TOPICS ON

CONVEX (AND NONCONVEX)

ANALYSIS AND OPTIMIZATION

Dimitri P. Bertsekas Massachusetts Institute of Technology

A followup to the book "Convex Analysis and Optimization," Athena Scientific, 2003

Topics

- (1) Sensitivity analysis under very general conditions.
- (2) Nonemptiness of closed set intersections. Unification of conditions for existence of an optimal solution, absence of a duality gap, and min-max=max-min.

PART I: SENSITIVITY ANALYSIS

- Classical NLP sensitivity analysis:
 - Requires 2nd order sufficiency conditions, etc
- Convex programming sensitivity analysis:
 - Assumes no duality gap
 - Considers the directional derivative of the optimal cost under (straight line) constraint perturbations
- We present a more general framework:
 - We allow a duality gap
 - We consider sensitivity under curved constraint perturbations
- We show that the dual optimal solution of minimum norm determines the steepest descent rate of the optimal cost.
- The analysis is based on an extended version of the Fritz John conditions, which are of independent interest (paper by Bertsekas, Tseng, Ozdaglar).

MULTIPLIERS AND DUALITY

Consider the problem

minimize
$$f(x)$$

subject to $x \in X, g_1(x) \leq 0, \dots, g_r(x) \leq 0$

assuming that its optimal value f^* is finite.

• A vector $\mu^* = (\mu_1^*, \dots, \mu_r^*)$ is said to be a geometric (or G-) multiplier if $\mu^* \geq 0$ and

$$f^* = \inf_{x \in X} L(x, \mu^*) \equiv f(x) + \mu' g(x),$$

• The dual problem is

$$\label{eq:poisson} \begin{split} & \text{maximize} & \ q(\mu) \equiv \inf_{x \in X} L(x, \mu) \\ & \text{subject to} & \ \mu \geq 0, \end{split}$$

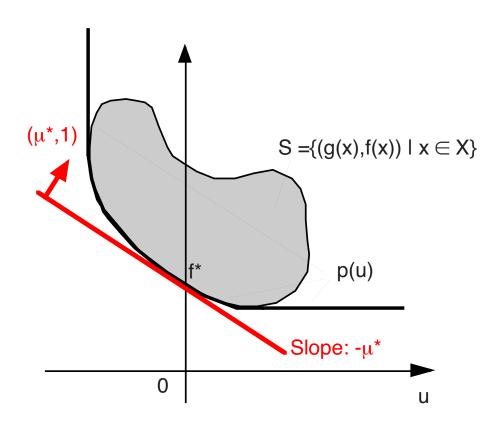
and its optimal value q^* satisfies $q^* \leq f^*$.

THE PRIMAL FUNCTION

The primal function is the perturbed optimal value

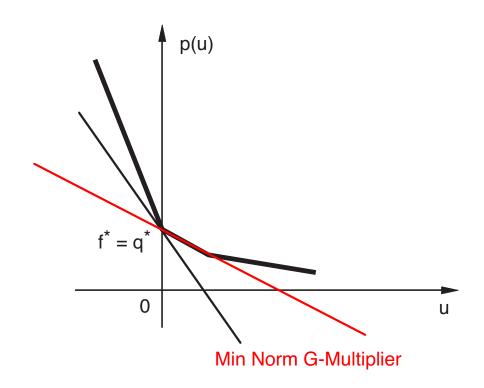
$$p(u) = \inf_{\substack{x \in X \\ g(x) \le u}} f(x)$$

- μ^* is a G-multiplier iff $-\mu^*$ is a subgradient of p at 0 (assuming that $p(u) > -\infty$ for all u).
- Classical sensitivity theory revolves around the directional derivative of p at 0.



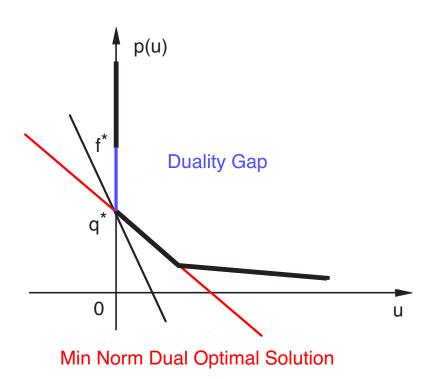
CLASSICAL SENSITIVITY THEORY

- Assume that $p(u) > -\infty$ for all u and 0 belongs to $\mathrm{ri}(\mathrm{dom}(p))$. Then:
 - (a) The set of G-multipliers is nonempty.
 - (b) If μ^* is the G-multiplier of minimum norm and $\mu^* \neq 0$:
 - The direction of steepest descent of p at 0 is $\mu^*/\|\mu^*\|$
 - The rate of steepest descent (per unit norm of constraint violation) is $\|\mu^*\|$.



BREAKDOWN OF CLASSICAL THEORY

- If 0 does not belong to ri(dom(p)), sensitivity theory breaks down because:
 - (1) There may exist a duality gap and no G-multiplier.



(2) Even if there is no duality gap and there exists a G-multiplier, the formula

(Dir. derivative of p along $\mu^*/\|\mu^*\|$) = $-\|\mu^*\|$ may not hold.

EXTENDED SENSITIVITY THEORY

Proposition: Assume that the primal function p is convex, and that $-\infty < q^* \le f^* < \infty$. If μ^* is a dual optimal solution of minimum norm and $\mu^* \ne 0$, then for all infeasible $x \in X$

$$\frac{q^* - f(x)}{\|g^+(x)\|} \le \|\mu^*\|,$$

where $g^+(x) \in \Re^r$ has components $\max\{0, g_j(x)\}$. Furthermore, the inequality is sharp, i.e., there exists a sequence $\{x_k\} \subset X$ such that

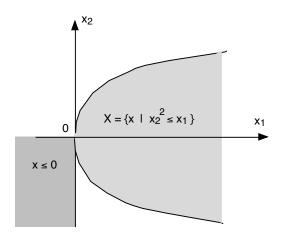
$$\frac{q^* - f(x_k)}{\|g^+(x_k)\|} \to \|\mu^*\|, \qquad \|g^+(x_k)\| \to 0.$$

• Note: The sequence $g^+(x_k)$ may have to go to 0 along a curve.

EXAMPLE

Consider the 2-dimensional problem

minimize $-x_2$ subject to $x \in X = \{x \mid x_2^2 \le x_1\}, \quad g(x) = x \le 0.$



- Then $f^*=q^*=0$, and the set of G-multipliers is $\{\mu\geq 0\mid \mu_2=1\}$.
- However, the min norm G-multiplier, $\mu^*=(0,1)$, is not a steepest descent direction; along μ^* , we have

$$p'(0; \mu^*) = 0.$$

• The steepest descent rate is $\|\mu^*\|$, but can be obtained only by approaching 0 along a curve.

PART II: CLOSED SET INTERSECTIONS

- Given a sequence of nonempty closed sets $\{S_k\}$ in \Re^n with $S_{k+1} \subset S_k$ for all k, when is $\bigcap_{k=0}^\infty S_k$ nonempty?
- Set intersection theorems are significant in at least three major contexts:
 - Existence of optimal solutions
 - Duality gap issue, i.e., equality of optimal values of the primal convex problem

$$minimize_{x \in X, g(x) \le 0} f(x)$$

and its dual

$$\mathsf{maximize}_{\mu \geq 0} \, q(\mu) \equiv \inf_{x \in X} \big\{ f(x) + \mu' g(x) \big\}$$

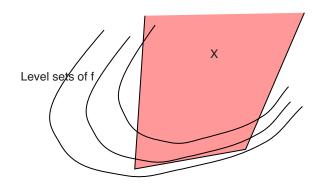
— min-max = max-min issue, i.e., equality in

$$\min_{x} \max_{z} \phi(x, z) = \max_{z} \min_{x} \phi(x, z),$$

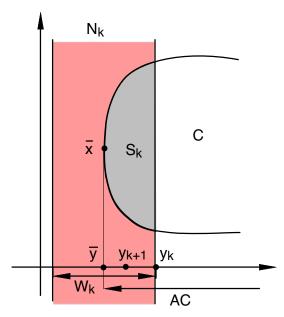
where ϕ is convex in x and concave in z

SOME SPECIFIC CONTEXTS I

- Does a function $f: \Re^n \mapsto (-\infty, \infty]$ attain a minimum over a set X?
 - This is true iff the intersection of the nonempty sets $\big\{x\in X\mid f(x)\leq\gamma\big\}$ is nonempty



If C is closed and A is a matrix, is A C closed?



- Many interesting special cases, e.g., if C_1 and C_2 are closed, is $C_1 + C_2$ closed?

SOME SPECIFIC CONTEXTS II

- If F(x, u) is closed, is $p(u) = \inf_x F(x, u)$ closed?
 - Critical question in the duality gap issue, where

$$F(x,u) = \begin{cases} f(x) & \text{if } x \in X, \ g(x) \leq u, \\ \infty & \text{otherwise} \end{cases}$$

and p is the primal function.

Critical question regarding min-max=max-min where

$$F(x,u) = \begin{cases} \sup_{z \in Z} \{\phi(x,z) - u'z\} & \text{if } x \in X, \\ \infty & \text{if } x \notin X. \end{cases}$$

We have min-max=max-min if

$$p(u) = \inf_{x \in \Re^n} F(x, u)$$

is closed.

Can be addressed by using the relation

$$\mathsf{Proj} ig(\mathrm{epi}(F) ig) \subset \mathrm{epi}(p) \subset \mathrm{cl} \Big(\mathsf{Proj} ig(\mathrm{epi}(F) ig) \Big)$$

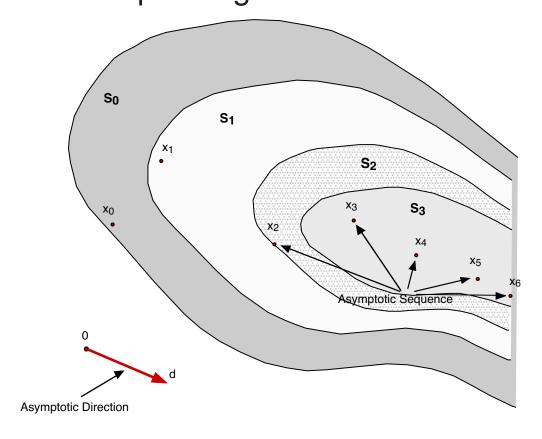
ASYMPTOTIC DIRECTIONS

• Given a sequence of nonempty nested closed sets $\{S_k\}$, we say that a vector $d \neq 0$ is an asymptotic direction of $\{S_k\}$ if there exists $\{x_k\}$ s. t.

$$x_k \in S_k, x_k \neq 0, k = 0, 1, \dots$$

$$||x_k|| \to \infty, \frac{x_k}{||x_k||} \to \frac{d}{||d||}.$$

• A sequence $\{x_k\}$ associated with an asymptotic totic direction d as above is called an asymptotic sequence corresponding to d.

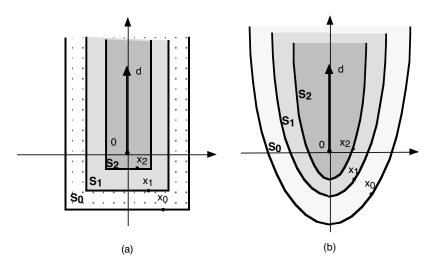


RETRACTIVE ASYMPTOTIC DIRECTIONS

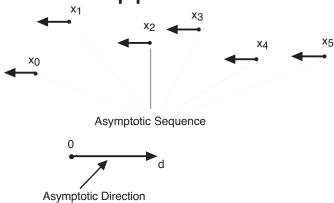
• An asymptotic sequence $\{x_k\}$ and corresponding asymptotic direction are called retractive if for every $\overline{\alpha}>0$ there exists \overline{k} such that

$$x_k - \alpha d \in S_k, \quad \forall \alpha \in [0, \overline{\alpha}], \ k \ge \overline{k}.$$

 $\{S_k\}$ is called retractive if all its asymptotic sequences are retractive.



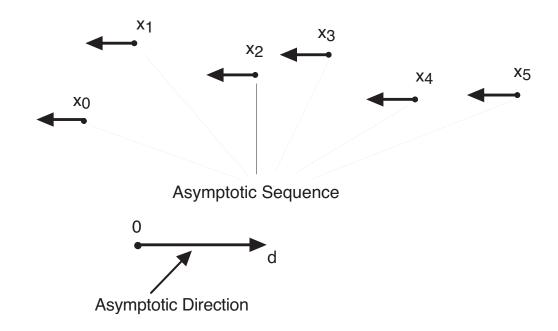
• Important observation: A retractive asymptotic sequence $\{x_k\}$ (for large k) gets closer to 0 when shifted in the opposite direction -d.



SET INTERSECTION THEOREM

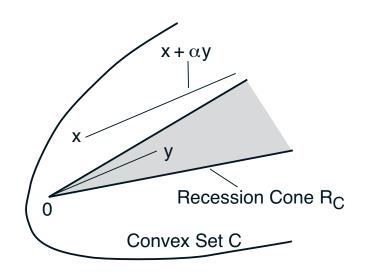
Proposition: The intersection of a retractive nested sequence of closed sets is nonempty.

- Key proof ideas:
 - (a) The intersection $\bigcap_{k=0}^{\infty} S_k$ is empty iff there is an unbounded sequence $\{x_k\}$ consisting of minimum norm vectors from the S_k .
 - (b) An asymptotic sequence $\{x_k\}$ consisting of minimum norm vectors from the S_k cannot be retractive, because $\{x_k\}$ eventually gets closer to 0 when shifted opposite to the asymptotic direction.



CALCULUS OF RETRACTIVE SEQUENCES

- Unions and intersections of retractive set sequences are retractive.
- Recall the recession cone R_C of a convex set C, and its lineality space $L_C = R_C \cap (-R_C)$.



If the S_k are convex, the set of asymptotic directions of $\{S_k\}$ is the set of nonzero common directions of recession of the S_k .

- The vector sum of a compact set and a polyhedral cone (e.g., a polyhedral set) is retractive.
- The level sets of a continuous concave function $\{x \mid f(x) \leq \gamma\}$ are retractive.

APPLICATION: EXISTENCE OF SOLUTIONS ISSUES

- Standard results on existence of minima of convex functions generalize with simple proofs using the set intersection theorems.
- Example 1: The set of minima of a closed convex function f over a closed set X is nonempty if there is no asymptotic direction of X that is a direction of recession of f.
- Example 2: The set of minima of a closed quasiconvex function f over a retractive closed set X is nonempty if

$$A \cap R \subset L$$

where A: set of asymptotic directions of X,

$$R = \bigcap_{k=0}^{\infty} R_{\overline{S}_k}, \qquad L = \bigcap_{k=0}^{\infty} L_{\overline{S}_k},$$
$$\overline{S}_k = \left\{ x \mid f(x) \le \gamma_k \right\}$$

and $\gamma_k \downarrow f^*$.

LINEAR AND QUADRATIC PROGRAMMING

Frank-Wolfe Theorem: Let X be polyhedral and

$$f(x) = x'Qx + c'x$$

where Q is symmetric (not necessarily positive semidefinite). If the minimal value of f over X is finite, there exists a minimum of f of over X.

- The proof is straightforward using the set intersection theorems.
- Extensions (based on the subsequent theory):
 - X can be the vector sum of a compact set and a polyhedral cone.
 - f can be of the form

$$f(x) = p(x'Qx) + c'x$$

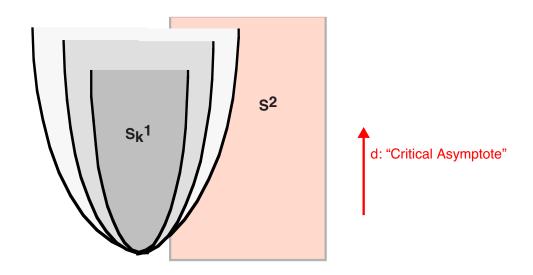
where Q is positive semidefinite and p is a polynomial.

ASYMPTOTIC INSIGHTS

• Key question: Given $\{S_k^1\}$ and $\{S_k^2\}$, each with nonempty intersection by itself, and with

$$S_k^1 \cap S_k^2 \neq \emptyset$$
,

for all k, when does the intersection sequence $\{S_k^1 \cap S_k^2\}$ have an empty intersection?



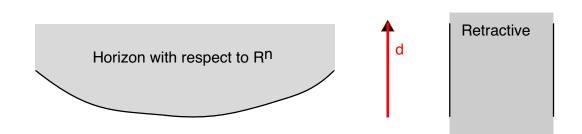
- With a few examples, we see that the trouble lies with the existence of some "critical asymptotes"
- "Critical asymptotes" roughly are: Common asymptotic directions d such that starting at $\bigcap_k S_k^2$ and looking at the horizon along d, we do not meet $\bigcap_k S_k^1$ (and similarly with the roles of S_k^1 and S_k^2 reversed).

CRITICAL DIRECTIONS

- We say that an asymptotic direction d of $\{S_k\}$, with $\cap_k S_k \neq \emptyset$ is a horizon direction with respect to a set G if for every $x \in G$, we have $x + \alpha d \in G$ for all α sufficiently large.
- We say that an asymptotic direction d of $\{S_k\}$ is noncritical with respect to a set G if it is either a horizon direction with respect to G or a retractive horizon direction with respect to $\bigcap_k S_k$. Otherwise, d is called critical with respect to G.
- Example: The as. directions of a vector sum S of a compact set and a polyhedral set are non-critical (are retractive horizon dir. with resp. to S).
- Example: The asymptotic directions of a level set sequence of a convex quadratic

$$S_k = \{x \mid x'Qx + c'x + b \le \gamma_k\}, \qquad \gamma_k \downarrow 0,$$

are noncritical. (Extension: convex polynomials.)



CRITICAL DIRECTION THEOREM

- Roughly it says that: For the intersection of a set sequence $\{S_k^1 \cap S_k^2 \cap \cdots \cap S_k^r\}$ to be empty, some common asymptotic direction must be critical for one of the $\{S_k^j\}$ with respect to the others.
- Critical Direction Theorem: Consider $\{S_k^1\}$ and $\{S_k^2\}$, each with nonempty intersection by itself. If

$$S_k^1 \cap S_k^2 \neq \emptyset$$
 for all k , and $\bigcap_{k=0}^{\infty} (S_k^1 \cap S_k^2) = \emptyset$,

there is a common asymptotic direction that is critical for $\{S_k^1\}$ with respect to $\bigcap_k S_k^2$ (or for $\{S_k^2\}$ with respect to $\bigcap_k S_k^1$).

- Extends to any finite number of sequences $\{S_k^j\}$.
- Special Case: The intersection of set sequences defined by convex polynomial functions

$$S_k^j = \{x \mid p_j(x) \le \gamma_k^j, j = 1, \dots, r\}, \qquad \gamma_k^j \downarrow 0,$$

is nonempty, assuming all the S_k^j are nonempty. (For example p_j may be convex quadratic.)

EXISTENCE OF SOLUTIONS THEOREMS

• Convex Quadratic/Polynomial Problems: For $j=0,1,\ldots,r$, let $f_j:\Re^n\mapsto\Re$ be polynomial convex functions. Then the problem

minimize
$$f_0(x)$$

subject to $f_j(x) \leq 0, \quad j = 1, \dots, r,$

has at least one optimal solution if and only if its optimal value is finite.

• Extended Frank-Wolfe Theorem: Let

$$f(x) = x'Qx + c'x$$

where Q is symmetric, and let X be a closed set whose asymptotic directions are retractive horizon directions with respect to X. If the minimal value of f over X is finite, there exists a minimum of f over X.