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Topics

(1) Sensitivity analysis under very general con-
ditions.

(2) Nonemptiness of closed set intersections. Uni-
fication of conditions for existence of an op-
timal solution, absence of a duality gap, and
min-max=inax-min.



PART I: SENSITIVITY ANALYSIS

e Classical NLP sensitivity analysis:
— Requires 2nd order sufficiency conditions,
etc
e Convex programming sensitivity analysis:
— Assumes no duality gap

— Considers the directional derivative of the
optimal cost under (straight line) constraint
perturbations

e \We present a more general framework:
— We allow a duality gap

— We consider sensitivity under curved con-
straint perturbations

e We show that the dual optimal solution of mini-
mum norm determines the steepest descent rate
of the optimal cost.

e The analysis is based on an extended ver-
sion of the Fritz John conditions, which are of in-
dependent interest (paper by Bertsekas, Tseng,
Ozdaglar).



MULTIPLIERS AND DUALITY

e Consider the problem

minimize f(x)
subjectto z € X, gi(x) <0,...,g9-(x) <0

assuming that its optimal value f* is finite.

e A vector p* = (u3,...,ur) is said to be a geo-
metric (or G-) multiplier if u* > 0 and

fr= it Lz, p*) = f(2) + 1'g(),

e The dual problem is

maximize q(u) = ajlg‘( L(x, 1)

subjectto u > 0,

and its optimal value ¢* satisfies ¢* < f*.



THE PRIMAL FUNCTION

e The primal function is the perturbed optimal
value

p(u) = inf f(z)
g(z)<u

e u*is a G-multiplier iff —p* is a subgradient of p
at 0 (assuming that p(u) > —oo for all u).

e (lassical sensitivity theory revolves around the
directional derivative of p at 0.




CLASSICAL SENSITIVITY THEORY

e Assume that p(u) > —oo for all v and 0 belongs
to ri(dom(p)). Then:

(a) The set of G-multipliers is nonempty.

(b) If u*is the G-multiplier of minimum norm and
p* # 0:
— The direction of steepest descent of p
at 0is pu* /| x|

— The rate of steepest descent (per unit
norm of constraint violation) is || *||.
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BREAKDOWN OF CLASSICAL THEORY

e If 0 does not belong to ri(dom(p)), sensitivity
theory breaks down because:

(1) There may exist a duality gap and no G-
multiplier.
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(2) Even if there is no duality gap and there ex-
ists a G-multiplier, the formula

(Dir. derivative of p along p* /|| p*||) = —|| ]|

may not hold.



EXTENDED SENSITIVITY THEORY

Proposition: Assume that the primal function p
IS convex, and that —oo < ¢* < f* < oo. If p*
IS a dual optimal solution of minimum norm and
w* == 0, then for all infeasible xr € X

¢ — f(x)
g ()]

where g+ (x) € R has components max{0, g;(z) }.
Furthermore, the inequality is sharp, i.e., there ex-
Ists a sequence {x} C X such that

¢ — flze) i
e el lgt@l —o.

< [lp=l;

e Note: The sequence gt (x;) may have to go
to O along a curve.



EXAMPLE

e Consider the 2-dimensional problem

minimize —xo
subjectto z € X ={x |25 <z}, g(x)=2<0.
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e Then f* = ¢* = 0, and the set of G-multipliers
iS{,uZO\,uz:l}.

e However, the min norm G-multiplier, u* = (0, 1),
IS not a steepest descent direction; along p*, we
have

p'(0; p*) = 0.

e The steepest descent rate is ||u*||, but can be
obtained only by approaching 0 along a curve.



PART Il: CLOSED SET INTERSECTIONS

e Given a sequence of nonempty closed sets {5 }
in ft» with Sy C S for all k, when is N2 Sy
nonempty?

e Set intersection theorems are significant in at
least three major contexts:

— Existence of optimal solutions

— Duality gap issue, i.e., equality of optimal
values of the primal convex problem

minimize ¢ x 4(z)<o f ()

and its dual

maximize,>o ¢(p) = inf { f(z) + p/g(x)}

— min-max = max-min issue, i.e., equality in

min max ¢(x, z) = max min ¢(z, 2),
T z z X

where ¢ Is convex in x and concave in z



SOME SPECIFIC CONTEXTS I

e Does a function f : R» — (—o0, | attain a
minimum over a set X ?
— Thisistrueiff the intersection of the nonempty
sets {z € X | f(x) <~} is nonempty

e If Cisclosed and A is a matrix, is A C closed?
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— Many interesting special cases, e.g., if C;
and C5 are closed, is C; + C5 closed?



SOME SPECIFIC CONTEXTS li

o If F(x,u)isclosed,isp(u) = inf, F(x,u)closed?
— Ciritical question in the duality gap issue, where

[ f(x) fze X, g(x) <u,
Fla,u) = {oo otherwise

and p is the primal function.
— Critical question regarding min-max=max-min
where

F(x,u) = {Supzez{¢(ﬂ7az) —uw'z} ifze X,
| OC ifx ¢ X.

We have min-max=max-min if

= inf F
p(u) = inf F(z, u)

IS closed.
— Can be addressed by using the relation

Proj(epi(F)) C epi(p) C Cl(PrOj (epi(F)))



ASYMPTOTIC DIRECTIONS

e Given a sequence of nonempty nested closed
sets {Si }, we say that a vector d # 0 is an asymp-
totic direction of { Sy} if there exists {z} s. 1.

xr € Sk, xy #* 0, Ek=20,1,...

Il \ d
|zl (1Al
e A sequence {x;} associated with an asymp-

totic direction d as above is called an asymptotic
sequence corresponding to d.

k|| — oo,

Asymptotic Direction



RETRACTIVE ASYMPTOTIC DIRECTIONS

e An asymptotic sequence {z} and correspond-
ing asymptotic direction are called retractive if for
every a > 0 there exists £ such that

rr — ad € Sk, VaE[O,@],kZE.

{Si} is called retractive if all its asymptotic se-
guences are retractive.

(a) (b)

e Important observation: A retractive asymp-
totic sequence {x;} (for large k) gets closer to 0
when shifted in the opposite direction —d.
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SET INTERSECTION THEOREM

Proposition: The intersection of a retractive nested
sequence of closed sets is nonempty.

e Key proof ideas:

(a) The intersection N2, S is empty iff there is
an unbounded sequence {x} consisting of
minimum norm vectors from the Sy.

(b) An asymptotic sequence {z} consisting of
minimum norm vectors from the S cannot
be retractive, because {zj} eventually gets
closerto O when shifted opposite to the asymp-
totic direction.
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CALCULUS OF RETRACTIVE SEQUENCES

e Unions and intersections of retractive set se-
gquences are retractive.

e Recall the recession cone R~ of a convex set
C', and its lineality space Lo = Rc N (—R¢).

Recession Cone Rg

Conve%

If the S, are convex, the set of asymptotic di-
rections of {Si} is the set of nonzero common
directions of recession of the Sj.

e The vector sum of a compact set and a poly-
hedral cone (e.g., a polyhedral set) is retractive.

e The level sets of a continuous concave function
{x | f(x) < v} are retractive.



APPLICATION: EXISTENCE OF SOLUTIONS ISSUES

e Standard results on existence of minima of con-
vex functions generalize with simple proofs using
the set intersection theorems.

e Example 1: The set of minima of a closed
convex function f over a closed set X is nonempty
If there is no asymptotic direction of X that is a
direction of recession of f.

e Example 2: The set of minima of a closed
guasiconvex function f over a retractive closed
set X is nonempty if

ANRCL,
where A: set of asymptotic directions of X,
R =N Ry, L=nNpyLg,,

§k:{a:]f(a:)§7k}
and vy | f*.



LINEAR AND QUADRATIC PROGRAMMING

e Frank-Wolfe Theorem: Let X be polyhedral
and

flx) =2'Qx + cx

where (Q is symmetric (not necessarily positive
semidefinite). If the minimal value of f over X
IS finite, there exists a minimum of f of over X.

e The proof is straightforward using the set inter-
section theorems.
e Extensions (based on the subsequent theory):

— X can be the vector sum of a compact set
and a polyhedral cone.

— f can be of the form

f(z) =p(a'Qr) + 'z

where () is positive semidefinite and p is a
polynomial.



ASYMPTOTIC INSIGHTS

e Key question: Given {5} } and {S?}, each with
nonempty intersection by itself, and with

S; NS # O,

for all k, when does the intersection sequence
{S} N S?} have an empty intersection?

skl
d: “Critical Asymptote”

e With a few examples, we see that the trouble lies
with the existence of some “critical asymptotes”

e “Critical asymptotes” roughly are: Common
asymptotic directions d such that starting at N, S;
and looking at the horizon along d, we do not meet
NS, (and similarly with the roles of S} and S% re-
versed).



CRITICAL DIRECTIONS

e We say that an asymptotic direction d of {S},
with N, Sk # s a horizon direction with respect
to a set G5 if for every x € GG, we have x + ad €
Nk Sk for all o sufficiently large.

e We say that an asymptotic direction d of { Sy } is

noncritical with respect to a set GG if it is either a
horizon direction with respect to G or a retractive
horizon direction with respect to N S,. Other-
wise, d is called critical with respect to G.

e Example: The as. directions of a vector sum
S of a compact set and a polyhedral set are non-
critical (are retractive horizon dir. with resp. to \5).

e Example: The asymptotic directions of a level
set sequence of a convex quadratic

Sp=1{z|2'Qrx+cx+b<w}, !0,

are noncritical. (Extension: convex polynomials.)

Retractive
Horizon with respect to RN d

~_




CRITICAL DIRECTION THEOREM

e Roughly it says that: For the intersection of a set
sequence {S; NSz N---NS7} to be empty, some
common asymptotic direction must be critical for
one of the {5/} with respect to the others.

e Critical Direction Theorem: Consider {S; }
and {S?}, each with nonempty intersection by it-
self. If

SinS2#£ @ forallk,and N, (SLNSE) =0,

there is a common asymptotic direction that is crit-
ical for {S; } with respect to Ny, S? (or for {57} with
respect to Ny, S1).

e Extends to any finite number of sequences {57 }.

e Special Case: The intersection of set sequences
defined by convex polynomial functions

Sz:{x‘pj(m)S/YILi?]:]‘?"'?T}? 7}1\1/07

IS nonempty, assuming all the S,‘i are nonempty.
(For example p; may be convex quadratic.)



EXISTENCE OF SOLUTIONS THEOREMS

e Convex Quadratic/Polynomial Problems:
For; =0,1,...,r, let f; : ®» — R be polynomial
convex functions. Then the problem

minimize fo(x)
subjectto f;(z) <0, j=1,...,r

has at least one optimal solution if and only if its
optimal value is finite.

e Extended Frank-Wolfe Theorem: Let
flx) =2'Qx + cx

where () iIs symmetric, and let X be a closed set
whose asymptotic directions are retractive horizon
directions with respect to X. If the minimal value
of f over X is finite, there exists a minimum of f
over X.



