
Appears in Proc. of the 35th Allerton Conference on Communication, Control, and

Computing, Allerton Park, Ill., October 1997

DIFFERENTIAL TRAINING OF1

ROLLOUT POLICIES

by

Dimitri P. Bertsekas2

Abstract

We consider the approximate solution of stochastic optimal control problems using a neuro-
dynamic programming/reinforcement learning methodology. We focus on the computation of
a rollout policy, which is obtained by a single policy iteration starting from some known base
policy and using some form of exact or approximate policy improvement. We indicate that,
in a stochastic environment, the popular methods of computing rollout policies are particularly
sensitive to simulation and approximation error, and we present more robust alternatives, which
aim to estimate relative rather than absolute Q-factor and cost-to-go values. In particular, we
propose a method, called differential training , that can be used to obtain an approximation to
cost-to-go differences rather than cost-to-go values by using standard methods such as TD(λ) and
λ-policy iteration. This method is suitable for recursively generating rollout policies in the context
of simulation-based policy iteration methods.

1. INTRODUCTION

Consider the basic form of a dynamic programming problem, where we have the stationary discrete-

time dynamic system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (1)

where xk is the state taking values in some set, uk is the control to be selected from a finite

set U(xk), and wk is a random disturbance. We assume that the disturbances wk, k = 0, 1, . . .,

are independent, and take values in a countable set. The one-stage cost function is denoted by

g(x, u, w). Also for notational simplicity, we suppress time indexes for f , g, and U , but our

discussion fully applies to a time-varying context where f , g, and U depend on the time index k.

1 Research supported by NSF under Grant 9625489-DMI. Thanks are due to John Tsitsiklis
who suggested the analysis given at the end of Section 2.

2 Dept. of Electrical Engineering and Computer Science, M.I.T., Cambridge, Mass., 02139.

1

We are given a policy π = {µ0, µ1, . . .}, which at time k maps a state x to a control µk(x) ∈
U(x). We focus primarily on an N -stage horizon problem where k takes the values 0, 1, . . . , N − 1,

and there is a terminal cost G(xN) that depends on the terminal state xN , but our discussion

applies with minor modifications to various types of infinite horizon problems. The cost-to-go of

π starting from an state xk at time k will be denoted by

Jk(xk) = E

{
G(xN) +

N−1∑
i=k

g
(
xi, µi(xi), wi

)}
. (2)

The cost-to-go functions Jk satisfy the following recursion of dynamic programming (DP for short)

Jk(x) = E
{
g
(
x, µk(x), w

)
+ Jk+1

(
f
(
x, µk(x), w

))}
, k = 0, 1, . . . (3)

with the initial condition

JN (x) = G(x).

Our discussion applies with minor modifications to infinite horizon problems. For such problems,

we need to assume that the given policy is stationary of the form π = {µ, µ, . . .}, in which case

the DP algorithm is replaced by its asymptotic form (Bellman’s equation). For example, if the

problem is discounted with discount factor α ∈ (0, 1), the analog of Eq. (3) is

J(x) = E
{
g
(
x, µ(x), w

)
+ αJ

(
f
(
x, µ(x), w

))}
, ∀ x,

where J(x) is the cost-to-go of π starting from x.

The rollout policy based on π is denoted by π = {µ0, µ1, . . .}, and is defined through the

operation

µk(x) = arg min
u∈U(x)

E
{
g(x, u, w) + Jk+1

(
f(x, u, w)

)}
, ∀ x, k = 0, 1, (4)

Thus the rollout policy is a one step-lookahead policy, with the optimal cost-to-go approximated

by the cost-to-go of the base policy. The name “rollout policy” was introduced by Tesauro [TeG96]

in connection with one of his simulation-based computer backgammon algorithms. The book by

Bertsekas and Tsitsiklis [BeT96] discusses in some detail various aspects of rollout policies in a

stochastic context, and also in a deterministic combinatorial optimization context, as a device for

magnifying the effectiveness of heuristics (see also Bertsekas, Tsitsiklis, and Wu [BTW97]).

A standard policy iteration argument can be used to show that the rollout policy π is an

improved policy over the base policy π. In particular, let Jk(x) be the cost-to-go of the rollout

policy π starting from a state xk at time k. It can be shown that Jk(x) ≤ Jk(x) for all x and

k, so that the rollout policy π is an improved policy over the base policy π. The proof uses

2

backwards induction on k. In particular, we have JN (x) = JN (x) = G(x) for all x. Assuming that

Jk+1(x) ≤ Jk+1(x) for all x, we have for all x,

Jk(x) = E
{
g
(
x, µk(x), w

)
+ Jk+1

(
f
(
x, µk(x), w

))}
≤ E

{
g
(
x, µk(x), w

)
+ Jk+1

(
f
(
x, µk(x), w

))}
≤ E

{
g
(
x, µk(x), w

)
+ Jk+1

(
f
(
x, µk(x), w

))}
= Jk(x),

where the first inequality follows from the induction hypothesis, the second inequality follows from

Eq. (4), and the final equality follows from the DP equation (3). This completes the induction

proof that π is an improved policy over π.

Rollout policies are useful in two main contexts:

(a) The one-time policy improvement context . Here π is some “easily” implementable heuristic

policy. By this we mean that the controls µk(x) can be easily calculated for every state x

through some known algorithm. Frequently the rollout policy is a considerable improvement

over the base policy, so if π is already a fairly good heuristic policy, the rollout policy can be

pretty close to being optimal and can form the basis for effective suboptimal control.

(b) The policy iteration context . Here the policy improvement operation is used multiple times

to generate a sequence of policies, and aims at obtaining an optimal policy (or a close ap-

proximation thereof).

The one-time policy improvement approach is particularly useful in an on-line control context ,

where the problem is not fully known in advance, but rather it is only known to belong to a fairly

broad problem class. The problem becomes fully specified to the controller just before the first

control u0 is to be chosen. In this case, it is difficult to use a policy iteration approach, but a

one-time improvement using a rollout policy may be possible, as long as there is a base/heuristic

policy that works for the entire problem class.

In practice, one typically has a method or algorithm to compute the control µk(x) of the

base policy, given the state x, but the corresponding cost-to-go functions Jk may not be known in

close form. Then the exact or approximate computation of the rollout control µk(x) using Eq. (4)

becomes an important and nontrivial issue, since we need for all u ∈ U(x) the value of

Qk(x, u) = E
{
g(x, u, w) + Jk+1

(
f(x, u, w)

)}
, (5)

known as the Q-factor at time k. Alternatively, for the computation of µk(x) we need the value

of the cost-to-go Jk+1

(
f(x, u, w)

)
at all possible next states f(x, u, w).

3

We are interested in methods for approximately computing π in highly complex large-scale

problems. Our assumption is that we can simulate the system under the base policy π, and in

particular, that we can generate sample system trajectories and corresponding costs consistently

with the probabilistic data of the problem. The standard methods of computing π involve the use

of a function J̃k(x, r) approximating Jk(x), where r is a tunable parameter vector that is obtained

by various training methods. This is the Neuro-Dynamic Programming/Reinforcement Learning

(NDP/RL for short) approach (see the survey by Barto, Bradtke, and Singh [BBS95], and the

research monograph by Bertsekas and Tsitsiklis [BeT96], which list many references). A number

of training methods are described in these references, including the TD(λ) method of Sutton

[Sut88], and the Q-learning method of Watkins [Wat89]. There are rigorous convergence results

for these methods, due to Tsitsiklis [Tsi94], and Tsitsiklis and Van Roy [TsV96], and described in

[BeT96].

We argue, however, in this paper that the standard NDP/RL training techniques lack ro-

bustness to approximation and simulation error, and that this is a major difficulty in practical

computation. Similar concerns have been voiced by Werbos [Wer92a], [Wer92b], who has proposed

several algorithimc ideas in a variety of contexts, including continuous-time deterministic optimal

control. The proposal of advantage updating by Baird, Harmon, and Klopf [Bai93], [HBK94],

is similarly motivated by the sensitivity to simulation and approximation error in the computa-

tion of the rollout policy. The main idea of advantage updating is to compute an approximation

Ãk(x, u, r) to the advantage function

Ak(x, u) = Qk(x, u) − min
u∈U(x)

Qk(x, u′)

corresponding to state control pairs (x, u), where r is a tunable parameter vector. The (approxi-

mate) rollout control at state x is then computed by minimizing Ãk

(
x, u, r

)
≥ 0 over u ∈ U(x). One

of the difficulties with advantage updating is that effective training methods such as TD(λ) cannot

be used in a straightforward fashion to train the advantage function approximation Ãk(x, u, r).

In this paper, we discuss two methods for reducing the effects of the simulation and approx-

imation error. Both of these methods may be viewed as variance reduction techniques adapted to

the NDP/RL setting. In the first method, we consider the evaluation of Q-factor differences by

Monte-Carlo simulation. In the second method, which we call differential training , we construct a

function approximation G̃k(x, x′, r) to the cost-to-go difference Jk(x) − Jk(x′), where x and x′ is

any pair of states, and r is a tunable parameter vector. An interesting aspect of differential train-

ing is that, contrary to advantage updating, it can use any of the standard NDP/RL methods,

including TD(λ). This is accomplished by training on a special differential system, whose state is

a pair of states (x, x′) of the original system.

4

2. EVALUATING Q-FACTORS BY SIMULATION

A conceptually straightforward approach to compute the rollout control at a given state x and

time k is to use Monte-Carlo simulation (this was Tesauro’s original proposal in the context of

backgammon [TeG96]). To implement this, we consider all possible controls u ∈ U(x) and we

generate a “large” number of simulated trajectories of the system starting from x, using u as the

first control, and using the policy π thereafter. Thus a simulated trajectory has the form

xi+1 = f
(
xi, µi(xi), wi

)
, i = k + 1, . . . , N − 1,

where the first generated state is

xk+1 = f(x, u, wk),

and each of the disturbances wk, . . . , wN−1 is an independent random sample from the given distri-

bution. The costs corresponding to these trajectories are averaged to compute an approximation

Q̃k(x, u) to the Q-factor

Qk(x, u) = E
{
g(x, u, w) + Jk+1

(
f(x, u, w)

)}
. (6)

Note here that Q̃k(x, u) is an approximation to Qk(x, u) because of the simulation error resulting

from the use of a limited number of trajectories. The approximation becomes increasingly accu-

rate as the number of simulated trajectories increases. Once the approximate Q-factor Q̃k(x, u)

corresponding to each control u ∈ U(x) is computed, we can obtain the (approximate) rollout

control µ̃k(x) by the minimization

µ̃k(x) = arg min
u∈U(x)

Q̃k(x, u). (7)

There is a serious flaw with this approach, due to the simulation error involved in the cal-

culation of the Q-factors. In particular, for the calculation of µ̃k(x) to be accurate, the Q-factor

differences

Qk(x, u) − Qk(x, û)

must be computed accurately for all pairs of controls u and û, so that these controls can be

accurately compared. On the other hand, the simulation/approximation errors in the computation

of the individual Q-factors Qk(x, u) are magnified through the preceding differencing operation.

An alternative idea is to approximate by simulation the Q-factor difference Qk(x, u)−Qk(x, û)

by sampling the difference

Ck(x, u,wk) − Ck(x, û,wk),

5

where wk = (wk, wk+1, . . . , wN−1) and

Ck(x, u,wk) = G(xN) + g(x, u, wk) +
N−1∑

i=k+1

g
(
xi, µi(xi), wi

)
. (8)

This approximation may be far more accurate than the one obtained by differencing inde-

pendent samples of Ck(x, u,wk) and Ck(x, û,wk). Indeed, by introducing the zero mean sample

errors

Dk(x, u,wk) = Ck(x, u,wk) − Qk(x, u),

it can be seen that the variance of the error in estimating Qk(x, u) − Qk(x, û) with the former

method will be smaller than with the latter method if and only if

Ewk, ŵk

{∣∣Dk(x, u,wk) − Dk(x, û, ŵk)
∣∣2} > Ew

{∣∣Dk(x, u,wk) − Dk(x, û,wk)
∣∣2} ,

or equivalently

E
{
Dk(x, u,wk)Dk(x, û,wk)

}
> 0; (9)

that is, if and only if there is positive correlation between the errors Dk(x, u,wk) and Dk(x, û,wk)

(this idea was suggested by John Tsitsiklis). A little thought should convince the reader that this

property is likely to hold in many types of problems. Roughly speaking, the relation (9) holds if

changes in the value of u (at the first stage) have little effect on the value of the error Dk(x, u,wk)

relative to the effect induced by the randomness of wk. In particular, suppose that there exists a

scalar γ < 1 such that, for all x, u, and û, there holds

E
{∣∣Dk(x, u,wk) − Dk(x, û,wk)

∣∣2} ≤ γE
{∣∣Dk(x, u,wk)

∣∣2} . (10)

Then we have

Dk(x, u,wk)Dk(x, û,wk) =
∣∣Dk(x, u,wk)

∣∣2 + Dk(x, u,wk)
(
Dk(x, û,wk) − Dk(x, u,wk)

)
≥

∣∣Dk(x, u,wk)
∣∣2 − ∣∣Dk(x, u,wk)

∣∣∣∣Dk(x, û,wk) − Dk(x, u,wk)
∣∣,

from which we obtain

E
{
Dk(x, u,wk)Dk(x, û,wk)

}
≥ E

{∣∣Dk(x, u,wk)
∣∣2}

− E
{∣∣Dk(x, u,wk)

∣∣∣∣Dk(x, û,wk) − Dk(x, u,wk)
∣∣}

≥ E
{∣∣Dk(x, u,wk)

∣∣2}
− 1

2
E

{∣∣Dk(x, u,wk)
∣∣2} − 1

2
E

{∣∣Dk(x, û,wk) − Dk(x, u,wk)
∣∣2}

≥ 1 − γ

2
E

{∣∣Dk(x, u,wk)
∣∣2} .

Thus, under the assumption (10) and the assumption E
{∣∣Dk(x, u,wk)

∣∣2} > 0, the condition (9)

holds and guarantees that by directly obtaining cost difference samples rather than differencing

cost samples, the error variance decreases.

6

3. APPROXIMATING COST-TO-GO DIFFERENCES

A common approach to compute an approximate rollout policy π consists of two steps:

(1) In a preliminary phase, approximations to the cost-to-go functions Jk, denoted J̃k, are com-

puted, possibly using simulation and a least squares fit from a parametrized class of functions.

The techniques of NDP/RL such as temporal difference methods and others can be used for

the training of such an approximation (see [BeT96] for a detailed account).

(2) Given J̃k and a state x at time k, the approximate Q-factor

Q̃k(x, u) = E
{
g(x, u, w) + J̃k+1

(
f(x, u, w)

)}
is computed for all u ∈ U(x), and the (approximate) rollout control µk(x) is obtained by the

minimization

µk(x) = arg min
u∈U(x)

Q̃k(x, u).

Unfortunately, this method also suffers from the error magnification inherent in the Q-factor

differencing operation. This motivates an alternative approach, called differential training , that

is based on cost-to-go difference approximation. We observe that to compute the rollout control

µk(x), it is sufficient to have the differences of costs-to-go

Jk+1

(
f(x, u, w)

)
− Jk+1

(
f(x, û, w)

)
.

Thus, we consider approximating this difference using a function approximator, which given any

two states s and ŝ, gives an approximation G̃k+1(s, ŝ) of Jk+1(s) − Jk+1(ŝ). The rollout control

can then be approximated by

µk(x) = arg min
u∈U(x)

E
{
g(x, u, w) − g(x, µ(x), w) + αG̃k+1

(
f(x, u, w), f(x, µk(x), w)

)}
. (11)

An important point here is that the training of an approximation architecture to obtain G̃k+1

can be done using any of the standard NDP/RL methods [e.g., TD(λ), approximate and optimistic

policy iteration or λ-policy iteration, etc.]. To see this, denote for all k

Gk(x, x̂) = Jk(x) − Jk(x̂).

By subtracting the DP equations corresponding to π, and to x and x̂,

Jk(x) = E
{
g
(
x, µk(x), w

)
+ Jk+1

(
f(x, µk(x), w)

)}
,

Jk(x̂) = E
{
g
(
x̂, µk(x̂), w

)
+ Jk+1

(
f(x̂, µk(x̂), w)

)}
,

7

we obtain, for all (x, x̂) and k,

Gk(x, x̂) = E
{
g
(
x, µk(x), w

)
− g

(
x̂, µk(x̂), w

)
+ Gk+1

(
f(x, µk(x), w), f(x̂, µk(x̂), w)

)}
.

Therefore, Gk can be viewed as the cost-to-go function for a problem involving a fixed policy, the

state (x, x̂), the cost per stage

g
(
x, µk(x), w

)
− g

(
x̂, µk(x̂), w

)
, (12)

and the state transition equation

(xk+1, x̂k+1) =
(
f(xk, µk(xk), wk), f(x̂k, µk(x̂k), wk)

)
. (13)

Thus, it can be seen that any of the standard methods that can be used to train architectures

that approximate Jk, can also be used for training architectures that approximate Gk. For example,

one may use simulation-based methods, such as TD(λ), that generate trajectories consisting of pairs

(x, x̂) according to Eq. (13). Note that a single random sequence {w0, . . . , wN−1} may be used to

simultaneously generate samples of Gk(x, x̂) for several triples (x, x̂, k). This is similar in spirit to

the ideas of Perturbation Analysis (see e.g., Cassandras [Cas93], Glasserman [Gla91], or Ho and

Cao [HoC91]).

The approach just described is well suited to a policy iteration context, where subsequent to

the relative cost-to-go approximation corresponding to the base policy π, we will be interested in

constructing a relative cost-to-go approximation corresponding to the rollout policy π. For this

construction, simulation will be used, during which it is essential that the next policy π can be

fairly easily generated. Using Eq. (11) is quite convenient for this purpose.

A special case of interest arises when a linear, feature-based architecture is used for the

approximator G̃k. In particular, let Fk be a feature extraction mapping that associates a feature

vector Fk(s) with state s and time k, and let G̃k be of the form

G̃k(s, ŝ) = r(k)′
(
Fk(s) − Fk(ŝ)

)
,

where r(k) is a tunable weight vector of the same dimension as Fk(s) and prime denotes transpo-

sition. The rollout policy is generated by

µk(x) = arg min
u∈U(x)

E
{
g(x, u, w) + r(k)′Fk

(
f(x, u, w)

)}
,

which corresponds to using r(k)′Fk(s) (plus an unknown inconsequential constant) as an approx-

imator to Jk(s). Thus, in this approach, we essentially use a linear, feature-based architecture to

8

approximate Jk, but we train this architecture using the differential system (13) and the differential

cost per stage (12).

The preceding discussion also applies to infinite horizon problems. The analog of Eq. (11) is

µ(x) = arg min
u∈U(x)

E
{
g(x, u, w) − g(x, µ(x), w) + αG̃

(
f(x, u, w), f(x, µ(x), w)

)}
,

and G̃ is an approximation to the cost-to-go difference, defined for any pair of states (x, x̂) by

G(x, x̂) = J(x) − J(x̂).

By subtracting the two Bellman’s equations corresponding to µ, and to x and x̂,

J(x) = E
{
g
(
x, µ(x), w

)
+ αJ

(
f(x, µ(x), w)

)}
,

J(x̂) = E
{
g
(
x̂, µ(x̂), w

)
+ αJ

(
f(x̂, µ(x̂), w)

)}
,

we obtain

G(x, x̂) = E
{
g
(
x, µ(x), w

)
− g

(
x̂, µ(x̂), w

)
+ αG

(
f(x, µ(x), w), f(x̂, µ(x̂), w)

)}
, ∀ (x, x̂).

Therefore, G can be viewed as the cost-to-go function for a problem involving a fixed policy, the

state (x, x̂), the cost per stage

g
(
x, µ(x), w

)
− g

(
x̂, µ(x̂), w

)
, (14)

and the state transition equation

(xk+1, x̂k+1) =
(
f(xk, µ(xk), wk), f(x̂k, µ(x̂k), wk)

)
. (15)

The simulation-based training of G̃ can be done by using the differential cost (14) and the differ-

ential system (15).

4. CONCLUSIONS

The main theme of this paper, namely that one should try to approximate Q-factor and cost-to-go

differences rather than Q-factors has been emphasized by a number of authors. In particular, it

has been discussed by Werbos [Wer92a], [Wer92b] in several contexts, including continuous-time

deterministic optimal control, and by Baird, Harmon, and Klopf [Bai93], [HBK94] in the context

of advantage updating. The differential training method proposed in this paper, is new to the

author’s knowledge, and has the significant advantage that it requires straightforward adaptations

of well-known and tested methods such as TD(λ) and λ-policy iteration. We only have preliminary

computational experience with the differential training method, which is however, impressively

positive, and has been successful in problems where the standard training methods have failed. A

somewhat restrictive assumption in our discussion is the independence of the disturbances wk. In

many problems of interest, wk depends on preceding disturbances via the current state xk and/or

the control uk. On the other hand, one can often introduce approximations in the approximation

model to eliminate such dependencies.

9

REFERENCES

[BBS95] Barto, A. G., Bradtke, S. J., and Singh, S. P., 1995. “Learning to Act Using Real-Time

Dynamic Programming,” Artificial Intelligence, Vol. 72, pp. 81-138.

[BTW97] Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., 1997. “Rollout Algorithms for Combi-

natorial Optimization,” Report LIDS-P-2386, Lab. for Information and Decision Systems, Mass.

Institute of Technology, Cambridge, MA; to appear in Heuristics.

[Bai93] Baird, L. C., 1993. “Advantage Updating,” Report WL-TR-93-1146, Wright Patterson

AFB, OH.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming, Athena Sci-

entific, Belmont, MA.

[Cas93] Cassandras, C. G., 1993. “Discrete-Event Systems: Modeling and Performance Analysis,”

Aksen Associates, Boston, MA.

[Gla91] Glasserman, P., 1991. “Gradient Estimation via Perturbation Analysis,” Kluwer, Boston,

MA.

[HBK94] Harmon, M. E., Baird, L. C., and Klopf, A. H., 1994. “Advantage Updating Applied to

a Differential Game,” unpublished report, presented at the 1994 Neural Information Processing

Systems Conference, Denver, CO.

[HoC91] Ho, Y. C., and Cao, X., 1991. “Perturbation Analysis of Discrete-Event Systems,” Kluwer,

Boston, MA.

[TeG96] Tesauro, G., and Galperin, G. R., 1996. “On-Line Policy Improvement Using Monte

Carlo Search,” unpublished report, presented at the 1996 Neural Information Processing Systems

Conference, Denver, CO.

[TsV96] Tsitsiklis, J. N., and Van Roy, B., 1996. “An Analysis of Temporal-Difference Learning

with Function Approximation,” Lab. for Info. and Decision Systems Report LIDS-P-2322, Mas-

sachusetts Institute of Technology, Cambridge, MA.

[Tsi94] Tsitsiklis, J. N., 1994. “Asynchronous Stochastic Approximation and Q-Learning,” Machine

Learning, Vol. 16, pp. 185-202.

[Wer92a] Werbös, P. J, 1992. “Approximate Dynamic Programming for Real-Time Control and

Neural Modeling,” D. A. White, D. A. Sofge, (eds.), Handbook of Intelligent Control, Van Nos-

trand, N. Y.

[Wer92b] Werbös, P. J, 1992. “Neurocontrol and Supervised Learning: an Overview and Valua-

tion,” D. A. White, D. A. Sofge, (eds.), Handbook of Intelligent Control, Van Nostrand, N. Y.

10

