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This is a new appendix for the author’s Dynamic Programming and Opti-
mal Control, Vol. II, 4th Edition, Athena Scientific, 2012. It includes new
research, and its purpose is to address issues relating to the solutions of
Bellman’s equation, and the validity of the value iteration (VI) and policy
iteration (PI) algorithms in infinite horizon total cost problems, with an
emphasis on the undiscounted problems of Chapters 3 and 4.

We adopt an abstract DP viewpoint, similar to the one we used in
Sections 1.6, 2.5, and 2.6. As in these sections, we aim to unify the analysis,
to highlight the significant structures of the corresponding DP models, and
to connect it to the developments of Chapters 3 and 4. In particular, we
do not assume a contractive character for the associated DP mappings,
requiring them to be just monotone. Abstract DP models are the subject
of the author’s research monograph [Ber13], which may be consulted for a
more extensive analysis, and for proofs of some of the results of the present
appendix, which will be given without proof.

The appendix will be periodically updated, and represents “work in
progress.” It may contain errors (hopefully not serious ones). Furthermore,
its references to the literature are somewhat incomplete at present. Your
comments and suggestions to the author at dimitrib@mit.edu are welcome.



APPENDIX B:

Regular Policies in Total Cost

Dynamic Programming

The purpose of this appendix is to address issues relating to the fundamen-
tal structure of Bellman’s equation, and the validity of the value iteration
(VI) and policy iteration (PI) algorithms in infinite horizon total cost prob-
lems. We focus on the more complex undiscounted problems of Chapters 3
and 4. In particular, we do not assume a contractive character for the DP
mappings Tµ and T , requiring them to be just monotone.

We adopt an abstract DP viewpoint, similar to the one we used in
Sections 1.6, 2.5, and 2.6. Similar to these sections, our aim is to unify
the analysis, to highlight the significant structures of the corresponding
DP models, and to connect it to the developments of Chapters 3 and 4.
Abstract DP models are the subject of the author’s research monograph
[Ber13], which may be consulted for a more extensive analysis, and for
proofs of some of the results of the present appendix.

The range of application of contractive models includes discounted
problems with bounded cost per stage, and related discounted semi-Markov
and zero sum sequential games, as well as SSP problems where all policies
are proper (cf. Section 3.3). At the other extreme, we have noncontractive
models, such as the positive and negative cost problems of Section 4.1. As
a result, Bellman’s equation may have multiple solutions, and the VI and
PI algorithms may not work.

Between these extremes, we have encountered a number of models
that do not have a contractive nature, yet possess enough structure to
allow more powerful results. Examples are the SSP models with improper
policies of Chapter 3, the deterministic optimal control problems of Section
4.2, the SSP problems of Section 4.4, and the affine monotonic problems
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658 Regular Policies in Total Cost Dynamic Programming Appendix B

of Section 4.5. These models possess important theoretical characteristics,
such as the uniqueness of solution of Bellman’s equation within a subset of
interest, and the validity of useful forms of VI and PI. An important feature
of these models is that some policies (called regular) are well-behaved with
respect to VI, in the sense that their cost function can be obtained by VI
starting from a wide range of initial conditions, while other policies (called
irregular) are not so well-behaved.

An example of regular policy is a stationary policy µ for which Tµ is a
contraction within the set of bounded functions B(X), so that T k

µ → Jµ for
all J ∈ B(X). In particular, proper policies in SSP models are contractive
and regular, while improper policies are not, leading to the characterization
of SSP models as semicontractive, a term introduced in the monograph
[Ber13]. Similarly, stable policies in affine monotonic problems (cf. Section
4.5) and terminating policies in deterministic optimal control (cf. Section
4.2) are regular.†

Our analysis revolves around the optimal cost function over just the
regular policies, which we denote by Ĵ . In summary, key insights from this
analysis are:

(a) Because the regular policies are well-behaved with respect to VI, Ĵ
is also well-behaved with respect to VI, and demarcates the location

of the fixed points of T . In particular the limits of VI starting from
above Ĵ as well as all the fixed points of T , lie below Ĵ .

(b) With a judicious choice of the set of regular policies, Ĵ can be proved

to be the largest solution of Bellman’s equation. Moreover VI con-
verges to Ĵ starting from above, i.e., from initial conditions J ≥ Ĵ ,
while PI also converges to Ĵ under favorable circumstances. Note that
the optimal cost function over all policies, J*, does not have such a
property: it may be the largest solution of Bellman’s equation, as
in negative cost problems (cf. Section 4.1), or the smallest solution
(among nonnegative functions), as in positive cost problems (cf. Sec-
tion 4.1), or it may not be a solution at all (cf. the counterexample
of Section 4.4).

(c) If the problem structure is such that irregular policies cannot be “bet-
ter” than regular ones, in the sense that J* = Ĵ , then J* is the largest

† The intended use of the term “semicontractive” is to characterize models

where some (but not all) of the mappings Tµ are contractions with respect to a

suitable norm, while the others are not. Typical examples are the SSP problems

of Chapter 3 and Section 4.4, and the affine monotonic models of Section 4.5. In

the abstract context of this appendix, semicontractive models will be discussed

in Sections B.3, B.5, and B.6. The notion of regularity, as developed in Section

B.2, goes beyond semicontractiveness since it relates to nonstationary policies as

well.
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solution of Bellman’s equation. Moreover, J* can be obtained by VI

and PI starting from a wide range of initial conditions .

(d) Under some special circumstances where irregular policies cannot be
optimal, J* is the unique solution of Bellman’s equation. Moreover,
J* can be obtained by VI starting from any real-valued initial condi-

tions, as well as by specially modified forms of PI . An example are the
SSP problems in Chapter 3, under the favorable Assumptions 3.1.1
and 3.1.2.

Our line of development leads to a variety of interesting results, richer in
character than the ones we obtained for SSP problems, where the regular
policies can be identified with the proper policies. For example our re-
sults apply to the infinite-state deterministic and stochastic optimal control
problems, as well as to finite-state minimax-type shortest path problems.
Moreover, our results can be strengthened in the presence of additional
special structure.

In what follows, we first formulate our abstract DP model in Section
B.1. Then we develop the main ideas of our approach, first for nonsta-
tionary policies (Section B.2), and then for stationary policies (Section
B.3). We then apply the results of Sections B.2 and B.3 in a variety of
contexts, including monotone increasing and monotone decreasing models
(Section B.4), and shortest path-like problems (Section B.5). Special cases
of the theory of Section B.5 include the SSP case of Chapter 3 and the
affine monotonic problems of Section 4.5 under the infinite cost Assump-
tion 4.5.3. We also discuss in Section B.5, robust shortest path planning
problems, a minimax analog of the SSP problem using the analysis of the
author’s paper [Ber14].

B.1 AN ABSTRACT DYNAMIC PROGRAMMING MODEL

We introduce an abstract DP model, which is similar to the one of Section
1.6, except that it does not possess a contractive structure. Let X and
U be two sets, which we loosely refer to as a set of “states” and a set of
“controls,” respectively. For each x ∈ X , let U(x) ⊂ U be a nonempty
subset of controls that are feasible at state x. We denote by M the set of
all functions µ : X 7→ U with µ(x) ∈ U(x), for all x ∈ X .

In analogy with DP, we consider policies, which are sequences π =
{µ0, µ1, . . .}, with µk ∈ M for all k. We denote by Π the set of all policies.
We refer to a sequence {µ, µ, . . .}, with µ ∈ M, as a stationary policy.
With slight abuse of terminology, we will also refer to any µ ∈ M as a
“policy” and use it in place of {µ, µ, . . .}, when confusion cannot arise.

We denote by ℜ the set of real numbers, by R(X) the set of real-
valued functions J : X 7→ ℜ, and by E(X) the subset of extended real-
valued functions J : X 7→ ℜ ∪ {−∞,∞}. We denote by E+(X) the set of
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all nonnegative extended real-valued functions of x ∈ X . Throughout the
paper, when we write lim, lim sup, or lim inf of a sequence of functions we
mean it to be pointwise. We also write Jk → J to mean that Jk(x) → J(x)
for each x ∈ X , and we write Jk ↓ J if {Jk} is monotonically nonincreasing
and Jk → J .

We introduce a mappingH : X×U×E(X) 7→ ℜ∪{−∞,∞}, satisfying
the following condition.

Assumption B.1.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

We define the mapping T that maps a function J ∈ E(X) to the
function TJ ∈ E(X), given by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X).

Also for each µ ∈ M, we define the mapping Tµ : E(X) 7→ E(X) by

(TµJ)(x) = H
(

x, µ(x), J
)

, ∀ x ∈ X, J ∈ E(X).

The monotonicity assumption implies the following properties for all J, J ′ ∈
E(X), and k = 0, 1, . . .,

J ≤ J ′ ⇒ T kJ ≤ T kJ ′, T k
µJ ≤ T k

µJ ′, ∀ µ ∈ M,

J ≤ TJ ⇒ T kJ ≤ T k+1J, T k
µJ ≤ T k+1

µ J, ∀ µ ∈ M,

which will be used repeatedly in what follows. Here, as in Section 1.6, T k

and T k
µ denotes the composition of T and Tµ, respectively, with itself k

times. More generally, given µ0, . . . , µk ∈ M, we denote by Tµ0 · · ·Tµk
the

composition of Tµ0 , . . . , Tµk
, so for all J ∈ E(X),

(Tµ0 · · ·Tµk
J
)

(x) =
(

Tµ0

(

Tµ1 · · ·
(

Tµk−1
(Tµk

J)
)

· · ·
))

(x), ∀ x ∈ X.

We now consider cost functions associated with Tµ and T . We in-
troduce a function J̄ ∈ E(X), and we define the infinite horizon cost of a
policy as the upper limit of its finite horizon costs with J̄ being the cost
function at the end of the horizon (note here the similarity with the affine
monotonic models of Section 4.5).
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Definition B.1.1: Given a function J̄ ∈ E(X), for a policy π ∈ Π
with π = {µ0, µ1, . . .}, we define the cost function of π by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X. (B.1)

The optimal cost function J* is defined by

J*(x) = inf
π∈Π

Jπ(x), ∀ x ∈ X.

A policy π∗ ∈ Π is said to be optimal if Jπ∗ = J*.

Some Examples

The model just described is broadly applicable, and includes as special
cases essentially all the total cost infinite horizon DP problems that we
have discussed including stochastic and minimax, discounted and undis-
counted, semi-Markov, multiplicative, risk-sensitive, etc. As an example,
for a deterministic discrete-time optimal control problem involving the sys-
tem

xk+1 = f(xk, uk), k = 0, 1, . . . ,

and a cost g(xk, uk) for the kth stage (cf. Section 4.2), the mapping H is
given by

H(x, u, J) = g(x, u) + J
(

f(x, u)
)

, x ∈ X, u ∈ U(x),

and J̄ is the zero function [J̄(x) ≡ 0]. It can be seen that the cost function
of a policy π, as given by Eq. (B.1), takes the form

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x) = lim sup

k→∞

k
∑

t=0

g
(

xt, µt(xt)
)

, (B.2)

since (Tµ0 · · ·Tµk
J̄)(x) is the cost of the first k+1 periods using π starting

from x, and with terminal cost 0 (the value of J̄ at the terminal state).
For the affine monotonic model of Section 4.5, the mapping H is given

by

H(i, u, J) = g(i, u) +

n
∑

j=1

Aij(u)J(j),

where g(i, u) ≥ 0 and Aij(u) ≥ 0 for all i, j, and u ∈ U(x), and J̄ is some
nonnegative function; as an example for the multiplicative and exponential
cost problems of Section 4.5, we have J̄(i) ≡ 1.
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For an undiscounted stochastic problem involving a Markov chain
with state space X = {1, . . . , n}, transition probabilities pxy(u), and ex-
pected one-stage cost function g, the mapping H is given by

H(x, u, J) = g(x, u) +

n
∑

y=1

pxy(u)J(y), x ∈ X, J ∈ E(X),

(with the convention ∞−∞ = ∞ if J is extended real-valued). The SSP
problem arises when one of the states is cost-free and absorbing.

A more general undiscounted stochastic optimal control problem,
where the cost per stage can take both positive and negative values, in-
volves a stationary discrete-time dynamic system where the state is an
element of a space X , and the control is an element of a space U . The con-
trol uk is constrained to take values in a given nonempty subset U(xk) of
U , which depends on the current state xk [uk ∈ U(xk), for all xk ∈ X ]. For
a policy π = {µ0, µ1, . . .}, the state evolves according to a system equation

xk+1 = f
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , (B.3)

where wk is a random disturbance that takes values from a space W . We
assume that wk, k = 0, 1, . . ., are characterized by probability distributions
P (· | xk, uk) that are identical for all k, where P (wk | xk, uk) is the prob-
ability of occurrence of wk, when the current state and control are xk and
uk, respectively. Thus the probability of wk may depend explicitly on xk

and uk, but not on values of prior disturbances wk−1, . . . , w0. We allow
infinite state and control spaces, as well as problems with discrete (finite
or countable) state space (in which case the underlying system is a Markov
chain). However, for technical reasons that relate to measure theoretic
issues, we assume that W is a countable set.

Given an initial state x0, we want to find a policy π = {µ0, µ1, . . .},
where µk : X 7→ U , µk(xk) ∈ U(xk), for all xk ∈ X , k = 0, 1, . . ., that
minimizes

Jπ(x0) = lim sup
k→∞

E

{

k
∑

t=0

g
(

xt, µt(xt), wt

)

}

,

subject to the system equation constraint (B.3), where g is the one-stage
cost function. The corresponding mapping of the abstract DP problem is

H(x, u, J) = E
{

g(x, u, w) + J
(

f(x, u, w)
)}

,

and J̄(x) ≡ 0. Again here, (Tµ0 · · ·Tµk
J̄)(x) is the expected cost of the

first k + 1 periods using π starting from x, and with terminal cost 0.
A discounted version of the problem is defined by the mapping

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

, (B.4)

where α ∈ (0, 1) is the discount factor. It corresponds to minimization of

Jπ(x0) = lim sup
k→∞

E

{

k
∑

t=0

αtg
(

xt, µt(xt), wt

)

}

.
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B.2 REGULAR POLICIES, VALUE ITERATION, AND FIXED
POINTS OF T

Generally, in a DP model, one expects to establish that J* is a solution of
Bellman’s equation, i.e., it is a fixed point of T . This is known to be true
for most of the major DP models under reasonable conditions, and in fact
it may be viewed as an indication of exceptional behavior when it does not
hold. For some models, J* is the unique fixed point of T within a convenient
subset of E(X), such as the space of bounded functions. An example is
contractive models where Tµ is a contraction mapping for all µ ∈ M, with
respect to some norm and with a common modulus of contraction (cf.
Chapters 1 and 2), and SSP problems under the assumptions of Chapter
3. However, in general T may have multiple fixed points within E(X),
including for some popular DP problems, while in exceptional cases, J*

may not be among the fixed points of T (as it can happen in SSP problems
under the weak conditions of Section 4.4 and the affine monotonic problems
of Section 4.5).

A related question is the convergence of VI, which we will view as
the fixed point algorithm that generates T kJ , k = 0, 1, . . . , starting from
a function J ∈ E(X). Generally, for abstract DP models where J* is a
fixed point of T , VI converges to J* starting from within some subset of
initial functions J , but not necessarily from every J ; this is certainly true
when T has multiple fixed points. One of the purposes of this appendix
is to characterize the set of functions starting from which VI converges to
J*, and the related issue of multiplicity of fixed points, through notions of
regularity that we now introduce.

Definition B.2.1: For a nonempty set of functions S ⊂ E(X), we
say that a collection C of policy-state pairs (π, x), with π ∈ Π and
x ∈ X , is S-regular if

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x), ∀ (π, x) ∈ C, J ∈ S.

Thus for an S-regular collection of pairs (π, x), the value of Jπ(x) is
not affected if the starting function is changed from J̄ to any J ∈ S. In
particular, if π is a stationary policy µ, VI yields in the limit Jµ(x) starting
from any J ∈ S.

For a given set C of policy-state pairs (π, x), let us consider the func-
tion J*

C ∈ E(X), given by

J*
C(x) = inf

{π | (π,x)∈C}
Jπ(x), x ∈ X. (B.5)
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Note that J*
C ≥ J* [if for some x ∈ X , the set of policies {π | (π, x) ∈ C}

is empty, we have J*
C(x) = ∞]. We will try to characterize the sets of

fixed points of T and limit points of VI in terms of the function J*
C for an

S-regular set C. The following is a key proposition.†

Proposition B.2.1: Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular.

(a) For all J ∈ S, we have

lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J*
C .

(b) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, and all J ∈ E(X) such that
J ′ ≤ J ≤ J̃ for some J̃ ∈ S, we have

J ′ ≤ lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J*
C .

Proof: (a) Using the generic relation TJ ≤ TµJ , µ ∈ M, and the mono-
tonicity of T and Tµ, we have for all k

(T kJ)(x) ≤ (Tµ0 · · ·Tµk−1
J)(x), ∀ (π, x) ∈ C, J ∈ S.

By letting k → ∞ and by using the definition of S-regularity, it follows
that for all (π, x) ∈ C, and J ∈ S,

lim inf
k→∞

(T kJ)(x) ≤ lim sup
k→∞

(T kJ)(x) ≤ lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x) = Jπ(x),

and taking infimum of the right side over
{

π | (π, x) ∈ C
}

, we obtain the
result.

(b) Using the hypotheses J ′ ≤ TJ ′, and J ′ ≤ J ≤ J̃ for some J̃ ∈ S, and
the monotonicity of T , we have

J ′(x) ≤ (TJ ′)(x) ≤ · · · ≤ (T kJ ′)(x) ≤ (T kJ)(x) ≤ (T kJ̃)(x).

Letting k → ∞ and using part (a), we obtain the result. Q.E.D.

Some interesting implications of part (b) of the proposition are that
given a set S ⊂ E(X), and a set C ⊂ Π×X that is S-regular:

† In this proposition as well as later, when referring to a collection C that is

S-regular, we implicitly assume that C and S are nonempty.
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J ′ J∗

C

Limit Region Valid Start Region

Limit Region Valid Start Region

J J

VI Optimal Cost over CFixed Point of T

C E(X)

VI: T kJ

J̃ ∈ S

Figure B.2.1. Illustration of Prop. B.2.1. Neither J∗
C

nor J∗ need to be fixed

points of T , but if C is S-regular, and there exists J̃ ∈ S with J∗
C

≤ J̃ , then J∗
C

demarcates from above the range of fixed points of T that lie below J̃ .

(1) J*
C is an upper bound to every fixed point J ′ of T that lies below

some J̃ ∈ S (i.e., J ′ ≤ J̃). Moreover, for such a fixed point J ′, the
convergence of VI is characterized by the valid start region

{

J ∈ E(X) | J*
C ≤ J ≤ J̃ for some J̃ ∈ S

}

,

and the limit region

{

J ∈ E(X) | J ′ ≤ J ≤ J*
C

}

.

The VI algorithm, starting from the former, ends up asymptotically
within the latter; cf. Fig. B.2.1.

(2) If J*
C is a fixed point of T (a common case in our subsequent analysis),

then VI converges to J*
C starting from any J ∈ E(X) such that J*

C ≤

J ≤ J̃ for some J̃ ∈ S. For future reference, we state this observation
as a proposition.

Proposition B.2.2: Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular, and assume that J*

C is a fixed
point of T . Then J*

C is the only possible fixed point of T within the

set of all J ∈ E(X) such that J*
C ≤ J ≤ J̃ for some J̃ ∈ S. Moreover,

T kJ → J*
C for all J ∈ E(X) such that J*

C ≤ J ≤ J̃ for some J̃ ∈ S.

Proof: Let J ∈ E(x) and J̃ ∈ S be such that J*
C ≤ J ≤ J̃ . Using the fixed

point property of J*
C and the monotonicity of T , we have

J*
C = T kJ*

C ≤ T kJ ≤ T kJ̃ , k = 0, 1, . . . .
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From Prop. B.2.1(b), with J ′ = J*
C , it follows that T kJ̃ → J*

C , so taking
limit in the above relation as k → ∞, we obtain T kJ → J*

C . Q.E.D.

The preceding proposition takes special significance when C is rich
enough so that J*

C = J*, as for example in the case where C is the set
Π ×X of all (π, x), or other choices to be discussed later. It then follows
that VI converges to J* starting from any J ∈ E(X) such that J* ≤ J ≤ J̃
for some J̃ ∈ S.† In the particular applications to be discussed in Section
B.4 we will use such a choice.

Note that Prop. B.2.2 does not say anything about fixed points of T
that lie below J*

C , and does not give conditions under which J*
C is a fixed

point. In particular, it does not address the question whether J* is a fixed
point of T , or whether VI converges to J* starting from J̄ or from below
J*. Generally, it can happen that both, only one, or none, of the two func-
tions J*

C and J* is a fixed point of T ! These are major issues in abstract
DP models, which we will address in this appendix, under specialized as-
sumptions. Significantly, however, such issues have been already addressed
in Chapters 1-4, in the context of various specific models.

In particular, for the discounted problems of Chapters 1 and 2 [the
case of the mapping (B.4) with α ∈ (0, 1) and g: bounded], underlying sup-
norm contraction properties guarantee that J* is the unique fixed point of
T within the class of bounded real-valued functions over X , and that VI
converges to J* starting from within that class. This is also true for finite-
state SSP problems, under the favorable assumptions of Chapter 3.

For SSP problems under the weak assumptions of Section 4.4, J* need
not be a fixed point of T . In the context of the present appendix, a useful
choice is to take

C =
{

(µ, x) | µ : proper
}

,

in which case J*
C is the optimal cost function that can be achieved using

proper policies only. It was shown in Section 4.4 that J*
C is a fixed point

of T , so by Prop. B.2.2, VI converges to J*
C starting from any real-valued

J ≥ J*
C (cf. Prop. 4.4.2).
For nonpositive and nonnegative cost problems (g ≤ 0 or g ≥ 0,

respectively, cf. Section 4.1), J* is a fixed point of T , but not necessarily
unique. We will discuss cases of nonnegative cost problems in Section B.4,
for appropriate choices of C, we will obtain some interesting results. The
following is a nonnegative cost linear-quadratic example, where both J*

and J*
C are fixed points of T , but J* 6= J*

C . Moreover VI tends to converge
to J*

C rather than to J*.

† For this statement to be meaningful, the set
{

J̃ ∈ E(X) | J∗ ≤ J̃
}

must

be nonempty. Generally, it is possible that this set is empty, even though S is

assumed nonempty.
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Example B.2.1 (Linear-Quadratic Example)

Consider Example 4.2.2, which involves the scalar system xk+1 = γxk + uk,
γ > 1, and the quadratic cost g(x, u) = u2. Here X = U(x) = ℜ, and
Bellman’s equation has the form

J(x) = min
u∈ℜ

{

u
2 + J(γx+ u)

}

, x ∈ ℜ.

The optimal cost function, J∗(x) ≡ 0 is a solution. Let us call linear stable a
stationary policy µ(x) = βx, with β such that the closed-loop system xk+1 =
(γ + β)x is stable in the sense that |γ + β| < 1. Let C be the set of pairs

C =
{

(µ, x) | x ∈ ℜ, µ: linear stable
}

.

For S being the set of real-valued functions J that satisfy J(0) = 0 and are
continuous at 0,

S =
{

J ∈ R(X) | J(xk) → 0 if xk → 0
}

,

it can be seen that C is S-regular. Moreover, it can be verified that the policy

µ(x) = (1−γ2)x
γ

is optimal within the class of linear stable policies, and we
have

J
∗
C (x) = (γ2 − 1)x2

,

which is also a fixed point of T , as noted in Example 4.2.2.
For this problem, VI starting with any positive definite quadratic initial

condition

J0(x) = P0x
2
, P0 > 0,

generates the sequence of quadratic functions Jk(x) = Pkx
2 according to

Pk+1 = γ
2 Pk

Pk + 1
, k = 0, 1, . . . ,

(cf. Fig. 4.1.2 in Section 4.1 of Vol. I). It can be seen that Jk → J∗
C if P0 > 0

and Jk → J∗ if P0 = 0. This is consistent with Props. B.2.1 and B.2.2.

The Case Where J*
C ≤ J̄

We have seen in Section 4.1 that the results for nonnegative cost and
nonpositive cost infinite horizon stochastic optimal control problems are
markedly different. In particular, PI behaves better when the cost is non-
negative, while VI behaves better if the cost is nonpositive. These differ-
ences extend to the so-calledmonotone increasing and monotone decreasing

abstract DP models, where a principal assumption is that TµJ̄ ≥ J̄ and
TµJ̄ ≤ J̄ for all µ ∈ M, respectively (see [Ber13], Ch. 4).
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In the context of regularity, with C being S-regular, it turns out that
there are analogous significant differences between the cases J*

C ≥ J̄ and
J*
C ≤ J̄ . The favorable aspects of the condition J*

C ≥ J̄ will be seen later in
the context of PI, where it guarantees the monotonic improvement of the
policy iterates (see the subsequent Prop. B.3.4). The following proposition
establishes some favorable aspects of the condition J*

C ≤ J̄ in the context
of VI. These can be attributed to the fact that J̄ can always be added to
S without affecting the S-regularity of C, so J̄ can serve as the element J̃
of S with J*

C ≤ J̃ in Props. B.2.1 and B.2.2 (see the proof of the following
proposition).

Proposition B.2.3: Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular, and assume that J*

C ≤ J̄ .
Then:

(a) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, we have

J ′ ≤ lim inf
k→∞

T kJ̄ ≤ lim sup
k→∞

T kJ̄ ≤ J*
C .

(b) If J*
C is a fixed point of T , then J* = J*

C and we have T kJ̄ → J*

as well as T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃
for some J̃ ∈ S.

Proof: (a) If S does not contain J̄ , we can replace S with S̄ = S ∪ {J̄},
and C will still be S̄-regular. By applying Prop. B.2.1(b) with S replaced
by S̄ and J̃ = J̄ , the result follows.

(b) Assume without loss of generality that J̄ ∈ S [cf. the proof of part
(a)]. By using Prop. B.2.2 with J̃ = J̄ , we have J*

C = limk→∞ T kJ̄ . This
relation yields for any policy π = {µ0, µ1, . . .} ∈ Π,

J*
C = lim

k→∞
T kJ*

C ≤ lim sup
k→∞

T kJ̄ ≤ lim sup
k→∞

Tµ0 · · ·Tµk−1
J̄ = Jπ,

so by taking the infimum over π ∈ Π, we obtain J*
C ≤ J*. Since generically

we have J*
C ≥ J*, it follows that J*

C = J*. Finally, from Prop. B.2.2, we

obtain T kJ → J* for all J ∈ E(X) such that J* ≤ J ≤ J̃ for some J̃ ∈ S.
Q.E.D.

As a special case of the preceding proposition, we have that if J* ≤ J̄
and J* is a fixed point of T , then J* = limk→∞ T kJ̄ , and for every other
fixed point J ′ of T we have J ′ ≤ J* (apply the proposition with C = Π×X
and S = {J̄}, in which case J*

C = J* ≤ J̄). This special case is relevant,
among others, to the monotone decreasing models, where TµJ̄ ≤ J̄ for
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all µ ∈ M. A special case is the convergence of VI for nonpositive cost
models [cf. Prop. 4.1.7(b)]. The proposition also applies to a classical type
of search problem with both positive and negative costs per stage. This is
the SSP problem, where at each x ∈ X we have cost E

{

g(x, u, w)
}

≥ 0 for
all u except one that leads to a termination state with probability 1 and
nonpositive cost.

B.3 REGULAR STATIONARY POLICIES

We will now specialize the notion of S-regularity to stationary policies with
the following definition, and obtain results that are useful in a variety of
contexts, including PI-type of algorithms. We will also address questions
of whether the optimal cost function over S-regular policies only is a fixed
point of T .

Definition B.3.1: For a nonempty set of functions S ⊂ E(X), we
say that a stationary policy µ is S-regular if Jµ ∈ S, Jµ = TµJµ, and
T k
µJ → Jµ for all J ∈ S. A policy that is not S-regular is called

S-irregular .

Comparing this definition with Definition B.2.1, we see that µ is S-
regular if the set C =

{

(µ, x) | x ∈ X
}

is S-regular, and in addition Jµ ∈ S
and Jµ = TµJµ. Given a set S ⊂ E(X), let MS be the set of policies that
are S-regular, and let us consider optimization over the S-regular policies
only. The corresponding optimal cost function is denoted J*

S :

J*
S(x) = inf

µ∈MS

Jµ(x), ∀ x ∈ X.

This notation is consistent with the definition of J*
C since J*

S = J*
C when

C = MS ×X and MS is nonempty. We say that µ∗ is MS-optimal if

µ∗ ∈ MS and Jµ∗ = J*
S .

A key issue is whether J*
S is a fixed point of T (we will shortly provide

conditions that guarantee this). The following proposition shows that if J*
S

is a fixed point of T , it can then be obtained by VI, and provides optimality
conditions for a policy µ∗ to be MS-optimal.
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Proposition B.3.1: Given a set S ⊂ E(X), assume that there exists
at least one S-regular policy and that J*

S is a fixed point of T . Then:

(a) J*
S is the only possible fixed point of T within the set of all

J ∈ E(X) such that J*
S ≤ J ≤ J̃ for some J̃ ∈ S.

(b) We have T kJ → J*
S for every J ∈ E(X) such that J*

S ≤ J ≤ J̃

for some J̃ ∈ S.

(c) If µ∗ is S-regular, J*
S ∈ S, and Tµ∗J*

S = TJ*
S, then µ∗ is MS-

optimal. Conversely, if µ∗ is MS-optimal, then Tµ∗J*
S = TJ*

S.

Proof: (a), (b) The definition of S-regularity and J*
S imply that the

nonempty set
C = MS ×X

is S-regular, and we have

J*
S = J*

C ≥ J*.

The results of parts (a) and (b) follow from Prop. B.2.2 with the above
definition of C.

(c) If µ∗ is S-regular, in view of the assumptions Tµ∗J*
S = TJ*

S = J*
S , we

have
T 2
µ∗J*

S = Tµ∗(TJ*
S) = Tµ∗J*

S = TJ*
S = J*

S ,

where the first equality follows by applying Tµ∗ to the equality Tµ∗J*
S =

TJ*
S. Using this argument repeatedly, we have J*

S = T k
µ∗J*

S for all k, so
that

J*
S = lim

k→∞
T k
µ∗J*

S = Jµ∗ ,

where the last equality follows since µ∗ is S-regular and we assume that
J*
S ∈ S. Thus µ∗ is MS-optimal. Conversely, if µ∗ is MS-optimal, we have

Jµ∗ = J*
S , so that the assumptions imply that

TJ*
S = J*

S = Jµ∗ = Tµ∗Jµ∗ = Tµ∗J*
S .

Q.E.D.

A weakness of the preceding proposition is the assumption that J*
S is

a fixed point of T . For a specific application, this must be proved with a
separate analysis. We will provide three different approaches for a proof,
in the following three subsections, respectively.

(a) The first approach is inspired by problems, for which J* is generically
a fixed point of T , in which case if there is a set S such that J*

S = J*,
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Prop. B.3.1 applies and shows that J* can be obtained by the VI
algorithm starting from any J ≥ J*. This approach can be used for
the positive and negative cost models of Section 4.1, for which we have
shown that J* is a fixed point of T , but it can also be used generically
for deterministic and for minimax problems as we will show shortly.

(b) The second approach is based on a perturbation argument similar to
the ones used on Sections 4.4 and 4.5 for SSP and affine monotonic
problems, respectively. As in these sections, the perturbation ap-
proach may be used in the context of problems where in the presence
of a perturbation, irregular policies produce infinite cost from some
initial state (see the development of Section B.5).

(c) The third approach is based on PI arguments, and in addition to
showing that J*

S is a fixed point of T , it provides valid PI algorithms.

B.3.1 Showing that J*
S is a Fixed Point of T - The Deterministic

and Minimax Cases

We will show that the optimal cost function J* is a fixed point of T under
some assumptions, which among others are satisfied generically in the case
of deterministic problems corresponding to the mapping

H(x, u, J) = g(x, u)+J
(

f(x, u)
)

, x ∈ X, u ∈ u(x), J ∈ E(X), (B.6)

and in the case of minimax problems corresponding to the mapping

H(x, u, J) = sup
w∈W (x,u)

[

g(x, u, w) + J
(

f(x, u, w)
)

]

,

x ∈ X, u ∈ u(x), J ∈ E(X).

(B.7)

As a first step in this direction, we prove the following proposition.

Proposition B.3.2: Let Π̂ be a subset of policies such that:

(1) We have

(µ, π) ∈ Π̂ if and only if µ ∈ M, π ∈ Π̂,

where for µ ∈ M and π = {µ0, µ1, . . .}, we denote by (µ, π) the
policy {µ, µ0, µ1, . . .}.
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(2) For every π = {µ0, µ1, . . .} ∈ Π̂, we have

Jπ = Tµ0Jπ1 ,

where π1 is the policy π1 = {µ1, µ2, . . .}.

(3) We have
inf

µ∈M, π∈π̂
TµJπ = inf

µ∈M
TµĴ ,

where the function Ĵ is given by

Ĵ(x) = inf
π∈Π̂

Jπ(x), x ∈ X.

Then Ĵ is a fixed point of T . In particular, if Π̂ = Π, then J* is a fixed
point of T .

Proof: For every x ∈ X , we have

Ĵ(x) = inf
π∈Π̂

Jπ(x) = inf
µ∈M, π∈Π̂

(TµJπ)(x) = inf
µ∈M

(TµĴ)(x) = (T Ĵ)(x),

where the second equality holds by conditions (1) and (2), and the third
equality holds by condition (3). Q.E.D.

The assumptions of the preceding proposition can be shown to hold
when Π̂ = Π in the case of the deterministic mapping (B.6) and the mini-
max mapping (B.7) with Π̂ being the set of all policies Π.† As a result J*,
which is equal to Ĵ when Π̂ = Π, is a fixed point of T . Moreover, if we
choose a set S such that J*

S can be shown to be equal to J*, then Prop.
B.3.1 applies and shows that J* is the unique fixed point of T with the set
{

J ∈ E(X) | J*
S ≤ J ≤ J̃

}

for some J̃ ∈ S. In addition the VI sequence
{T kJ} converges to J* starting from every J within that set. This idea
underlies the analysis of the deterministic problem of Section 4.2, where J*

is known to be a fixed point of T because the cost per stage is nonnegative
and the analysis of Section 4.1 applies.

† This is evident in the case of the deterministic mapping (B.6), and it is also

true for the case of the minimax mapping (B.7) because the operation of max-

imization over w commutes with lim sup. The assumptions of the proposition

also hold for other choices of Π̂. For example, when Π̂ is the set of all even-

tually stationary policies, i.e., policies of the form {µ0, . . . , µk, µ, µ, . . .}, where
µ0, . . . , µk, µ ∈ M and k is some positive integer.
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We note, however, that for stochastic optimal control problems such
as the SSP problem of Section 4.4, condition (2) of the preceding proposi-
tion need not be satisfied (because the expected value operation need not
commute with lim sup), and for this reason it is possible that J* is not a
fixed point T , as illustrated by the example given in Section 4.4. We also
note that the preceding proposition cannot be used with Π̂ equal to a set
of all stationary policies, because condition (1) would be violated in this
case.

B.3.2 Showing that J*
S is a Fixed Point of T - A Perturbation

Approach

We will now discuss a perturbation approach for showing that J*
S is a fixed

point of T . This approach was used in the cases of the SSP problem of Sec-
tion 4.4.1 [cf. Prop. 4.4.2(a)], and the affine monotonic problem of Section
4.5 [cf. Prop. 4.5.6(a)]. We will generalize these analyses and show that J*

S

is a fixed point of T if the problem obtained by adding a positive pertur-
bation to H is well-behaved with respect to S-regular policies. The idea,
illustrated in Section 4.4.1 for SSP problems, is that with a perturbation,
the cost functions of S-irregular policies may increase disproportionately
relative to the cost functions of the S-regular policies, thereby making the
problem more amenable to analysis.†

For each δ ≥ 0 and policy µ, we consider the mappings Tµ,δ and Tδ

given by
(Tµ,δJ)(x) = H

(

x, µ(x), J
)

+ δ, x ∈ X,

(TδJ)(x) = inf
u∈U(x)

H(x, u, J) + δ = inf
µ∈M

(Tµ,δJ)(x), x ∈ X.

We define the corresponding cost functions of policies π = {µ0, µ1, . . .} ∈ Π
and µ ∈ M, and optimal cost function J*

δ by

Jπ,δ(x) = lim sup
k→∞

Tµ0,δ · · ·Tµk,δ
J̄ , Jµ,δ(x) = lim sup

k→∞
T k
µ,δJ̄ ,

J*
δ = inf

π∈Π
Jπ,δ.

We refer to the problem associated with the mappings Tµ,δ as the δ-
perturbed problem. Note that by the monotonicity of H , we have Tµ,δJ ≥
TµJ for all δ > 0, µ ∈ M, and J ∈ S, and hence also Jπ,δ ≥ Jπ for all
π ∈ Π, and J*

δ ≥ J*.
The following proposition shows that if the δ-perturbed problem is

“well-behaved” with respect to the S-regular policies, then its cost function

† Here, we consider adding to H a constant perturbation δ > 0. A more

general approach, which may be useful in some contexts, is to add an (x, u)-

dependent perturbation δ(x, u) ≥ 0.
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J*
δ can be used to approximate the optimal cost function J*

S over the S-
regular policies only, and moreover J*

S is a fixed point of T .

Proposition B.3.3: Given a set S ⊂ E(X), assume that:

(1) For every δ > 0, we have J*
δ = TδJ*

δ , and there exists an S-
regular policy µ∗

δ that is optimal for the δ-perturbed problem,
i.e., Jµ∗

δ
,δ = J*

δ .

(2) For every S-regular policy µ, we have

Jµ,δ ≤ Jµ + wµ(δ), ∀ δ > 0,

where wµ is a function such that limδ↓0 wµ(δ) = 0.

Consider J*
S , the optimal cost function over the S-regular policies only,

J*
S = inf

µ:S-regular
Jµ.

(a) We have limδ↓0 J*
δ = J*

S .

(b) Assume in addition that H has the property that for every se-
quence {Jm} ⊂ S with Jm ↓ J , we have

lim
m→∞

H(x, u, Jm) ≥ H(x, u, J), ∀ x ∈ X, u ∈ U(x). (B.8)

Then J*
S is a fixed point of T and the conclusions of Prop. B.3.1

hold.

Proof: (a) For all δ > 0, by using conditions (1) and (2), we have for all
S-regular µ,

J*
S ≤ Jµ∗

δ
≤ Jµ∗

δ
,δ = J*

δ ≤ Jµ,δ ≤ Jµ + wµ(δ).

By taking the limit as δ ↓ 0 and then the infimum over all S-regular µ, it
follows that

J*
S ≤ lim

δ↓0
J*
δ ≤ inf

µ: S-regular
Jµ = J*

S .

(b) From condition (1), for all δ > 0, we have

J*
δ = TδJ*

δ ≥ TJ*
δ = TJµ∗

δ
,δ ≥ TJ*

S,

and by taking the limit as δ ↓ 0 and using part (a), we obtain J*
S ≥ TJ*

S.
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To prove the reverse inequality, let {δm} be a sequence with δm ↓ 0.
Using condition (1), we have TδmJ*

δm
= J*

δm
, so that for all m,

H(x, u, J*
δm

) + δm ≥ (TδmJ*
δm

)(x) = J*
δm

(x), ∀ x ∈ X, u ∈ U(x).

Taking the limit as m → ∞, and using Eq. (B.8) and the fact J*
δm

↓ J*
S [cf.

part (a)], we have

H(x, u, J*
S) ≥ J*

S(x), ∀ x ∈ X, u ∈ U(x),

so that TJ*
S ≥ J*

S . Thus J*
S is a fixed point of T , and the assumptions of

Prop. B.3.1 are satisfied. Q.E.D.

The preceding proposition does not require the existence of an optimal
S-regular policy for the original problem. It applies even if the optimal cost
function J* does not belong to S and we may have limδ↓0 J*

δ (x) > J*(x) for
some x ∈ X . This is illustrated by the following example, given in Section
3.2 of [Ber13]. A very similar example is the deterministic shortest path
Example 4.4.1 of Chapter 4. Another example is given by the SSP problem
of Example 4.4.2, where in addition J* is not a fixed point of T .

Example B.3.1

Consider the case of a single state where J̄ = 0, and there are two policies,
µ∗ and µ, with

Tµ∗J = J, TµJ = 1, ∀ J ∈ ℜ.

Here we have Jµ∗ = 0 and Jµ = 1. Moreover, it can be verified that for any set
S ⊂ ℜ that contains the point 1, the optimal policy µ∗ is not S-regular while
the suboptimal policy µ is S-regular. For δ > 0, the δ-perturbed problem has
optimal cost J∗

δ = 1 + δ, the unique solution of the Bellman equation

J = TδJ = min{1, J}+ δ,

and its optimal policy is the S-regular policy µ (see Fig. B.3.1). We also have

lim
δ↓0

J
∗
δ = Jµ = 1 > 0 = J

∗
,

consistent with Prop. B.3.3.

The perturbation line of analysis of Prop. B.3.3 has been already used
in the context of the SSP problem of Section 4.4 (cf. Prop. 4.4.1), and the
affine monotonic problem of Section 4.5 (cf. Prop. 4.5.5). In particular,
we showed there that the optimal cost function over the S-regular policies
only, J*

S (or J̃ in the notation of Sections 4.4 and 4.5), is a fixed point of
T , and the conclusions of Prop. B.3.1 hold (cf. Props. 4.4.2 and 4.5.6).
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J TJ

1 1 +

1 1 +

1 1 + δ

TδJ TJ

J TJ

= 0 J*
δ
= Jµ,δ = 1 + δδ J* = Jµ∗ = 0

Figure B.3.1: The mapping T and its perturbed version Tδ in Example B.3.1.
Here, the assumptions of Prop. B.3.3 hold, and we have limδ↓0 J

*
δ
= J*

S
. However,

J∗ is also a fixed point of T and is not equal to J*
S
.

B.3.3 Policy Iteration and its Convergence

We will now consider the PI algorithm and its convergence properties. The
idea is to generate an improving sequence of policies whose cost functions
Jµk converge monotonically to some J∞ that satisfies J∞ ≥ J* and will
be shown to be a fixed point of T under simple conditions. If for some set
S ⊂ E(X), the generated policies µk are S-regular and their cost functions
Jµk belong to S, then J∞ is equal to J*

S , since by Prop. B.2.2, J*
S is the

“largest” fixed point of T over the set of J such that J*
S ≤ J ≤ Jµk .

Moreover, if we have J*
S = J*, then the PI sequence {Jµk} converges to J*.

This line of analysis was used for example in Section 4.2 (cf. Prop. 4.2.3).
More precisely, we consider the standard form of the PI algorithm,

which starts with a policy µ0 and generates a sequence {µk} of stationary
policies according to

Tµk+1Jµk = TJµk . (B.9)

This iteration embodies both the policy evaluation step, which computes
Jµk , and the policy improvement step, which computes µk+1 via the min-
imization over U(x) for each x, which is implicit in Eq. (B.9). We will
assume that this minimization can be carried out, so that the algorithm is
well-defined. The evaluation of a stationary µ will ordinarily be done by
solving the equation Jµ = TµJµ, which holds for most models of interest,
and which we will assume in our analysis (under exceptional circumstances
we may have Jµ 6= TµJµ, as shown in Section 4.4 for SSP problems under
weak conditions).
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We have the following proposition, the proof of which is patterned
after the proofs of Props. 4.4.2 and 4.4.3 of [Ber13] that relate to PI algo-
rithms for monotone increasing abstract DP models.

Proposition B.3.4: (Convergence of PI) Assume that:

(1) For all µ ∈ M, we have Jµ = TµJµ and there exists µ̄ ∈ M such
that Tµ̄Jµ = TJµ.

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈
E(X), we have

H (x, u, J) ≥ lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x). (B.10)

Then the PI algorithm (B.9) is well defined and the following hold:

(a) If J* ≥ J̄ , then a sequence {µk} generated by the PI algorithm
(B.9) satisfies Jµk ↓ J∞, where J∞ is a fixed point of T with

J∞ ≥ J*. Moreover, if for a set S ⊂ E(X) and some k̄ ≥ 0, µk̄

is S-regular, then Jµk ↓ J*
S and J*

S is a fixed point of T .

(b) If for a set S ⊂ E(X) and some k̄ ≥ 0, all the policies µk, k ≥ k̄,
generated by the PI algorithm (B.9) are S-regular, then Jµk ↓ J*

S

and J*
S is a fixed point of T .

Proof: (a) Condition (1) of the proposition guarantees that the PI algo-
rithm is well defined. We first show that the condition J* ≥ J̄ implies a
generic cost improvement property of PI. If µ is a policy and µ̄ satisfies
Tµ̄Jµ = TJµ, we have

Jµ = TµJµ ≥ TJµ = Tµ̄Jµ,

from which, by repeatedly applying Tµ̄ to both sides, we obtain Jµ ≥
limk→∞ T k

µ̄Jµ. Since Jµ ≥ J* ≥ J̄ and by definition Jµ̄ = limk→∞ T k
µ̄ J̄ , it

follows that

Jµ ≥ TJµ ≥ Jµ̄. (B.11)

Using this relation with µ = µk and µ̄ = µk+1, we have

Jµk ≥ TJµk ≥ Jµk+1 , k = 0, 1, . . . ,

so that Jµk ↓ J∞ for some J∞ ≥ J*. By taking the limit as k → ∞,

J∞ ≥ lim
k→∞

TJµk ≥ TJ∞, (B.12)
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where the second inequality follows from the fact Jµk ≥ J∞. Using Eq.
(B.10), we also have for all x ∈ X and u ∈ U(x),

H(x, u, J∞) ≥ lim
k→∞

H(x, u, Jµk ) ≥ lim
k→∞

(TJµk)(x) = J∞(x).

By taking the infimum of the left-hand side over u ∈ U(x), we obtain
TJ∞ ≥ J∞, which combined with Eq. (B.12), yields J∞ = TJ∞. Moreover,
by the definition of S-regularity, J

µk̄ ∈ S, so by Prop. B.2.2 with C equal

to MS ×X , J*
S (which is equal to J*

C) is the only possible fixed point of T
within the set of all J ∈ E(X) such that J*

S ≤ J ≤ J
µk̄ . This set includes

J∞ (since J*
S ≤ Jµk ≤ J

µk̄ for all k ≥ k̄). Hence J∞ = J*
S .

(b) By using the assumption of S-regularity of µk, we show again a generic
cost improvement property of PI. If µ and µ̄ are S-regular policies, and
Tµ̄Jµ = TJµ, we have

Jµ = TµJµ ≥ TJµ = Tµ̄Jµ ≥ lim
k→∞

T k
µ̄Jµ = Jµ̄,

where the last inequality follows from the monotonicity of Tµ̄ and the last
equality follows from the assumption that µ and µ̄ are S-regular. It follows
similar to part (a) that Jµk ↓ J∞ where J∞ is a fixed point of T . The proof
from this point is identical to the one of part (a). Q.E.D.

The proposition shows that PI restricted to S-regular policies will

converge to J*
S but not necessarily to J*. Indeed this can be so, as we

have seen in the deterministic shortest path Example 4.1.3 with b > 0 and
S = [b,∞).

Condition (1) of the proposition holds for most DP models of interest,
and the same is true for condition (2), which is a technical continuity-type
assumption. The condition J* ≥ J̄ in part (a) is essential for showing the
cost improvement property (B.11) in the preceding proof (if cost improve-
ment can be shown independently, the condition J* ≥ J̄ is not needed).
In Example 4.1.3, we have seen an instance of a two-state deterministic
shortest path problem where this condition is violated, and the PI algo-
rithm (B.9) oscillates between an optimal and a suboptimal policy. Note
that the condition J* ≥ J̄ does not hold for monotone decreasing models
where TµJ̄ ≤ J̄ for all µ ∈ M (unless J* = J̄).

Optimistic PI

We will now consider an optimistic variant of PI, where policies are eval-
uated inexactly, with a finite number of VIs. In particular, this algorithm
starts with some J0 ∈ E(X) such that J0 ≥ TJ0, and generates a sequence
{Jk, µk} according to

TµkJk = TJk, Jk+1 = T
mk

µk Jk, k = 0, 1, . . . , (B.13)
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where mk is a positive integer for each k. For this algorithm, it turns out
that the conditions for convergence are less restrictive. There is no need
for the condition J* ≥ J̄ or the S-regularity of the generated policies, as
shown in the following proposition. This is due to the fact that optimistic
PI embodies the characteristics of VI, which has favorable properties when
J* ≤ J̄ (see the discussion in connection with Prop. B.2.3).

Proposition B.3.5: (Convergence of Optimistic PI) Assume
that:

(1) For all µ ∈ M, we have Jµ = TµJµ, and for all J ∈ E(X) with
J ≤ J0, there exists µ̄ ∈ M such that Tµ̄J = TJ .

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈
E(X), we have

H (x, u, J) ≥ lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x).

Then the optimistic PI algorithm (B.13) is well defined, and under the
condition J0 ≥ TJ0, the following hold:

(a) The sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞,
where J∞ is a fixed point of T .

(b) If for a set S ⊂ E(X), the policies µk generated by the algorithm
are S-regular and we have Jk ∈ S for all k, then Jk ↓ J*

S and J*
S

is a fixed point of T .

Proof: (a) Condition (1) guarantees that the sequence {Jk, µk} is well
defined in the following argument. We have

J0 ≥ TJ0 = Tµ0J0 ≥ Tm0
µ0 J0

= J1 ≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,
(B.14)

and continuing similarly, we obtain

Jk ≥ TJk ≥ Jk+1, k = 0, 1, . . . .

Thus Jk ↓ J∞ for some J∞. The proof that J∞ is a fixed point of T is the
same as in the case of the PI algorithm (B.9).

(b) In the case where all the policies µk are S-regular and {Jk} ⊂ S, from
Eq. (B.14), we have Jk+1 ≥ Jµk for all k, so we have

J∞ = lim
k→∞

Jk ≥ lim inf
k→∞

Jµk ≥ J*
S .
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Figure B.3.2. An SSP problem with two states 1, 2, and a termination state t.
Here, for S = ℜ2 the optimal cost function J∗

S
over the S-regular policies (i.e.,

the proper policies) is equal to J∗, but there is no optimal policy (proper or not).
Any sequence of proper policies {µk} with µk(1) → 0 is asymptotically optimal
in the sense that Jµk → J∗, and yet {µk} converges to the strictly suboptimal
improper policy for which u = 0 at state 1.

Using the fixed point property of J∞ proved in part (a), and applying Prop.
B.2.1(b) with

J ′ = J∞, J̃ = Jk ≥ J*
S , C = MS ×X,

we have J∞ ≤ J*
S , which combined with the preceding relation yields J∞ =

J*
S . Q.E.D.

The preceding two propositions can be used to ascertain convergence
to J* of the PI algorithms (B.9) and (B.13) (i.e., J∞ = J*) if J* is known to
be the only possible fixed point of T within a subset of E(X) to which J∞
can also be shown to belong. For example this is true under the assumptions
of Prop. B.2.2, assuming also that J∞ ≤ J̃ for some J̃ ∈ S. We have seen
examples of such use of the proposition in Section 4.2, where we showed
convergence of the PI algorithms (B.9) and (B.13), in the sense that Jµk ↓
J* and Jk ↓ J*, respectively, for positive cost deterministic optimal control
problems.

Generally, the sequence {µk} of generated policies by PI-like algo-
rithms need not converge to some policy, and even if it converges, the limit
policy need not be optimal. This is illustrated with the following example
from [BeY16], involving an SSP problem and a sequence of proper policies
{µk} that satisfy limk→∞ Jµk → J*, and yet {µk} converges to an improper
policy that is strictly suboptimal.

Example B.3.2 (Policy Convergence - A Counterexample)

Consider an SSP problem with two states 1, 2, in addition to the termination
state t; cf. Fig. B.3.2. At state 1 we must choose u ∈ [0, 1], with expected
cost equal to u. Then, we transition to state 2 with probability

√
u, and we

self-transition to state 1 with probability 1−√
u. From state 2 we transition
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to t with cost -1. Thus we have

H(1, u, J) = u+
(

1−
√
u
)

J(1) +
√
uJ(2), ∀ J ∈ ℜ2

, u ∈ [0, 1],

H(2, u, J) = −1, ∀ J ∈ ℜ2
, u ∈ U(2).

Here for S = ℜ2, the optimal cost function J∗
S over the S-regular policies

(i.e., the proper policies) is equal to J∗. There is a unique improper policy
µ: it chooses u = 0 at state 1, and has cost Jµ(1) = 1. Every policy µ

with µ(1) ∈ (0, 1] is proper, and Jµ can be obtained by solving the equation
Jµ = TµJµ. We have Jµ(2) = −1, so that

Jµ(1) = µ(1) +
(

1−
√

µ(1)
)

Jµ(1) −
√

µ(1),

and we obtain
Jµ(1) =

√

µ(1)− 1.

Thus, J∗(1) = −1. Consider a sequence of proper policies {µk} with µk(1) →
0. Any such sequence satisfies Jµk → J∗, yet it converges to the strictly
suboptimal improper policy.

Finally, let us note the possibility of combining PI with our earlier per-
turbation approach, to obtain a PI algorithm where the policy evaluation is
performed on the perturbed problem. We developed such an algorithm for
SSP problems in Section 4.4.2. This algorithm can be generalized nearly
verbatim to the context of this appendix; see also [Ber13], Section 3.3.3.

B.4 MONOTONE INCREASING MODELS

An important type of abstract DP model is one where J̄ ≤ TµJ̄ for all
µ ∈ M. In this model, the finite horizon costs Tµ0 · · ·Tµk

J̄ of any policy
π = {µ0, µ1, . . .} monotonically increase to Jπ . Consequently this model is
known as monotone increasing, and among others, it can be used to repre-
sent problems where nonnegative costs accumulate additively over time. A
major example is the nonnegative cost stochastic optimal control problem
of Section 4.1. Note that if the optimal cost J*(x) at a state x is to be
finite, the accumulation of nonnegative costs must be diminishing starting
from x. In the absence of discounting, this must be accomplished through
the presence of cost-free states, which in optimal control problems are typ-
ically desirable states that we aim to reach, perhaps asymptotically, from
the remaining states. The applications of this section are of this type.

For the monotone increasing model, J* is known to be the smallest
fixed point of T within the class of functions J ≥ J̄ , under certain relatively
mild assumptions. An example is the positive cost model of Section 4.1 [cf.
Prop. 4.1.3(a)]. However, VI may not converge to J* starting from below
J* (e.g., starting from J̄), and also starting from above J*. In this section
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we will address the question of convergence of VI from above J* by using
the regularity ideas of the preceding section. The starting point for the
analysis is the following assumption, introduced in [Ber75], [Ber77] (see
also [BeS78], Ch. 5, and [Ber13], Section 4.3).

Assumption I: (Monotone Increase)

(a) We have

−∞ < J̄(x) ≤ H(x, u, J̄), ∀ x ∈ X, u ∈ U(x).

(b) For each sequence {Jm} ⊂ E(X) with Jm ↑ J and J̄ ≤ Jm for
all m ≥ 0, we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(c) There exists a scalar α ∈ (0,∞) such that for all scalars r ∈
(0,∞) and functions J ∈ E(X) with J̄ ≤ J , we have

H(x, u, J + r e) ≤ H(x, u, J) + α r, ∀ x ∈ X, u ∈ U(x).

We summarize the results that are relevant to our development in
the following proposition (see [BeS78], Props. 5.2, 5.4, and 5.10, or [Ber13],
Props. 4.3.3, 4.3.9, and 4.3.14). Actually for the examples of this section,
we will only need the special cases of the various parts of the proposition
that were proved in Section 4.1, in the context of stochastic optimal control.

Proposition B.4.1: Let Assumption I hold. Then:

(a) J* = TJ*, and if J ∈ E(X) satisfies J ≥ TJ , then J ≥ J*.

(b) For all µ ∈ M we have Jµ = TµJµ.

(c) µ∗ ∈ M is optimal if and only if Tµ∗J* = TJ*.

(d) If U is a metric space and the sets

Uk(x, λ) =
{

u ∈ U(x)
∣

∣ H(x, u, T kJ̄) ≤ λ
}

(B.15)

are compact for all x ∈ X , λ ∈ ℜ, and k, then there exists at
least one optimal stationary policy, and we have T kJ → J* for
all J ∈ E(X) with J ≤ J*.
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Note that under Assumption I there may exist fixed points J ′ of
T with J* ≤ J ′, while VI or PI may not converge to J* starting from
above J*. However, convergence of VI to J* from above, if it occurs, is
often much faster than convergence from below, so starting points J ≥
J* may be desirable. One well-known such case is deterministic finite-
state shortest path problems where major algorithms, such as the Bellman-
Ford method or other label correcting methods have polynomial complexity,
when started from J above J*, but only pseudopolynomial complexity when
started from J = 0.

We will now use the results of the preceding section to establish con-
ditions regarding the uniqueness of J* as a fixed point of T , and the con-
vergence of VI and PI for various optimal control problems. In all these
problems, our analysis will proceed as follows:

(a) Define a collection C such that J*
C = J*.

(b) Define a set S ⊂ E+(X) such that J* ∈ S and C is S-regular.

(c) Use Prop. B.2.2 (which shows that J*
C is the largest fixed point of

T within S) in conjunction with Prop. B.4.1(a) (which shows that
J* is the smallest fixed point of T within S) to show that J* is
the unique fixed point of T within S. Use also Prop. B.2.2 to show
that the VI algorithm converges to J* starting from J within the set
{J ∈ S | J ≥ J*}.

(d) Use the compactness condition of Prop. B.4.1(d), to enlarge the set
of functions starting from which VI converges to J*.

Some statements regarding the validity of PI, using Props. B.3.4 and B.3.5,
will also be made.

B.4.1 Deterministic Optimal Control

Let us consider the undiscounted deterministic optimal control problem of
Section 4.2, where

H(x, u, J) = g(x, u) + J
(

f(x, u)
)

,

with g being the one-stage cost function and f being the function defining
the associated discrete-time system

xk+1 = f(xk, uk).

We allow X and U to be arbitrary sets, and we consider the case where

0 ≤ g(x, u), ∀ x ∈ X, u ∈ U(x).

As in Eq. (B.2), the cost function Jπ of a policy π is the upper limit of the
finite horizon cost functions Tµ0 · · ·Tµk

J̄ of the policy, with J̄(x) ≡ 0.
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We assume that there is a nonempty set X0 ⊂ X , which is cost-free
and absorbing in the sense

g(x, u) = 0, x = f(x, u), ∀ x ∈ X0, u ∈ U(x).

Clearly, J*(x) = 0 for all x in the set X0, which may be viewed as a
desirable stopping set that consists of termination states that we are trying
to reach or approach with minimum total cost. We assume in addition that
J*(x) > 0 for x /∈ X0, so that

X0 =
{

x ∈ X | J*(x) = 0
}

.

Two other interesting subsets of X are

Xf =
{

x ∈ X | J*(x) < ∞
}

, X∞ =
{

x ∈ X | J*(x) = ∞
}

.

Following Section 4.2, given a state x, we say that a policy π ter-

minates from x if the sequence {xk}, which is generated starting from x
and using π, reaches X0 in the sense that xk̄ ∈ X0 for some index k̄. We
assumed that for every x ∈ Xf and ǫ > 0, there exists a policy π that
terminates from x and satisfies Jπ(x) ≤ J*(x) + ǫ.

We now introduce the set

C =
{

(π, x) | x ∈ Xf , π terminates from x
}

,

and we note that under our preceding assumption, C is nonempty and
J*
C = J*. The reason is that for x ∈ Xf , we have

J*
C (x) = inf

{π | (π,x)∈C}
Jπ(x) = J*(x),

while for x ∈ X∞ we also have J*
C(x) = J*(x) = ∞ by the definition of J*

C

[cf. Eq. (B.5)], since for such x, the set of policies
{

π | (π, x) ∈ C
}

is empty.
We next consider the set

S =
{

J ∈ E+(X) | J(x) = 0, ∀ x ∈ X0

}

.

Clearly J* ∈ S and we also claim that C is S-regular. Indeed for π that
terminates from x we have

lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x) = lim sup

k→∞
(Tµ0 · · ·Tµk

J̄)(x) = Jπ(x), ∀ J ∈ S,

since the choice of J within S does not affect (Tµ0 · · ·Tµk
J)(x) for k larger

than the termination time, when the state enters X0. Thus, since J*
C =

J* and J* is a fixed point of T [cf. Prop. 4.1.1 or Prop. B.4.1(a)], the
theory of Section B.3 applies, and the results of that section yield the
results of Section 4.2 (in fact the proofs of various results in Section 4.2 are
specializations of corresponding proofs of Section B.3).
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B.4.2 Positive Cost Stochastic DP

Let us consider the undiscounted stochastic optimal control problem of
Section 4.1, involving the mapping

H(x, u, J) = E
{

g(x, u, w) + J
(

f(x, u, w)
)}

,

where g is the one-stage cost function and f is the system function, and
the expected value is taken with respect to the distribution of the random
variable w (which takes values in a countable set W ). We assume that

0 ≤ g(x, u, w), ∀ x ∈ X, u ∈ U(x), w ∈ W. (B.16)

We consider the abstract DP model with H as above, and with J̄(x) ≡ 0.
We will apply the analysis of Section B.2 with

C =
{

(π, x) | Jπ(x) < ∞
}

, (B.17)

for which J*
C = J*. We assume that C is nonempty, which is true if and

only if J* is not identically ∞, i.e., J*(x) < ∞ for some x ∈ X .
Let us denote by Eπ

x0{·} the expected value with respect to the prob-
ability distribution induced by π ∈ Π under initial state x0, and consider
the set

S =
{

J ∈ E+(X) | Eπ
x0

{

J(xk)
}

→ 0, ∀ (π, x0) ∈ C
}

. (B.18)

We will show that J* ∈ S and that C is S-regular. Once this is done, it
will follow from Prop. B.2.2 and the fixed point property of J* (cf. Prop.
4.1.1) that T kJ → J* for all J ∈ S that satisfy J ≥ J*. If the sets Uk(x, λ)
of Eq. (B.15) are compact, the convergence of VI starting from below J*

will also be guaranteed. We have the following proposition.

Proposition B.4.2: (Convergence of VI) Consider the stochastic
optimal control problem of this section, assuming Eq. (B.16). Then
J* is the unique fixed point of T within S, and we have T kJ → J*

for all J ≥ J* with J ∈ S. If in addition U is a metric space, and the
sets Uk(x, λ) of Eq. (B.15) are compact for all x ∈ X , λ ∈ ℜ, and k,
we have T kJ → J* for all J ∈ S, and an optimal stationary policy is
guaranteed to exist.

Proof: We have for all J ∈ E(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1
J)(x0) = Eπ

x0

{

J(xk)
}

+ Eπ
x0

{

k−1
∑

m=0

g
(

xm, µm(xm), wm

)

}

,

(B.19)
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where µm, m = 0, 1, . . ., denote generically the components of π. The
rightmost term above converges to Jπ(x0) as k → ∞, so by taking upper
limit, we obtain

lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = lim sup

k→∞
Eπ

x0

{

J(xk)
}

+ Jπ(x0).

Thus in view of the definition of S, we see that for all (π, x0) ∈ C and
J ∈ S, we have

lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = Jπ(x0),

so C is S-regular.
We next show that J* ∈ S. Given a policy π = {µ0, µ1, . . .}, we

denote by πk the policy

πk = {µk, µk+1, . . .}.

We have for all (π, x0) ∈ C

Jπ(x0) = Eπ
x0

{

g
(

x0, µ0(x0), w0

)}

+ Eπ
x0

{

Jπ1(x1)
}

,

and more generally,

Eπ
x0

{

Jπm(xm)
}

= Eπ
x0

{

g
(

xm, µm(xm), wm

)}

+ Eπ
x0

{

Jπm+1(xm+1)
}

,
(B.20)

for all m = 0, 1, . . ., where {xm} is the sequence generated starting from x0

and using π. Using the defining property Jπ(x0) < ∞ of C, it follows that
all the terms in the above relations are finite, and in particular

Eπ
x0

{

Jπm(xm)
}

< ∞, ∀ (π, x0) ∈ C, m = 0, 1, . . . .

By adding Eq. (B.20) for m = 0, . . . , k − 1, and canceling the finite terms
Eπ

x0

{

Jπm(xm)
}

for m = 1, . . . , k − 1, we obtain for all k = 1, 2, . . . ,

Jπ(x0) = Eπ
x0

{

Jπk
(xk)

}

+

k−1
∑

m=0

Eπ
x0

{

g
(

xm, µm(xm), wm

)}

, ∀ (π, x0) ∈ C.

The rightmost term above tends to Jπ(x0) as k → ∞, so we obtain

Eπ
x0

{

Jπk
(xk)

}

→ 0, ∀ (π, x0) ∈ C.

Since 0 ≤ J* ≤ Jπk
, it follows that

Eπ
x0

{

J*(xk)
}

→ 0, ∀ x0 with J*(x0) < ∞.
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Thus J* ∈ S, while by Prop. 4.1.1, J* (which is equal to J*
C ) is a fixed

point of T . Hence, by Prop. B.2.2, J* is the unique fixed point of T within
the set {J ∈ S | J ≥ J*}. Similarly, by Prop. B.2.2, we have T kJ → J*

for all J ∈ S. The last conclusion follows from Prop. 4.1.8. Q.E.D.

A consequence of the preceding proposition is the following condition
for VI convergence from above, first proved in [YuB13], which was noted
in Section 4.1.3.

Proposition B.4.3: If a function J ∈ E(X) satisfies

J* ≤ J ≤ cJ* for some c > 0, (B.21)

we have T kJ → J*.

Proof: Since J* ∈ S as shown in Prop. B.4.2, any J satisfying Eq. (B.21),
also belongs to the set S of Eq. (B.18), and the result follows from Prop.
B.4.2. Q.E.D.

Let us finally specialize Prop. B.4.2 to the case of a deterministic
problem involving the system xk+1 = f(xk, uk), the (nonnegative) cost per
stage g(x, u), and a set of cost-free and absorbing states X0 (cf. Section
4.2). We assume that X is a metric space, and that for every policy π and
sequence {xk} generated by using π we have

Jπ(x0) < ∞ ⇒ dist(xk, X0) → 0, (B.22)

where dist(x,X0) denotes the distance from a state x to the set X0. For
example, this condition is satisfied if

g
(

xk, µk(xk)
)

→ 0 ⇒ dist(xk, X0) → 0,

or more specifically if for some p > 0,

g(x, u) ≥ dist(x,X0)p, ∀ x ∈ X, u ∈ U(x).

Let
C =

{

(π, x) | Jπ(x) < ∞
}

,

[cf. Eq. (B.17)], and

S =
{

J ∈ E+(X) | J(xk) → 0 if dist(xk, X0) → 0
}

.

Since in view of Eq. (B.22), S is equal to the set (B.18), it follows that
J* ∈ S and that C is S-regular, the conclusions of Prop. B.4.2 follow. One
may compare these results with the ones of Section 4.2. The two sets of
results are similar: in Section 4.2 we did not assume that X is a metric
space, while here we have assumed that X is a metric space in order to
use the assumption (B.22), which is expressed in terms of the distance
dist(x,X0).
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B.4.3 Discounted Positive Cost Stochastic DP

We will now consider a discounted version of the stochastic optimal control
problem of the preceding section. For a policy π = {µ0, µ1, . . .} we have

Jπ(x0) = lim
k→∞

Eπ
x0

{

k−1
∑

m=0

αmg
(

xm, µm(xm), wm

)

}

,

where α ∈ (0, 1) is the discount factor, and as earlier Eπ
x0{·} denotes ex-

pected value with respect to the probability measure induced by π ∈ Π
under initial state x0. We can view this problem within the abstract DP
framework by defining the mapping H as

H(x, u, J) = E
{

g(x, u, w) + αJ
(

f(x, u, w)
)}

,

[cf. Eq. (B.4)], and J̄(x) ≡ 0. We continue to assume that the one-stage
cost is nonnegative,

0 ≤ g(x, u, w), ∀ x ∈ X, u ∈ U(x), w ∈ W.

We also assume that X is a normed space with norm denoted ‖ · ‖. Note
that because of the discount factor, the existence of a terminal set of states
is not essential for the optimal costs to be finite.

We introduce the set

Xf =
{

x ∈ X | J*(x) < ∞
}

,

which we assume to be nonempty. Given a state x ∈ Xf , we say that a
policy π is stable from x if there exists a bounded subset ofXf [that depends
on (π, x)] such that the (random) sequence {xk} generated starting from
x and using π lies with probability 1 within that subset. We consider the
set of policy-state pairs

C =
{

(π, x) | x ∈ Xf , π is stable from x
}

,

and we assume that C is nonempty.
Let us say that a function J ∈ E+(X) is bounded on bounded subsets

of Xf if for every bounded subset X̃ ⊂ Xf there is a scalar b such that
J(x) ≤ b for all x ∈ X̃ . Let us also introduce the set

S =
{

J ∈ E+(X) | J is bounded on bounded subsets of Xf

}

.

We assume that C is nonempty, J* ∈ S, and for every x ∈ Xf and ǫ > 0,
there exists a policy π that is stable from x and satisfies Jπ(x) ≤ J*(x)+ ǫ.
Note that under this assumption, we have J*

C = J*, similar to Section 4.2.
We have the following proposition.
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Proposition B.4.4: Under the preceding assumptions, J* is the uni-
que fixed point of T within S, and we have T kJ → J* for all J ∈ S
with J* ≤ J . If in addition U is a metric space, and the sets Uk(x, λ) of
Eq. (B.15) are compact for all x ∈ X , λ ∈ ℜ, and k, we have T kJ → J*

for all J ∈ S, and an optimal stationary policy is guaranteed to exist.

Proof: We have for all J ∈ E(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1
J)(x0) = αkEπ

x0

{

J(xk)
}

+Eπ
x0

{

k−1
∑

m=0

αmg
(

xm, µm(xm), wm

)

}

[cf. Eq. (B.19)]. The fact (π, x0) ∈ C implies that there is a bounded subset
of Xf such that {xk} belongs to that subset with probability 1, so if J ∈ S
it follows that αkEπ

x0

{

J(xk)
}

→ 0. Thus for all (π, x0) ∈ C and J ∈ S,

lim
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = lim

k→∞
Eπ

x0

{

k−1
∑

m=0

αmg
(

xm, µm(xm), wm

)

}

= Jπ(x0),

so C is S-regular. Since J*
C is equal to J* which is a fixed point of T (by

Prop. 4.1.1), it follows from Prop. B.2.2 that T kJ → J* for all J ∈ S. The
last conclusion follows from Prop. 4.1.8. Q.E.D.

Let us finally note that our assumptions are natural in control con-
texts where the objective is to keep the state from becoming unbounded,
under the influence of random disturbances represented by wk. In such
contexts one expects that optimal or near optimal policies should produce
bounded state sequences starting from states with finite optimal cost.

B.5 PROBLEMS WITH INFINITE COST IRREGULAR POLICIES

We will now consider the fixed point properties of J∗, and the convergence
of VI for an abstract DP model which is neither monotone increasing nor
monotone decreasing, but instead uses the assumption that follows (given
as Assumption 3.2.1 in [Ber13]). Key features of this assumption are a
condition implying that S-irregular policies cannot be optimal [condition
(c) below], and a compactness condition on the level sets of the function
H(x, ·, J) [condition (d) below]. The assumption is modeled after the SSP
conditions of Chapter 3, with S = ℜn and proper policies playing the role
of ℜn-regular policies. The following line of analysis applies, among others,
to the SSP problems of Chapter 3, as well to the affine monotonic problems
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of Section 4.5 under Assumption 4.5.3, with stable policies playing the role
of ℜn

+-regular policies (cf. Prop. 4.5.3).

Assumption B.5.1: We are given a subset S ⊂ R(X) such that the
following hold:

(a) S contains J̄ , and has the property that if J1, J2 are two functions
in S, then S contains all functions J with J1 ≤ J ≤ J2.

(b) The function J*
S given by

J*
S(x) = inf

µ:S-regular
Jµ(x), x ∈ X, (B.23)

belongs to S.

(c) For each S-irregular policy µ and each J ∈ S, there is at least
one state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞.

(d) The control set U is a metric space, and the set

{u ∈ U(x) | H(x, u, J) ≤ λ}

is compact for every J ∈ S, x ∈ X , and λ ∈ ℜ.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S we
have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that
J ′ ≤ J and J ′ ≤ TJ ′.

Part (c) of the preceding assumption implies that for each S-irregular
µ, there is at least one state such that Jµ(x) = ∞. Since by part (b),
J∗ ≤ J*

S ∈ S, part (c) implies that an S-irregular policy cannot be op-
timal. Parts (e) and (f) are technical conditions that are needed for the
subsequent analysis. The compactness part (d) plays a key role for assert-
ing the existence of an optimal S-regular policy, as well as for various proof
arguments. It implies that for every J ∈ S, the infimum in the equation

(TJ)(x) = inf
u∈U(x)

H(x, u, J),
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is attained for all x ∈ X , and it also implies that for every J ∈ S, there
exists a policy µ such that TµJ = TJ . This will be shown as part of the
proof of the following proposition.

The compactness condition of Assumption B.5.1(c) can be verified in
a few interesting cases:

(1) The case where U is a finite set.

(2) Cases where for each x, U(x) is compact, and H satisfies some conti-
nuity conditions guaranteeing that the set

{

u ∈ U | H(x, u, J) ≤ λ
}

is closed for all x ∈ X and J ∈ S.

The following proposition, first given as Prop. 3.2.1 in [Ber13], is
the main result of this section. Its proof uses the line of argument of
its specialized versions, Prop. 3.2.2 (for SSP), and Prop. 4.5.3 (for affine
monotonic problems), but is considerably longer and will not be given; we
refer to [Ber13].

Proposition B.5.1: Let Assumption B.5.1 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
S.

(b) We have T kJ → J* for all J ∈ S. Moreover, there exists an
optimal S-regular policy.

(c) A policy µ is optimal if and only if TµJ* = TJ*.

(d) For any J ∈ S, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we
have J ≥ J*.

Let us also give another proposition, which is useful in situations
where only some of the conditions of Assumption B.5.1 are satisfied. For
a proof, see [Ber13], Lemma 3.2.4.

Proposition B.5.2: Let Assumption B.5.1(b),(c),(d) hold. Then:

(a) The function J*
S of Eq. (B.23) is the unique fixed point of T

within S.

(b) Every policy µ satisfying TµJ*
S = TJ*

S is optimal within the set
of S-regular policies, i.e., µ is S-regular and Jµ = J*

S . Moreover,
there exists at least one such policy.

Note that when the number of states is finite, X = {1, . . . , n}, Prop.
B.5.1(c) shows that J* is the unique solution of the optimization problem
of maximizing

∑n
i=1 βiJ(i) over the set {J | J ≤ TJ}, where β1, . . . , βn
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are any positive scalars. Special cases of this problem, including linear
programming formulations, were encountered in Sections 2.5, 3.5, 4.1, 4.4,
and 4.5.

B.5.1 An Application to Robust Shortest Path Planning

We noted that the analysis of this section applies to the SSP problems
of Chapter 3, as well as to the affine monotonic problems of Section 4.5.
We will now discuss how it applies to minimax shortest path-type prob-
lems, following the author’s paper [Ber14], to which we refer for further
discussion.

To formally describe the problem, we consider a graph with a finite
set of nodes X∪{t} and a finite set of directed arcs A ⊂

{

(x, y) | x, y ∈ X∪

{t}
}

, where t is a special node called the destination. At each node x ∈ X
we may choose a control u from a nonempty set U(x), which is a subset
of a finite set U . Then a successor node y is selected by an antagonistic
opponent from a nonempty set Y (x, u) ⊂ X ∪ {t} and a cost g(x, u, y) is
incurred. The destination node t is absorbing and cost-free, in the sense
that the only outgoing arc from t is (t, t), and we have Y (t, u) = {t} and
g(t, u, t) = 0 for all u ∈ U(t).

As earlier, we denote the set of all policies by Π, and the finite set of
all stationary policies by M. Also, we denote the set of functions J : X 7→
[−∞,∞] by E(X), and the set of functions J : X 7→ (−∞,∞) by R(X).
Note that since X is finite, R(X) can be viewed as a finite-dimensional
Euclidean space. We introduce the mapping H : X×U×E(X) 7→ [−∞,∞]
given by

H(x, u, J) = max
y∈Y (x,u)

[

g(x, u, y) + J̃(y)
]

, x ∈ X, (B.24)

where for any J ∈ E(X) we denote by J̃ the function given by

J̃(y) =

{

J(y) if y ∈ X ,
0 if y = t.

(B.25)

We consider the mapping T : E(X) 7→ E(X) defined by

(TJ)(x) = min
u∈U(x)

H(x, u, J), x ∈ X, (B.26)

and for each policy µ, the mapping Tµ : E(X) 7→ E(X), defined by

(TµJ)(x) = H
(

x, µ(x), J
)

, x ∈ X. (B.27)

Letting J̄ be the zero function,

J̄(x) = 0, ∀ x ∈ X,
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the cost function of a policy π = {µ0, µ1, . . .} is given by the earlier Defi-
nition B.1.1, i.e.,

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), x ∈ X,

and J*(x) = infπ∈Π Jπ(x).
For a policy µ ∈ M, we define a possible path under µ starting at

node x0 ∈ X to be an arc sequence of the form

p =
{

(x0, x1), (x1, x2), . . .
}

, (B.28)

such that xk+1 ∈ Y
(

xk, µ(xk)
)

for all k ≥ 0. The set of all possible
paths under µ starting at x0 is denoted by P (x0, µ). The length of a path
p ∈ P (x0, µ) is defined by

Lµ(p) = lim sup
m→∞

m
∑

k=0

g
(

xk, µ(xk), xk+1

)

. (B.29)

Using Eqs. (B.24)-(B.27), we see that for any µ ∈ M and x ∈ X , (T k
µ J̄)(x)

is the result of the k-stage DP algorithm that computes supp∈P (x,µ) L
k
p(µ),

the length of the longest path under µ that starts at x and consists of k
arcs, so that

(T k
µ J̄)(x) = sup

p∈P (x,µ)

Lk
p(µ), x ∈ X,

For completeness, we also define the length of a portion
{

(xi, xi+1), (xi+1, xi+2), . . . , (xm, xm+1)
}

of a path p ∈ P (x0, µ), consisting of a finite number of consecutive arcs, by

m
∑

k=i

g
(

xk, µ(xk), xk+1

)

.

When confusion cannot arise we will also refer to such a finite-arc por-
tion as a path. Of special interest are cycles , that is, paths of the form
{

(xi, xi+1), (xi+1, xi+2), . . . , (xi+m, xi)
}

. Paths that do not contain any
cycle other than the self-cycle (t, t) are called simple.

For a given policy µ ∈ M and x0 6= t, a path p ∈ P (x0, µ) is said to
be terminating if it has the form

p =
{

(x0, x1), (x1, x2), . . . , (xm, t), (t, t), . . .
}

, (B.30)

where m is a positive integer, and x0, . . . , xm are distinct nondestination
nodes. Since g(t, u, t) = 0 for all u ∈ U(t), the length of a terminating path
p of the form (B.30), corresponding to µ, is given by

Lµ(p) = g
(

xm, µ(xm), t
)

+

m−1
∑

k=0

g
(

xk, µ(xk), xk+1

)

,
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a 1 2

1 2 t b

t b Destination

Proper policy µ

0 1 2

1 2 t b

t b Destination

Improper policy µ

a 1 2

0 1 2

Figure B.5.1. A robust shortest path problem with X = {1, 2}, two controls at
node 1, and one control at node 2. There are two policies, µ and µ, corresponding
to the two controls at node 1. The figure shows the subgraphs of arcs Aµ and
Aµ.

and is equal to the finite length of its initial portion that consists of the
first m+ 1 arcs.

An important characterization of a policy µ ∈ M is provided by the
subset of arcs

Aµ = ∪x∈X

{

(x, y) | y ∈ Y
(

x, µ(x)
)}

.

We will view Aµ as a subgraph of the original graph. Note that Aµ is
defined by the set of paths ∪x∈XP (x, µ), in the sense that it contains this
set of paths and no other paths. We say that Aµ is destination-connected

if for each x ∈ X there exists a terminating path in P (x, µ). We say that
µ is proper if the subgraph of arcs Aµ is acyclic (i.e., contains no cycles).
Thus µ is proper if and only if all the paths in ∪x∈XP (x, µ) are simple and
hence terminating (equivalently µ is proper if and only if Aµ is destination-
connected and has no cycles). The term “proper” is consistent with the
one used in Chapter 3 for SSP problems, where it indicates a policy under
which the destination is reached with probability 1. If µ is not proper, it
is called improper , in which case the subgraph of arcs Aµ must contain a
cycle; see the examples of Fig. B.5.1.

Clearly if µ is proper, we have Jµ ∈ R(X) and Jµ = TµJµ. The
following proposition clarifies the properties of Jµ when µ is improper.

Proposition B.5.3: Let µ be an improper policy.

(a) If all cycles in the subgraph of arcs Aµ have nonpositive length,
Jµ(x) < ∞ for all x ∈ X .
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(b) If all cycles in the subgraph of arcs Aµ have nonnegative length,
Jµ(x) > −∞ for all x ∈ X .

(c) If all cycles in the subgraph of arcs Aµ have zero length, Jµ is
real-valued.

(d) If there is a positive length cycle in the subgraph of arcs Aµ, we
have Jµ(x) = ∞ for at least one node x ∈ X . More generally, for
each J ∈ R(X), we have lim supk→∞(T k

µJ)(x) = ∞ for at least
one x ∈ X .

Proof: Any path with a finite number of arcs, can be decomposed into a
simple path, and a finite number of cycles (see e.g., the path decomposition
theorem of [Ber98], Prop. 1.1, and Exercise 1.4). Since there is only a
finite number of simple paths under µ, their length is bounded above and
below. Thus in part (a) the length of all paths with a finite number of
arcs is bounded above, and in part (b) it is bounded below, implying that
Jµ(x) < ∞ for all x ∈ X or Jµ(x) > −∞ for all x ∈ X , respectively. Part
(c) follows by combining parts (a) and (b).

To show part (d), consider a path p, which consists of an infinite
repetition of the positive length cycle that is assumed to exist. Let Ck

µ(p)
be the length of the path that consists of the first k cycles in p. Then
Ck

µ(p) → ∞ and Ck
µ(p) ≤ Jµ(x) for all k, where x is the first node in the

cycle, thus implying that Jµ(x) = ∞. Moreover for every J ∈ R(X) and
all k, (T k

µJ)(x) is the maximum over the lengths of the k-arc paths that
start at x, plus a terminal cost that is equal to either J(y) (if the terminal
node of the k-arc path is y ∈ X), or 0 (if the terminal node of the k-arc
path is the destination). Thus we have,

(T k
µ J̄)(x) + min

{

0, min
x∈X

J(x)

}

≤ (T k
µJ)(x).

Since lim supk→∞(T k
µ J̄)(x) = Jµ(x) = ∞ as shown earlier, it follows that

lim supk→∞(T k
µJ)(x) = ∞ for all J ∈ R(X). Q.E.D.

Note that if there is a negative length cycle in the subgraph of arcs
Aµ, it is not necessarily true that for some x ∈ X we have Jµ(x) = −∞.
Even for x on the negative length cycle, the value of Jµ(x) is determined
by the longest path in P (x, µ), which may be simple in which case Jµ(x)
is a real number, or contain an infinite repetition of a positive length cycle
in which case Jµ(x) = ∞.

We will apply the regularity ideas of this section with S = R(X). We
recall that µ is R(X)-regular if T kJ → Jµ for all J ∈ R(X) (cf. Definition
B.3.1). A key fact in our analysis is the following characterization of the
notion of R(X)-regularity and its connection to the notion of properness.
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It shows that proper policies are R(X)-regular, but the set of R(X)-regular
policies may also contain some improper policies, which are characterized
in terms of the sign of the lengths of their associated cycles.

Proposition B.5.4: The following are equivalent for a policy µ:

(i) µ is R(X)-regular.

(ii) The subgraph of arcs Aµ is destination-connected and all its
cycles have negative length.

(iii) µ is either proper or else it is improper, all the cycles of the
subgraph of arcs Aµ have negative length, and Jµ ∈ R(X).

Proof: To show that (i) implies (ii), let µ be R(X)-regular and to arrive
at a contradiction, assume that Aµ contains a nonnegative length cycle.
Let x be a node on the cycle, consider the path p that starts at x and
consists of an infinite repetition of this cycle, and let Lk

µ(p) be the length
of the first k arcs of that path. Let also J be a nonzero constant function,
J(x) ≡ r, where r is a scalar. Then we have

Lk
µ(p) + r ≤ (T k

µJ)(x),

since from the definition of Tµ, we have that (T k
µJ)(x) is the maximum

over the lengths of all k-arc paths under µ starting at x, plus r, if the last
node in the path is not the destination. Since µ is R(X)-regular, we have
lim supk→∞(T k

µJ)(x) = Jµ(x) < ∞, so it follows that for all scalars r, we
have

lim sup
k→∞

(

Lk
µ(p) + r

)

≤ Jµ(x) < ∞.

Taking infimum over r, it follows that lim supk→∞ Lk
µ(p) = −∞, which

contradicts the nonnegativity of the cycle of p. Thus all cycles of Aµ

have negative length. To show that Aµ is destination-connected, assume
the contrary. Then there exists some node x ∈ X such that all paths in
P (x, µ) contain an infinite number of cycles. Since the length of all cycles
is negative, as just shown, it follows that Jµ(x) = −∞, which contradicts
the R(X)-regularity of µ.

To show that (ii) implies (iii), we assume that µ is improper and show
that Jµ ∈ R(X). By (ii) Aµ is destination-connected, so the set P (x, µ)
contains a simple path for all x ∈ X . Moreover, since by (ii) the cycles
of Aµ have negative length, each path in P (x, µ) that is not simple has
smaller length than some simple path in P (x, µ). This implies that Jµ(x)
is equal to the largest path length among simple paths in P (x, µ), so Jµ(x)
is a real number for all x ∈ X .

To show that (iii) implies (i), we note that if µ is proper, it is R(X)-
regular, so we focus on the case where µ is improper. Then by (iii), Jµ ∈
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R(X), so to show R(X)-regularity of µ, we must show that (T k
µJ)(x) →

Jµ(x) for all x ∈ X and J ∈ R(X), and that Jµ = TµJµ. Indeed, from the
definition of Tµ, we have

(T k
µJ)(x) = sup

p∈P (x,µ)

[

Lk
µ(p) + J(xk

p)
]

, (B.31)

where xk
p is the node reached after k arcs along the path p, and J(t) is

defined to be equal to 0. Thus as k → ∞, for every path p that contains
an infinite number of cycles (each necessarily having negative length), the
sequence Lk

p(µ) + J(xk
p) approaches −∞. It follows that for sufficiently

large k, the supremum in Eq. (B.31) is attained by one of the simple paths
in P (x, µ), so xk

p = t and J(xk
p) = 0. Thus the limit of (T k

µJ)(x) does not
depend on J , and is equal to the limit of (T k

µ J̄)(x), i.e., Jµ(x). To show
that Jµ = TµJµ, we note that by the preceding argument, Jµ(x) is the
length of the longest path among paths that start at x and terminate at t.
Moreover, we have

(TµJµ)(x) = max
y∈Y (x,µ(x))

[

g(x, µ(x), y) + Jµ(y)
]

,

where we denote Jµ(t) = 0. Thus (TµJµ)(x) is also the length of the longest
path among paths that start at x and terminate at t, and hence it is equal
to Jµ(x). Q.E.D.

We illustrate the preceding proposition with a two-node example in-
volving an improper policy with a cycle that may have positive, zero, or
negative length.

Example B.5.1:

Let X = {1}, and consider the policy µ where at state 1, the antagonistic
opponent may force either staying at 1 or terminating, i.e., Y

(

1, µ(1)
)

=
{1, t}. Then µ is improper since its subgraph of arcs Aµ contains the self-
cycle (1, 1); cf. Fig. B.5.2. Let

g
(

1, µ(1), 1
)

= a, g
(

1, µ(1), t
)

= 0.

Then,

(TµJµ)(1) = max
[

0, a+ Jµ(1)
]

,

and

Jµ(1) =
{∞ if a > 0,
0 if a ≤ 0.

Consistently with Prop. B.5.4, the following hold:

(a) For a > 0, the cycle (1, 1) has positive length, and µ is R(X)-irregular
because Jµ(1) = ∞.
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a

a 1 2 1 2 t b

t b Destination

a 0 1 2

Figure B.5.2. The subgraph of arcs Aµ corresponding to an improper policy µ,

for the case of a single node 1 and a destination node t. The arcs lengths are
shown in the figure.

(b) For a = 0, the cycle (1, 1) has zero length, and µ is R(X)-irregular
because for a function J ∈ R(X) with J(1) > 0,

lim sup
k→∞

(T k
µJ)(x) = J(1) > 0 = Jµ(1).

(c) For α < 0, the cycle (1, 1) has negative length, and µ is R(X)-regular
because Jµ(1) = 0, and we have Jµ ∈ R(X), Jµ(1) = max [0, a +
Jµ(1)] = (TµJµ)(1), and for all J ∈ R(X),

lim sup
k→∞

(T k
µJ)(1) = 0 = Jµ(1).

We now introduce assumptions that will allow the use of Prop. B.5.1
in order to prove our main results.

Assumption B.5.2:

(a) There exists at least one R(X)-regular policy.

(b) For every R(X)-irregular policy µ, some cycle in the subgraph of
arcs Aµ has positive length.

Assumption B.5.2 is implied by the weaker conditions given in the
following proposition. These conditions may be more easily verifiable in
some contexts.

Proposition B.5.5: Assumption B.5.2 holds if anyone of the follow-
ing two conditions is satisfied.

(1) There exists at least one proper policy, and for every improper
policy µ, all cycles in the subgraph of arcs Aµ have positive
length.
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(2) Every policy µ is either proper or else it is improper and its sub-
graph of arcs Aµ is destination-connected with all cycles having
negative length, and Jµ ∈ R(X).

Proof: Under condition (1), by Prop. B.5.4, a policy is R(X)-regular, if
and only if it is proper. Moreover, since each R(X)-irregular and hence
improper policy µ has cycles with positive length, it follows that for all
J ∈ R(X), we have lim supk→∞(T k

µJ)(x) = ∞ for some x ∈ X . The proof
under condition (2) is similar, using Prop. B.5.4. Q.E.D.

We now show our main result regarding the minimax shortest path
problem.

Proposition B.5.6: Let Assumption B.5.2 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
R(X).

(b) A policy µ∗ is optimal if and only if Tµ∗J* = TJ*. Moreover,
there exists an optimal proper policy.

(c) We have T kJ → J* for all J ∈ R(X).

(d) For any J ∈ R(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ
we have J ≥ J*.

Proof: We verify the parts (a)-(f) of Assumption B.5.1 with S = R(X).
The result then will follow from Prop. B.5.1. To this end we argue as
follows:

(1) Part (a) is satisfied since S = R(X).

(2) Part (b) is satisfied since by Assumption B.5.2(a), there exists at least
one R(X)-regular policy. Moreover, for each R(X)-regular policy µ,
we have Jµ ∈ R(X). Since the number of all policies is finite, it
follows that J*

S ∈ R(X).

(3) To show that part (c) is satisfied, note that since by Prop. B.5.4
every R(X)-irregular policy µ must be improper, so by Assumption
B.5.2(b), the subgraph of arcs Aµ contains a cycle of positive length.
By Prop. B.5.3(d), this implies that for each J ∈ R(X), we have
lim supk→∞(T k

µJ)(x) = ∞ for at least one x ∈ X .

(4) Part (d) is satisfied since U(x) is a finite set.
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(5) Part (e) is satisfied since X is finite and Tµ is a continuous function
mapping the finite-dimensional space R(X) into itself.

(6) To show that part (f) is satisfied, we note that by applying Prop.
B.5.2 with S = R(X), we have that J*

S is the unique fixed point of
T within R(X). It follows that for each J ∈ R(X), there exists a
sufficiently large scalar r > 0 such that the function J ′ given by

J ′ = J*
S − re, ∀ x ∈ X,

where e is the unit function, e(x) ≡ 1, satisfies J ′ ≤ J . Moreover, we
have

J ′ = J*
S − re = TJ*

S − re ≤ T (J*
S − re) = TJ ′,

where the inequality holds in view of Eqs. (B.24) and (B.26), and the
fact r > 0.

Thus all parts of Assumption B.5.1 are satisfied, and Prop. B.5.1 applies,
with S = R(X). Since under Assumption B.5.2, improper policies are
R(X)-irregular [cf. Prop. B.5.3(d)] and so cannot be optimal, the conclu-
sions of Prop. B.5.1 are precisely the results we want to prove. Q.E.D.

For further analysis and algorithms for the robust shortest path plan-
ning problem, we refer to the paper [Ber14]. In particular, this paper
applies the perturbation approach of Prop. B.3.3 to the case where it may
be easier to guarantee nonnegativity rather than positivity of the lengths of
cycles corresponding to improper policies, which is required by Assumption
B.5.2. The paper also provides a Dijkstra-like algorithm for problems with
nonnegative arc lengths.
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