
Mathematical Programming 27 (1983) 107-120
North-Holland

D I S T R I B U T E D A S Y N C H R O N O U S C O M P U T A T I O N
O F F I X E D P O I N T S *

Dimitri P. B E R T S E K A S

Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
Canibridge, MA 02139, U.S.A.

Received 2 October 1981
Revised manuscript received 20 August 1982

We present an algorithmic model for distribnted computation of fixed points whereby
several processors participate simultaneously in the calculations while exchanging information
via communication links. We place essentially no assumptions on the ordering of computation
and communication between processors thereby allowing for completely uncoordinated
execution. We provide a general convergence theorem for algorithms of this type, and
demonstrate its applicability to several classes of problems including the calculation of fixed
points of contraction and monotone mappings arising in linear and nonlinear systems of
equations, optimization problems, shortest path problems, and dynamic programming.

Key words: Fixed Points, Distributed Algorithm, Optimization, Shortest Path, Dynamic
Programming.

1. Introduct ion

There is present ly a great deal of interest in distributed implementat ions of
various iterative algorithms whereby the computat ional load is shared by several
processors while coordination is maintained by information exchange via com-
municat ion links. In most of the work done in this area the starting point is some
iterative algorithm which is guaranteed to converge to the correct solution under
the usual c i rcumstances of centralized computat ion in a single processor. The
computat ional load of the typical iteration is then divided in some way between
the available processors , and it is assumed that the processors exchange all
necessary information regarding the outcomes of the current iteration before a
new iteration can begin.

The mode of operation described above may be termed synchronous in the
sense that each processor must complete its assigned portion of an iteration and
communica te the results to every other processor before a new iteration can
begin. This assumption certainly enchances the orderly operat ion of the al-
gorithm and greatly simplifies the convergence analysis. On the other hand
synchronous distributed algorithms also have some obvious implementat ion
disadvantages such as the need for an algorithm initiation and iteration synch-

*This research was contacted at the M.I.T. Laboratory for Information and Decision Systems with
partial support provided by the Defense Advanced Research Projects Agency under Grant No.
ONR-N00014-75-C- I 183.

107

108 D.P. Bertsekas/ Distributed computation

ronization protocol. Fur thermore the speed of computat ion is limited to that of
the slowest processor . It is thus interesting to consider algorithms that can
tolerate a more flexible ordering of computat ion and communicat ion between

processors. Such algorithms have so far found applications in computer com-
munication networks such as the A R P A N E T [9] where processor failures are
common and it is quite complicated to maintain synchronizat ion between the
nodes of the entire network as they execute real-time network functions such as
ihe routing algorithm. They could also find application in special purpose
mult iprocessors of the type that are currently being implemented by several
research groups.

Given a distributed algorithm it is natural to try to determine the minimum
degree of synchronizat ion between computat ion and communicat ion that is
necessary in order for the algorithm to work correctly. In this paper we consider
an extreme model of asynchronous distributed algorithms whereby computat ion
and communicat ion is per formed at the various processors completely in-

dependently of the progress in other processors . Perhaps somewhat surprisingly
we find that even under these potentially chaotic c i rcumstances of un-

coordinated computat ion it is possible to solve correct ly broad and significant
classes of fixed point problems by means of the natural distributed version of the
successive approximation method. A general convergence theorem is developed
for this purpose which delineates c i rcumstances under which convergence is
guaranteed. The theorem is then applied to broad classes of fixed point problems
involving contraction and monotone mappings.

The nature of the distributed algorithm and the convergence result of this
paper can be illustrated by considering the following example involving itera-
tions of the Gauss-Seidel type for solving systems of nonlinear eqnations.

Fixed po in t s o f m a p p i n g s on R": Consider the problem of finding an n-
dimensional vector x* which is a fixed point of a mapping f : R" ~ R", i.e.

x* = f (x *) .

Let x~ and fi, i = 1 n denote the coordinates of x and f respectively, and
consider iterations of the form

x, +-'- f i(x,, .';'_ X,,) ,

x z ~ f ~ _ (x , , x~_ x , ,) ,

x , ,+- - - f , , (x~ ,xe x, ,) .

1.1)

1.2)

1.3)

In order to give precise meaning to iterations (1.1)-(1.n) we must specify the
order in which they are executed and the rule by which the values of the
coordinates x~ x,, are chosen in the right side of each iteration. There are
several ways of doing this that lead to well-known algorithms. Assume for
example that all computat ions are done at a single central processor and at some

D.P. Bertsekas/ Distributed computation 109

t ime instant k the vector x has the value x k = (x~ x~). A possible iteration
(the classical successive approximat ion method) is

x k§ = f (x k) . (2)

It cor responds to all iterations (I. I) - (l .n) being carried out "simultaneously ' , i.e.

without substituting in the right side of (1.1)-(l .n) the most recently computed
values of the coordinates of x. This can be contrasted with the following
Gauss-Se ide l type iteration

k+, = fl(x], ,ok k XI �9 2 x , ,) , (3 . 1)

x~ +' = f ~ (x ~ ' , x~ x~;), (3 2)

i

x,, =1,,txl , x x,, ; ,x (3.n)

where the most recently computed values of the coordinates are being used.
I terat ions (l .1) - (l .n) lend themselves well to distributed computat ion by n

processors each assigned the responsibili ty of executing only one of these
iterations and using communicat ion links to exchange with other processors the
most recent result of their respect ive computat ions. Iteration (2) corresponds to
a synchronous model whereby each processor i executes its assigned iteration
(1.i) and then communicates the updated value x~ ~ ~ to all other processors . After
all updated values are exchanged the process is repeated. I teration (3.1)-(3.n)
cor responds to a sequential model whereby processor 1 executes (1.1), transmits
x~ *~ to all other processors , then processor 2 executes (1.2), transmits x~' ~ to all
other processors and so on. One of the sharpest general convergence results
available for iterations (2) and (3.1)-(3.n) is that a sufficient condition for
convergence to the unique fixed point of f is that f be a P-contrac t ion mapping

[11, p. 433]. By this we mean that there exists an n x n matrix P with
nonnegat ive elements, with spectral radius strictly less than unity, and such that

If(x) - f (Y) l ~< PIx - yl V x , y ~ e " (4)

where for any vector z =(z t z,,) we denote by [zl the column vector with
coordinates the absolute values Iz~l lz,,I, and the inequality in (4) is meant to
hold separate ly for each coordinate.

There is a variety of ways of executing iterations (1. l)-(1.n) other than (2) or
(3.1)-(3.n). For example the order in which the iterations are executed may
change as time progresses. An even bolder step is to assume that not only the
order of the iterations may be arbitra.rily changed, but also the values o f the

coordinates in the right side o f the iterations may be arbitrarily out -o f -date . For
example (1.1) may be executed on the basis of the values of x~ x,, most
recently computed but (1 . 2) m a y be executed on the basis of values of
x~, x3 , x,, computed, say, one hundred computat ion 'cycles" ago. A surprising
f a c t - - a consequence of the general convergence result of this pape r - - i s that

1 I0 D.P. Bertsekas] Distrihuted computation

even unde r these e x t r e m e c i r c u m s t a n c e s the a s s u m p t i o n (4) is still suff icient to

gua ran tee c o n v e r g e n c e of the resu l t ing a lgor i thm.

In o r d e r to p rove resu l t s such as the one br ief ly d e s c r i b e d a b o v e it is

neces sa ry to i n t roduce a p rec i se d i s t r i bu t ed c o m p u t a t i o n mode l s ince the t rad i -

t ional c o n c e p t of an i t e ra t ion does not ful ly c a p tu r e the e s se nse of d i s t r i bu t ed

a lgo r i thms of tile t ype we are in t e res t ed in. This is done in the next sec t ion . In

Sec t ion 3 we d e v e l o p our main c o n v e r g e n c e resul t whi le in Sec t ion 4 we a n a l y z e

some i m p o r t a n t spec ia l cases .

2. A model for distributed asynchronous fixed point algorithms

The fixed po in t p rob l em c o n s i d e r e d in this p a p e r is def ined in t e rms of a set X

and a func t ion f : X --, X. W e wish to find an e l e me n t x* E X such that

x* = f (x *) . (5)

Each x @ X is def ined in t e rms of "coord ina te s ' x~, i E I whe re I is a p o s s i b l y

infinite index set , i.e. we have x = {x, I i E I}. Each c o o r d i n a t e x~ is e i ther a real

n u m b e r or _+ ~c. S imi l a r ly f is def ined in t e rms of its c o o r d i n a t e f tmc t ions f~, i E I

whe re f i (x) ~ [- z , + ~] for all x ~ X and i E l . T h e r e f o r e (5) can be

e q u i v a l e n t l y wr i t t en as

x ~ = L (x *) V i ~ l. (6)

If 1 has n e l emen t s , I = {1,2 n}, and x~ is a real n u m b e r for each i, then the

p r o b l e m is s imply to find a fixed po in t of an n - d i m e n s i o n a l mapp ing on a subse t

X of the E u c l i d e a n space R " - - t h e e x a m p l e c o n s i d e r e d in the p rev ious sec t ion .

E v i d e n t l y all p r o b l e m s of so lv ing a s y s t e m of n non l inea r equa t i ons wi th n

u n k n o w n s , as well as many p r o b l e m s of n - d i m e n s i o n a l u n c o n s t r a i n e d and

c o n s t r a i n e d o p t i m i z a t i o n can be p o s e d in this manner . The case w h e r e x~ can

take the va lues + ~ and - ~ is genu ine ly in te res t ing as it a r i ses in d y n a m i c

p r o g r a m m i n g p r o b l e m s (see [4, 2, C h a p t e r s 6 and 7]). Desp i t e the fac t that in any

p rac t i ca l i m p l e m e n t a t i o n of the a lgor i thm of this p a p e r the index set I mus t be

finite and the c o o r d i n a t e s x~ mus t be real n u m b e r s (indeed b o u n d e d p rec i s ion

ra t iona ls) , it is usefu l fo r ana ly t i ca l p u r p o s e s to c o n s i d e r the p rob l e m in the more

genera l f r a m e w o r k d e s c r i b e d above .

An in t e re s t ing e x a m p l e of p r o b l e m (5) is the sho r t e s t pa th p rob l e m for wh ich

the a lgor i thm of this p a p e r bea r s c lose re la t ion with a rou t ing a lgor i thm ori-

~While this paper was under review the author became aware of considerable related work of
Chazan and Miranker [5l, Miellou [10], and Baudet [1] on asynchronous relaxation methods. The
result just stated is proved in essence by these authors by different methods. The computation model
considered by these authors is similar but is less general and differs in essential details from ours.
The convergence result of this paper is much more general--for example it applies to dynamic
programming algorithms.

D.P. Bertsekas/ Distributed computation 111

ginally implemented in the A R P A N E T and subsequent ly in several other com-
puter ne tworks [9].

Shortest path problem: Let (I, A) be a directed graph where I =(1 n}

denotes the set of nodes and A denotes the set of arcs. Let N(i) denote the
downs t ream neighbors of node i, i.e., the set of nodes j for which (i, j) is an arc.
Assume that each arc (i, j) is assigned a posit ive scalar aii referred to as its
length. Assume also that there is a directed path to node 1 f rom every other

node. Then it is known [7, 12] that the shortest path distances x* to node 1 from
all other nodes i solve uniquely the equations

x * = min {aij + x * }
iEN(i)

x * = 0 .

If we make the identifications

min {aii+ xi}

V i # l,

= J'j~N,~ if iS 1,
fi(x) 0 i f i = l ,

X = {x [x~ = 0, x~ E [0, ~] , i = 2 n },

then we find that the fixed point problem (6) reduces to the shortest path

problem.
Actually the problem above is representat ive of a broad class of dynamic

programming problems which can be viewed as special cases of the fixed point
problem (6) and can be correct ly solved by using the distributed algorithm of this

paper (see [4]).
Our algorithmic model can be described in terms of a collection of n com-

putation centers (or processors) referred to as nodes and denoted I, 2 n. The

index set I is parti t ioned into n disjoint sets denoted I~ I,,, i.e.

u

l = U l j, l iNI , , ,=o , if jc:m.

Each node j is assigned the responsibili ty of comput ing the coordinates x* of a

fixed point x* for all i E I i.
At each time instant, node j can be in one of three possible states compute,

transmit, or idle. In the compute state node j computes a new est imate xi for all

i E Ij. In the transmit state node j communica tes the estimate obtained from its

own latest computa t ion to one or more nodes re (m# j). In the idle state node j
does nothing related to the solution of the problem. It is assumed that a node can
receive a t ransmission f rom other nodes simultaneously with computing or
transmitt ing, but this is not a real restriction since, if needed, a t ime period in a

separate receive state can be lumped into a time period in the idle state.
We assume that computa t ion and t ransmission for each node takes place in

uninterupted time intervals [tT, t2] with t~ < t,_, but do not exclude the possibility

112 D.P. Bertsekas/ Distributed ctmlputation

that a node may be s imul taneous ly t ransmit t ing to more than one node nor do

we assume that the t ransmiss ion intervals to these nodes have the same origin

and/or terminat ion. We also make no assumpt ions on the length, t iming and

sequencing of computa t ion and t ransmiss ion intervals o ther than the fol lowing:

Assumption A. For every node j and time t -> 0 there exists a t ime t ' > t such that

[t, t'] contains at least one c om pu t a t i on interval for j and at least one t rans-

mission interval f rom j to each node m 4 j.

Assumpt ion A is very natural. It states in essence that no node ' d rops out of

the a lgor i thm' p e r m a n e n t l y - - p e r h a p s due to a ha rdware failure. Wi thout this

a ssumpt ion there is hardly anyth ing we can hope to prove.
Each node j has a buffer Bj,,, for each m ~ j where it s tores the latest

t ransmiss ion f rom m, as well as a fubber Bij where it s tores its own est imate of

the coord ina tes x~ of a solution for all i C lj. The conten ts for each buffer Bi,, at

time t are deno ted x'(j , m). Thus x'(j , m) is, for every t, j and m a vec to r of

coord ina te es t imates {x~] i E I,,} available at node j at t ime t. It is impor tan t to

realize in what fol lows that the buffer contents x'(j , m) and xt(j ', m) at two
different nodes .i and j' need not coincide at all times. I f j # m and j ' ~ m the
buffer contents x'(j , m) and x '(j ' , m) need not coincide at any time t. The vec to r

of all buffer con ten t s of node j is denoted x'(j) , i.e.,

x ' (j) = {x ' (j , m) l m = 1 n}.

The coord ina tes of x ' (j) are deno ted x'~(j), i E I, and the coord ina tes of x'(j , m)
are denoted x'~(j, m), i C I

The rules accord ing to which the buffer conten ts x'(j , m) are updated are as

fol lows:

(1) If [tL, t,] is a t ransmiss ion interval f rom node m to node j, the conten ts of

the buffer B at time t~ are t ransmit ted and entered in the buffer Bj,,, at t ime t:,

i.e.

x " (m , m) = x~'~(j, m) . (7)

(2) If Its, t2] is a compu ta t i on interval for node j, the con ten t s of the buffer Bii
at time t~ are replaced by L[x'~(j)]. i E I~, i.e.

x',2(j) = h [x " (j)] v i ~ lj. (8)

(3) The con ten t s o f a buffer Bij can change only at the end of a compu ta t i on

interval for node j. The conten ts of a buffer Bj,,,, jg: m can change only at the end

of a t ransmiss ion interval f rom m to j.

Our ob jec t ive is to derive condi t ions under which

l i m x] (j) = x * V i E I . j = l n, (9)

where x* E X is a fixed point of f. This is the subject of the next section.

D.P. Berlsekas/ Distributed computation 113

3. A general convergence theorem

In our effort to develop a general convergence result for the distributed
algori thmic model of the previous section we draw motivation from existing
convergence theories for (centralized) iterative algorithms. There are several

theories of this type (Zangwill [16], Luenberger [8], Daniel [6], Ortega and
Rheinboldt [l l] - - t h e most general are due to Poljak [14] and Polak [13]). All
these theories have their origin in L y a p u n o v ' s stability theory for differential and
difference equations. The main idea is to consider a generalized distance
funct ion (or Lyapunov function) of the typical iterate to the solution set. In

opt imizat ion methods the object ive function is often suitable for this purpose
while in equat ion solving methods a norm of the difference between the current
iterate and the solution is usually employed. The idea is typically to show at each

iteration the value of the distance function is reduced and reaches its minimum

value in the limit.
Our result is based on a similar idea. However , instead of working with a

generalized distance function we prefer to work (essentially) with the level sets

of such a function.
We formulate the following assumption under which we will subsequent ly

prove convergence of the type indicated in (9). In what follows R denotes the
set of all vectors x = { x ~] x ~ E [- o c , oc], i ~ l } , X x X denotes the Cartesian

product of X with itself, and fI~'=l X denotes the Cartesian product of X with

itself n t imes.

Assumption B. There exists a sequence X k of subsets of X with the following

propert ies:
(a) If {x k} is a sequence in X such that if x k E X k for all k, then

k = x* V i E I (10) lira x i

where x* • X is some fixed point of f.

(b) For all k = 0 , 1 and j = 1 n

x E Xk=:), f (x ; j)@ X k (11)

where f(. ; j) : X --~)(is the mapping defined by

{ x ~ if i~I~ ,
f ~ (x ; j) = f,(x) i f i E I i. (12)

(c) For all k = 0 , l and j = 1 n

x E X k, x ' C X k ~ C(x , x ' ; j) E X k (13)

114 D.P. Bertsekas[Distributed computation

where C(. , . : j) : X x X ~) (is the mapping defined by

{x~ if x~! lj,
C i (x , x ' ; j) = x'~ if i E I i. (14)

(d) For all k = 0, 1

x I E X k, x 2 @ X k x" ~ X k ~ F(xL, x 2 x") ~ X k+l, (15)

where F : FI;' i X ~ 2(is the mapping defined by

F i (x l , x 2 x ") = f i (x i) V i C li, j = 1 n. (16)

Assumpt ion B seems rather compl ica ted so it may be worth providing some

motivat ion for in t roducing it. P rope r ty (a) specifies how the sets X k should
relate to a solution x*. P rope r ty (d) guarantees that if the funct ions in the buffers

of all nodes i = 1 , n belong to X k and a computa t ion phase is carried out
s imul taneous ly at all nodes fo l lowed by a communica t i on phase f rom every node

to every other node, then the result ing funct ion in the buffer of each node (which
will be the same for all nodes) , will belong to X k+~. Proper t ies (a) and (d)

alone guarantee that the algori thm will converge to a cor rec t solution if executed
in a synch ronous manner , i.e., a s imul taneous compu ta t i on phase at all nodes is

fo l lowed by a s imul taneous communica t ion phase f rom each node to all o ther

nodes and the process is repeated. P rope r ty (b) involves the mapping f (. : j)

which is related to a computa t ion phase at node j (compare (8) with (12)), while

proper ty (c) involves the mapping C(. , .: j) which is related to a communica t ion

phase f rom node j to some other node (compare (7) with (13), (14)). Basically

propert ies (b) and (c) guarantee that the sets X k are closed with respect to

individual node computa t ion and communica t ion . By this we mean that if all
buffer contents are within X k, then after a single node computa t ion or com-

munica t ion all buffer contents will remain in X k. The fol lowing propos i t ion
asserts that when propert ies (b) and (c) hold in addit ion to (a) and (d), then the

algorithm converges to the cor rec t solution when opera ted in a totally un-

coord ina ted manner .

Proposition. L e t A s s u m p t i o n s A and B hold, and a s s u m e that the init ial barfer

c o n t e n t s x~ at each node j = l n be long to x ~ T h e n

l imx '~ (j)=x* V i ~ l, j = l n (17)

where x* ~ X is a f ixed p o i n t o f f and x l (j) is the ith c o o r d i n a t e o f the bu f f e r

c o n t e n t v e c t o r x ' (j) o f node j at t ime t.

Proof. We will show that for every k = O, 1 and t -> 0 the condit ion

x ' (j) E X k V j = I n (18)

D.P. Bertsekas/ Distributed computation 115

implies that there exists a t ime t~ > t such that

x r (j) C X k V t' >- t, j =- 1 n, (19)

x" (j) E X k+~ V t ' > - t ~ , j = l n. (20)

In view of condi t ion (a) of Assumpt ion B, this will suffice to prove the
propos i t ion .

A s s u m e that (18) holds for some k = 0, l and t ->0. Then (19) clearly holds

s ince, fo r t ' > _ t, the buffer con ten t xr (j) of node j at t ' is obta ined f rom the

buffer con ten t s x ' (m) of all nodes m = 1 n at t via opera t ions that (according
to condi t ions (b) and (c) of Assumpt ion B) p rese rve membersh ip in X k.

By a s sumpt ion A there exists a scalar 6~ > 0 such that [t, t + 6~] conta ins at

least one c o m p u t a t i o n interval for each node j = 1 n. The re fo re , using (8), we
have that fo r each t'_> t + 61.

x l ' (j) = f i [x ; (j)] V i E I i , j = l n (21)

where xr is the buffer con ten t of node j at some time t E [t, t + ~5~] (t depends
on j) , and by (19)

x r (j) E X k V j = l n.

Us ing again Assumpt ion A we have that there exists a scalar 6~ > 0 such that

[t + 6~, t + 6~ + 6~] conta ins at least one c o m m u n i c a t i o n interval f rom every node

to eve ry o ther node. It fol lows that, for eve ry t ' > _ t § 6~ + 6_~, each buffer Bi,,.

conta ins a vec to r xr(i, m) such that (cf. (7), (21))

x~i(j, m) = x~(m, m) = f i [x ; (m)] V i E I,,., j, m = 1 n , (22)

where x ; (m , m) is the con ten t of buffer B at node m at some time / 'C

[t + 6 ~ , t + 6 ~ + 6 2] and x ; (m) is the buffer con ten t of node m at some time
[E It, t']. (Again here the times { and [depend on j and m.)

Let t~ = t + 6t + 32. By using (22) and (19) we can assert that for each t ' - > tt
and j = 1 n there exist vec tors s E X k, j = 1 n such that

x l ' (j)= f~(g j) V i E Ij, j = l n,

It fo l lows f rom condi t ion (d) of Assumpt ion B (cf. (15), (16)) that

x r (j) E X k+l V t ' > - t ~ , j = 1 n

wh ich is (20). This comple tes the p roo f of the proposi t ion.

N o t e that (18) and (20) can fo rm the basis for an est imate o f the rate of

c o n v e r g e n c e of the algori thm. For example if there exists an index /~ such that

X k = X ~ = {x*} for all k - / ~ (i.e. af ter some index the sets X k conta in only one

e l e m e n t - - a fixed point x* ~ X) , then it fol lows f rom (18)-(20) that the dis-

t r ibuted a lgor i thm conve rges to the co r rec t solut ion in a finite a m o u n t of time.

116 D.P. Berlsekas/ Distributed computation

This a rgument can, for example , be used to establish finite time conve rgence for

the distr ibuted algori thm as applied to the shor tes t path problem of Sect ion 2.

4. Special cases

In this sect ion we ver i fy that Assumpt ion B of the prev ious sect ion is satisfied
for some impor tant classes o f problems.

4.1. Contraction mappings with respect to sup-norms

Let J(be the vec tor space of all x = { x ~ l x i ~ (- ~ - ~ c) , i ~ l } which are

bounded in the sense that there exists M > 0 such that]x~[-< M for all i E I.
Cons ider a norm on X of the form

Ilxll = s u p ~,lx, I (23)

where {ai I i E l} is a set of scalars such that for some d > 0 and a > 0 we have

a<--Oti<r V i E I .

Assume that the set X either equals 2 or is a closed sphere centered at a fixed

point x* of f. Assume fur ther that f is a cont rac t ion mapping on X with respect
to the norm (23) in the sense that, for some p < 1 we have

]If(x) - f (y) [] <- pllx - YI] V x, y ~ X.

Then, because 2 is a comple te space and X is a closed subset of 2 , x* is the
unique fixed point of f in X (cf. [151).

For q > 0 define

x k = I x ~ 2] l l x - x * l l < _ p " q } , k=O, l

It is evident that if Xc 'C X, then the sequence {X k} satisfies condit ions (a)-(d) of
Assumpt ion B.

We note that the use of a sup-norm such as (23) is essential in order for
Assumpt ion B to hold. If f is a cont rac t ion mapping with respect to some other
type of norm, Assumpt ion B need not be satisfied.

4.2. P-contraction mappings

Let I = {l, 2 n} and assume that X is a subset of R". Suppose that f is a
P -con t r ac t i on mapping, i.e. satisfies the condi t ion

] f (x) - f (y)]<-Plx -y] Vx, y E R " , (24)

where P is an n x n matrix with nonnegat ive e lements and spectral radius
strictly less than unity, and for any z = (z~, z2 z,,) we denote by Izl the co lumn

D.P. Bertsekas/ Distributed computation 117

vec tor with coordinates Iz,I,]z21 Iz,,]. Condition (24) holds in particular if P is
a s tochast ic matrix (all e lements of P are nonnegative and the sum of the
e lements of each row of P is less than or equal to unity) and l im~ .~P k =0 .
Fixed point problems involving P-contrac t ion mappings arise in dynamic pro-
gramming [2, p. 374], and solution of sys tems of nonlinear equations [11, Section

13.11.
It has been shown in [1, p. 231] that if f is a P-contrac t ion , then it is a

contract ion mapping with respect to some norm of the form (23). We are
therefore reduced to the case examined earlier.

4.3. Monotone mappings

Assume that f has the monotonici ty proper ty

x ~ X , x ' E X , xi<_x~,ViEI=)fi(x)<-f i(x ') , V i @ I . (25)

Denote by fk the composi t ion of f with itself k times and assume that there exist
two elements x and $ of X such that

{x Ix-~-<x~-<~i, V i E I } c X (26)

and for all k = 0, 1

f ~ (~) < ~ + , , . I~ t._v)</~+~(~)_< k ~ , - - f i (x) V i @ l (27)

and

lim f~(._x) = lim f~(~) = x* V i ~ I (28)

where x* ~ X is a fixed point of f.
As an example consider the shortest path problem in Section 2, and the

function

x i = O V i = 1 n,

-L = if i = 1.

It is easily verified that the corresponding function f satisfies (25) and that S, ~ as
defined above satisfy (26), (27), (28).

Define now for k = 0, 1

X k = {x [f~(~) -< .x~ -< f~(.r V i E I}.

Then it is easily seen that the sequence {X k} satisfies conditions (a)-(d) of

Assumpt ion B.
Fixed point problems involving monotone mappings satisfying (25) arise in

dynamic programming [2, 3, 4] and solution of systems of nonlinear equations
[11, Section 13.2].

118 D.P. Bertsekas/ Distributed COmlmtatiorl

4.4. U n c o n s l r a i n e d o p t i m i z a t i o n

Consider the problem

minimize g(x),

subject to x @ R" (29)

where g : R" ~ R is a twice continuously differentiable convex function, with
Hessian matrix Veg(x) which is positive definite for all x.

The mapping that corresponds to Newton 's method is given by

f (x) = x - [V2g(x)] Wg(x) (30)

where Vg(x) denotes the gradient of g at x. Under the assumptions made earlier
a vector x* satisfying Vg(x*)= 0 is the unique globally optimal solution of
problem (29) and also the unique fixed point of the mapping f of (30). Suppose
there exists such a vector x*. Then it is a simple matter to verify that there
exists an open sphere centered at x* such that the mapping f of (30) is a
contraction mapping in X with respect to the norm Ilxll = max~ Ix~[. Therefore the
distributed version of Newton 's method is convergent if the starting buffer
contents are sufficiently near x*. A similar fact can be shown if the inverse
Hessian [V2g(x)] ~ in (30) is replaced by a matrix H (x) such that the difference
H (x) - [V 2 g (x)] -~ has sufficiently small norm uniformly within X.

Consider next the mapping corresponding to the ordinary gradient method

f (x) = x - oeVg(x) (31)

where ~ is a positive scalar stepsize. Again if x* is the unique optimal solution
of problem (29), then x* is the unique fixed point of f as given by (31). The
Jacobian matrix of f is given by

O f (x) = I - c~V2g(x) (32)

where I is the n x n identity matrix. Using the mean value theorem we have for
all x, yR"

af~(x ~) r f~(x) - f,(y) = ~ ~ ,xj - y~) V i = 1 n (33)

where x ~ is a vector lying on the line segment joining x and y. From (33) we
obtain

i t Ofi(x i)
I f i (x) - f , (Y) [- - < ~= Ox i Ix i - y/]. (34)

Denote by If(x)-f(y)l and I x - y] the column vectors with coordinates] / , (x) -
f~(y)] and]x~- y~[respectively. Assume that the stepsize c~ in (31) satisfies

a-'g(x ~)
c ~ < l V i = I , 2 n, (35)

D.P. Bertsekas/ Distributed computation 119

Then, with the aid of (32), we can write (34) as

If(x) - / (Y)I <- F i x - Y] (36)

where F is the n x n matrix given by

F = I - aG (37)

and G is given by

- I a2g I I a-'g I - a2g I

G = I(ax,) l'-lax,ax l! l ai'ax"l (38)

I-I _ ~ I, l a - g

and the derivatives in the ith row of the matrix above are evaluated at x ~.
It is now seen easily from (36) and (37) that f will be a P-contract ion mapping

within an open sphere centered at x* provided the following two conditions
hold:

(a) The matrix G* is positive definite where G* is given by (38) with all partial
derivatives evaluated at x*.

(b) The stepsize a is sufficiently small so that (35) holds and the matrix
1 - cYG* (cf. (37)) is positive definite. Equivalently a should be smaller than the
inverses of the largest eigenvalue and the largest diagonal element of G*.

If the two conditions above are satisfied, then the distributed gradient al-
gorithm based on the mapping f of (31) is convergent to x* provided all buffer
contents are sufficiently close to x*.

Unfor tunate ly it is not true that the matrix G* is always positive definite and
indeed examples can be constructed where the distributed gradient method can
fail to converge to the optimal solution x* regardless of the choice of the
stepsize or. Despite this fact we believe that the distributed gradient method is an
interesting algorithm. We will show in a forthcoming publication that it has
satisfactory convergence properties provided we impose certain mild restrictions
on the relative timing of computations and communications in place of Assump-
tion A.

5. Conclusions

The analysis of this paper shows that broad classes of fixed point problems
can be solved by distributed algorithms that operate under very weak restric-
tions on the timing and ordering of processor computation and communicat ion
phases. It is also interesting that the initial processor buffer contents need not be
identical and can vary within a broad range. This means that for problems that
are being solved continuously in real time it is not necessary to reset the initial

120 D.P. Bertsekas/ Distributed computation

conditions and resynchronize the algorithm each time the problem data changes.
As a result the potential for tracking slow changes in the solution function is
improved and algorithmic implementation is greatly simplified.

References

[I] G.M. Baudet, "Asynchronous iterative methods for multiprocessors", Journal of the ACM 2
(1978) 226-244.

[2] D.P. Bertsekas, Dynamic programmin~ and stochastic control (Academic Press, New York,
1976).

[3] D.P. Bertsekas and S.E. Shreve, Stochastic optimal control: The discrete time case (Academic
Press, New York, 1978).

[4] D.P. Bertsekas "'Distributed dynamic programming", IEEE Transactions on Automatic Control
AC-27 (1982) 610-616.

[5] D. Chazan and W. Miranker, "Chaotic relaxation", Linear Algebra and Its Applications 2 (1969)
199-222.

[6] J,W. Daniel, The approximate minimization of functionals (Prentice Hall, Englewood Cliffs, N J,
1971).

[7] E.L. Lawler, Combinatorial optimization: Networks and matroids (Holt, Rinehart, and Win-
ston, New York, 1976).

[8] D.G. Luenberger, Introduction to linear and nonlinear programming (Addison-W'esley, Reading,
MA, 1973).

[9] J. McQuilIan, G. Falk and 1. Richer, "'A review of the development and performance of the
ARPANET routing algorithm". IEEE Transactions on Communications COM-26 (1978) 1802-
1811.

[10] J. C. Miellou, '~It6rations chaotiques a retards, ~Studes de la convergence dans le case d'espaces
partiellment ordonn6s". Comptes Rendus de I'Acud~mie des Sciences, Paris, SOrie A 278 (1974)
957-960.

[11] J.M. Ortega and W.C. Rheinboldt, lterative solution of nonlinear equations in several rariahles
(Academic Press, New York, 1970).

[12] C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: Algorithms and complexity
(Prentice Hail, Englewood Cliffs, NJ. 1982).

[13] E. Polak, Computational methods in optimization: A unified approach (Academic Press, New
York, 1971).

[14] B.J. Poljak, "'Convergence and convergence rate of iterative stochastic algorithms", Automa-
tion and Remote Control 12 (1982) 83-94.

[15] H.L. Royden, Real analysis (MacMillan, New York, 1963).
[16] W.I. Zangwill, Nonlinear programming (Prentice Hall, Englewood Cliffs, N J, 1969).

