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Abstract

We consider linear fixed point equations and their approximations by projection on a low
dimensional subspace. We derive new bounds on the approximation error of the solution, which
are expressed in terms of low dimensional matrices and can be computed by simulation. When
the fixed point mapping is a contraction, as is typically the case in Markovian decision processes
(MDP), one of our bounds is always sharper than the standard worst case bounds, and another
one is often sharper. Our bounds also apply to the non-contraction case, including policy
evaluation in MDP with nonstandard projections that enhance exploration. There are no error
bounds currently available for this case to our knowledge.
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1 Introduction

For a given n×n matrix A and vector b ∈ <n, let x∗ and x̄ be solutions of the two linear fixed point
equations,

x = Ax + b, x = Π(Ax + b), (1)

respectively, where Π denotes projection on a k-dimensional subspace S with respect to certain
weighted Euclidean norm ‖ · ‖ξ. We assume that x∗ and x̄ exist, and that the matrix I − ΠA is
invertible so that x̄ is unique.

Our objective in solving the projected equation x = Π(Ax + b) is to approximate the solution
of the original equation x = Ax + b using k-dimensional computations and storage. Implicit here is
the assumption that n is very large, so that n-dimensional vector-matrix operations are practically
impossible, while k << n. This approach is common in approximate dynamic programming, and has
been central in much of recent research on the subject (see e.g., [Sut88, TV97, BT96, SB98, Ber07]).
In particular, in the context of MDP and policy iteration algorithms, the evaluation of the cost vector
of a fixed policy requires solution of the equation x = Ax+b, where A is a stochastic or substochastic
matrix. Simulation-based approximate policy evaluation methods, based on temporal differences
(TD), such as TD(λ), LSTD(λ), and LSPE(λ), have been successfully used to approximate the
policy cost vector by solving a projected equation x = Π(Ax + b) with low-order computation and
storage (see e.g., [Sut88, TV97, BT96, SB98, Ber07]). In our recent paper [BY08], we have extended
TD-type methods to the case where A is an arbitrary matrix, subject only to the restriction that
I −ΠA is invertible. In the present paper, we derive bounds on the distance/error between x∗ and
x̄. Our bounds apply to the general context where A is arbitrary, but are new even when specialized
to the MDP context.

In the MDP context, where ΠA is usually a contraction, there are two commonly used error
bounds that compare the norms of x∗ − x̄ and x∗ − Πx∗. The first bound (see e.g., [BT96, TV97])
holds if ‖ΠA‖ = α < 1 with respect to some norm ‖ · ‖, and has the form

‖x∗ − x̄‖ ≤ 1
1− α

‖x∗ −Πx∗‖. (2)

The second bound (see e.g., [TV99a, Ber07]) holds in the usual case where ΠA is a contraction
with respect to the Euclidean norm ‖ · ‖ξ, with ξ being the invariant distribution of the Markov
chain underlying the problem, i.e., ‖ΠA‖ξ = α < 1. It is derived using the Pythagorean theorem
‖x∗ − x̄‖2ξ = ‖x∗ −Πx∗‖2ξ + ‖x̄−Πx∗‖2ξ , and it is much sharper than the first bound:

‖x∗ − x̄‖ξ ≤
1√

1− α2
‖x∗ −Πx∗‖ξ. (3)

The bounds (2), (3) are determined by the modulus of contraction α, and apply only when ΠA is a
contraction mapping. We develop in this paper new error bounds, which are sharper when ΠA is a
contraction, including important MDP cases, and also apply when ΠA is not a contraction.

Our starting point is the observation that the two terms involved in the bounds (2) and (3)
satisfy the following equation with or without contraction assumptions:1

x∗ − x̄ = (I −ΠA)−1(x∗ −Πx∗). (4)

We may view the bounds (2), (3) as relaxed versions of this equation. In particular, we may obtain
the bound (2) by writing

(I −ΠA)−1 = I + ΠA + · · · ,

1This can be seen by subtracting x̄ = Π(Ax̄ + b) from Πx∗ = Π(Ax∗ + b) to obtain

Πx∗ − x̄ = ΠA(x∗ − x̄), ⇒ (Πx∗ − x∗) + (x∗ − x̄) = ΠA(x∗ − x̄), ⇒ (4).
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and by upper-bounding each term in the expansion separately: ‖(ΠA)n‖ ≤ αn. We may obtain the
bound (3) by writing

(I −ΠA)−1 = I + ΠA(I −ΠA)−1, (5)

and by upper-bounding the norm of ΠA(I − ΠA)−1(x∗ − Πx∗) by α‖x∗ − x̄‖ξ and rearranging
terms.2 We will develop a different bounding approach, so that α will not be in the denominator of
the bound. To this end, we will express (I −ΠA)−1 in the form

(I −ΠA)−1 = I + (I −ΠA)−1ΠA, (6)

and aim at bounding the term (I −ΠA)−1ΠA(x∗ −Πx∗) directly (this term is in fact Πx∗ − x̄, the
bias of x̄ from Πx∗). In doing so, we will obtain bounds that not only can be sharper than the
preceding bounds for the contraction case, but also carry over to the non-contraction case.

We will derive two bounds, which involve the spectral radii of small-size matrices, and provide a
“data/problem-dependent” error analysis, in contrast to the fixed error bounds (2), (3); see Theorems
1 and 2. The bounds are independent of the parametrization of the subspace S, and can be computed
with low-dimensional operations and simulation, if this is desirable. One of the bounds is sharper
than the other, but involves more complex computations. We also derive some additional bounds
that provide insight into the character of the approximation error, but are qualitative in nature; see
Props. 3 and 4.

Most of our bounds have the general form

‖x∗ − x̄‖ξ ≤ B(A, ξ, S) ‖x∗ −Πx∗‖ξ, (7)

where B(A, ξ, S) is a constant that depends on A, ξ, and S (but not on b). Like the bounds (2), (3),
we may view ‖x∗−Πx∗‖ξ as the baseline error , i.e., the minimum error in estimating x∗ by a vector
in the approximation subspace S. We may view B(A, ξ, S) as an upper bound to the amplification
ratio

‖x∗ − x̄‖ξ

‖x∗ −Πx∗‖ξ
,

which is due to solving the projected equation x = Π(Ax + b) instead of projecting x∗ on S, or
equivalently, view

√
B2(A, ξ, S)− 1 as an upper bound to the “bias-to-distance” ratio

‖x̄−Πx∗‖ξ

‖x∗ −Πx∗‖ξ
.

Figure 1 illustrates this relation between the bound, x∗ and x̄.
We present our main results in the next section. In Section 3, we address the application of the

new error bounds to the approximate policy evaluation in MDP and to the far more general problem
of approximate solution of large systems of linear equations. In Section 4, we present additional
related results based on the same line of analysis, including improved qualitative bounds, as well
as analogous computable error bounds for a different approximation method: the equation error
minimization approach.

2 Main Results

We first introduce the main theorems and explain the underlying ideas, and then give the proofs in
Section 2.1. Let Φ be an n× k matrix whose columns form a basis of S. Let Ξ be a diagonal matrix
with the components of ξ on the diagonal. Define k × k matrices B, M , and F by

B = Φ′ΞΦ, M = Φ′ΞAΦ, F = (I −B−1M)−1 (8)
2From Eqs. (4)-(5) and the orthogonality of (x∗ −Πx∗) to the subspace S, we have

‖x∗ − x̄‖2ξ = ‖x∗ −Πx∗‖2ξ + ‖ΠA(I −ΠA)−1(x∗ −Πx∗)‖2ξ
= ‖x∗ −Πx∗‖2ξ + ‖ΠA(x∗ − x̄)‖2ξ ≤ ‖x∗ −Πx∗‖2ξ + α2‖x∗ − x̄‖2ξ .
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Πx∗

x∗

S

Cone specified by error bound
B(A, ξ, S)

Approximation x̄

Figure 1: The relation between the error bound and x̄: x̄ lies in the intersection of S and a cone which
originates from x∗ and whose angle is specified by the error bound B(A, ξ, S) as cos−1

(
1

B(A,ξ,S)

)
.

The smaller B(A, ξ, S) is, the shaper the cone. The smallest bound B(A, ξ, S) = 1 implies x̄ = Πx∗.

(we will show later that the inverse in the definition of F exists). Notice that the projection matrix
Π can be expressed as Π = Φ(Φ′ΞΦ)−1Φ′Ξ = ΦB−1Φ′Ξ. For a square matrix L, let σ(L) denote the
spectral radius of L.

Throughout the paper, x∗ denotes some solution of the equation x = Ax + b; we implicitly
assume that such a solution exists. When reference is made to x̄, we implicitly assume that I −ΠA
is invertible, and that x̄ is the unique solution of the equation x = Π(Ax + b).

Theorem 1. The approximation error x∗ − x̄ satisfies

‖x∗ − x̄‖ξ ≤
√

1 + σ(G1)‖A‖2ξ ‖x
∗ −Πx∗‖ξ , (9)

where G1 is the k × k matrix
G1 = B−1F ′BF. (10)

Furthermore,
σ(G1) = ‖(I −ΠA)−1Π‖2ξ ,

so the bound (9) is invariant to the choice of basis vectors of S (i.e., Φ).

The idea in deriving Theorem 1 is to combine Eqs. (4)-(5) with the bound∥∥(I −ΠA)−1ΠA(x∗ −Πx∗)
∥∥

ξ
≤
∥∥(I −ΠA)−1Π

∥∥
ξ
‖A‖ξ ‖x∗ −Πx∗‖ξ ,

and to show that ‖(I − ΠA)−1Π‖2ξ = σ(G1). An important fact, to be demonstrated later, is that
G1 can be obtained by simulation, using low dimensional calculations.

While the bound of Theorem 1 can be conveniently computed, it is less sharp than the bound
of the subsequent Theorem 2, and under certain circumstances less sharp than the bound (3). In
Theorem 1, ‖A‖ξ is needed, and this can be a drawback, particularly for the non-contraction case. In
Theorem 2, ‖A‖ξ is no longer needed; A is absorbed into the matrix to be estimated. Furthermore,
Theorem 2 takes into account that x∗ − Πx∗ is perpendicular to the subspace S; this considerably
sharpens the bound. On the other hand, the sharpened bound of Theorem 2 involves a k×k matrix
R (defined below) in addition to B and M , which may not be straightforward to estimate in some
cases, as will be commented later.

Theorem 2. The approximation error x∗ − x̄ satisfies

‖x∗ − x̄‖ξ ≤
√

1 + σ(G2) ‖x∗ −Πx∗‖ξ , (11)

where G2 is the k × k matrix

G2 = B−1F ′BFB−1(R−MB−1M ′), (12)
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and R is the k × k matrix
R = Φ′ΞAΞ−1A′ΞΦ.

Furthermore,
σ(G2) = ‖(I −ΠA)−1ΠA(I −Π)‖2ξ ,

so the bound (11) is invariant to the choice of basis vectors of S (i.e., Φ).

The idea in deriving Theorem 2 is to combine Eqs. (4)-(5) with the bound∥∥(I −ΠA)−1ΠA(x∗ −Πx∗)
∥∥

ξ
=
∥∥(I −ΠA)−1ΠA(I −Π)(x∗ −Πx∗)

∥∥
ξ

≤
∥∥(I −ΠA)−1ΠA(I −Π)

∥∥
ξ
‖x∗ −Πx∗‖ξ ,

and to show that ‖(I−ΠA)−1ΠA(I−Π)‖2ξ = σ(G2). Incorporating the matrix I−Π in the definition
of G2 is crucial for improving the bound of Theorem 1.

Estimating the matrix R, although not always as straightforward as estimating B and M , can
be done for a number of applications. A primary exception is when A itself is an infinite sum of
powers of matrices, which is the case of the TD(λ) method with λ > 0. We will address these issues
in Section 2.3.

2.1 Proofs of Theorems

We shall need two technical lemmas. The first lemma introduces an expression of the matrix (I −
ΠA)−1 that will be used to derive our error bounds. The second lemma establishes the relation
between the norm of an n×n matrix that is a product of n×k and k×n matrices, and the spectral
radius of a certain product of k × k matrices.

Lemma 1. The matrix I − ΠA is invertible if and only if the inverse (I − B−1M)−1 defining F
exists. When I −ΠA is invertible, (I −ΠA)−1 maps S onto S, and furthermore,

(I −ΠA)−1 = I + (I −ΠA)−1ΠA = I + ΦFB−1Φ′ΞA. (13)

Proof. We prove the second part first. For any y ∈ S, (I − ΠA)−1y is the unique solution of the
equation x = ΠAx + y, so it lies in S. Since (I − ΠA)−1 has full rank, this shows that (I − ΠA)−1

maps S onto S.
Since (I −ΠA)−1 maps S onto S, we have

(I −ΠA)−1Φ = Π(I −ΠA)−1Φ. (14)

Furthermore, since Φ (whose columns form a basis of S) defines a one-to-one correspondence between
<k and S, with the inverse mapping given by B−1Φ′Ξ (as can be seen from the expression of Π),
the following three-mapping composition,

H = (B−1Φ′Ξ) · (I −ΠA)−1 · Φ,

is a one-to-one mapping from <k → <k. It follows that two vectors v, r ∈ <k satisfy Hv = r if and
only if (I − ΠA)−1Φv = Φr, or equivalently if and only if Φr = ΠAΦr + Φv, or equivalently, if and
only if r = B−1Φ′ΞAΦr + v. Using the definitions of M and F , this implies that

H = (I −B−1Φ′ΞAΦ)−1 = (I −B−1M)−1 = F. (15)

From Eqs. (14) and (15), and the expression of Π, we have

(I −ΠA)−1Π = Π(I −ΠA)−1Π

= Φ(B−1Φ′Ξ)(I −ΠA)−1ΦB−1Φ′Ξ

= ΦHB−1Φ′Ξ

= ΦFB−1Φ′Ξ, (16)
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and right-multiplying both sides by A and adding I, we obtain Eq. (13).
We now prove the first part. If I − ΠA is invertible, the proof preceding Eq. (15) shows that

(I − B−1M)−1 exists. Conversely, if (I − B−1M)−1 exists, the argument immediately preceding
Eq. (15) shows that I − ΠA is a one-to-one mapping on S and therefore cannot have z 6= 0 such
that ΠAz = z. This shows that 1 is not an eigenvalue of ΠA, so I −ΠA is invertible.

Remark 1. Note that since B and M are low-dimensional matrices, the first part of Lemma 1 is
useful for verifying the existence of the inverse of I −ΠA using the data.

Lemma 2. Let H and D be an n× k and k × n matrix, respectively. Let ‖ · ‖ denote the standard
(unweighted) Euclidean norm. Then,

‖HD‖2ξ = ‖Ξ1/2HDΞ−1/2‖2 = σ
(
(H ′ΞH)(DΞ−1D′)

)
. (17)

Proof. By the definition of ‖ · ‖ξ, for any x ∈ <n, ‖x‖ξ = ‖Ξ1/2x‖, where ‖ · ‖ is the standard
Euclidean norm. The first equality in Eq. (17) then follows from the definition of the norms: for
any n× n matrix E,

‖E‖ξ = sup
‖x‖ξ=1

‖Ex‖ξ = sup
‖Ξ1/2x‖=1

‖Ξ1/2Ex‖

= sup
‖z‖=1

‖Ξ1/2EΞ−1/2z‖ = ‖Ξ1/2EΞ−1/2‖,

where a change of variable z = Ξ1/2x is applied to derive the first equality in the second line.
For a square matrix E, we have ‖E‖ =

√
σ(E′E). Letting E = Ξ1/2HDΞ−1/2, we proceed to

prove the second equality in Eq. (17), by studying the spectral radius of the symmetric positive
semidefinite matrix E′E. Define W = H ′ΞH to simplify notation. We have,

E′E = Ξ−1/2D′H ′Ξ1/2 · Ξ1/2HDΞ−1/2 = Ξ−1/2D′WDΞ−1/2.

Let λ be a nonzero (necessarily real) eigenvalue of E′E, and let x be a nonzero corresponding
eigenvector. We have

Ξ−1/2D′WDΞ−1/2x = λx, (18)

so x is in col(Ξ−1/2D′) and can be expressed as

x = Ξ−1/2D′r̄

for some vector r̄ ∈ <k. Let

r =
1
λ

WDΞ−1/2x =
1
λ

WDΞ−1D′r̄.

Then, by Eq. (18),

Ξ−1/2D′r =
λ

λ
x = Ξ−1/2D′r̄, ⇒ D′r = D′r̄,

thus,
λr = WDΞ−1D′r̄ = WDΞ−1D′r. (19)

This implies that λ and r are an eigenvalue-eigenvector pair of the matrix W (DΞ−1D′). Conversely,
it is easy to see that if λ and r are an eigenvalue-eigenvector pair of the matrix W (DΞ−1D′), then
λ and Ξ−1/2D′r are an eigenvalue-eigenvector pair of the matrix E′E. Therefore,

σ
(
E′E

)
= σ

(
W (DΞ−1D′)

)
= σ

(
(H ′ΞH)(DΞ−1D′)

)
,

proving the second equality in Eq. (17).
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We now proceed to prove Theorem 1.

Proof of Theorem 1. To simplify notation, let us denote y = x∗ − Πx∗ and C = FB−1. By
Lemma 1,

(I −ΠA)−1y = y + ΦCΦ′ΞAy,

and since y is orthogonal to S and the second term on the right-hand-side lies in S, by the
Pythagorean theorem, we have

‖(I −ΠA)−1y‖2ξ = ‖y‖2ξ + ‖ΦCΦ′ΞAy‖2ξ . (20)

Applying Lemma 2 to the matrix ΦCΦ′Ξ with H = ΦC and D = Φ′Ξ and denoting by G the matrix
(H ′ΞH)(DΞ−1D′), the second term on the right-hand-side of Eq. (20) can be bounded by

‖ΦCΦ′ΞAy‖ξ ≤ ‖ΦCΦ′Ξ‖ξ ‖Ay‖ξ

=
√

σ
(
G
)
‖Ay‖ξ

≤
√

σ
(
G
)
‖A‖ξ ‖y‖ξ. (21)

We have
G = (C ′Φ′ΞΦC)(Φ′ΞΞ−1ΞΦ) = (FB−1)′B(FB−1)B = B−1F ′BF,

so G is the matrix G1 given in the statement of the theorem.
By combining Eq. (4), and Eqs. (20) and (21), it follows that

‖x∗ − x̄‖2ξ ≤
(
1 + σ(G1)‖A‖2ξ

)
‖x∗ −Πx∗‖2ξ ,

which proves the bound (9).
Finally, tracing the proof argument backwards, we see that σ(G1) = ‖ΦFB−1Φ′Ξ‖2ξ , while by

Eq. (16) given in the proof of Lemma 1,

ΦFB−1Φ′Ξ = (I −ΠA)−1Π.

Thus, σ(G1) is equal to ‖(I − ΠA)−1Π‖2ξ , and depends only on S and ξ and not the choice of Φ.
This completes the proof.

We now prove Theorem 2.

Proof of Theorem 2. Let us denote y = x∗ − Πx∗ and C = FB−1. As shown in the proof of
Theorem 1,

‖(I −ΠA)−1y‖2ξ = ‖y‖2ξ + ‖ΦCΦ′ΞAy‖2ξ . (22)

We proceed to bound the second term. Since

(I −Π)(x∗ −Πx∗) = x∗ −Πx∗,

i.e., (I −Π)y = y, we have

‖ΦCΦ′ΞAy‖ξ = ‖ΦCΦ′ΞA(I −Π)y‖ξ ≤ ‖ΦCΦ′ΞA(I −Π)‖ξ‖y‖ξ. (23)

Applying Lemma 2 to the matrix ΦCΦ′ΞA(I − Π) with H = ΦC and D = Φ′ΞA(I − Π), and
denoting by G the matrix (H ′ΞH)(DΞ−1D′), we have

‖ΦCΦ′ΞA(I −Π)‖ξ =
√

σ
(
G
)
. (24)

We now verify that the matrix G = (H ′ΞH)(DΞ−1D′) is the matrix G2 given in the statement
of the theorem. It can be seen that

H ′ΞH = C ′BC, DΞ−1D′ = Φ′ΞA(I −Π)Ξ−1(I −Π)′A′ΞΦ.
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Since ΠΞ−1 = ΦB−1Φ′ΞΞ−1 = ΦB−1Φ′, we have

(I −Π)Ξ−1(I −Π)′ = Ξ−1 −ΠΞ−1 − Ξ−1Π′ + ΠΞ−1Π′

= Ξ−1 − 2ΦB−1Φ′ + ΦB−1Φ′ΞΦB−1Φ′

= Ξ−1 − ΦB−1Φ′.

So the matrix DΞ−1D′ is

Φ′ΞA(I −Π)Ξ−1(I −Π)′A′ΞΦ = Φ′ΞA
(
Ξ−1 − ΦB−1Φ′

)
A′ΞΦ

= Φ′ΞAΞ−1A′ΞΦ− Φ′ΞAΦB−1Φ′A′ΞΦ

= R−MB−1M ′

with R = Φ′ΞAΞ−1A′ΞΦ, and the matrix

G = C ′BC(DΞ−1D′) = (FB−1)′B(FB−1)(R−MB−1M ′)

is the matrix G2 given in the statement.
The rest of the proof is similar to that of Theorem 1: we use Eqs. (4) and (22)-(24) to establish the

bound, and we trace the proof argument backwards to establish that
√

σ(G2) = ‖(I−ΠA)−1ΠA(I−
Π)‖ξ.

Remark 2. The same line of analysis applies in the case where the weights defining the Euclidean
projection Π are different from ξ, the weights defining the norm which is used to evaluate the
approximation quality. In such a case, we use the triangle inequality in place of the Pythagorean
theorem; the bounds are similarly expressed in terms of small size matrices, and with additional
care, they can also be estimated by simulation.

2.2 Comparison of Error Bounds

The error bounds of Theorems 1 and 2 apply to the general case where ΠA is not necessarily
a contraction mapping, while the worst case error bounds (2) and (3) only apply when ΠA is a
contraction. We will thus compare them for the contraction case. Nevertheless, our discussion will
illuminate the strengths and weaknesses of the new bounds for both contraction and non-contraction
cases.

First we show that the error bound of Theorem 2 is always the sharpest.

Proposition 1. Assume that ‖ΠA‖ξ ≤ α < 1. Then, the error bound of Theorem 2 is always no
worse than the error bound (3), i.e.,

1 + σ(G2) ≤
1

1− α2
,

where G2 is given by Eq. (12).

Proof. Let γ =
√

σ(G2). Since σ(G2) = ‖(I −ΠA)−1ΠA(I −Π)‖2ξ by Theorem 2, what we need to
show is that

γ2 = ‖(I −ΠA)−1ΠA(I −Π)‖2ξ ≤
1

1− α2
− 1 =

α2

1− α2
.

Consider a vector y 6= 0 such that

‖(I −ΠA)−1ΠA(I −Π)y‖ξ = γ‖y‖ξ. (25)

Since γ equals the matrix norm, we must have (I −Π)y = y, i.e., Πy = 0. (Otherwise, by redefining
y to be y−Πy, we can decrease ‖y‖ξ while keeping the value of the left hand side of (25) unchanged,
which would imply an increase in γ, a contradiction.) Consider the two equations of x,

x = (y −Ay) + Ax, x = Π(y −Ay) + ΠAx = ΠAx−ΠAy.
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Then, y is a solution of the first equation. Denote the solution of the second projected equation by
x̄. The error bound (3) implies that

‖Πy − x̄‖2ξ ≤
(

1
1− α2

− 1
)
‖y −Πy‖2ξ =

α2

1− α2
‖y −Πy‖2ξ , (26)

while by the definition of x̄ and y, we have

Πy − x̄ = −x̄ = (I −ΠA)−1ΠAy = (I −ΠA)−1ΠA(I −Π)y, (27)

and by Eq. (25),
‖Πy − x̄‖ξ = γ‖y‖ξ = γ‖y −Πy‖ξ.

Together with Eq. (26), this implies γ2 ≤ α2

1−α2 .

Remark 3. The proof shows that for both contraction and non-contraction cases, the bound of
Theorem 2 is tight, in the sense that for any A and S, there exists a worst case choice of b for
which the bound holds with equality. This can be seen from the construction of an equation and its
projected form immediately following Eq. (25).

Let us compare now the error bound of Theorem 1 with the bounds (2) and (3) from the worst
case viewpoint. Since Theorem 1 is effectively equivalent to∥∥(I −ΠA)−1ΠA(x∗ −Πx∗)

∥∥
ξ
≤
∥∥(I −ΠA)−1Π‖ξ‖A‖ξ‖x∗ −Πx∗

∥∥
ξ
,

we see that the bound of Theorem 1 is never worse than the bound (2), because we have bounded
the norm of the matrix (I − ΠA)−1Π as a whole, instead of bounding each term in its expansion
separately as in the case in the bound (2). However, the bound of Theorem 1 can be degraded by
two over-relaxations:

(i) The residual vector x∗ − Πx∗ is special, in that it satisfies Π(x∗ − Πx∗) = 0, but the bound
does not use this fact.

(ii) When ΠA is zero or near zero, the bound cannot fully utilize this fact.

The effect of (i) can be quite significant when A has a dominant real eigenvalue β with an
eigenvector x that lies in the approximation subspace S. In such a case, the bound reduces essentially
to the bound (2), since

‖(I −ΠA)−1Πx‖ξ =
1

1− β
‖x‖ξ. (28)

This happens because the analysis has not taken into account that the residual vector (x∗ − Πx∗)
cannot be an eigenvector that is contained in S.

The relaxation related to (ii) may not look obvious in the current analysis; it does, however, in
an alternative equivalent form of the analysis, by noticing that

(I −ΠA)−1ΠA = ΠA + ΠA(I −ΠA)−1ΠA, (29)

and the norm of the matrix on the right has been bounded by ‖Π + ΠA(I − ΠA)−1Π‖ξ‖A‖ξ in
Theorem 1. When ΠA = 0 the matrix of Eq. (29) is zero but its bound is not, because the matrices
Π and A are split in the bounding procedure. Accordingly, the spectral radius σ(G1) becomes
‖Π‖2ξ = 1. Similarly, over-relaxation occurs when ΠA is not zero but is near zero.3

The two shortcomings of the bound of Theorem 1 arise in the MDP applications that we will
discuss, as well as in non-contraction cases. On the other hand, there are cases where Theorem 1
provides sharper bounds than the fixed error bound (3), and cases where Theorem 1 gives computable

3In practice, when using the bound of Theorem 1, one may check if ΠA is near zero by checking if M is.
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x∗

V ⊕W

ΠV x∗

W
V

ΠW x∗

⊕
x∗ −ΠV x∗

Cone specified by B(A, ξ, V ⊕W )
( )

Cone specified by B(A, ξ,W )

ΠV⊕W x∗

Approximation x̂

Figure 2: Illustration of Prop. 2 on transferring error bounds on one approximation subspace to
another. The subspaces V and W are such that V ⊥ W and ΠV x∗ is known. Error bounds of
Theorems 1 and 2 associated with the approximation subspace W can be transfered to V ⊕W by
solving the projected form of an equation satisfied by x∗ − ΠV x∗ with the approximation subspace
being W , adding to this solution ΠV x∗, and then taking the combined solution as the approximation
x̂. In particular, x̂ = ΠV x∗ + x̄w, where x̄w is the solution of x = ΠW Ax + ΠW b̃ with b̃ =
b + AΠV x∗ −ΠV x∗.

bounds while the bound (3) is qualitative (for example, when the modulus of contraction of ΠA is
unknown). In Section 4, we will use the same line of analysis to derive strengthened versions of
Theorem 1, which in part address the shortcomings just discussed.

The advantage that the bound of Theorem 1 holds over the one of Theorem 2 is that it is rather
easy to compute: the matrices B and M define the solution x̄, so the bound is obtained together
with the approximating solution without extra computation overhead. By contrast, the bound of
Theorem 2 involves the matrix R, which can be hard to estimate for certain applications.

We now address another way of applying Theorems 1 and 2. It is motivated by the preceding
discussion on the over-relaxation (i) in the bound of Theorem 1, and it will be particularly useful
for obtaining sharper bounds from Theorem 1 when the approximation subspace nearly contains
eigenvectors of A associated with eigenvalues that are close to 1. The idea is to approximate the
projection of x∗ on a smaller subspace excluding the troublesome eigenspace and to transfer the
corresponding error bound, hopefully a better bound, to the original subspace. We give a formal
statement in the following proposition; see Figure 2 for an illustration. For a subspace V , let ΠV

denote the projection on V .

Proposition 2. Let V and W be two orthogonal subspaces. Assume that ΠV x∗ is known and
I −ΠW A is invertible. Let B(A, ξ,W ) correspond to either the error bound of Theorem 1 or that of
Theorem 2 with S = W . Then

‖x∗ − x̂‖ξ ≤ B(A, ξ,W )‖x∗ −ΠV⊕W x∗‖ξ,

where x̂ = ΠV x∗ + x̄w and x̄w is the solution of

x = ΠW Ax + ΠW b̃

with b̃ = b + AΠV x∗ −ΠV x∗.

Proof. First, notice that the error bounds of Theorems 1 and 2 do not depend on b. Since x∗−ΠV x∗

satisfies the linear equation x = Ax + b̃ with b̃ = b + AΠV x∗ − ΠV x∗, and x̄w is the solution of the
corresponding projected equation, we have

‖(x∗ −ΠV x∗)− x̄w‖ξ ≤ B(A, ξ,W )‖(x∗ −ΠV x∗)−ΠW (x∗ −ΠV x∗)‖ξ.
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Since W ⊥ V , ΠW x∗ = ΠW (x∗ − ΠV x∗) and ΠV⊕W x∗ = ΠV x∗ + ΠW x∗, therefore the above
inequality is equivalent to

‖x∗ − x̂‖ξ ≤ B(A, ξ,W )‖x∗ −ΠV⊕W x∗‖ξ

with x̂ = ΠV x∗ + x̄w.

Remark 4. When V is an eigenspace of A, AΠV x∗ ∈ V , so ΠW b̃ = ΠW b by the mutual orthogonality
of V and W , and ΠV x∗ is not needed in the projected equation for x̄w. Then, we may not need to
compute ΠV x∗. An example is policy evaluation in MDP where V is the span of the constant vector
of all ones. Then, ΠV x∗ is constant over all states and can be neglected in the process of policy
iteration.

Remark 5. Prop. 2 also holds with ΠV x∗ replaced by any vector v ∈ V . In particular, we have

‖x∗ − x̂‖ξ ≤ B(A, ξ,W )‖x∗ − (v + ΠW x∗)‖ξ,

where x̂ = v + x̄w and x̄w is the solution of the projected equation x = ΠW Ax + ΠW b̃ with
b̃ = b + Av − v. This implication can be useful when ΠV x∗ is unknown: we may substitute v as a
guess of ΠV x∗.

2.3 Estimating the Low Dimensional Matrices in the Bounds

We consider estimating the k × k matrices involved in the bounds by simulation, and we focus on
estimating the matrix R in Theorem 2:

R = Φ′ΞAΞ−1A′ΞΦ.

Other cases do not seem to need explanations: the estimation of B and M using simulation has been
well explained in the literature (see e.g., [Boy99, NB03, BY08]); and if instead of using simulation,
products of k × n and n × n matrices can be computed directly, then the calculation of R may be
done directly with common matrix algebra.

First, let us note that when the matrix Φ actually used in the simulation does not have full
rank, Theorems 1 and 2 imply that the bounds can be computed by using the pseudo-inverse of
B, neglecting zero eigenvalues (a tolerance level/threshold needs to be determined, of course, in the
simulation context).

Without loss of generality, in this subsection, we assume that
∑n

i=1 ξi = 1 so that ξ can be viewed
as a distribution. In practice, we never need to normalize ξ as the normalization constant will be
canceled in the product defining the matrices G1 and G2. Let φ(i)′ denote the i-th row of Φ. Our
methods for estimating R are based on a common procedure: we first express R as a summation of
k × k matrices, e.g.,

R =
∑
i,j,ĵ

(ajiaĵi) ·
ξjξĵ

ξi
· φ(j)φ(ĵ)′,

and guided by this expression, we generate samples and choose proper weights for them, so that
each term in the summation is matched by a weighted long-run average of respective samples.

We will give four examples that apply to different contexts, depending on whether the entries of
ξ and A in the preceding formula for R are explicitly known or not, with two main applications in
our mind:

(i) General linear equations in which we know explicitly the entries of A, and we may want to
choose a particular projection norm, for instance, the standard Euclidean norm (all entries of
ξ being equal). The procedure of Example 1 and its slight variant in Example 2 refer primarily
to this case.
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(ii) Markov decision processes in which we do not know A, but we can generate samples by simula-
tion of a certain Markov chain underlying the problem. Examples 3 and 4 are mostly relevant
to this case, including in particular, evaluating the cost or Q-factors of a policy using TD(0)-
like algorithms, with and without exploration enhancements. (We refer to our paper [BY08]
for some algorithms involving exploration, where the simulation procedures of Examples 3 and
4 may apply.)

Example 1. Both ξ and A are known explicitly. We express R as the summation given above and
generate a sequence of triple indices (it, jt, ĵt) as follows. We generate the sequence (i0, i1, . . .) so that
its empirical distribution converges to ξ. At it, we generate two mutually independent transitions
(it, jt) and (it, ĵt) according to a certain transition probability matrix P with pij 6= 0 whenever
aji 6= 0. We then define Rt by

Rt =
1

t + 1

t∑
m=0

(
ajmim

pimjm
· aĵmim

pimĵm

)
· ξjm ξĵm

ξ2
im

· φ(jm)φ(ĵm)′,

where t is a suitably large number, and approximate R by the symmetrized matrix (Rt + R′
t)/2.

Note that in the special case where Ξ = 1
nI, the indices it can be generated independently with the

uniform distribution, R reduces to 1
nΦ′AA′Φ, and the ratio

ξjm ξĵm

ξ2
im

in Rt reduces to 1. �

Example 2. The weight vector ξ is not known explicitly, but A is; moreover, a sequence (i0, i1, . . .)
can be generated so that its empirical distribution converges to ξ. For example, ξ may be the unique
invariant distribution of a Markov chain, which is used to generate the sequence (i0, i1, . . .). In this
case, we can keep tracking the empirical distribution ξ̂t of the sequence it up to time t. We then
apply the same sampling and estimation schemes as in Example 1, replacing the ratio

ξjm ξĵm

ξ2
im

in Rt

by
ξ̂t,jm ξ̂t,ĵm

ξ̂2
t,im

. �

Example 3. Both ξ and A are not known explicitly; moreover, the ratios βij = aij/pij are known
for a certain transition matrix P with pij 6= 0 whenever aij 6= 0, and ξ is the unique invariant
distribution of the Markov chain associated with P . While P is not explicitly known, it is assumed
that a simulator is available that can generate transitions according to P .

To estimate R, we first express it as

R =
∑
i,l,j

(βilβjl) ·
(
ξipil · pjlξj

ξl

)
· φ(i)φ(j)′.

Noticing that pjlξj

ξl
equals the steady-state conditional probability P (Xt−1 = j | Xt = l) for the

Markov chain Xt, we thus generate a sequence of pairs of indices (it, jt) as follows. Let (i0, i1, . . .)
be a trajectory of the Markov chain. At it+1 = l, we generate, using the uniform distribution, one
sample (j, l) from the set of past transitions to l, {(itk−1, itk

) | itk
= l, tk ≤ t+1}, and we let jt = j.

(Indeed, this will also work if we simply let jt = itk−1 where tk is the most recent time prior to t + 1
that itk

= l.) It can be seen that the conditional probability of jt given it+1 converges asymptotically
to

pjtit+1ξjt

ξit+1
. We then define Rt by

Rt =
1

t + 1

t∑
m=0

(βimim+1βjmim+1) · φ(im)φ(jm)′,

and we approximate R by the symmetrized matrix (Rt + R′
t)/2.

If the Markov chain is reversible, i.e., ξjpjl = ξlplj for all j, l, then the method can be substantially
simplified. We can omit the procedure of generating jt and simply set jm = im+2 in Rt, because if
we do so, the proper weight for the sample is

ξjm pjmim+1
ξim+1pim+1jm

= 1. �
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Example 4. The weight vector ξ is known explicitly, but A is not; moreover, the ratios βij = aij/pij

are known for a certain transition matrix P with pij 6= 0 whenever aij 6= 0. Here, ξ need not be the
invariant distribution of P .

We can deal with this case by combining partially the schemes in Examples 2 and 3. We express
R and generate a sequence of pairs of indices (it, jt) as in Example 3. We keep tracking the empirical
distribution κt of the sequence it up to time t, to approximate the invariant distribution of P . We
weight samples properly to define Rt:

Rt =
1

t + 1

t∑
m=0

(βimim+1βjmim+1) ·
(

ξim ξjm

ξim+1
· κt,im+1

κt,im κt,jm

)
· φ(im)φ(jm)′,

and we approximate R by the symmetrized matrix (Rt + R′
t)/2.

If the Markov chain associated with P is reversible, then there is simplification, similar to that
in Example 3. We simply set jt = it+2 and

Rt =
1

t + 1

t∑
m=0

(βimim+1βim+2im+1) ·
(

ξim ξim+2
ξim+1

· κt,im+1
κt,im κt,im+2

)
· φ(im)φ(im+2)′,

because the extra term needed for weighting the sample properly is
κt,jm pjmim+1

κt,im+1pim+1jm
, which converges

to 1 as m →∞. �

A main source of difficulty in the estimation of R in MDP, as Examples 3 and 4 illustrate, is the
unknown matrix A and the need of samples of “backward” transitions from a common state/index.
Simulating backward transitions according to the steady-state conditional distribution is in general
not easy. Consistently, as Example 1 illustrates, the estimation of R is quite simple when backward
transitions can be easily generated, such as when A is known. A second source of difficulty in the
estimation of R, as Examples 2-4 illustrate, is the memory demand. In particular, in order to either
generate backward transitions or to weight samples properly, we must keep track of the past history
of the simulation (except in the case of Example 3 and a reversible Markov chain).

Another drawback of the procedures given in Examples 1-4 is that they do not adapt easily to
the case where A itself is a summation of infinitely many matrices, as in TD(λ) with λ > 0.

3 Applications

We consider two applications of Theorems 1 and 2. The first one is cost function approximation
in MDP with TD-type methods. This includes single policy evaluation with discounted and undis-
counted cost criteria, as well as the optimal cost approximation for optimal stopping problems.
The second application is approximately solving large general systems of linear equations. We also
illustrate with figures various issues discussed in Section 2.2 on the comparison of the bounds.

3.1 Cost Function Approximation for MDP

For policy evaluation in MDP, x∗ is the cost function of the policy to be evaluated. Let P be the
transition matrix of the Markov chain induced by the policy. The original linear equation that we
want to solve is the Bellman equation, or optimality equation, satisfied by x∗. It takes the form

x∗ = g + αPx∗,

where g is the per-stage cost vector, and α ∈ [0, 1] is the discount factor: α ∈ [0, 1) corresponds to
the discounted cost criterion, while α = 1 corresponds to either the total cost criterion or the average
cost criterion (in the latter case g is the per-stage cost minus the average cost). For simplicity of
discussion, we assume that the Markov chain is irreducible.
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S

̂S

e

Figure 3: Illustration of Ŝ, the orthogonal complement of e in S ⊕ e, i.e., Ŝ = (S ⊕ e) ∩ e⊥.

With the TD(λ) method, we solve a projected form of the multistep Bellman equation

x = Πb + ΠAx,

where the matrix A and the vector b are defined for a pair of values (α, λ) by

A = P (α,λ) def
= (1− λ)

∞∑
l=0

λl(αP )l+1, b =
∞∑

l=0

λl(αP )lg,

respectively, with either α ∈ [0, 1), λ ∈ [0, 1], or α = 1, λ ∈ [0, 1). Notice that the case λ = 0
corresponds to A = αP, b = g.

We note that for TD(λ) with λ > 0, we do not yet have an efficient simulation-based method for
estimating the bound of Theorem 2; we have calculated the bound using common matrix algebra,
and we plot it just for comparison.

Discounted Problems

Consider the discounted case: α < 1. For λ ∈ [0, 1], with ξ being the invariant distribution of the
Markov chain, the modulus of contraction of P (α,λ) with respect to ‖ · ‖ξ is

‖P (α,λ)‖ξ =
(1− λ)α
1− λα

.

Let e denote the constant vector of all ones. Like P , the matrix P (α,λ) has e as an eigenvector
associated with the dominant eigenvalue (1−λ)α

1−λα .
If the approximation subspace S contains or nearly contains e, the bound of Theorem 1 can

degrade to the worst case error bound given by (2), as remarked in Section 2.2. In such a case,
in order to have a sharper bound for the approximation of Πx∗, we can estimate separately the
projection of x∗ on e and the projection of x∗ on another subspace Ŝ = (S ⊕ e) ∩ e⊥, which is the
orthogonal complement of e in S ⊕ e (see Figure 3), and redefine x̄ as the sum of the two estimates.
When the first projection can be estimated with no bias, the error bound for the second projection
carries over to the combined estimate x̄. This is true generally, not only for e, but for any eigenspace
of P replacing e, as discussed in Section 2.2, Prop. 2 and Remark 4. In the case here, with ξ
being the invariant distribution of the Markov chain, the projection of x∗ on e can be calculated
asymptotically exactly through simulation. It can be seen that the projection of x∗ on e equals

ξ′x∗ = ξ′b + ξ′P (α,λ)x∗ = ξ′b +
(1− λ)α
1− λα

ξ′x∗, ⇒ ξ′x∗ =
1− λα

1− α
ξ′b.
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In addition, basis vectors of Ŝ can also be generated from Φ by using simulation (we estimate
the “mean feature,” ξ′Φ, and subtract it from the rows of Φ; see e.g., [Kon02]), along with the
approximation of the matrices B and M and without incurring much computation overhead. Figure 4
illustrates the error bounds, and shows how the use of Ŝ may improve them. It can be observed
that the bound of Theorem 2 has consistently performed best, as indicated by the analysis.

Figure 5 compares the bounds for the case where the projection norm is the standard unweighted
Euclidean norm. The standard bounds and the bound of Theorem 1 need the value ‖A‖, while
the bound of Theorem 2 does not. For comparison of these bounds, we compute ‖P‖ using the
knowledge of P , bound ‖A‖ by (1−λ)‖αP‖

1−λ‖αP‖ , and plug the latter in the standard bounds and the
bound of Theorem 1. The value ‖αP‖, which corresponds to ‖A‖ for λ = 0, is shown in the titles of
Figure 5. With the norm being different from ‖ ·‖ξ, the mapping ΠA is not necessarily a contraction
for small values of λ, even though in this example it is.

Note that the availability of computable error bounds for non-contraction mappings facilitates
the design of policy evaluation algorithms with improved exploration. In particular, we can use
the LSTD algorithm [Boy99] to evaluate the cost or the Q-factor of a policy using special sampling
methods that enhance exploration, and use the bound of Theorem 1 to estimate the corresponding
amplification ratio.4 Alternatively, we may use the bound of Theorem 2 in conjunction with TD(0)-
type algorithms. Examples 3 and 4 show how to estimate the matrix R in cases where the projection
norm is determined by an exploration policy, and where the projection norm is given explicitly with
the desirable weights, respectively.

Average Cost and Stochastic Shortest Path (SSP) Problems

In the average cost case (similarly for SSP), x∗ is the differential cost or bias vector and it is
orthogonal to e. Let us assume that S is orthogonal to e, to simplify the discussion. Let ξ be the
invariant distribution of the Markov chain. The error bound corresponding to the bound (3), as
given by Tsitsiklis and Van Roy [TV99a], is

‖x∗ − x̄‖ξ ≤
1√

1− α2
λ

‖x∗ −Πx∗‖ξ,

where αλ < 1 and αλ → 0 as λ → 1. Here, αλ can be viewed as the modulus of contraction of
some mapping that is a damped version of ΠA, while αλ → 0 reflects the fact that the matrix ΠA
converges to the zero matrix (as A converges to eξ′) as λ → 1. Note that the factor in the bound
converges to 1, as λ → 1. This bound is qualitative, as usually the value of αλ is unknown.

Figure 6 shows the bounds of Theorems 1 and 2. Notice that as λ → 1, the bound of Theorem 1
converges to

√
2 instead of 1. This is due to the over-relaxation in the analysis for the case where

ΠA is near zero, as remarked in Section 2.2. Notice also in Figure 6(b) that the bound of Theorem 1
is affected by the relation of S to the eigenspace of A associated with eigenvalues that are close to
1, similar to the discounted case. By contrast, the bound of Theorem 2 performs well.

Optimal Stopping Problems

In optimal stopping problems, we have an uncontrolled Markov chain with transition matrix P , and
we seek an optimal policy to stop the process so that we minimize the expected total (discounted or
undiscounted) cost. With x∗ being the optimal cost function, the Bellman equation is

x∗ = g + αP min{c, x∗},

where g is the vector of one-stage cost associated with continuation and c is the vector of one-stage
cost associated with stopping. This is a nonlinear equation.

4When ΠA is not necessarily a contraction, a bound on ‖A‖ξ is needed to apply Theorem 1. There are also
algorithms involving exploration and maintaining the contraction property of ΠA, for which we refer to our paper
[BY08].
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Figure 4: Comparison of error bounds as functions of λ for two discounted problems with randomly
generated Markov chains. The dimension parameters are n = 200, k = 50, and the weights ξ in the
projection norm is the invariant distribution. Standard I and II refer to the worst case bounds (2)
and (3), respectively. The Markov chain is the same in (a) and (b), and in (c) and (d). In (c) and
(d), the Markov chain has a “noisy” block structure with two blocks, thus P has a relatively large
subdominant eigenvalue; S is chosen to contain e and a vector close to an eigenvector associated
with that subdominant eigenvalue. The subspace Ŝ is derived from S by orthogonalization, as shown
in Figure 3.
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Figure 5: Comparison of error bounds for discounted problems. The setup is the same as that for
Figure 4, except that the projection norm is the standard Euclidean norm. The Markov chain has
a “noisy” block structure. The subspace S is chosen randomly.
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Figure 6: Comparison of error bounds for average cost problems with randomly generated Markov
chains. The setup is the same as that for Figure 4. In (b), the Markov chain has a “noisy” block
structure, and S is chosen as in Figure 4(c).
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Let ξ be the invariant distribution of the Markov chain. Algorithms analogous to TD(0) [TV99b,
CV06, YB06] solve the projected Bellman equation, which is also nonlinear,

x = Πg + αΠP min{c, x}.

There are error bounds analogous to the bound (3) and based on the contraction property of the
mapping ΠP min{c, ·} [TV99b, Van07].

To apply our error bounds, we shall form a linear equation based on the approximating solution
x̄, which satisfies

x̄ = Πg + αΠP min{c, x̄}. (30)

Let Ix̄ be an n× n diagonal matrix with its i-th diagonal entry defined by

Ix̄,ii =

{
1 x̄i < ci,

0 otherwise.

We consider the linear equation

x = g + αP (I − Ix̄)c + αPIx̄x, (31)

and we view Eq. (30) as its projected form, i.e., we consider the following projected equation equiv-
alent to Eq. (30):

x = Π
(
g + αP (I − Ix̄)c

)
+ αΠPIx̄x.

Let x̂ be the solution of Eq. (31). If x̄ = x∗, then x̂ = x̄ = x∗, so the difference x̂ − x̄ provides
some information about the approximation quality x∗ − x̄. We can apply the new error bounds
with A = αPIx̄ to bound x̂− x̄, once x̄ is computed, and consequently the matrices and vectors in
Eq. (31) are available. The matrices in the bounds can be estimated similar to those in [YB06]. Thus
the new error bounds can provide supplementary information about the approximation quality, in
addition to the error bounds based on the contraction property [TV99b, Van07].

3.2 Large General Systems of Linear Equations

For solving large general systems of linear equations using the projected equation approach [BY08],
the bound of Theorem 2 can be computed in a straightforward way (except in the case of TD(λ)
with λ > 0), as shown in Examples 1 and 2. Theorem 2 is not only much sharper than Theorem 1
for this case, but also more convenient, because it does not require the knowledge of ‖A‖ξ. Note
that we can write linear equations of the form Lx = q as x = Ax + b, with A = I + cL and b = −cq
for any scalar c, and we can choose c to optimize the corresponding error bound.

4 Related Results

In this section, we will first address the two over-relaxations of the bound of Theorem 1, as discussed
in Section 2.2, and derive improved error bounds (Props. 3 and 4). These bounds are qualitative
and not easy to compute using data, however. We will then derive an analogous computable error
bound (Prop. 5) for an alternative approximation approach, namely, the equation error minimization
method. Our line of analysis is similar to the one of Section 2. In particular, Props. 4 and 5 require
applications of Lemma 2 with different matrices, just like Theorems 1 and 2.

4.1 Two Additional Qualitative Error Bounds for Projected Equations

Error Bound Relating to Eigenspaces of A

We mentioned in Section 2.2 that when the approximation subspace S nearly contains eigenvectors
of A corresponding to eigenvalues that are close to 1, the bound of Theorem 1 over-relaxes. This does
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not imply that the actual approximation error x∗ − x̄ is big. On the contrary, including eigenspaces
of A in S does not degrade the approximation quality in general: this can be seen from the analysis
of Theorem 2 and can also be observed from the behavior of the bound of Theorem 2 as illustrated
by the figures in Section 3. Our aim here is to improve over the bound of Theorem 1 qualitatively
to capture the relation between the eigenspace of A and the approximation quality.

First, note that when x∗ − Πx∗ is an eigenvector of A corresponding to some real eigenvalue c,
we have x̄ = Πx∗, that is, the solution of the projected equation x̄ coincides with the projection of
x∗. This is because Πx∗ satisfies the projected equation: from ΠA(x∗ −Πx∗) = cΠ(x∗ −Πx∗) = 0,
we have

Πx∗ = Π(Ax∗ + b) = ΠA(x∗ −Πx∗) + ΠAΠx∗ + Πb = ΠAΠx∗ + Πb.

Similarly, when x∗−Πx∗ is close to such an eigenspace of A, x̄ and Πx∗ are also close to each other.
We now make the analysis more precise by using the following fact: since Π(x∗−Πx∗) = 0, we have
for any scalar c,

ΠA(x∗ −Πx∗) = Π(A− cI)(x∗ −Πx∗). (32)

We derive a bound in a form analogous to Theorem 1 by varying the choice of c. In particular, let
us define a function g : <n → < by

g(z) = min
c∈<

‖Az − cz‖ξ .

Note that g is positively homogeneuous. Note also that g has the property g(z) ≤ ‖A‖ξ‖z‖ξ (too
see this, choose c = 0), and g vanishes at eigenvectors of A corresponding to real eigenvalues (to see
this, choose c to be that eigenvalue). It can be seen that the optimal c∗ is c∗ =< Az, z >ξ /‖z‖2ξ , so
g can be expressed analytically as

g(z)2 = ‖Az‖2ξ − c∗ < Az, z >ξ= ‖Az‖2ξ −
< Az, z >2

ξ

‖z‖2ξ
. (33)

(In the above, we define 0/0 to be 0.) The bound we obtain is an improvement over the one of
Theorem 1 and can be stated as follows.

Proposition 3. The approximation error x∗ − x̄ satisfies

‖x∗ − x̄‖ξ ≤
√

1 + σ(G1) g
(

x∗−Πx∗

‖x∗−Πx∗‖ξ

)2 ‖x∗ −Πx∗‖ξ, (34)

where G1 is given by Eq. (10), and g is the positive homogeneous function given by Eq. (33) and has
the property g(z) = 0 for any eigenvector z of A that corresponds to a real eigenvalue.

Proof. Let y = x∗ −Πx∗. Using Π = Φ(Φ′ΞΦ)−1Φ′Ξ, we write Eq. (32) equivalently as

Φ′ΞAy = Φ′Ξ(A− cI)y

for any scalar c. We can exploit this relation in the proof of Theorem 1: with C = FB−1, we have
[cf. the left hand side of Eq. (21)]

ΦCΦ′ΞAy = ΦCΦ′Ξ(A− cI)y, ∀c ∈ <,

which implies that we can replace Eq. (21) by the following inequality

‖ΦCΦ′ΞAy‖ξ ≤
√

σ(G1) min
c∈<

‖Ay − cy‖ξ =
√

σ(G1) g(y), (35)

where G1 is as given in Theorem 1. Since g is a positive homogeneous function, g(z) can be expressed
as g(z) = g

(
z

‖z‖ξ

)
‖z‖ξ, and the inequality (35) is equivalent to

‖ΦCΦ′ΞAy‖ξ ≤
√

σ(G1) g
(

y
‖y‖ξ

)
‖y‖ξ,

which using the proof of Theorem 1, implies Eq. (34).
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Error Bound in a Decomposed Form

We now investigate how each component of the residual vector x∗−Πx∗ may affect the bias x̄−Πx∗.
The following proposition provides a decomposition of error bound. Each term in the bound can be
estimated easily, even for TD(λ) with λ > 0, like in Theorem 1, while the analysis takes into account
that x∗ − Πx∗ is orthogonal to S, like in Theorem 2. Overall, the bound is still qualitative, as it is
generally impractical to estimate all terms involved. On the other hand, if in a special case, some
of the individual terms in the bound can be easily calculated, the result may be computationally
useful.

Proposition 4. Let Ŝi, i = 1, . . . ,m, be m mutually orthogonal subspaces such that

x∗ −Πx∗ ∈ ⊕m
i=1Ŝi.

Let Ψi be an n× k̂i matrix whose columns form a basis of Ŝi, i = 1, . . . ,m, respectively. Then

‖x̄−Πx∗‖ξ ≤

(
m∑

i=1

√
σ
(
Ĝi

))
‖x∗ −Πx∗‖ξ , (36)

where Ĝi is the k̂i × k̂i matrix
Ĝi = B̂−1

i Ĉ ′
iBĈi

with
Ĉi = FB−1(Ei,1 −MB−1Ei,2),

and
B̂i = Ψ′

iΞΨi, Ei,1 = Φ′ΞAΨi, Ei,2 = Φ′ΞΨi.

Furthermore,
σ
(
Ĝi

)
= ‖(I −ΠA)−1ΠA(I −Π)Π̂i‖2ξ ,

where Π̂i is the mapping of projection on Ŝi, so the bound (36) is invariant to the choice of basis
vectors of Ŝi, i = 1, . . . ,m, and S (i.e., Ψi, i = 1, . . . ,m, and Φ).

Proof. Our line of analysis is the same as that for Theorem 2. Let us denote y = x∗ − Πx∗ and
C = FB−1. The assumption implies that y =

∑m
i=1 Π̂iy, so

x̄−Πx∗ = (I −ΠA)−1ΠA(I −Π)y =
m∑

i=1

(I −ΠA)−1ΠA(I −Π)Π̂iy. (37)

By Lemma 1 and the definition of Π̂i,

(I −ΠA)−1ΠA(I −Π)Π̂iy = ΦCΦ′ΞA(I −Π)ΨiB̂
−1
i Ψ′

iΞy.

Applying Lemma 2 to the matrix ΦCΦ′ΞA(I −Π)ΨiB̂
−1
i Ψ′

iΞ with

H = ΦCΦ′ΞA(I −Π)ΨiB̂
−1
i , D = Ψ′

iΞ,

we have
‖(I −ΠA)−1ΠA(I −Π)Π̂iy‖ξ ≤

√
σ
(
G
)
‖y‖ξ, (38)

where G = (H ′ΞH)(DΞ−1D′).

We now verify that G is the matrix Ĝi given in the statement. We have

H = ΦCΦ′ΞA(I −Π)ΨiB̂
−1
i = ΦC(Ei,1 −MB−1Ei,2)B̂−1

i = ΦĈiB̂
−1
i ,

and so, with DΞ−1D′ = B̂i, we have

G = (H ′ΞH)(DΞ−1D′) = B̂−1
i Ĉ ′

iBĈi,

which is the matrix Ĝi given in the statement.
Combining Eqs. (37), (38), and the triangle inequality, we obtain the bound (36). The rest of

proof is the same as that of Theorem 2.
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4.2 Error Bound for an Alternative Approximation Method

Our line of analysis in Section 2 can also be applied to obtain analogous data-dependent error bounds
on the amplification/bias-to-distance ratio for a different approximation approach, which uses the
solution of

min
x∈S

‖x−Ax− b‖2ξ (39)

as an approximation of x∗. We will make the assumption that I −A is invertible, under which both
x∗ and the solution of (39) are unique.

Proposition 5. Assume I−A is invertible. Let x̃ be the solution of the minimization problem (39).
Then,

‖x̃−Πx∗‖ξ ≤
√

σ
(
G̃
)
‖x∗ −Πx∗‖ξ, (40)

where G̃ is the k × k matrix
G̃ = BẼR̃Ẽ − I, (41)

with
B = Φ′ΞΦ, Ẽ = (Φ′L′ΞLΦ)−1, R̃ = Φ′L′ΞLΞ−1L′ΞLΦ, (42)

and L = I −A. Futhermore, the bound (40) is invariant to the choice of basis vectors of S (i.e., Φ).

Proof. First we establish an equality relation analogous to Eq. (4):

x̃−Πx∗ = C(x∗ −Πx∗) (43)

where C = Φ(Φ′L′ΞLΦ)−1Φ′L′ΞL. We then apply Lemma 2, taking into account that Π(x∗−Πx∗) =
0, similar to the analysis for Theorem 2.

The minimization problem (39) can be written as minr∈<k ‖LΦr− b‖2ξ . The optimality condition
is

Φ′L′Ξ(Lx̃− b) = 0.

Since Lx∗ − b = 0, we also have

Φ′L′Ξ(LΠx∗ − b) = Φ′L′ΞL(Πx∗ − x∗).

Subtracting the last two equations, we have

Φ′L′ΞL(x̃−Πx∗) = Φ′L′ΞL(x∗ −Πx∗).

Since L is invertible and Φ has full rank, Φ′L′ΞLΦ is invertible. Multiplying both sides of the above
equation by Φ(Φ′L′ΞLΦ)−1, and using the fact that x̃−Πx∗ = Φr ∈ S for some r, we obtain

x̃−Πx∗ = Φ(Φ′L′ΞLΦ)−1Φ′L′ΞL(x∗ −Πx∗),

which is Eq. (43).
Since Π(x∗ −Πx∗) = 0, Eq. (43) is further equivalent to

x̃−Πx∗ = Φ(Φ′L′ΞLΦ)−1Φ′L′ΞL(I −Π)(x∗ −Πx∗). (44)

Therefore,
‖x̃−Πx∗‖ξ ≤ ‖Φ(Φ′L′ΞLΦ)−1Φ′L′ΞL(I −Π)‖ξ‖x∗ −Πx∗‖ξ.

Applying Lemma 2 to the matrix in the right hand side with

H = Φ, D = (Φ′L′ΞLΦ)−1Φ′L′ΞL(I −Π) = ẼΦ′L′ΞL(I −Π),

we have
‖x̃−Πx∗‖ξ ≤

√
σ
(
G
)
‖x∗ −Πx∗‖ξ,
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where G = (H ′ΞH)(DΞ−1D′) = B(DΞ−1D′). Similar to the calculation in the proof of Theorem 2,
it can be shown that

DΞ−1D′ = Ẽ
(
R̃− M̃B−1M̃ ′)Ẽ′,

where
R̃ = Φ′L′ΞLΞ−1L′ΞLΦ, M̃ = Φ′L′ΞLΦ = Ẽ−1.

Thus,
G = BẼR̃Ẽ − I,

which is the matrix G̃ given in Eq. (41).
Finally we prove that the bound is invariant to the choice of basis vectors of S. To see this,

we write the matrix Φ(Φ′L′ΞLΦ)−1Φ′L′ΞL(I − Π) equivalently as the product of three matrices:
L−1 · LΦ(Φ′L′ΞLΦ)−1Φ′L′Ξ · L(I − Π). The first and the third matrices clearly do not depend on
the choice of Φ, while the second matrix is the projection mapping on the subspace L(S), hence it
also does not depend on the choice of Φ. Therefore, the bound is invariant to the choice of Φ.

Remark 6. Similar to the argument in the proof of Prop. 1, one can show that the bound of Prop. 5
is tight, in the sense that for any A and S, there exists a worst case choice of b for which the bound
holds with equality.

5 Conclusion

We have considered the projected equation approximation approach, and we have presented new
data-dependent computable error bounds that hold for both contraction and non-contraction map-
pings. Their applicability for non-contraction mappings is not only useful for approximating solutions
of general linear equations, but is also useful in the context of MDP for designing exploration mech-
anisms. Furthermore, in the context of MDP, these bounds can be used in performance bounds for
approximate policy iteration, such as the ones of [Mun03].

One potential use of our bounds is to suggest changes in the projected equation in order to reduce
the amplification ratio. For example, extensive computational experience with TD(λ) methods
suggests that the simulation noise tends to increase as λ increases, so there is motivation to use
small values of λ as long as the amplification ratio is close to 1. Unfortunately, the bounds (2), (3)
are too conservative to provide useful information about the amplification ratio, and our bounds can
provide quantitative guidance as well as valuable insight in this regard. Furthermore, our bounds
can be similarly used in the general non-contraction context, in conjunction with simulation-based
TD(λ)-like algorithms that have been developed in our recent paper [BY08]. There may be other
potential uses of our bounds, for example in suggesting changes to the choice of approximation
subspace, thereby affecting both the baseline error and the amplification ratio, but this is a subject
for future research.
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