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We present an algorithmic model for distribnted computation of fixed points whereby 
several processors participate simultaneously in the calculations while exchanging information 
via communication links. We place essentially no assumptions on the ordering of computation 
and communication between processors thereby allowing for completely uncoordinated 
execution. We provide a general convergence theorem for algorithms of this type, and 
demonstrate its applicability to several classes of problems including the calculation of fixed 
points of contraction and monotone mappings arising in linear and nonlinear systems of 
equations, optimization problems, shortest path problems, and dynamic programming. 
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1. Introduct ion  

There  is present ly a great deal of interest in distributed implementat ions of  
various iterative algorithms whereby the computat ional  load is shared by several  
processors  while coordination is maintained by information exchange via com- 
municat ion links. In most  of the work done in this area the starting point is some 
iterative algorithm which is guaranteed to converge to the correct  solution under 
the usual c i rcumstances  of  centralized computat ion in a single processor.  The 
computat ional  load of the typical iteration is then divided in some way between 
the available processors ,  and it is assumed that the processors  exchange all 
necessary  information regarding the outcomes  of the current  iteration before a 
new iteration can begin. 

The mode of operation described above may be termed synchronous  in the 
sense that each processor  must  complete  its assigned portion of an iteration and 
communica te  the results to every other processor  before a new iteration can 
begin. This assumption certainly enchances the orderly operat ion of the al- 
gorithm and greatly simplifies the convergence  analysis. On the other hand 
synchronous  distributed algorithms also have some obvious implementat ion 
disadvantages such as the need for an algorithm initiation and iteration synch- 
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107 



108 D.P. Bertsekas/ Distributed computation 

ronization protocol.  Fur thermore  the speed of computat ion is limited to that of 
the slowest processor .  It is thus interesting to consider algorithms that can 
tolerate a more flexible ordering of computat ion and communicat ion  between 

processors.  Such algorithms have so far found applications in computer  com- 
munication networks such as the A R P A N E T  [9] where processor  failures are 
common and it is quite complicated to maintain synchronizat ion between the 
nodes of the entire network as they execute  real-time network functions such as 
ihe routing algorithm. They could also find application in special purpose 
mult iprocessors of the type that are currently being implemented by several 
research groups. 

Given a distributed algorithm it is natural to try to determine the minimum 
degree of synchronizat ion between computat ion and communicat ion that is 
necessary in order for the algorithm to work correctly. In this paper  we consider 
an extreme model of asynchronous  distributed algorithms whereby computat ion 
and communicat ion is per formed at the various processors  completely  in- 

dependently of the progress in other processors .  Perhaps somewhat  surprisingly 
we find that even under these potentially chaotic c i rcumstances  of un- 

coordinated computat ion it is possible to solve correct ly broad and significant 
classes of fixed point problems by means of the natural distributed version of the 
successive approximation method. A general convergence theorem is developed 
for this purpose which delineates c i rcumstances  under which convergence is 
guaranteed. The theorem is then applied to broad classes of fixed point problems 
involving contraction and monotone mappings. 

The nature of the distributed algorithm and the convergence result of this 
paper  can be illustrated by considering the following example  involving itera- 
tions of the Gauss-Seidel  type for solving systems of nonlinear eqnations. 

Fixed  po in t s  o f  m a p p i n g s  on R":  Consider the problem of finding an n- 
dimensional vector  x* which is a fixed point of a mapping f : R" ~ R", i.e. 

x*  = f ( x * ) .  

Let x~ and fi, i = 1 . . . . .  n denote the coordinates of x and f respectively,  and 
consider iterations of the form 

x, +-'- f i(x,,  .';'_ . . . . .  X,,) , 

x z ~ f ~ _ ( x , ,  x~_ . . . . .  x , , ) ,  

x , ,+- - - f , , ( x~ ,xe  . . . . .  x, ,) .  

1.1) 

1.2) 

1.3) 

In order to give precise meaning to iterations (1.1)-(1.n) we must specify the 
order in which they are executed and the rule by which the values of the 
coordinates x~ . . . . .  x,, are chosen in the right side of each iteration. There are 
several ways of doing this that lead to well-known algorithms. Assume for 
example that all computat ions are done at a single central processor  and at some 
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t ime instant k the vector  x has the value x k =  (x~ . . . . .  x~). A possible iteration 
(the classical successive approximat ion method) is 

x k§ = f ( x k ) .  (2) 

It cor responds  to all iterations (I. I ) - ( l .n )  being carried out "simultaneously ' ,  i.e. 

without  substituting in the right side of (1.1)-(l .n)  the most recently computed  
values of the coordinates  of x. This can be contrasted with the following 
Gauss-Se ide l  type iteration 

k+, = fl(x], ,ok k XI �9 2 . . . .  x , , ) ,  ( 3 . 1 )  

x~ +' = f ~ ( x ~ ' ,  x~ . . . . .  x~;), ( 3 2 )  

i 

x,, =1,,txl , x  . . . . . .  x,, ; ,x (3.n) 

where  the most  recently computed values of the coordinates are being used. 
I terat ions ( l .1 ) - ( l .n )  lend themselves  well to distributed computat ion by n 

processors  each assigned the responsibili ty of executing only one of these 
iterations and using communicat ion  links to exchange with other processors  the 
most  recent result of their respect ive computat ions.  Iteration (2) corresponds to 
a synchronous  model whereby each processor  i executes its assigned iteration 
(1.i) and then communicates  the updated value x~ ~ ~ to all other processors .  After 
all updated values are exchanged the process is repeated. I teration (3.1)-(3.n) 
cor responds  to a sequential model whereby processor  1 executes (1.1), transmits 
x~ *~ to all other processors ,  then processor  2 executes (1.2), transmits x~' ~ to all 
other processors  and so on. One of the sharpest  general convergence results 
available for iterations (2) and (3.1)-(3.n) is that a sufficient condition for 
convergence  to the unique fixed point of f is that f be a P-contrac t ion  mapping  

[11, p. 433]. By this we mean that there exists an n x n  matrix P with 
nonnegat ive elements,  with spectral radius strictly less than unity, and such that 

If(x) - f (Y) l  ~< PIx  - yl V x ,  y ~ e "  (4) 

where for any vector  z =(z t  . . . . .  z,,) we denote by [zl the column vector  with 
coordinates the absolute values Iz~l . . . . .  lz,,I, and the inequality in (4) is meant to 
hold separate ly  for  each coordinate.  

There  is a variety of ways of executing iterations (1. l)-(1.n) other than (2) or 
(3.1)-(3.n). For  example  the order in which the iterations are executed may  
change as time progresses.  An even bolder step is to assume that not only the 
order of the iterations may be arbitra.rily changed, but also the values o f  the 

coordinates  in the right side o f  the iterations may be arbitrarily out -o f -date .  For 
example  (1.1) may be executed on the basis of the values of x~ . . . . .  x,, most  
recently computed  but ( 1 . 2 ) m a y  be executed on the basis of values of 
x~, x3 .... , x,, computed,  say, one hundred computat ion 'cycles" ago. A surprising 
f a c t - - a  consequence of the general convergence result of this pape r - - i s  that 
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even  unde r  these  e x t r e m e  c i r c u m s t a n c e s  the  a s s u m p t i o n  (4) is still suff icient  to 

gua ran tee  c o n v e r g e n c e  of  the  resu l t ing  a lgor i thm.  

In o r d e r  to p rove  resu l t s  such  as the  one br ief ly  d e s c r i b e d  a b o v e  it is 

neces sa ry  to i n t roduce  a p rec i se  d i s t r i bu t ed  c o m p u t a t i o n  mode l  s ince  the  t rad i -  

t ional  c o n c e p t  of an i t e ra t ion  does  not  ful ly  c a p tu r e  the  e s se nse  of  d i s t r i bu t ed  

a lgo r i thms  of  tile t ype  we are  in t e res t ed  in. This  is done  in the next  sec t ion .  In 

Sec t ion  3 we  d e v e l o p  our  main  c o n v e r g e n c e  resul t  whi le  in Sec t ion  4 we a n a l y z e  

some  i m p o r t a n t  spec ia l  cases .  

2. A model for distributed asynchronous fixed point algorithms 

The  fixed po in t  p rob l em c o n s i d e r e d  in this p a p e r  is def ined  in t e rms  of  a set  X 

and a func t ion  f : X --, X. W e  wish to find an e l e me n t  x* E X such that  

x* = f ( x * ) .  (5) 

Each  x @ X is def ined  in t e rms  of  "coord ina te s '  x~, i E I whe re  I is a p o s s i b l y  

infinite index  set ,  i.e. we have  x = {x, I i E I}. Each  c o o r d i n a t e  x~ is e i ther  a real 

n u m b e r  or  _+ ~c. S imi l a r ly  f is def ined in t e rms  of  its c o o r d i n a t e  f tmc t ions  f~, i E I 

whe re  f i ( x ) ~ [ - z ,  + ~ ]  for  all x ~ X  and i E l .  T h e r e f o r e  (5) can be 

e q u i v a l e n t l y  wr i t t en  as 

x ~ =  L ( x * )  V i ~ l. (6) 

If  1 has n e l emen t s ,  I = {1,2 . . . . .  n}, and x~ is a real n u m b e r  for  each  i, then the 

p r o b l e m  is s imply  to find a fixed po in t  of  an n - d i m e n s i o n a l  mapp ing  on a subse t  

X of  the  E u c l i d e a n  space  R " - - t h e  e x a m p l e  c o n s i d e r e d  in the p rev ious  sec t ion .  

E v i d e n t l y  all p r o b l e m s  of  so lv ing  a s y s t e m  of  n non l inea r  equa t i ons  wi th  n 

u n k n o w n s ,  as well  as many  p r o b l e m s  of  n - d i m e n s i o n a l  u n c o n s t r a i n e d  and 

c o n s t r a i n e d  o p t i m i z a t i o n  can  be p o s e d  in this  manner .  The  case  w h e r e  x~ can  

take  the va lues  + ~  and - ~  is genu ine ly  in te res t ing  as  it a r i ses  in d y n a m i c  

p r o g r a m m i n g  p r o b l e m s  (see [4, 2, C h a p t e r s  6 and 7]). Desp i t e  the  fac t  that  in any  

p rac t i ca l  i m p l e m e n t a t i o n  of the  a lgor i thm of  this  p a p e r  the index  set I mus t  be 

finite and  the c o o r d i n a t e s  x~ mus t  be real  n u m b e r s  ( indeed  b o u n d e d  p rec i s ion  

ra t iona ls ) ,  it is usefu l  fo r  ana ly t i ca l  p u r p o s e s  to c o n s i d e r  the  p rob l e m in the more  

genera l  f r a m e w o r k  d e s c r i b e d  above .  

An in t e re s t ing  e x a m p l e  of  p r o b l e m  (5) is the sho r t e s t  pa th  p rob l e m for wh ich  

the a lgor i thm of  this  p a p e r  bea r s  c lose  re la t ion  with a rou t ing  a lgor i thm ori- 

~While this paper was under review the author became aware of considerable related work of 
Chazan and Miranker [5l, Miellou [10], and Baudet [1] on asynchronous relaxation methods. The 
result just stated is proved in essence by these authors by different methods. The computation model 
considered by these authors is similar but is less general and differs in essential details from ours. 
The convergence result of this paper is much more general--for example it applies to dynamic 
programming algorithms. 
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ginally implemented  in the A R P A N E T  and subsequent ly  in several  other com- 
puter  ne tworks  [9]. 

Shortest path problem: Let  (I, A) be a directed graph where  I =(1  . . . . .  n} 

denotes  the set of nodes and A denotes the set of arcs. Let  N(i)  denote the 
downs t ream neighbors of node i, i.e., the set of nodes j for which (i, j) is an arc. 
Assume that each arc (i, j) is assigned a posit ive scalar aii referred to as its 
length. Assume also that there is a directed path to node 1 f rom every other 

node. Then it is known [7, 12] that the shortest  path distances x* to node 1 from 
all other  nodes i solve uniquely the equations 

x *  = min {aij + x * }  
iEN(i) 

x *  = 0 .  

If we make the identifications 

min {aii+ xi} 

V i #  l, 

= J'j~N,~ if iS  1, 
fi(x) 0 i f i = l ,  

X = {x [ x~ = 0, x~ E [0, ~ ] ,  i = 2 . . . . .  n }, 

then we find that the fixed point problem (6) reduces to the shortest  path 

problem. 
Actually the problem above  is representat ive of a broad class of dynamic 

programming problems which can be viewed as special cases of the fixed point 
problem (6) and can be correct ly solved by using the distributed algorithm of this 

paper  (see [4]). 
Our algorithmic model can be described in terms of a collection of n com- 

putation centers (or processors)  referred to as nodes and denoted I, 2 . . . . .  n. The 

index set I is parti t ioned into n disjoint sets denoted I~ . . . . .  I,,, i.e. 

u 

l = U l  j, l iNI , , ,=o ,  if jc:m.  

Each node j is assigned the responsibili ty of  comput ing the coordinates  x* of a 

fixed point x* for all i E I i. 
At each time instant, node j can be in one of three possible states compute, 

transmit, or idle. In the compute  state node j computes  a new est imate xi for all 

i E Ij. In the transmit  state node j communica tes  the estimate obtained from its 

own latest computa t ion  to one or more nodes re (m#  j). In the idle state node j 
does nothing related to the solution of the problem. It is assumed that a node can 
receive a t ransmission f rom other nodes simultaneously with computing or 
transmitt ing, but this is not a real restriction since, if needed, a t ime period in a 

separate  receive state can be lumped into a time period in the idle state. 
We assume that  computa t ion  and t ransmission for each node takes place in 

uninterupted time intervals [tT, t2] with t~ < t,_, but do not exclude the possibility 
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that a node may  be s imul taneous ly  t ransmit t ing to more  than one node  nor  do 

we assume that  the t ransmiss ion  intervals to these nodes  have the same origin 

and/or  terminat ion.  We also make  no assumpt ions  on the length, t iming and 

sequencing of  computa t ion  and t ransmiss ion  intervals o ther  than the fol lowing:  

Assumption A. For  every  node j and time t -> 0 there exists a t ime t '  > t such that 

[t, t'] contains  at least one c om pu t a t i on  interval for  j and at least one  t rans-  

mission interval  f rom j to each node m 4 j. 

Assumpt ion  A is very  natural.  It states in essence  that no node  ' d rops  out of  

the a lgor i thm'  p e r m a n e n t l y - - p e r h a p s  due to a ha rdware  failure. Wi thout  this 

a ssumpt ion  there is hardly  anyth ing  we can hope  to prove.  
Each  node j has a buffer Bj,,, for  each  m ~  j where  it s tores the latest 

t ransmiss ion f rom m, as well as a fubber  Bij where  it s tores  its own  est imate  of  

the coord ina tes  x~ of  a solution for  all i C lj. The conten ts  for  each buffer  Bi,, at 

time t are deno ted  x'(j ,  m). Thus  x'(j ,  m)  is, for  every  t, j and m a vec to r  of  

coord ina te  es t imates  {x~ ] i E I,,} available at node  j at t ime t. It is impor tan t  to 

realize in what  fol lows that  the buffer contents  x'(j ,  m)  and xt(j  ', m)  at two 
different nodes .i and j' need not coincide at all times. I f  j #  m and j ' ~  m the 
buffer contents  x'(j ,  m)  and x '( j ' ,  m)  need not coincide at any time t. The vec to r  

of  all buffer  con ten t s  of  node j is denoted  x'( j) ,  i.e., 

x ' ( j )  = {x ' ( j ,  m ) l m  = 1 . . . . .  n}. 

The coord ina tes  of  x ' ( j )  are deno ted  x'~(j), i E I, and the coord ina tes  of  x'(j ,  m)  
are denoted  x'~(j, m ), i C I .... 

The rules accord ing  to which  the buffer  conten ts  x'(j ,  m)  are updated  are as 

fol lows:  

(1) If [tL, t,] is a t ransmiss ion  interval f rom node m to node j, the conten ts  of  

the buffer  B ..... at time t~ are t ransmit ted  and entered in the buffer  Bj,,, at t ime t:, 

i.e. 

x " ( m ,  m )  = x~'~(j, m ) .  (7) 

(2) If  Its, t2] is a compu ta t i on  interval  for  node j, the con ten t s  of  the buffer  Bii 
at time t~ are replaced by L[x'~(j)]. i E I~, i.e. 

x',2(j) = h [ x " ( j ) ]  v i ~ lj. (8) 

(3) The con ten t s  o f  a buffer  Bij can change  only  at the end of  a compu ta t i on  

interval for  node  j. The conten ts  of  a buffer  Bj,,,, jg: m can change  only at the end 

of  a t ransmiss ion  interval f rom m to j. 

Our  ob jec t ive  is to derive condi t ions  under  which 

l i m x ] ( j ) = x *  V i E I .  j = l  . . . . .  n, (9) 

where  x* E X is a fixed point  of f. This is the subject  of  the next  section.  
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3. A general convergence theorem 

In our effort  to develop a general convergence  result for the distributed 
algori thmic model of the previous section we draw motivation from existing 
convergence  theories for (centralized) iterative algorithms. There  are several 

theories  of this type (Zangwill [16], Luenberger  [8], Daniel [6], Ortega and 
Rheinboldt  [ l l ] - - t h e  most  general are due to Poljak [14] and Polak [13]). All 
these theories have their origin in L y a p u n o v ' s  stability theory for differential and 
difference equations.  The main idea is to consider a generalized distance 
funct ion (or Lyapunov  function) of the typical iterate to the solution set. In 

opt imizat ion methods the object ive  function is often suitable for  this purpose 
while in equat ion solving methods a norm of the difference between the current  
iterate and the solution is usually employed.  The idea is typically to show at each 

iteration the value of the distance function is reduced and reaches its minimum 

value in the limit. 
Our  result is based on a similar idea. However ,  instead of working with a 

generalized distance function we prefer  to work (essentially) with the level sets 

of such a function. 
We formulate  the following assumption under which we will subsequent ly  

prove  convergence  of the type indicated in (9). In what follows R denotes the 
set of all vectors  x = { x ~ ] x ~ E [ - o c ,  oc], i ~ l } ,  X x X  denotes the Cartesian 

product  of X with itself, and fI~'=l X denotes  the Cartesian product  of X with 

itself n t imes. 

Assumption B. There  exists a sequence X k of subsets of  X with the following 

propert ies:  
(a) If  {x k} is a sequence in X such that if x k E X k for all k, then 

k = x* V i E I (10) lira x i 

where  x* • X is some fixed point of f. 

(b) For all k = 0 , 1  .... and j =  1 . . . . .  n 

x E Xk=:), f ( x ;  j )@ X k (11) 

where  f( .  ; j) : X --~ )( is the mapping defined by 

{ x ~  if i~I~ ,  
f ~ ( x ; j ) =  f,(x) i f i E I  i. (12) 

(c) For  all k = 0 ,  l . . . .  and j =  1 . . . . .  n 

x E X k, x '  C X k ~ C(x ,  x ' ;  j)  E X k (13) 
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where C( . ,  . : j ) : X  x X ~ ) (  is the mapping  defined by 

{x~ if x~! lj, 
C i ( x , x ' ; j ) =  x'~ if i E I  i. (14) 

(d) For  all k = 0, 1 .... 

x I E X k, x 2 @ X k . . . . .  x" ~ X k ~ F(xL, x 2 . . . . .  x") ~ X k+l, (15) 

where  F : FI;' i X ~ 2( is the mapping  defined by 

F i ( x l , x  2 . . . . .  x " ) = f i ( x  i) V i  C li, j =  1 . . . . .  n. (16) 

Assumpt ion  B seems rather  compl ica ted  so it may  be worth  providing some 

motivat ion for  in t roducing it. P rope r ty  (a) specifies how the sets X k should 
relate to a solution x*. P rope r ty  (d) guarantees  that  if the funct ions  in the buffers 

of  all nodes  i =  1 .... , n belong to X k and a computa t ion  phase is carried out  
s imul taneous ly  at all nodes fo l lowed by a communica t i on  phase  f rom every  node 

to every  other  node,  then the result ing funct ion in the buffer  of  each node (which 
will be the same for  all nodes) ,  will belong to X k+~. Proper t ies  (a) and (d) 

alone guarantee  that the algori thm will converge  to a cor rec t  solution if executed  
in a synch ronous  manner ,  i.e., a s imul taneous  compu ta t i on  phase at all nodes  is 

fo l lowed by a s imul taneous communica t ion  phase f rom each node to all o ther  

nodes  and the process  is repeated.  P rope r ty  (b) involves the mapping f ( . :  j )  

which  is related to a computa t ion  phase at node j ( compare  (8) with (12)), while 

proper ty  (c) involves the mapping  C( . ,  .: j)  which is related to a communica t ion  

phase  f rom node j to some other  node (compare  (7) with (13), (14)). Basically 

propert ies  (b) and (c) guarantee  that the sets X k are closed with respect  to 

individual node computa t ion  and communica t ion .  By this we mean that if all 
buffer  contents  are within X k, then after a single node  computa t ion  or  com-  

munica t ion  all buffer contents  will remain in X k. The fol lowing propos i t ion  
asserts  that  when  propert ies  (b) and (c) hold in addit ion to (a) and (d), then the 

algorithm converges  to the cor rec t  solution when opera ted  in a totally un- 

coord ina ted  manner .  

Proposition. L e t  A s s u m p t i o n s  A and  B hold,  and  a s s u m e  that  the init ial  barfer  

c o n t e n t s  x~  at each  node  j = l . . . . .  n be long  to x ~ T h e n  

l imx '~ ( j )=x*  V i ~ l,  j = l . . . . .  n (17) 

where  x*  ~ X is a f ixed  p o i n t  o f  f and  x l ( j )  is the  ith c o o r d i n a t e  o f  the  bu f f e r  

c o n t e n t  v e c t o r  x ' ( j )  o f  node  j at  t ime  t. 

Proof. We will show that for  every  k = O, 1 .... and t -> 0 the condit ion 

x ' ( j ) E X  k V j =  I . . . . .  n (18) 
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implies that  there  exists a t ime t~ > t such that  

x r ( j )  C X k V t' >- t, j =- 1 . . . . .  n, (19) 

x" ( j )  E X  k+~ V t ' > - t ~ , j =  l . . . . .  n. (20) 

In view of  condi t ion  (a) of  Assumpt ion  B, this will suffice to prove  the 
propos i t ion .  

A s s u m e  that  (18) holds for  some k = 0, l .... and t ->0. Then  (19) clearly holds 

s ince,  fo r  t ' >  _ t, the buffer  con ten t  xr ( j )  of node  j at t '  is obta ined  f rom the 

buffer  con ten t s  x ' ( m )  of  all nodes  m = 1 . . . . .  n at t via opera t ions  that  (according  
to condi t ions  (b) and (c) of  Assumpt ion  B) p rese rve  membersh ip  in X k. 

By a s sumpt ion  A there  exists  a scalar  6~ > 0  such that [t, t + 6~] conta ins  at 

least one  c o m p u t a t i o n  interval for  each node j = 1 . . . . .  n. The re fo re ,  using (8), we 
have  that  fo r  each t'_> t + 61. 

x l ' ( j ) = f i [ x ; ( j ) ]  V i E I  i , j =  l . . . . .  n (21) 

where  xr is the buffer  con ten t  of  node  j at some time t E  [t, t + ~5~] (t depends  
on j ) ,  and by (19) 

x r ( j ) E X  k V j = l  . . . . .  n. 

Us ing  again Assumpt ion  A we have that  there  exists a scalar 6~ > 0 such that 

[t + 6~, t + 6~ + 6~] conta ins  at least one c o m m u n i c a t i o n  interval f rom every  node 

to eve ry  o ther  node.  It fol lows that,  for  eve ry  t ' > _ t §  6~ + 6_~, each buffer  Bi,,. 

conta ins  a vec to r  xr(i, m) such that (cf. (7), (21)) 

x~i(j, m )  = x~(m, m )  = f i [ x ; ( m ) ]  V i E I,,., j, m = 1 . . . . .  n ,  (22) 

where  x ; ( m ,  m )  is the con ten t  of  buffer  B ...... at node m at some  time / 'C 

[ t + 6 ~ , t + 6 ~ + 6 2 ]  and x ; ( m )  is the buffer  con ten t  of  node  m at some time 
[ E  It, t']. (Again here the times { and [ depend  on j and m.) 

Let  t~ = t + 6t + 32. By using (22) and (19) we can assert  that  for  each t ' -  > tt 
and j = 1 . . . . .  n there exist  vec tors  s E X k, j = 1 . . . . .  n such that  

x l ' ( j )= f~(g  j) V i E Ij, j = l . . . . .  n, 

It fo l lows f rom condi t ion  (d) of  Assumpt ion  B (cf. (15), (16)) that  

x r ( j ) E X  k+l V t ' > - t ~ , j =  1 . . . . .  n 

wh ich  is (20). This comple tes  the p roo f  of  the proposi t ion.  

N o t e  that  (18) and (20) can fo rm the basis for  an est imate  o f  the rate of  

c o n v e r g e n c e  of  the algori thm. For  example  if there  exists an index /~ such that  

X k = X ~ = {x*} for  all k - / ~  (i.e. af ter  some index the sets X k conta in  only  one 

e l e m e n t - - a  fixed point  x* ~ X ) ,  then it fol lows f rom (18)-(20) that  the dis- 

t r ibuted a lgor i thm conve rges  to the co r rec t  solut ion in a finite a m o u n t  of  time. 
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This a rgument  can,  for  example ,  be used to establish finite time conve rgence  for  

the distr ibuted algori thm as applied to the shor tes t  path problem of Sect ion 2. 

4. Special cases 

In this sect ion we ver i fy  that  Assumpt ion  B of  the prev ious  sect ion is satisfied 
for  some impor tant  classes o f  problems.  

4.1. Contraction mappings with respect to sup-norms 

Let J( be the vec tor  space of  all x = { x ~ l x i ~ ( - ~ - ~ c ) , i ~ l }  which are 

bounded  in the sense that there exists M > 0  such that  ]x~[-< M for  all i E I. 
Cons ider  a norm on X of  the form 

Ilxll = s u p  ~,lx,  I (23) 

where  {ai I i E l} is a set of scalars such that for  some d > 0 and a > 0 we have 

a<--Oti<r V i E I .  

Assume that the set X either equals 2 or is a closed sphere centered  at a fixed 

point x* of  f. Assume  fur ther  that f is a cont rac t ion  mapping  on X with respect  
to the norm (23) in the sense that, for  some p < 1 we have 

]If(x) - f ( y ) [ ]  <- pllx - YI] V x, y ~ X. 

Then,  because  2 is a comple te  space and X is a closed subset  of 2 ,  x* is the 
unique fixed point  of  f in X (cf. [151). 

For  q > 0 define 

x k = I x ~ 2 ] l l x - x * l l < _ p " q } ,  k=O, l  . . . . .  

It is evident  that  if Xc 'C X, then the sequence  {X k} satisfies condit ions (a)-(d) of  
Assumpt ion  B. 

We note  that  the use of  a sup-norm such as (23) is essential in order  for  
Assumpt ion  B to hold. If f is a cont rac t ion  mapping  with respect  to some other  
type  of  norm,  Assumpt ion  B need not be satisfied. 

4.2. P-contraction mappings 

Let  I = {l, 2 . . . . .  n} and assume that X is a subset  of  R". Suppose  that f is a 
P -con t r ac t i on  mapping,  i.e. satisfies the condi t ion 

] f ( x ) - f ( y ) ]<-Plx -y]  Vx,  y E R " ,  (24) 

where  P is an n x n matrix with nonnegat ive  e lements  and spectral  radius 
strictly less than unity,  and for  any  z = (z~, z2 . . . . .  z,,) we denote  by Izl the co lumn 
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vec tor  with coordinates  Iz,I, ]z21 . . . . .  Iz,,]. Condition (24) holds in particular if P is 
a s tochast ic  matrix (all e lements  of P are nonnegative and the sum of the 
e lements  of each row of P is less than or equal to unity) and l im~ .~P  k =0 .  
Fixed point problems involving P-contrac t ion  mappings arise in dynamic pro- 
gramming [2, p. 374], and solution of sys tems of nonlinear equations [11, Section 

13.11. 
It has been shown in [1, p. 231] that if f is a P-contrac t ion ,  then it is a 

contract ion mapping with respect  to some norm of the form (23). We are 
therefore  reduced to the case examined earlier. 

4.3. Monotone mappings 

Assume that f has the monotonici ty  proper ty  

x ~ X , x ' E X ,  xi<_x~,ViEI=)fi(x)<-f i(x ') ,  V i @ I .  (25) 

Denote  by fk the composi t ion of f with itself k times and assume that there exist 
two elements  x and $ of X such that 

{x Ix-~-<x~-<~i, V i E I } c X  (26) 

and for all k = 0, 1 .... 

f ~ ( ~ )  < ~ + , ,  . I~ t._v)</~+~(~)_< k ~ , -  - f i  (x)  V i @ l  (27) 

and 

lim f~(._x) = lim f~(~) = x* V i ~ I (28) 

where x* ~ X is a fixed point of f. 
As an example  consider the shortest  path problem in Section 2, and the 

function 

x i = O  V i =  1 . . . . .  n, 

-L = if i = 1. 

It is easily verified that the corresponding function f satisfies (25) and that S, ~ as 
defined above satisfy (26), (27), (28). 

Define now for k = 0, 1 .... 

X k = {x [ f~(~) -< .x~ -< f~(.r V i E I}. 

Then it is easily seen that the sequence {X k} satisfies conditions (a)-(d) of 

Assumpt ion  B. 
Fixed point problems involving monotone mappings satisfying (25) arise in 

dynamic programming [2, 3, 4] and solution of systems of nonlinear equations 
[11, Section 13.2]. 
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4.4. U n c o n s l r a i n e d  o p t i m i z a t i o n  

Consider the problem 

minimize g(x), 

subject to x @ R" (29) 

where g : R" ~ R is a twice continuously differentiable convex function, with 
Hessian matrix Veg(x) which is positive definite for all x. 

The mapping that corresponds to Newton 's  method is given by 

f ( x )  = x - [V2g(x)] Wg(x) (30) 

where Vg(x) denotes the gradient of g at x. Under the assumptions made earlier 
a vector x* satisfying Vg(x*)=  0 is the unique globally optimal solution of 
problem (29) and also the unique fixed point of the mapping f of (30). Suppose 
there exists such a vector x*. Then it is a simple matter to verify that there 
exists an open sphere centered at x* such that the mapping f of (30) is a 
contraction mapping in X with respect to the norm Ilxll = max~ Ix~[. Therefore  the 
distributed version of Newton 's  method is convergent  if the starting buffer 
contents are sufficiently near x*. A similar fact can be shown if the inverse 
Hessian [V2g(x)] ~ in (30) is replaced by a matrix H ( x )  such that the difference 
H ( x ) - [ V 2 g ( x ) ]  -~ has sufficiently small norm uniformly within X. 

Consider next the mapping corresponding to the ordinary gradient method 

f ( x )  = x - oeVg(x) (31) 

where ~ is a positive scalar stepsize. Again if x* is the unique optimal solution 
of problem (29), then x* is the unique fixed point of f as given by (31). The 
Jacobian matrix of f is given by 

O f ( x )  = I - c~V2g(x) (32) 

where I is the n x n identity matrix. Using the mean value theorem we have for 
all x, yR" 

af~(x ~) r f~(x) - f,(y) = ~ ~ ,xj - y~) V i = 1 . . . . .  n (33) 

where x ~ is a vector lying on the line segment joining x and y. From (33) we 
obtain 

i t  Ofi(x i) 
I f i ( x ) - f , ( Y ) [ - - <  ~= Ox i Ix i - y/]. (34) 

Denote by If(x)-f(y)l and I x -  y] the column vectors with coordinates ] / , (x ) -  
f~(y)] and ]x~- y~[ respectively. Assume that the stepsize c~ in (31) satisfies 

a-'g(x ~) 
c ~ < l  V i = I , 2  . . . . .  n, (35) 
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Then,  with the aid of (32), we can write (34) as 

If(x) - / (Y)I  <- F i x  - Y] (36) 

where F is the n x n matrix given by 

F = I - aG (37) 

and G is given by 

- I  a2g I I a-'g I - a2g I 

G = I(ax,) l'-lax,ax l! . . . . .  l ai'ax"l (38) 

I-I _ ~ I, l a - g  

and the derivatives in the ith row of the matrix above are evaluated at x ~. 
It is now seen easily from (36) and (37) that f will be a P-contract ion mapping 

within an open sphere centered at x* provided the following two conditions 
hold: 

(a) The matrix G* is positive definite where G* is given by (38) with all partial 
derivatives evaluated at x*. 

(b) The stepsize a is sufficiently small so that (35) holds and the matrix 
1 - cYG* (cf. (37)) is positive definite. Equivalently a should be smaller than the 
inverses of the largest eigenvalue and the largest diagonal element of G*. 

If the two conditions above are satisfied, then the distributed gradient al- 
gorithm based on the mapping f of (31) is convergent  to x* provided all buffer 
contents are sufficiently close to x*. 

Unfor tunate ly  it is not true that the matrix G* is always positive definite and 
indeed examples can be constructed where the distributed gradient method can 
fail to converge to the optimal solution x* regardless of the choice of the 
stepsize or. Despite this fact  we believe that the distributed gradient method is an 
interesting algorithm. We will show in a forthcoming publication that it has 
satisfactory convergence properties provided we impose certain mild restrictions 
on the relative timing of computations and communications in place of Assump- 
tion A. 

5. Conclusions 

The analysis of this paper shows that broad classes of fixed point problems 
can be solved by distributed algorithms that operate under very weak restric- 
tions on the timing and ordering of processor computation and communicat ion 
phases. It is also interesting that the initial processor  buffer contents need not be 
identical and can vary within a broad range. This means that for problems that 
are being solved continuously in real time it is not necessary to reset the initial 
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conditions and resynchronize the algorithm each time the problem data changes. 
As a result the potential for tracking slow changes in the solution function is 
improved and algorithmic implementation is greatly simplified. 
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