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Topics

(1) Sensitivity analysis under very general con-
ditions.

(2) Nonemptiness of closed set intersections. Uni-
fication of conditions for existence of an op-
timal solution, absence of a duality gap, and
min-max=max-min.



PART I: SENSITIVITY ANALYSIS

• Classical NLP sensitivity analysis:

− Requires 2nd order sufficiency conditions,
etc

• Convex programming sensitivity analysis:

− Assumes no duality gap

− Considers the directional derivative of the
optimal cost under (straight line) constraint
perturbations

• We present a more general framework:

− We allow a duality gap

− We consider sensitivity under curved con-
straint perturbations

• We show that the dual optimal solution of mini-
mum norm determines the steepest descent rate
of the optimal cost.

• The analysis is based on an extended ver-
sion of the Fritz John conditions, which are of in-
dependent interest (paper by Bertsekas, Tseng,
Ozdaglar).



MULTIPLIERS AND DUALITY

• Consider the problem

minimize f(x)
subject to x ∈ X, g1(x) ≤ 0, . . . , gr(x) ≤ 0

assuming that its optimal value f∗ is finite.

• A vector μ∗ = (μ∗
1, . . . , μ

∗
r) is said to be a geo-

metric (or G-) multiplier if μ∗ ≥ 0 and

f∗ = inf
x∈X

L(x, μ∗) ≡ f(x) + μ′g(x),

• The dual problem is

maximize q(μ) ≡ inf
x∈X

L(x, μ)

subject to μ ≥ 0,

and its optimal value q∗ satisfies q∗ ≤ f∗.



THE PRIMAL FUNCTION

• The primal function is the perturbed optimal
value

p(u) = inf
x∈X

g(x)≤u

f(x)

• μ∗ is a G-multiplier iff −μ∗ is a subgradient of p
at 0 (assuming that p(u) > −∞ for all u).

• Classical sensitivity theory revolves around the
directional derivative of p at 0.

S ={(g(x),f(x)) | x ∈ X}

u

p(u)f*

0

Slope: -μ*

(μ*,1)



CLASSICAL SENSITIVITY THEORY

• Assume that p(u) > −∞ for all u and 0 belongs
to ri

(
dom(p)

)
. Then:

(a) The set of G-multipliers is nonempty.

(b) If μ∗ is the G-multiplier of minimum norm and
μ∗ �= 0:

– The direction of steepest descent of p
at 0 is μ∗/‖μ∗‖

– The rate of steepest descent (per unit
norm of constraint violation) is ‖μ∗‖.
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BREAKDOWN OF CLASSICAL THEORY

• If 0 does not belong to ri
(
dom(p)

)
, sensitivity

theory breaks down because:

(1) There may exist a duality gap and no G-
multiplier.

u
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Min Norm Dual Optimal Solution
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Duality Gap

(2) Even if there is no duality gap and there ex-
ists a G-multiplier, the formula

(Dir. derivative of p along μ∗/‖μ∗‖) = −‖μ∗‖

may not hold.



EXTENDED SENSITIVITY THEORY

Proposition: Assume that the primal function p
is convex, and that −∞ < q∗ ≤ f∗ < ∞. If μ∗

is a dual optimal solution of minimum norm and
μ∗ �= 0, then for all infeasible x ∈ X

q∗ − f(x)
‖g+(x)‖ ≤ ‖μ∗‖,

where g+(x) ∈ 	r has components max
{
0, gj(x)

}
.

Furthermore, the inequality is sharp, i.e., there ex-
ists a sequence {xk} ⊂ X such that

q∗ − f(xk)
‖g+(xk)‖ → ‖μ∗‖, ‖g+(xk)‖ → 0.

• Note: The sequence g+(xk) may have to go
to 0 along a curve.



EXAMPLE

• Consider the 2-dimensional problem

minimize −x2

subject to x ∈ X = {x | x2
2 ≤ x1}, g(x) = x ≤ 0.

x1

x2

X = {x  |  x2  ≤ x1 }
2

0

x ≤ 0

• Then f∗ = q∗ = 0, and the set of G-multipliers
is {μ ≥ 0 | μ2 = 1}.
• However, the min norm G-multiplier, μ∗ = (0, 1),
is not a steepest descent direction; along μ∗, we
have

p′(0;μ∗) = 0.

• The steepest descent rate is ‖μ∗‖, but can be
obtained only by approaching 0 along a curve.



PART II: CLOSED SET INTERSECTIONS

• Given a sequence of nonempty closed sets {Sk}
in 	n with Sk+1 ⊂ Sk for all k, when is ∩∞

k=0Sk

nonempty?

• Set intersection theorems are significant in at
least three major contexts:

− Existence of optimal solutions

− Duality gap issue, i.e., equality of optimal
values of the primal convex problem

minimizex∈X, g(x)≤0 f(x)

and its dual

maximizeμ≥0 q(μ) ≡ inf
x∈X

{
f(x) + μ′g(x)

}

− min-max = max-min issue, i.e., equality in

min
x

max
z

φ(x, z) = max
z

min
x

φ(x, z),

where φ is convex in x and concave in z



SOME SPECIFIC CONTEXTS I

• Does a function f : 	n 
→ (−∞,∞] attain a
minimum over a set X?

− This is true iff the intersection of the nonempty
sets

{
x ∈ X | f(x) ≤ γ

}
is nonempty

Level sets of f

X

• If C is closed and A is a matrix, is A C closed?

C

AC

y

x

ykyk+1

Wk

Sk

Nk

− Many interesting special cases, e.g., if C1

and C2 are closed, is C1 + C2 closed?



SOME SPECIFIC CONTEXTS II

• If F (x, u) is closed, is p(u) = infx F (x, u) closed?

− Critical question in the duality gap issue, where

F (x, u) =
{

f(x) if x ∈ X, g(x) ≤ u,
∞ otherwise

and p is the primal function.

− Critical question regarding min-max=max-min
where

F (x, u) =
{

supz∈Z

{
φ(x, z) − u′z

}
if x ∈ X,

∞ if x /∈ X.

We have min-max=max-min if

p(u) = inf
x∈�n

F (x, u)

is closed.

− Can be addressed by using the relation

Proj
(
epi(F )

)
⊂ epi(p) ⊂ cl

(
Proj

(
epi(F )

))



ASYMPTOTIC DIRECTIONS

• Given a sequence of nonempty nested closed
sets {Sk}, we say that a vector d �= 0 is an asymp-
totic direction of {Sk} if there exists {xk} s. t.

xk ∈ Sk, xk �= 0, k = 0, 1, . . .

‖xk‖ → ∞,
xk

‖xk‖
→ d

‖d‖ .

• A sequence {xk} associated with an asymp-
totic direction d as above is called an asymptotic
sequence corresponding to d.
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RETRACTIVE ASYMPTOTIC DIRECTIONS

• An asymptotic sequence {xk} and correspond-
ing asymptotic direction are called retractive if for
every α > 0 there exists k such that

xk − αd ∈ Sk, ∀ α ∈ [0, α], k ≥ k.

{Sk} is called retractive if all its asymptotic se-
quences are retractive.
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• Important observation: A retractive asymp-
totic sequence {xk} (for large k) gets closer to 0
when shifted in the opposite direction −d.
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SET INTERSECTION THEOREM

Proposition: The intersection of a retractive nested
sequence of closed sets is nonempty.

• Key proof ideas:

(a) The intersection ∩∞
k=0 Sk is empty iff there is

an unbounded sequence {xk} consisting of
minimum norm vectors from the Sk.

(b) An asymptotic sequence {xk} consisting of
minimum norm vectors from the Sk cannot
be retractive, because {xk} eventually gets
closer to 0 when shifted opposite to the asymp-
totic direction.
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CALCULUS OF RETRACTIVE SEQUENCES

• Unions and intersections of retractive set se-
quences are retractive.

• Recall the recession cone RC of a convex set
C, and its lineality space LC = RC ∩ (−RC).

0

x + αy

x

Convex Set C

Recession Cone RC

y

If the Sk are convex, the set of asymptotic di-
rections of {Sk} is the set of nonzero common
directions of recession of the Sk.

• The vector sum of a compact set and a poly-
hedral cone (e.g., a polyhedral set) is retractive.

• The level sets of a continuous concave function
{x | f(x) ≤ γ} are retractive.



APPLICATION: EXISTENCE OF SOLUTIONS ISSUES

• Standard results on existence of minima of con-
vex functions generalize with simple proofs using
the set intersection theorems.

• Example 1: The set of minima of a closed
convex function f over a closed set X is nonempty
if there is no asymptotic direction of X that is a
direction of recession of f .

• Example 2: The set of minima of a closed
quasiconvex function f over a retractive closed
set X is nonempty if

A ∩ R ⊂ L,

where A: set of asymptotic directions of X,

R = ∩∞
k=0RSk

, L = ∩∞
k=0LSk

,

Sk =
{
x | f(x) ≤ γk

}
and γk ↓ f∗.



LINEAR AND QUADRATIC PROGRAMMING

• Frank-Wolfe Theorem: Let X be polyhedral
and

f(x) = x′Qx + c′x

where Q is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
is finite, there exists a minimum of f of over X.

• The proof is straightforward using the set inter-
section theorems.

• Extensions (based on the subsequent theory):

− X can be the vector sum of a compact set
and a polyhedral cone.

− f can be of the form

f(x) = p(x′Qx) + c′x

where Q is positive semidefinite and p is a
polynomial.



ASYMPTOTIC INSIGHTS

• Key question: Given {S1
k} and {S2

k}, each with
nonempty intersection by itself, and with

S1
k ∩ S2

k �= Ø,

for all k, when does the intersection sequence
{S1

k ∩ S2
k} have an empty intersection?

S2

Sk1

d: “Critical Asymptote”

• With a few examples, we see that the trouble lies
with the existence of some “critical asymptotes”

• “Critical asymptotes” roughly are: Common
asymptotic directions d such that starting at ∩kS2

k

and looking at the horizon along d, we do not meet
∩kS1

k (and similarly with the roles of S1
k and S2

k re-
versed).



CRITICAL DIRECTIONS

• We say that an asymptotic direction d of {Sk},
with ∩k Sk �= Ø is a horizon direction with respect
to a set G if for every x ∈ G, we have x + αd ∈
∩k Sk for all α sufficiently large.

• We say that an asymptotic direction d of {Sk} is
noncritical with respect to a set G if it is either a

horizon direction with respect to G or a retractive
horizon direction with respect to ∩k Sk. Other-
wise, d is called critical with respect to G.

• Example: The as. directions of a vector sum
S of a compact set and a polyhedral set are non-
critical (are retractive horizon dir. with resp. to S).

• Example: The asymptotic directions of a level
set sequence of a convex quadratic

Sk = {x | x′Qx + c′x + b ≤ γk}, γk ↓ 0,

are noncritical. (Extension: convex polynomials.)

dHorizon with respect to Rn

Retractive



CRITICAL DIRECTION THEOREM

• Roughly it says that: For the intersection of a set
sequence {S1

k ∩ S2
k ∩ · · · ∩ Sr

k} to be empty, some
common asymptotic direction must be critical for
one of the {Sj

k} with respect to the others.

• Critical Direction Theorem: Consider {S1
k}

and {S2
k}, each with nonempty intersection by it-

self. If

S1
k ∩ S2

k �= Ø for all k, and ∩∞
k=0 (S1

k ∩ S2
k) = Ø,

there is a common asymptotic direction that is crit-
ical for {S1

k} with respect to ∩k S2
k (or for {S2

k} with
respect to ∩k S1

k).

• Extends to any finite number of sequences {Sj
k}.

• Special Case: The intersection of set sequences
defined by convex polynomial functions

Sj
k = {x | pj(x) ≤ γj

k, j = 1, . . . , r}, γj
k ↓ 0,

is nonempty, assuming all the Sj
k are nonempty.

(For example pj may be convex quadratic.)



EXISTENCE OF SOLUTIONS THEOREMS

• Convex Quadratic/Polynomial Problems:
For j = 0, 1, . . . , r, let fj : 	n 
→ 	 be polynomial
convex functions. Then the problem

minimize f0(x)
subject to fj(x) ≤ 0, j = 1, . . . , r,

has at least one optimal solution if and only if its
optimal value is finite.

• Extended Frank-Wolfe Theorem: Let

f(x) = x′Qx + c′x

where Q is symmetric, and let X be a closed set
whose asymptotic directions are retractive horizon
directions with respect to X. If the minimal value
of f over X is finite, there exists a minimum of f
over X.


