

the problem. For example, the cost function may contain an additional real-valued convex function and/or

a polyhedral function that depends on all the arc flows xij(k). Furthermore, instead of being fixed, the

supply/demand amounts may be variable and subject to optimization under the constraint

∑

i∈N

zi(k) = 0, k = 1, . . . , K,

[cf. Eq. (4.3)], while the functions dik in the cost (4.5) may be replaced by arbitrary closed proper convex

functions of zi(k).

It turns out that there is a conjugacy relation between essentially one-dimensional functions and domain

one-dimensional functions such that the affine hull of their domain is a subspace. This is shown in the

following proposition, which establishes a somewhat more general connection, needed for our purposes.

Proposition 4.5:

(a) The conjugate of an essentially one-dimensional function is a domain one-dimensional function

such that the affine hull of its domain is a subspace.

(b) The conjugate of a domain one-dimensional function is the sum of an essentially one-dimensional

function and a linear function.

Proof: (a) Let h : ℜn 7→ (−∞,∞] be essentially one-dimensional, so that

h(x) = h(a′x),
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where a is a vector in ℜn and h : ℜ 7→ (−∞,∞] is a scalar closed proper convex function. If a = 0, then

h is a constant function, so its conjugate is domain one-dimensional, since its domain is {0}. We may thus

assume that a 6= 0. We claim that the conjugate

g(λ) = sup
x∈ℜn

{

λ′x − h(a′x)
}

, (4.6)

takes infinite values if λ is outside the one-dimensional subspace spanned by a, implying that g is domain

one-dimensional with the desired property. Indeed, let λ be of the form λ = ξa + v, where ξ is a scalar, and

v is a nonzero vector with v ⊥ a. If we take x = γa + δv in Eq. (4.6), where γ is such that γ‖a‖2 ∈ dom(h),

we obtain

g(λ) = sup
x∈ℜn

{

λ′x − h(a′x)
}

≥ sup
δ∈ℜ

{

(ξa + v)′(γa + δv) − h
(

γ‖a‖2
)}

= ξγ‖a‖2 − h
(

γ‖a‖2
)

+ sup
δ∈ℜ

{

δ‖v‖2
}

,

so it follows that g(λ) = ∞.

(b) Let h : ℜn 7→ (−∞,∞] be domain one-dimensional, so that

aff
(

dom(h)
)

= {γa + b | γ ∈ ℜ},

for some vectors a and b. If a = b = 0, the domain of h is {0}, so its conjugate is the function taking the

constant value −h(0) and is essentially one-dimensional. If b = 0 and a 6= 0, then the conjugate is

g(λ) = sup
x∈ℜn

{

λ′x − h(x)
}

= sup
γ∈ℜ

{

γa′λ − h(γa)
}

,

so g(λ) = g(a′λ) where g is the conjugate of the scalar function h(γ) = h(γa). Since h is closed, convex, and

proper, the same is true for g, and it follows that g is essentially one-dimensional. Finally, consider the case

where b 6= 0. Then we use a translation argument and write h(x) = ĥ(x− b), where ĥ is a function such that

the affine hull of its domain is the subspace spanned by a. The conjugate of ĥ is essentially one-dimensional

(by the preceding argument), and the conjugate of h is obtained by adding b′λ to it. Q.E.D.

We now turn to the dual problem, and derive a duality result that is analogous to the one of Prop. 4.4.

We say that a function is co-finite if its conjugate is real-valued (see [Roc70], p. 116). If we apply Prop. 4.4

to the dual problem (2.3), we obtain the following.

Proposition 4.6: Assume that the dual extended monotropic programming problem (2.3) is fea-

sible. Assume further that each fi is co-finite, or is polyhedral, or is essentially one-dimensional, or is

domain one-dimensional. Then q∗ = f∗.
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In the special case of a monotropic programming problem, where the functions fi are essentially one-

dimensional (they depend on the single scalar component xi), Props. 4.4 and 4.6 yield the following.

Proposition 4.7: Consider the monotropic programming problem, where ni = 1 for all i. Assume

that either the problem is feasible, or else its dual problem is feasible. Then q∗ = f∗.

Proof: This is a consequence of Props. 4.4 and 4.6, and the fact that when ni = 1, the functions fi and

qi are essentially one-dimensional. Applying Prop. 4.4 to the primal problem, shows that q∗ = f∗ under the

hypothesis that the primal problem is feasible. Applying Prop. 4.6 to the dual problem, shows that q∗ = f∗

under the hypothesis that the dual problem is feasible. Q.E.D.
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