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LECTURE 1

AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

• The Role of Convexity in Optimization

• Duality Theory

• Algorithms and Duality

• Course Organization



HISTORY AND PREHISTORY

• Prehistory: Early 1900s - 1949.
− Caratheodory, Minkowski, Steinitz, Farkas.
− Properties of convex sets and functions.

• Fenchel - Rockafellar era: 1949 - mid 1980s.
− Duality theory.
− Minimax/game theory (von Neumann).
− (Sub)differentiability, optimality conditions,

sensitivity.

• Modern era - Paradigm shift: Mid 1980s - present.
− Nonsmooth analysis (a theoretical/esoteric

direction).
− Algorithms (a practical/high impact direc-

tion).
− A change in the assumptions underlying the

field.



OPTIMIZATION PROBLEMS

• Generic form:

minimize f(x)
subject to x ∈ C

Cost function f : <n 7→ <, constraint set C, e.g.,

C = X ∩
{
x | h1(x) = 0, . . . , hm(x) = 0

}

∩
{
x | g1(x) ≤ 0, . . . , gr(x) ≤ 0

}

• Continuous vs discrete problem distinction

• Convex programming problems are those for
which f and C are convex
− They are continuous problems
− They are nice, and have beautiful and intu-

itive structure

• However, convexity permeates all of optimiza-
tion, including discrete problems

• Principal vehicle for continuous-discrete con-
nection is duality:
− The dual problem of a discrete problem is

continuous/convex
− The dual problem provides important infor-

mation for the solution of the discrete primal
(e.g., lower bounds, etc)



WHY IS CONVEXITY SO SPECIAL?

• A convex function has no local minima that are
not global

• A nonconvex function can be “convexified” while
maintaining the optimality of its global minima

• A convex set has a nonempty relative interior

• A convex set is connected and has feasible di-
rections at any point

• The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

• A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

• A real-valued convex function is continuous and
has nice differentiability properties

• Closed convex cones are self-dual with respect
to polarity

• Convex, lower semicontinuous functions are self-
dual with respect to conjugacy



DUALITY

• Two different views of the same object.

• Example: Dual description of signals.

Time domain Frequency domain

• Dual description of closed convex sets

A union of points An intersection of halfspaces



DUAL DESCRIPTION OF CONVEX FUNCTIONS

• Define a closed convex function by its epigraph.

• Describe the epigraph by hyperplanes.

• Associate hyperplanes with crossing points (the
conjugate function).

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

Primal Description Dual Description

Values f(x) Crossing points f∗(y)



FENCHEL PRIMAL AND DUAL PROBLEMS

x∗ x

f1(x)

−f2(x)

Slope y−f∗
1 (y)

f∗
2 (−y)

f∗
1 (y) + f∗

2 (−y)

Vertical Distances Crossing Point Differentials
Primal Problem Description Dual Problem Description

• Primal problem:

min
x

{
f1(x) + f2(x)

}

• Dual problem:

max
y

{
− f∗1 (y)− f∗2 (−y)

}

where f∗1 and f∗2 are the conjugates



FENCHEL DUALITY
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min
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}
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y

{
− f!

1 (y)− f!
2 (−y)

}

• Under favorable conditions (convexity):
− The optimal primal and dual values are equal
− The optimal primal and dual solutions are

related



A MORE ABSTRACT VIEW OF DUALITY

• Despite its elegance, the Fenchel framework is
somewhat indirect.

• From duality of set descriptions, to
− duality of functional descriptions, to
− duality of problem descriptions.

• A more direct approach:
− Start with a set, then
− Define two simple prototype problems dual

to each other.

• Avoid functional descriptions (a simpler, less
constrained framework).



MIN COMMON/MAX CROSSING DUALITY
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• All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

• The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional/pathological behavior shown in (c).



ABSTRACT/GENERAL DUALITY ANALYSIS

Minimax Duality Constrained Optimization
Duality

Min-Common/Max-Crossing
Theorems

p
Theorems of the
Alternative etc( MinMax = MaxMin )

Abstract Geometric Framework

Special choices
of M

(Set M)



EXCEPTIONAL BEHAVIOR

• If convex structure is so favorable, what is the
source of exceptional/pathological behavior?

• Answer: Some common operations on convex
sets do not preserve some basic properties.

• Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).
− Also the vector sum of two closed convex sets

need not be closed.

x1

x2

C1 =
{
(x1, x2) | x1 > 0, x2 > 0, x1x2 ≥ 1

}

C2 =
{
(x1, x2) | x1 = 0

}

• This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



MODERN VIEW OF CONVEX OPTIMIZATION

• Traditional view: Pre 1990s
− LPs are solved by simplex method
− NLPs are solved by gradient/Newton meth-

ods
− Convex programs are special cases of NLPs

LP CONVEX NLP

Duality Gradient/NewtonSimplex

• Modern view: Post 1990s
− LPs are often solved by nonsimplex/convex

methods
− Convex problems are often solved by the same

methods as LPs
− “Key distinction is not Linear-Nonlinear but

Convex-Nonconvex” (Rockafellar)

LP CONVEX NLP

Simplex Gradient/NewtonDuality
Cutting plane
Interior point
Subgradient



THE RISE OF THE ALGORITHMIC ERA

• Convex programs and LPs connect around
− Duality
− Large-scale piecewise linear problems

• Synergy of:
− Duality
− Algorithms
− Applications

• New problem paradigms with rich applications

• Duality-based decomposition
− Large-scale resource allocation
− Lagrangian relaxation, discrete optimization
− Stochastic programming

• Conic programming
− Robust optimization
− Semidefinite programming

• Machine learning
− Support vector machines
− l1 regularization/Robust regression/Compressed

sensing



METHODOLOGICAL TRENDS

• New methods, renewed interest in old methods.
− Interior point methods
− Subgradient/incremental methods
− Polyhedral approximation/cutting plane meth-

ods
− Regularization/proximal methods
− Incremental methods

• Renewed emphasis on complexity analysis
− Nesterov, Nemirovski, and others ...
− “Optimal algorithms” (e.g., extrapolated gra-

dient methods)

• Emphasis on interesting (often duality-related)
large-scale special structures



COURSE OUTLINE

• We will follow closely the textbook
− Bertsekas, “Convex Optimization Theory,”

Athena Scientific, 2009, including the on-line
Chapter 6 and supplementary material at
http://www.athenasc.com/convexduality.html

• Additional book references:
− Rockafellar, “Convex Analysis,” 1970.
− Boyd and Vanderbergue, “Convex Optimiza-

tion,” Cambridge U. Press, 2004. (On-line at
http://www.stanford.edu/ boyd/cvxbook.html)

− Bertsekas, Nedic, and Ozdaglar, “Convex Anal-
ysis and Optimization,” Ath. Scientific, 2003.

• Topics (the text’s design is modular, and the
following sequence involves no loss of continuity):
− Basic Convexity Concepts: Sect. 1.1-1.4.
− Convexity and Optimization: Ch. 3.
− Hyperplanes & Conjugacy: Sect. 1.5, 1.6.
− Polyhedral Convexity: Ch. 2.
− Geometric Duality Framework: Ch. 4.
− Duality Theory: Sect. 5.1-5.3.
− Subgradients: Sect. 5.4.
− Algorithms: Ch. 6.



WHAT TO EXPECT FROM THIS COURSE

• Requirements: Homework (25%), midterm (25%),
and a term paper (50%)

• We aim:
− To develop insight and deep understanding

of a fundamental optimization topic
− To treat with mathematical rigor an impor-

tant branch of methodological research, and
to provide an account of the state of the art
in the field

− To get an understanding of the merits, limi-
tations, and characteristics of the rich set of
available algorithms

• Mathematical level:
− Prerequisites are linear algebra (preferably

abstract) and real analysis (a course in each)
− Proofs will matter ... but the rich geometry

of the subject helps guide the mathematics

• Applications:
− They are many and pervasive ... but don’t

expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models

− You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

• These slides are a teaching aid, not a text

• Don’t expect a rigorous mathematical develop-
ment

• The statements of theorems are fairly precise,
but the proofs are not

• Many proofs have been omitted or greatly ab-
breviated

• Figures are meant to convey and enhance un-
derstanding of ideas, not to express them precisely

• The omitted proofs and a fuller discussion can
be found in the “Convex Optimization Theory”
textbook and its supplementary material



LECTURE 2

LECTURE OUTLINE

• Convex sets and functions

• Epigraphs

• Closed convex functions

• Recognizing convex functions

Reading: Section 1.1



SOME MATH CONVENTIONS

• All of our work is done in <n: space of n-tuples
x = (x1, . . . , xn)

• All vectors are assumed column vectors

• “′” denotes transpose, so we use x′ to denote a
row vector

• x′y is the inner product
∑n
i=1 xiyi of vectors x

and y

• ‖x‖ =
√
x′x is the (Euclidean) norm of x. We

use this norm almost exclusively

• See the textbook for an overview of the linear
algebra and real analysis background that we will
use. Particularly the following:
− Definition of sup and inf of a set of real num-

bers
− Convergence of sequences (definitions of lim inf,

lim sup of a sequence of real numbers, and
definition of lim of a sequence of vectors)

− Open, closed, and compact sets and their
properties

− Definition and properties of differentiation



CONVEX SETS

αx + (1− α)y, 0 ≤ α ≤ 1

yx x

y

x

y

x

y

• A subset C of <n is called convex if

αx+ (1− α)y ∈ C, ∀ x, y ∈ C, ∀ α ∈ [0, 1]

• Operations that preserve convexity
− Intersection, scalar multiplication, vector sum,

closure, interior, linear transformations

• Special convex sets:
− Polyhedral sets: Nonempty sets of the form

{x | a′jx ≤ bj , j = 1, . . . , r}
(always convex, closed, not always bounded)

− Cones: Sets C such that λx ∈ C for all
λ > 0 and x ∈ C (not always convex or
closed)



CONVEX FUNCTIONS

a f(x) + (1 - a )f(y)

x y

C

f(a x + (1 - a )y)

a x + (1 - a )y

f(x)

f(y)

αx + (1− α)y

C

x y

f(x)

f(y)

αf(x) + (1− α)f(y)

f
(
αx + (1 − α)y

)

• Let C be a convex subset of <n. A function
f : C 7→ < is called convex if for all α ∈ [0, 1]

f
(
αx+(1−α)y

)
≤ αf(x)+(1−α)f(y), ∀ x, y ∈ C

If the inequality is strict whenever a ∈ (0, 1) and
x 6= y, then f is called strictly convex over C.

• If f is a convex function, then all its level sets
{x ∈ C | f(x) ≤ γ} and {x ∈ C | f(x) < γ},
where γ is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

f(x)

x
Convex function

f(x)

x
Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• The epigraph of a function f : X 7→ [−∞,∞] is
the subset of <n+1 given by

epi(f) =
{

(x,w) | x ∈ X, w ∈ <, f(x) ≤ w
}

• The effective domain of f is the set

dom(f) =
{
x ∈ X | f(x) <∞

}

• We say that f is convex if epi(f) is a convex
set. If f(x) > −∞ for all x ∈ X and X is convex,
the definition “coincides” with the earlier one.

• We say that f is closed if epi(f) is a closed set.

• We say that f is lower semicontinuous at a
vector x ∈ X if f(x) ≤ lim infk→∞ f(xk) for every
sequence {xk} ⊂ X with xk → x.



CLOSEDNESS AND SEMICONTINUITY I

• Proposition: For a function f : <n 7→ [−∞,∞],
the following are equivalent:

(i) Vγ = {x | f(x) ≤ γ} is closed for all γ ∈ <.

(ii) f is lower semicontinuous at all x ∈ <n.

(iii) f is closed.

f(x)

x{
x | f(x) ≤ γ

}

γ

epi(f)

• (ii) ⇒ (iii): Let
{

(xk, wk)
}
⊂ epi(f) with

(xk, wk)→ (x,w). Then f(xk) ≤ wk, and

f(x) ≤ lim inf
k→∞

f(xk) ≤ w so (x,w) ∈ epi(f)

• (iii) ⇒ (i): Let {xk} ⊂ Vγ and xk → x. Then
(xk, γ) ∈ epi(f) and (xk, γ) → (x, γ), so (x, γ) ∈
epi(f), and x ∈ Vγ .

• (i)⇒ (ii): If xk → x and f(x) > γ > lim infk→∞ f(xk)
consider subsequence {xk}K → x with f(xk) ≤ γ
- contradicts closedness of Vγ .



CLOSEDNESS AND SEMICONTINUITY II

• Lower semicontinuity of a function is a “domain-
specific” property, but closeness is not:
− If we change the domain of the function with-

out changing its epigraph, its lower semicon-
tinuity properties may be affected.

− Example: Define f : (0, 1)→ [−∞,∞] and
f̂ : [0, 1]→ [−∞,∞] by

f(x) = 0, ∀ x ∈ (0, 1),

f̂(x) =
{

0 if x ∈ (0, 1),
∞ if x = 0 or x = 1.

Then f and f̂ have the same epigraph, and
both are not closed. But f is lower-semicon-
tinuous while f̂ is not.

• Note that:
− If f is lower semicontinuous at all x ∈ dom(f),

it is not necessarily closed
− If f is closed, dom(f) is not necessarily closed

• Proposition: Let f : X 7→ [−∞,∞] be a func-
tion. If dom(f) is closed and f is lower semicon-
tinuous at all x ∈ dom(f), then f is closed.



PROPER AND IMPROPER CONVEX FUNCTIONS
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• We say that f is proper if f(x) <∞ for at least
one x ∈ X and f(x) > −∞ for all x ∈ X, and we
will call f improper if it is not proper.

• Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

• An improper closed convex function is very pe-
culiar: it takes an infinite value (∞ or −∞) at
every point.



RECOGNIZING CONVEX FUNCTIONS

• Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

• Proposition: Let fi : <n 7→ (−∞,∞], i ∈ I, be
given functions (I is an arbitrary index set).

(a) The function g : <n 7→ (−∞,∞] given by

g(x) = λ1f1(x) + · · ·+ λmfm(x), λi > 0

is convex (or closed) if f1, . . . , fm are convex (re-
spectively, closed).

(b) The function g : <n 7→ (−∞,∞] given by

g(x) = f(Ax)

where A is an m× n matrix is convex (or closed)
if f is convex (respectively, closed).

(c) The function g : <n 7→ (−∞,∞] given by

g(x) = sup
i∈I

fi(x)

is convex (or closed) if the fi are convex (respec-
tively, closed).



LECTURE 3

LECTURE OUTLINE

• Differentiable Convex Functions

• Convex and Affine Hulls

• Caratheodory’s Theorem

• Relative Interior

Reading: Sections 1.1, 1.2, 1.3.0



DIFFERENTIABLE CONVEX FUNCTIONS

zx

f(z)

f(x) +∇f(x)′(z − x)

• Let C ⊂ <n be a convex set and let f : <n 7→ <
be differentiable over <n.

(a) The function f is convex over C iff

f(z) ≥ f(x) + (z− x)′∇f(x), ∀ x, z ∈ C

(b) If the inequality is strict whenever x 6= z,
then f is strictly convex over C.



PROOF IDEAS

z

x

x

f(x) + (z − x)′∇f(x)

f(z)

f(z)

αf(x) + (1− α)f(y)

f(x)

f(y)

z = αx + (1 − α)y
y

f(z) + (y − z)′∇f(z)
f(z) + (x− z)′∇f(z)

(a)

(b)

x + α(z − x)

f(x) +
f
(
x + α(z − x)

)
− f(x)

α



OPTIMALITY CONDITION

• Let C be a nonempty convex subset of <n and
let f : <n 7→ < be convex and differentiable over
an open set that contains C. Then a vector x∗ ∈ C
minimizes f over C if and only if

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ C.

Proof: If the condition holds, then

f(x) ≥ f(x∗)+(x−x∗)′∇f(x∗) ≥ f(x∗), ∀ x ∈ C,

so x∗ minimizes f over C.
Converse: Assume the contrary, i.e., x∗ min-

imizes f over C and ∇f(x∗)′(x−x∗) < 0 for some
x ∈ C. By differentiation, we have

lim
α↓0

f
(
x∗ + α(x− x∗)

)
− f(x∗)

α
= ∇f(x∗)′(x−x∗) < 0

so f
(
x∗ + α(x − x∗)

)
decreases strictly for suffi-

ciently small α > 0, contradicting the optimality
of x∗. Q.E.D.



TWICE DIFFERENTIABLE CONVEX FNS

• Let C be a convex subset of <n and let f :
<n 7→ < be twice continuously differentiable over
<n.

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then f is convex over C.

(b) If ∇2f(x) is positive definite for all x ∈ C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
∇2f(x) is positive semidefinite for all x ∈ C.

Proof: (a) By mean value theorem, for x, y ∈ C

f(y) = f(x)+(y−x)′∇f(x)+ 1
2
(y−x)′∇2f

(
x+α(y−x)

)
(y−x)

for some α ∈ [0, 1]. Using the positive semidefi-
niteness of ∇2f , we obtain

f(y) ≥ f(x) + (y − x)′∇f(x), ∀ x, y ∈ C
From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(x) + (y −
x)′∇f(x) for all x, y ∈ C with x 6= y, and we use
the preceding result.

(c) By contradiction ... similar.



CONVEX AND AFFINE HULLS

• Given a set X ⊂ <n:

• A convex combination of elements of X is a
vector of the form

∑m
i=1 αixi, where xi ∈ X, αi ≥

0, and
∑m
i=1 αi = 1.

• The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X. (Can
be shown to be equal to the set of all convex com-
binations from X).

• The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space).

• A nonnegative combination of elements of X is
a vector of the form

∑m
i=1 αixi, where xi ∈ X and

αi ≥ 0 for all i.

• The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:
− It is a convex cone containing the origin.
− It need not be closed!
− If X is a finite set, cone(X) is closed (non-

trivial to show!)



CARATHEODORY’S THEOREM

xx
x

x1

x1

x2

x2

x3

x4

conv(X)

cone(X)

X

(a) (b)

x

0

• Let X be a nonempty subset of <n.

(a) Every x 6= 0 in cone(X) can be represented
as a positive combination of vectors x1, . . . , xm
from X that are linearly independent (so
m ≤ n).

(b) Every x /∈ X that belongs to conv(X) can
be represented as a convex combination of
vectors x1, . . . , xm from X with m ≤ n+ 1.



PROOF OF CARATHEODORY’S THEOREM

(a) Let x be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form

∑m
i=1 αixi, where αi > 0 and xi ∈ X for

all i = 1, . . . ,m. If the vectors xi were linearly
dependent, there would exist λ1, . . . , λm, with

m∑

i=1

λixi = 0

and at least one of the λi is positive. Consider
m∑

i=1

(αi − γλi)xi,

where γ is the largest γ such that αi−γλi ≥ 0 for
all i. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X – a contradiction. Therefore, x1, . . . , xm,
are linearly independent.

(b) Use “lifting” argument: apply part (a) to Y ={
(x, 1) | x ∈ X

}
.

Y

x

X

0

1
(x, 1)

!n



AN APPLICATION OF CARATHEODORY

• The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can
be expressed as

{∑n+1
i=1 α

k
i x

k
i

}
, where for all k and

i, αki ≥ 0, xki ∈ X, and
∑n+1
i=1 α

k
i = 1. Since the

sequence

{
(αk1 , . . . , α

k
n+1, x

k
1 , . . . , x

k
n+1)

}

is bounded, it has a limit point

{
(α1, . . . , αn+1, x1, . . . , xn+1)

}
,

which must satisfy
∑n+1
i=1 αi = 1, and αi ≥ 0,

xi ∈ X for all i.
The vector

∑n+1
i=1 αixi belongs to conv(X)

and is a limit point of
{∑n+1

i=1 α
k
i x

k
i

}
, showing

that conv(X) is compact. Q.E.D.

• Note that the convex hull of a closed set need
not be closed!



RELATIVE INTERIOR

• x is a relative interior point of C, if x is an
interior point of C relative to aff(C).

• ri(C) denotes the relative interior of C, i.e., the
set of all relative interior points of C.

• Line Segment Principle: If C is a convex set,
x ∈ ri(C) and x ∈ cl(C), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

x

C xα = αx+(1−α)x

x

S
Sαε

αε

• Proof of case where x ∈ C: See the figure.

• Proof of case where x /∈ C: Take sequence
{xk} ⊂ C with xk → x. Argue as in the figure.



ADDITIONAL MAJOR RESULTS

• Let C be a nonempty convex set.

(a) ri(C) is a nonempty convex set, and has the
same affine hull as C.

(b) Prolongation Lemma: x ∈ ri(C) if and
only if every line segment in C having x
as one endpoint can be prolonged beyond x
without leaving C.

z2

C

X

z1

z1 and z2 are linearly
independent, belong to
C and span aff(C)

0

Proof: (a) Assume that 0 ∈ C. We choose m lin-
early independent vectors z1, . . . , zm ∈ C, where
m is the dimension of aff(C), and we let

X =

{
m∑

i=1

αizi

∣∣∣
m∑

i=1

αi < 1, αi > 0, i = 1, . . . ,m

}

(b) => is clear by the def. of rel. interior. Reverse:
take any x ∈ ri(C); use Line Segment Principle.



OPTIMIZATION APPLICATION

• A concave function f : <n 7→ < that attains its
minimum over a convex set X at an x∗ ∈ ri(X)
must be constant over X.

X

x

x
x∗

aff(X)

Proof: (By contradiction) Let x ∈ X be such
that f(x) > f(x∗). Prolong beyond x∗ the line
segment x-to-x∗ to a point x ∈ X. By concavity
of f , we have for some α ∈ (0, 1)

f(x∗) ≥ αf(x) + (1− α)f(x),

and since f(x) > f(x∗), we must have f(x∗) >
f(x) - a contradiction. Q.E.D.

• Corollary: A linear function can attain a min-
inum only at the boundary of a convex set.



LECTURE 4

LECTURE OUTLINE

• Algebra of relative interiors and closures

• Continuity of convex functions

• Closures of functions

• Recession cones and lineality space

Reading: Sections 1.31-1.3.3, 1.4.0



CALCULUS OF REL. INTERIORS: SUMMARY

• The ri(C) and cl(C) of a convex set C “differ
very little.”
− Any set “between” ri(C) and cl(C) has the

same relative interior and closure.
− The relative interior of a convex set is equal

to the relative interior of its closure.
− The closure of the relative interior of a con-

vex set is equal to its closure.

• Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

• Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

• Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

• Proposition:

(a) We have cl(C) = cl
(
ri(C)

)
and ri(C) = ri

(
cl(C)

)
.

(b) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.

(ii) C and C have the same closure.

(iii) ri(C) ⊂ C ⊂ cl(C).

Proof: (a) Since ri(C) ⊂ C, we have cl
(
ri(C)

)
⊂

cl(C). Conversely, let x ∈ cl(C). Let x ∈ ri(C).
By the Line Segment Principle, we have

αx+ (1− α)x ∈ ri(C), ∀ α ∈ (0, 1].

Thus, x is the limit of a sequence that lies in ri(C),
so x ∈ cl

(
ri(C)

)
.

x

x
C

The proof of ri(C) = ri
(
cl(C)

)
is similar.



LINEAR TRANSFORMATIONS

• Let C be a nonempty convex subset of <n and
let A be an m× n matrix.

(a) We have A · ri(C) = ri(A · C).

(b) We have A · cl(C) ⊂ cl(A ·C). Furthermore,
if C is bounded, then A · cl(C) = cl(A · C).

Proof: (a) Intuition: Spheres within C are mapped
onto spheres within A · C (relative to the affine
hull).

(b) We have A·cl(C) ⊂ cl(A·C), since if a sequence
{xk} ⊂ C converges to some x ∈ cl(C) then the
sequence {Axk}, which belongs to A ·C, converges
to Ax, implying that Ax ∈ cl(A · C).

To show the converse, assuming that C is
bounded, choose any z ∈ cl(A · C). Then, there
exists {xk} ⊂ C such that Axk → z. Since C is
bounded, {xk} has a subsequence that converges
to some x ∈ cl(C), and we must have Ax = z. It
follows that z ∈ A · cl(C). Q.E.D.

Note that in general, we may have

A · int(C) 6= int(A · C), A · cl(C) 6= cl(A · C)



INTERSECTIONS AND VECTOR SUMS

• Let C1 and C2 be nonempty convex sets.

(a) We have

ri(C1 + C2) = ri(C1) + ri(C2),

cl(C1) + cl(C2) ⊂ cl(C1 + C2)

If one of C1 and C2 is bounded, then

cl(C1) + cl(C2) = cl(C1 + C2)

(b) If ri(C1) ∩ ri(C2) 6= Ø, then

ri(C1 ∩ C2) = ri(C1) ∩ ri(C2),

cl(C1 ∩ C2) = cl(C1) ∩ cl(C2)

Proof of (a): C1 + C2 is the result of the linear
transformation (x1, x2) 7→ x1 + x2.

• Counterexample for (b):

C1 = {x | x ≤ 0}, C2 = {x | x ≥ 0}



CARTESIAN PRODUCT - GENERALIZATION

• Let C be convex set in <n+m. For x ∈ <n, let

Cx = {y | (x, y) ∈ C},

and let
D = {x | Cx 6= Ø}.

Then

ri(C) =
{

(x, y) | x ∈ ri(D), y ∈ ri(Cx)
}
.

Proof: Since D is projection of C on x-axis,

ri(D) =
{
x | there exists y ∈ <m with (x, y) ∈ ri(C)

}
,

so that

ri(C) = ∪x∈ri(D)

(
Mx ∩ ri(C)

)
,

where Mx =
{

(x, y) | y ∈ <m
}

. For every x ∈
ri(D), we have

Mx ∩ ri(C) = ri(Mx ∩ C) =
{

(x, y) | y ∈ ri(Cx)
}
.

Combine the preceding two equations. Q.E.D.



CONTINUITY OF CONVEX FUNCTIONS

• If f : <n 7→ < is convex, then it is continuous.

0

xk

xk+1

yk

zk

e1 = (1, 1)

e2 = (1,−1)e3 = (−1,−1)

e4 = (−1, 1)

Proof: We will show that f is continuous at 0.
By convexity, f is bounded within the unit cube
by the max value of f over the corners of the cube.

Consider sequence xk → 0 and the sequences
yk = xk/‖xk‖∞, zk = −xk/‖xk‖∞. Then

f(xk) ≤
(
1− ‖xk‖∞

)
f(0) + ‖xk‖∞f(yk)

f(0) ≤ ‖xk‖∞
‖xk‖∞ + 1

f(zk) +
1

‖xk‖∞ + 1
f(xk)

Take limit as k →∞. Since ‖xk‖∞ → 0, we have

lim sup
k→∞

‖xk‖∞f(yk) ≤ 0, lim sup
k→∞

‖xk‖∞
‖xk‖∞ + 1

f(zk) ≤ 0

so f(xk)→ f(0). Q.E.D.

• Extension to continuity over ri(dom(f)).



CLOSURES OF FUNCTIONS

• The closure of a function f : X 7→ [−∞,∞] is
the function cl f : <n 7→ [−∞,∞] with

epi(cl f) = cl
(
epi(f)

)

• The convex closure of f is the function čl f with

epi(čl f) = cl
(
conv

(
epi(f)

))

• Proposition: For any f : X 7→ [−∞,∞]

inf
x∈X

f(x) = inf
x∈<n

(cl f)(x) = inf
x∈<n

(čl f)(x).

Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and čl f .

• Proposition: For any f : X 7→ [−∞,∞]:

(a) cl f (or čl f) is the greatest closed (or closed
convex, resp.) function majorized by f .

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(cl f)(x) = f(x), ∀ x ∈ ri
(
dom(f)

)
,

and if x ∈ ri
(
dom(f)

)
and y ∈ dom(cl f),

(cl f)(y) = lim
α↓0

f
(
y + α(x− y)

)
.



RECESSION CONE OF A CONVEX SET

• Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C to points outside C:

x+ αd ∈ C, ∀ x ∈ C, ∀ α ≥ 0

x

C

0

d

x + αd

Recession Cone RC

• Recession cone of C (denoted by RC): The set
of all directions of recession.

• RC is a cone containing the origin.



RECESSION CONE THEOREM

• Let C be a nonempty closed convex set.

(a) The recession cone RC is a closed convex
cone.

(b) A vector d belongs to RC if and only if there
exists some vector x ∈ C such that x+αd ∈
C for all α ≥ 0.

(c) RC contains a nonzero direction if and only
if C is unbounded.

(d) The recession cones of C and ri(C) are equal.

(e) If D is another closed convex set such that
C ∩D 6= Ø, we have

RC∩D = RC ∩RD

More generally, for any collection of closed
convex sets Ci, i ∈ I, where I is an arbitrary
index set and ∩i∈ICi is nonempty, we have

R∩i∈ICi = ∩i∈IRCi



PROOF OF PART (B)

x

C

z1 = x + d

z2

z3

x

x + d

x + d1

x + d2

x + d3

• Let d 6= 0 be such that there exists a vector
x ∈ C with x + αd ∈ C for all α ≥ 0. We fix
x ∈ C and α > 0, and we show that x + αd ∈ C.
By scaling d, it is enough to show that x+ d ∈ C.

For k = 1, 2, . . ., let

zk = x+ kd, dk =
(zk − x)
‖zk − x‖

‖d‖

We have

dk

‖d‖ =
‖zk − x‖
‖zk − x‖

d

‖d‖+
x− x
‖zk − x‖

,
‖zk − x‖
‖zk − x‖

→ 1,
x− x
‖zk − x‖

→ 0,

so dk → d and x+ dk → x+ d. Use the convexity
and closedness of C to conclude that x+ d ∈ C.



LINEALITY SPACE

• The lineality space of a convex set C, denoted by
LC , is the subspace of vectors d such that d ∈ RC
and −d ∈ RC :

LC = RC ∩ (−RC)

• If d ∈ LC , the entire line defined by d is con-
tained in C, starting at any point of C.

• Decomposition of a Convex Set: Let C be a
nonempty convex subset of <n. Then,

C = LC + (C ∩ L⊥C).

• Allows us to prove properties of C on C ∩ L⊥C
and extend them to C.

• True also if LC is replaced by a subspace S ⊂
LC .

x

C

S

S⊥

C ∩ S⊥

0
d

z



LECTURE 5

LECTURE OUTLINE

• Directions of recession of convex functions

• Local and global minima

• Existence of optimal solutions

Reading: Sections 1.4.1, 3.1, 3.2



DIRECTIONS OF RECESSION OF A FN

• We aim to characterize directions of monotonic
decrease of convex functions.

• Some basic geometric observations:
− The “horizontal directions” in the recession

cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

− Along these directions the level sets
{
x |

f(x) ≤ γ
}

are unbounded and f is mono-
tonically nondecreasing.

• These are the directions of recession of f .

γ

epi(f)

Level Set Vγ = {x | f(x) ≤ γ}

“Slice” {(x,γ) | f(x) ≤ γ}

Recession
Cone of f

0



RECESSION CONE OF LEVEL SETS

• Proposition: Let f : <n 7→ (−∞,∞] be a closed
proper convex function and consider the level sets
Vγ =

{
x | f(x) ≤ γ

}
, where γ is a scalar. Then:

(a) All the nonempty level sets Vγ have the same
recession cone:

RVγ =
{
d | (d, 0) ∈ Repi(f)

}

(b) If one nonempty level set Vγ is compact, then
all level sets are compact.

Proof: (a) Just translate to math the fact that

RVγ = the “horizontal” directions of recession of epi(f)

(b) Follows from (a).



RECESSION CONE OF A CONVEX FUNCTION

• For a closed proper convex function f : <n 7→
(−∞,∞], the (common) recession cone of the nonempty
level sets Vγ =

{
x | f(x) ≤ γ

}
, γ ∈ <, is the re-

cession cone of f , and is denoted by Rf .

0

Recession Cone Rf

Level Sets of f

• Terminology:
− d ∈ Rf : a direction of recession of f .
− Lf = Rf ∩ (−Rf ): the lineality space of f .
− d ∈ Lf : a direction of constancy of f .

• Example: For the pos. semidefinite quadratic

f(x) = x′Qx+ a′x+ b,

the recession cone and constancy space are

Rf = {d | Qd = 0, a′d ≤ 0}, Lf = {d | Qd = 0, a′d = 0}



RECESSION FUNCTION

• Function rf : <n 7→ (−∞,∞] whose epigraph
is Repi(f) is the recession function of f .

• Characterizes the recession cone:

Rf =
{
d | rf (d) ≤ 0

}
, Lf =

{
d | rf (d) = rf (−d) = 0

}

since Rf = {(d, 0) ∈ Repi(f)}.
• Can be shown that

rf (d) = sup
α>0

f(x+ αd)− f(x)

α
= lim
α→∞

f(x+ αd)− f(x)

α

• Thus rf (d) is the “asymptotic slope” of f in the
direction d. In fact,

rf (d) = lim
α→∞

∇f(x+ αd)′d, ∀ x, d ∈ <n

if f is differentiable.

• Calculus of recession functions:

rf1+···+fm(d) = rf1(d) + · · ·+ rfm(d),

rsupi∈I fi(d) = sup
i∈I

rfi(d)



DESCENT BEHAVIOR OF A CONVEX FN

f(x + a y)

a

f(x)

(a)

f(x + a y)

a

f(x)

(b)

f(x + a y)

a

f(x)

(c)

f(x + a y)

a

f(x)

(d)

f(x + a y)

a

f(x)

(e)

f(x + a y)

a

f(x)

(f)

α α

αα

α α

f(x)

f(x)

f(x)

f(x)

f(x)

f(x)

f(x + αd)

f(x + αd) f(x + αd)

f(x + αd)

f(x + αd)f(x + αd)

rf (d) = 0

rf (d) = 0 rf (d) = 0

rf (d) < 0

rf (d) > 0 rf (d) > 0

• y is a direction of recession in (a)-(d).

• This behavior is independent of the starting
point x, as long as x ∈ dom(f).



LOCAL AND GLOBAL MINIMA

• Consider minimizing f : <n 7→ (−∞,∞] over a
set X ⊂ <n

• x is feasible if x ∈ X ∩ dom(f)

• x∗ is a (global) minimum of f over X if x∗ is
feasible and f(x∗) = infx∈X f(x)

• x∗ is a local minimum of f over X if x∗ is a
minimum of f over a set X ∩ {x | ‖x− x∗‖ ≤ ε}
Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.

f(x)

αf(x∗) + (1− α)f(x)

f
(
αx∗ + (1− α)x

)

0 x∗x x



EXISTENCE OF OPTIMAL SOLUTIONS

• The set of minima of a proper f : <n 7→
(−∞,∞] is the intersection of its nonempty level
sets.

• The set of minima of f is nonempty and com-
pact if the level sets of f are compact.

• (An Extension of the) Weierstrass’ Theo-
rem: The set of minima of f over X is nonempty
and compact if X is closed, f is lower semicontin-
uous over X, and one of the following conditions
holds:

(1) X is bounded.

(2) Some set
{
x ∈ X | f(x) ≤ γ

}
is nonempty

and bounded.

(3) For every sequence {xk} ⊂ X s. t. ‖xk‖ →
∞, we have limk→∞ f(xk) =∞. (Coercivity
property).

Proof: In all cases the level sets of f ∩X are
compact. Q.E.D.



EXISTENCE OF SOLUTIONS - CONVEX CASE

• Weierstrass’ Theorem specialized to con-
vex functions: Let X be a closed convex subset
of <n, and let f : <n 7→ (−∞,∞] be closed con-
vex with X ∩ dom(f) 6= Ø. The set of minima of
f over X is nonempty and compact if and only
if X and f have no common nonzero direction of
recession.

Proof: Let f∗ = infx∈X f(x) and note that f∗ <
∞ since X ∩ dom(f) 6= Ø. Let {γk} be a scalar
sequence with γk ↓ f∗, and consider the sets

Vk =
{
x | f(x) ≤ γk

}
.

Then the set of minima of f over X is

X∗ = ∩∞k=1(X ∩ Vk).

The sets X ∩ Vk are nonempty and have RX ∩Rf
as their common recession cone, which is also the
recession cone of X∗, when X∗ 6= Ø. It follows X∗
is nonempty and compact if and only if RX∩Rf =
{0}. Q.E.D.



EXISTENCE OF SOLUTION, SUM OF FNS

• Let fi : <n 7→ (−∞,∞], i = 1, . . . ,m, be closed
proper convex functions such that the function

f = f1 + · · ·+ fm

is proper. Assume that the recession function of
a single function fi satisfies rfi(d) = ∞ for all
d 6= 0. Then the set of minima of f is nonempty
and compact.

• Proof: The set of minima of f is nonempty and
compact if and only if Rf = {0}, which is true if
and only if rf (d) > 0 for all d 6= 0. Q.E.D.

• Example of application: If one of the fi is
positive definite quadratic, the set of minima of
the sum f is nonempty and compact.

• Also f has a unique minimum because the pos-
itive definite quadratic is strictly convex, which
makes f strictly convex.



PROJECTION THEOREM

• Let C be a nonempty closed convex set in <n.

(a) For every z ∈ <n, there exists a unique min-
imum of

f(x) = ‖z − x‖2

over all x ∈ C (called the projection of z on
C).

(b) x∗ is the projection of z if and only if

(x− x∗)′(z − x∗) ≤ 0, ∀ x ∈ C

Proof: (a) f is strictly convex and has compact
level sets.

(b) This is just the necessary and sufficient opti-
mality condition

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ C.



LECTURE 6

LECTURE OUTLINE

• Nonemptiness of closed set intersections

• Existence of optimal solutions

• Linear and quadratic programming

• Preservation of closure under linear transforma-
tion

Reading: Sections 1.4.2, 1.4.3



ROLE OF CLOSED SET INTERSECTIONS I

• A fundamental question: Given a sequence
of nonempty closed sets {Ck} in <n with Ck+1 ⊂
Ck for all k, when is ∩∞k=0Ck nonempty?

• Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : <n 7→ (−∞,∞] attain a
minimum over a set X? This is true if and only if

Intersection of nonempty
{
x ∈ X | f(x) ≤ γk

}

is nonempty.

Optimal
Solution

Level Sets of f

X



ROLE OF CLOSED SET INTERSECTIONS II

2. If C is closed and A is a matrix, is AC closed?
Special case:
− If C1 and C2 are closed, is C1 + C2 closed?

x

Nk

AC

C

y yk+1 yk

Ck

3. If F (x, z) is closed, is f(x) = infz F (x, z)
closed? (Critical question in duality theory.) Can
be addressed by using the relation

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P
(
epi(F )

))

where P (·) is projection on the space of (x,w).



ASYMPTOTIC SEQUENCES

• Given nested sequence {Ck} of closed convex
sets, {xk} is an asymptotic sequence if

xk ∈ Ck, xk 6= 0, k = 0, 1, . . .

‖xk‖ → ∞,
xk
‖xk‖

→ d

‖d‖
where d is a nonzero common direction of recession
of the sets Ck.

• As a special case we define asymptotic sequence
of a closed convex set C (use Ck ≡ C).

• Every unbounded {xk} with xk ∈ Ck has an
asymptotic subsequence.

• {xk} is called retractive if for some k, we have

xk − d ∈ Ck, ∀ k ≥ k.

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



RETRACTIVE SEQUENCES

• A nested sequence {Ck} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

x0x0

x1

x2

S0

S2
S1

(a) Retractive

0

(b) Nonretractive

d

x0

x1

x2
S0

S1

Intersection
Intersection

0

d

d

S2
x3

C0

C0

C1

C1

C2

C2
x0

x1

x1
x2

x2

x3

(a) Retractive Set Sequence (b) Nonretractive Set Sequence

Intersection ∩∞k=0Ck Intersection ∩∞k=0Ck

d

d

0

0

• A closed halfspace (viewed as a sequence with
identical components) is retractive.

• Intersections and Cartesian products of retrac-
tive set sequences are retractive.

• A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set is retractive.

• Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.



SET INTERSECTION THEOREM I

Proposition: If {Ck} is retractive, then ∩∞k=0 Ck
is nonempty.

• Key proof ideas:

(a) The intersection ∩∞k=0 Ck is empty iff the se-
quence {xk} of minimum norm vectors of Ck
is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xk} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-
rection.

x0

x1
x2

x3

x4 x5

0
d

Asymptotic Direction

Asymptotic Sequence



SET INTERSECTION THEOREM II

Proposition: Let {Ck} be a nested sequence of
nonempty closed convex sets, and X be a retrac-
tive set such that all the sets Ck = X ∩ Ck are
nonempty. Assume that

RX ∩R ⊂ L,

where

R = ∩∞k=0RCk , L = ∩∞k=0LCk

Then {Ck} is retractive and ∩∞k=0 Ck is nonempty.

• Special cases:
− X = <n, R = L (“cylindrical” sets Ck)
− RX∩R = {0} (no nonzero common recession

direction of X and ∩kCk)

Proof: The set of common directions of recession
of Ck is RX ∩ R. For any asymptotic sequence
{xk} corresponding to d ∈ RX ∩R:

(1) xk − d ∈ Ck (because d ∈ L)

(2) xk − d ∈ X (because X is retractive)

So {Ck} is retractive.



NEED TO ASSUME THAT X IS RETRACTIVE

CkCk+1

X

CkCk+1

X

Consider ∩∞k=0 Ck, with Ck = X ∩ Ck

• The condition RX ∩R ⊂ L holds

• In the figure on the left, X is polyhedral.

• In the figure on the right, X is nonpolyhedral
and nonretrative, and

∩∞k=0 Ck = Ø



LINEAR AND QUADRATIC PROGRAMMING

• Theorem: Let

f(x) = x′Qx+ c′x, X = {x | a′jx+ bj ≤ 0, j = 1, . . . , r}

where Q is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write

Set of Minima = ∩∞k=0

(
X∩ {x | x′Qx+c′x ≤ γk}

)

with
γk ↓ f∗ = inf

x∈X
f(x).

Verify the condition RX ∩R ⊂ L of the preceding
set intersection theorem, where R and L are the
sets of common recession and lineality directions
of the sets

{x | x′Qx+ c′x ≤ γk}

Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATION

• Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC is closed if RC ∩N(A) ⊂ LC .

(b) A(X ∩ C) is closed if X is a retractive set
and

RX ∩RC ∩N(A) ⊂ LC ,

Proof: (Outline) Let {yk} ⊂ AC with yk → y.
We prove ∩∞k=0Ck 6= Ø, where Ck = C ∩Nk, and

Nk = {x | Ax ∈Wk}, Wk =
{
z | ‖z−y‖ ≤ ‖yk−y‖

}

x

Nk

AC

C

y yk+1 yk

Ck

• Special Case: AX is closed if X is polyhedral.



NEED TO ASSUME THAT X IS RETRACTIVE

A(X C)

C

X

C

X

A(X C)

N(A) N(A)

C C

N(A) N(A)

X

X

A(X ∩ C) A(X ∩ C)

Consider closedness of A(X ∩ C)

• In both examples the condition

RX ∩RC ∩N(A) ⊂ LC

is satisfied.

• However, in the example on the right, X is not
retractive, and the set A(X ∩ C) is not closed.



CLOSEDNESS OF VECTOR SUMS

• Let C1, . . . , Cm be nonempty closed convex sub-
sets of <n such that the equality d1 + · · ·+dm = 0
for some vectors di ∈ RCi implies that di = 0 for
all i = 1, . . . ,m. Then C1 + · · · + Cm is a closed
set.

• Special Case: If C1 and −C2 are closed convex
sets, then C1 − C2 is closed if RC1 ∩RC2 = {0}.
Proof: The Cartesian product C = C1×· · ·×Cm
is closed convex, and its recession cone is RC =
RC1 × · · · ×RCm . Let A be defined by

A(x1, . . . , xm) = x1 + · · ·+ xm

Then
AC = C1 + · · ·+ Cm,

and

N(A) =
{

(d1, . . . , dm) | d1 + · · ·+ dm = 0
}

RC∩N(A) =
{

(d1, . . . , dm) | d1+· · ·+dm = 0, di ∈ RCi , ∀ i
}

By the given condition, RC∩N(A) = {0}, so AC
is closed. Q.E.D.



LECTURE 7

LECTURE OUTLINE

• Partial Minimization

• Hyperplane separation

• Proper separation

• Nonvertical hyperplanes

Reading: Sections 3.3, 1.5



PARTIAL MINIMIZATION

• Let F : <n+m 7→ (−∞,∞] be a closed proper
convex function, and consider

f(x) = inf
z∈<m

F (x, z)

• 1st fact: If F is convex, then f is also convex.

• 2nd fact:

P
(
epi(F )

)
⊂ epi(f) ⊂ cl

(
P
(
epi(F )

))
,

where P (·) denotes projection on the space of (x,w),
i.e., for any subset S of <n+m+1, P (S) =

{
(x,w) |

(x, z, w) ∈ S
}
.

• Thus, if F is closed and there is structure guar-
anteeing that the projection preserves closedness,
then f is closed.

• ... but convexity and closedness of F does not
guarantee closedness of f .



PARTIAL MINIMIZATION: VISUALIZATION

• Connection of preservation of closedness under
partial minimization and attainment of infimum
over z for fixed x.

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

• Counterexample: Let

F (x, z) =
{
e−
√
xz if x ≥ 0, z ≥ 0,

∞ otherwise.

• F convex and closed, but

f(x) = inf
z∈<

F (x, z) =

{ 0 if x > 0,
1 if x = 0,
∞ if x < 0,

is not closed.



PARTIAL MINIMIZATION THEOREM

• Let F : <n+m 7→ (−∞,∞] be a closed proper
convex function, and consider f(x) = infz∈<m F (x, z).

• Every set intersection theorem yields a closed-
ness result. The simplest case is the following:

• Preservation of Closedness Under Com-
pactness: If there exist x ∈ <n, γ ∈ < such that
the set

{
z | F (x, z) ≤ γ

}

is nonempty and compact, then f is convex, closed,
and proper. Also, for each x ∈ dom(f), the set of
minima of F (x, ·) is nonempty and compact.

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



HYPERPLANES

x

Negative Halfspace

Positive Halfspace
{x | a′x ≥ b}

{x | a′x ≤ b}

Hyperplane
{x | a′x = b} = {x | a′x = a′x}

a

• A hyperplane is a set of the form {x | a′x = b},
where a is nonzero vector in <n and b is a scalar.

• We say that two sets C1 and C2 are separated
by a hyperplane H = {x | a′x = b} if each lies in a
different closed halfspace associated with H, i.e.,

either a′x1 ≤ b ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2,

or a′x2 ≤ b ≤ a′x1, ∀ x1 ∈ C1, ∀ x2 ∈ C2

• If x belongs to the closure of a set C, a hyper-
plane that separates C and the singleton set {x}
is said be supporting C at x.



VISUALIZATION

• Separating and supporting hyperplanes:

a

(a)

C1 C2

x

a

(b)

C

• A separating {x | a′x = b} that is disjoint from
C1 and C2 is called strictly separating:

a′x1 < b < a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2



SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through x and contains C
in one of its closed halfspaces.

a

C

x

x0

x1

x2
x3

x̂0

x̂1

x̂2
x̂3

a0

a1

a2
a3

Proof: Take a sequence {xk} that does not be-
long to cl(C) and converges to x. Let x̂k be the
projection of xk on cl(C). We have for all x ∈
cl(C)

a′kx ≥ a′kxk, ∀ x ∈ cl(C), ∀ k = 0, 1, . . . ,

where ak = (x̂k − xk)/‖x̂k − xk‖. Let a be a limit
point of {ak}, and take limit as k →∞. Q.E.D.



SEPARATING HYPERPLANE THEOREM

• Let C1 and C2 be two nonempty convex subsets
of <n. If C1 and C2 are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a 6= 0 such that

a′x1 ≤ a′x2, ∀ x1 ∈ C1, ∀ x2 ∈ C2.

Proof: Consider the convex set

C1 − C2 = {x2 − x1 | x1 ∈ C1, x2 ∈ C2}

Since C1 and C2 are disjoint, the origin does not
belong to C1 − C2, so by the Supporting Hyper-
plane Theorem, there exists a vector a 6= 0 such
that

0 ≤ a′x, ∀ x ∈ C1 − C2,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let C1 and C2

be two disjoint nonempty convex sets. If C1 is
closed, and C2 is compact, there exists a hyper-
plane that strictly separates them.

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

Proof: (Outline) Consider the set C1−C2. Since
C1 is closed and C2 is compact, C1−C2 is closed.
Since C1 ∩ C2 = Ø, 0 /∈ C1 − C2. Let x1 − x2

be the projection of 0 onto C1 − C2. The strictly
separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closed-
ness of C1 − C2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C1 − C2

being closed.



ADDITIONAL THEOREMS

• Fundamental Characterization: The clo-
sure of the convex hull of a set C ⊂ <n is the
intersection of the closed halfspaces that contain
C. (Proof uses the strict separation theorem.)

• We say that a hyperplane properly separates C1

and C2 if it separates C1 and C2 and does not fully
contain both C1 and C2.

(a)

C1 C2

a

C1 C2

a

(b)

a

C1 C2

(c)

• Proper Separation Theorem: Let C1 and
C2 be two nonempty convex subsets of <n. There
exists a hyperplane that properly separates C1 and
C2 if and only if

ri(C1) ∩ ri(C2) = Ø



PROPER POLYHEDRAL SEPARATION

• Recall that two convex sets C and P such that

ri(C) ∩ ri(P ) = Ø

can be properly separated, i.e., by a hyperplane
that does not contain both C and P .

• If P is polyhedral and the slightly stronger con-
dition

ri(C) ∩ P = Ø

holds, then the properly separating hyperplane
can be chosen so that it does not contain the non-
polyhedral set C while it may contain P .

(a) (b)

a

P

C
Separating
Hyperplane

a

C

P

Separating
Hyperplane

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



NONVERTICAL HYPERPLANES

• A hyperplane in <n+1 with normal (µ, β) is
nonvertical if β 6= 0.

• It intersects the (n+1)st axis at ξ = (µ/β)′u+w,
where (u,w) is any vector on the hyperplane.

0 u

w

(µ, β)

(u, w)
µ

β

′
u + w

Nonvertical
Hyperplane

Vertical
Hyperplane

(µ, 0)

• A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

• The epigraph of a proper convex function does
not contain a vertical line, so it appears plausible
that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

• Let C be a nonempty convex subset of <n+1

that contains no vertical lines. Then:

(a) C is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist µ ∈ <n,
β ∈ < with β 6= 0, and γ ∈ < such that
µ′u+ βw ≥ γ for all (u,w) ∈ C.

(b) If (u,w) /∈ cl(C), there exists a nonvertical
hyperplane strictly separating (u,w) and C.

Proof: Note that cl(C) contains no vert. line [since
C contains no vert. line, ri(C) contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C closed.

(a) C is the intersection of the closed halfspaces
containing C. If all these corresponded to vertical
hyperplanes, C would contain a vertical line.

(b) There is a hyperplane strictly separating (u,w)
and C. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small ε-multiple of a nonvertical hyperplane con-
taining C in one of its halfspaces as per (a).



LECTURE 8

LECTURE OUTLINE

• Convex conjugate functions

• Conjugacy theorem

• Examples

• Support functions

Reading: Section 1.6



CONJUGATE CONVEX FUNCTIONS

• Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi(f)
7→ Crossing points of vertical axis

f?(y) = sup
x∈<n

{
x′y − f(x)

}
, y ∈ <n.

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

• For any f : <n 7→ [−∞,∞], its conjugate convex
function is defined by

f?(y) = sup
x∈<n

{
x′y − f(x)

}
, y ∈ <n



EXAMPLES

f?(y) = sup
x∈<n

{
x′y − f(x)

}
, y ∈ <n

4

Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = α− β

h(y) = (1/2c)y2

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

1

4

Polyhedral Convexity Template

infx∈"n
{
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}
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f(x) = |x|
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3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

1

4

Polyhedral Convexity Template
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{
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}
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f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2
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Θ θ fθ(θ) X = x Measurement
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3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

1

4

Polyhedral Convexity Template
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{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

1

4

Polyhedral Convexity Template
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f(x)− x′y
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= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2
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Θ θ fθ(θ) X = x Measurement
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3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

1

4

Polyhedral Convexity Template

infx∈"n
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f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

1

4

Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]
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4

Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]
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Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

h(y) = (1/2c)y2

epi(f) w (µ, 1) q(µ)
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Θ θ fθ(θ) X = x Measurement
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3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate
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Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

β/α

β α −1 1

h(y) = (1/2c)y2

h(y) =
{

0 if |y| ≤ 1
∞ if |y| > 1

h(y) =
{

β if y = α
∞ if y $= α

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]

1

4

Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

f(x) = (c/2)x2

f(x) = |x|

f(x) = αx − β

β/α

β α −1 1

h(y) = (1/2c)y2

h(y) =
{

0 if |y| ≤ 1
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Polyhedral Convexity Template
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Polyhedral Convexity Template
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Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6
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f!(y) =
{

β if y = α
∞ if y "= α

f‡(x) = sup
y∈"n

{
y′x− f!(y)

}

f!(y) =
{

0 if |y| ≤ 1
∞ if |y| > 1

f!(y) = (1/2c)y2

inf
x∈"n

{f(x)− x′y} = −f!(y)

State sampling according to Markov chain P

(µ, 0)
(a) (b) (c)

(0, 0) X (0, 1) cone(X) conv(X)

xα = αx+(1−α)x C x α ε x S Sα x4 f(x) f(z) αf(x)+ (1−α)f(y)
0 αε

dom(f)

f
(
αx + (1− α)y

)
C x y z x1 x2 x3 x4 f(x) f(z) αf(x) + (1− α)f(y) 0

x x∗
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{
x | f(x) ≤ γ

}

x + α(z − x)

1
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β if y = α
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}
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1

f!(y) =
{

β if y = α
∞ if y "= α

f!!(x) = sup
y∈"n

{
y′x− f!(y)

}

f!(y) =
{

0 if |y| ≤ 1
∞ if |y| > 1

f!(y) = (1/2c)y2

inf
x∈"n

{f(x)− x′y} = −f!(y)

State sampling according to Markov chain P

(µ, 0)
(a) (b) (c)

(0, 0) X (0, 1) cone(X) conv(X)

xα = αx+(1−α)x C x α ε x S Sα x4 f(x) f(z) αf(x)+ (1−α)f(y)
0 αε

dom(f)

f
(
αx + (1− α)y

)
C x y z x1 x2 x3 x4 f(x) f(z) αf(x) + (1− α)f(y) 0

x x∗

αf(x) + (1− α)f(y) C x y f(x) f(z) z = αx + (1 − α)y

f(z) + (y − z)′∇f(z) f(z) + (x− z)′∇f(z)

{
x | f(x) ≤ γ

}

x + α(z − x)

1

�
g(x), f(x)

�
− β

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1



CONJUGATE OF CONJUGATE

• From the definition

f?(y) = sup
x∈<n

{
x′y − f(x)

}
, y ∈ <n,

note that f? is convex and closed .

• Reason: epi(f?) is the intersection of the epigraphs
of the linear functions of y

x′y − f(x)

as x ranges over <n.

• Consider the conjugate of the conjugate:

f??(x) = sup
y∈<n

{
y′x− f?(y)

}
, x ∈ <n.

• f?? is convex and closed.

• Important fact/Conjugacy theorem: If f
is closed proper convex, then f?? = f .



CONJUGACY THEOREM - VISUALIZATION

f?(y) = sup
x∈<n

{
x′y − f(x)

}
, y ∈ <n

f??(x) = sup
y∈<n

{
y′x− f?(y)

}
, x ∈ <n

• If f is closed convex proper, then f?? = f .

x

Slope = y

0

f(x)
(−y, 1)

inf
x∈"n

{f(x)− x′y} = −f!(y)y′x− f!(y)

f!!(x) = sup
y∈"n

{
y′x− f!(y)

}
H =

{
(x,w) | w − x′y = −f!(y)

}Hyperplane



CONJUGACY THEOREM

• Let f : <n 7→ (−∞,∞] be a function, let čl f be
its convex closure, let f? be its convex conjugate,
and consider the conjugate of f?,

f??(x) = sup
y∈<n

{
y′x− f?(y)

}
, x ∈ <n

(a) We have

f(x) ≥ f??(x), ∀ x ∈ <n

(b) If f is convex, then properness of any one
of f , f?, and f?? implies properness of the
other two.

(c) If f is closed proper and convex, then

f(x) = f??(x), ∀ x ∈ <n

(d) If čl f(x) > −∞ for all x ∈ <n, then

čl f(x) = f??(x), ∀ x ∈ <n



PROOF OF CONJUGACY THEOREM (A), (C)

• (a) For all x, y, we have f?(y) ≥ y′x − f(x),
implying that f(x) ≥ supy{y′x−f?(y)} = f??(x).

• (c) By contradiction. Assume there is (x, γ) ∈
epi(f??) with (x, γ) /∈ epi(f). There exists a non-
vertical hyperplane with normal (y,−1) that strictly
separates (x, γ) and epi(f). (The vertical compo-
nent of the normal vector is normalized to -1.)

• Consider two parallel hyperplanes, translated
to pass through

(
x, f(x)

)
and

(
x, f??(x)

)
. Their

vertical crossing points are x′y − f(x) and x′y −
f??(x), and lie strictly above and below the cross-
ing point of the strictly sep. hyperplane. Hence

x′y − f(x) > x′y − f??(x)
which contradicts part (a). Q.E.D.

4

Polyhedral Convexity Template

infx∈"n
{
f(x)− x′y

}
= −h(y) (y, 1) Slope = y x

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

1

4

Polyhedral Convexity Template
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{
y′x− h(y)
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f(x) = |x|

f(x) = αx − β

β/α

β α −1 1
epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

1

Closed Improper Function Not Closed Improper Function

X Y x (x, 1) 1 �n epi(f) epi(f��)

e1 = (1, 1) e2 = (1,−1) e3 = (−1,−1) e4 = (−1, 1)

X y 0

f�(y) =
�
β if y = α
∞ if y �= α

f��(x) = sup
y∈�n

�
y�x− f�(y)

�

f�(y) =
�

0 if |y| ≤ 1
∞ if |y| > 1

f�(y) = (1/2c)y2

−f�
1 (λ) f�

2 (−λ)

Epigraph of f�

inf
x∈�n

{f(x)− x�y} = −f�(y)

Common Direction of Recession
(µ, 0)
(a) (b) (c)

(0, 0) X (0, 1) cone(X) conv(X)

xα = αx+(1−α)x C x α � x S Sα x4 f(x) f(z) αf(x)+ (1−α)f(y)
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dom(f) epi(f)

f
�
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�
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A COUNTEREXAMPLE

• A counterexample (with closed convex but im-
proper f) showing the need to assume properness
in order for f = f??:

f(x) =
{
∞ if x > 0,
−∞ if x ≤ 0.

We have

f?(y) =∞, ∀ y ∈ <n,

f??(x) = −∞, ∀ x ∈ <n.
But

čl f = f,

so čl f 6= f??.



A FEW EXAMPLES

• lp and lq norm conjugacy, where 1
p + 1

q = 1

f(x) =
1
p

n∑

i=1

|xi|p, f?(y) =
1
q

n∑

i=1

|yi|q

• Conjugate of a strictly convex quadratic

f(x) =
1
2
x′Qx+ a′x+ b,

f?(y) =
1
2

(y − a)′Q−1(y − a)− b.

• Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(x) = p
(
A(x− c)

)
+ a′x+ b,

f?(y) = q
(
(A′)−1(y − a)

)
+ c′y + d,

where q is the conjugate of p and d = −(c′a+ b).



SUPPORT FUNCTIONS

• Conjugate of indicator function δX of set X

σX(y) = sup
x∈X

y′x

is called the support function of X.

• To determine σX(y) for a given vector y, we
project the set X on the line determined by y,
we find x̂, the extreme point of projection in the
direction y, and we scale by setting

σX(y) = ‖x̂‖ · ‖y‖

0

y

X

σX(y)/‖y‖

x̂

• epi(σX) is a closed convex cone.

• The sets X, cl(X), conv(X), and cl
(
conv(X)

)

all have the same support function (by the conju-
gacy theorem).



SUPPORT FN OF A CONE - POLAR CONE

• The conjugate of the indicator function δC is
the support function, σC(y) = supx∈C y′x.

• If C is a cone,

σC(y) =
{ 0 if y′x ≤ 0, ∀ x ∈ C,
∞ otherwise

i.e., σC is the indicator function δC∗ of the cone

C∗ = {y | y′x ≤ 0, ∀ x ∈ C}

This is called the polar cone of C.

• By the Conjugacy Theorem the polar cone of C∗
is cl

(
conv(C)

)
. This is the Polar Cone Theorem.

• Special case: If C = cone
(
{a1, . . . , ar}

)
, then

C∗ = {x | a′jx ≤ 0, j = 1, . . . , r}

• Farkas’ Lemma: (C∗)∗ = C.

• True because C is a closed set [cone
(
{a1, . . . , ar}

)

is the image of the positive orthant {α | α ≥ 0}
under the linear transformation that maps α to∑r
j=1 αjaj ], and the image of any polyhedral set

under a linear transformation is a closed set.



LECTURE 9

LECTURE OUTLINE

• Min common/max crossing duality

• Weak duality

• Special Cases

• Constrained optimization and minimax

• Strong duality

Reading: Sections 4.1, 4.2, 3.4



EXTENDING DUALITY CONCEPTS

• From dual descriptions of sets

A union of points An intersection of halfspaces

• To dual descriptions of functions (applying
set duality to epigraphs)

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

• We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem



MIN COMMON / MAX CROSSING PROBLEMS

• We introduce a pair of fundamental problems:

• Let M be a nonempty subset of <n+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n+
1)st axis. Find one whose (n + 1)st compo-
nent is minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
mum.
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0
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w
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M

M

M

Min Common
Point w∗

Min Common
Point w∗

Min Common
Point w∗

Max Crossing
Point q∗

Max Crossing
Point q∗ Max Crossing

Point q∗
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(c)



MATHEMATICAL FORMULATIONS

• Optimal value of the min common prob-
lem:

w∗ = inf
(0,w)∈M

w

u

w

M

M
(µ, 1)

(µ, 1)

q∗

q(µ) = inf
(u,w)∈M

{
w + µ′u}

0

Dual function value

Hyperplane Hµ,ξ =
{
(u, w) | w + µ′u = ξ

}
ξ

w∗

• Math formulation of the max crossing
problem: Focus on hyperplanes with normals
(µ, 1) whose crossing point ξ satisfies

ξ ≤ w + µ′u, ∀ (u,w) ∈M

Max crossing problem is to maximize ξ subject to
ξ ≤ inf(u,w)∈M{w + µ′u}, µ ∈ <n, or

maximize q(µ)
4
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ <n.



GENERIC PROPERTIES – WEAK DUALITY

• Min common problem

inf
(0,w)∈M

w

• Max crossing problem

maximize q(µ)
4
= inf

(u,w)∈M
{w + µ′u}

subject to µ ∈ <n.

u

w

M

M
(µ, 1)

(µ, 1)

q∗

q(µ) = inf
(u,w)∈M

{
w + µ′u}

0

Dual function value

Hyperplane Hµ,ξ =
{
(u, w) | w + µ′u = ξ

}
ξ

w∗

• Note that q is concave and upper-semicontinuous
(inf of linear functions).

• Weak Duality: For all µ ∈ <n

q(µ) = inf
(u,w)∈M

{w + µ′u} ≤ inf
(0,w)∈M

w = w∗,

so maximizing over µ ∈ <n, we obtain q∗ ≤ w∗.
• We say that strong duality holds if q∗ = w∗.



CONNECTION TO CONJUGACY

• An important special case:

M = epi(p)

where p : <n 7→ [−∞,∞]. Then w∗ = p(0), and

q(µ) = inf
(u,w)∈epi(p)

{w+µ′u} = inf
{(u,w)|p(u)≤w}

{w+µ′u},

and finally
q(µ) = inf

u∈<m
{
p(u) + µ′u

}

u0

M = epi(p)

w∗ = p(0)

q∗ = p!!(0)

p(u)(µ, 1)

q(µ) = −p!(−µ)

• Thus, q(µ) = −p?(−µ) and

q∗ = sup
µ∈<n

q(µ) = sup
µ∈<n

{
0·(−µ)−p?(−µ)

}
= p??(0)



GENERAL OPTIMIZATION DUALITY

• Consider minimizing a function f : <n 7→ [−∞,∞].

• Let F : <n+r 7→ [−∞,∞] be a function with

f(x) = F (x, 0), ∀ x ∈ <n

• Consider the perturbation function

p(u) = inf
x∈<n

F (x, u)

and the MC/MC framework with M = epi(p)

• The min common value w∗ is

w∗ = p(0) = inf
x∈<n

F (x, 0) = inf
x∈<n

f(x)

• The dual function is

q(µ) = inf
u∈<r

{
p(u)+µ′u

}
= inf

(x,u)∈<n+r

{
F (x, u)+µ′u

}

so q(µ) = −F ?(0,−µ), where F ? is the conjugate
of F , viewed as a function of (x, u)

• Since

q∗ = sup
µ∈<r

q(µ) = − inf
µ∈<r

F ?(0,−µ) = − inf
µ∈<r

F ?(0, µ),

we have

w∗ = inf
x∈<n

F (x, 0) ≥ − inf
µ∈<r

F ?(0, µ) = q∗



CONSTRAINED OPTIMIZATION

• Minimize f : <n 7→ < over the set

C =
{
x ∈ X | g(x) ≤ 0

}
,

where X ⊂ <n and g : <n 7→ <r.
• Introduce a “perturbed constraint set”

Cu =
{
x ∈ X | g(x) ≤ u

}
, u ∈ <r,

and the function

F (x, u) =
{
f(x) if x ∈ Cu,
∞ otherwise,

which satisfies F (x, 0) = f(x) for all x ∈ C.

• Consider perturbation function

p(u) = inf
x∈<n

F (x, u) = inf
x∈X, g(x)≤u

f(x),

and the MC/MC framework with M = epi(p).



CONSTR. OPT. - PRIMAL AND DUAL FNS

• Perturbation function (or primal function)

p(u) = inf
x∈<n

F (x, u) = inf
x∈X, g(x)≤u

f(x),

0 u

{
(g(x), f(x)) | x ∈ X

}

M = epi(p)

w∗ = p(0)

p(u)

q∗

• Introduce L(x, µ) = f(x) + µ′g(x). Then

q(µ) = inf
u∈<r

{
p(u) + µ′u

}

= inf
u∈<r, x∈X, g(x)≤u

{
f(x) + µ′u

}

=
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise.



LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c′x

subject to a′jx ≥ bj , j = 1, . . . , r,

where c ∈ <n, aj ∈ <n, and bj ∈ <, j = 1, . . . , r.

• For µ ≥ 0, the dual function has the form

q(µ) = inf
x∈<n

L(x, µ)

= inf
x∈<n



c
′x+

r∑

j=1

µj(bj − a′jx)





=
{
b′µ if

∑r
j=1 ajµj = c,

−∞ otherwise

• Thus the dual problem is

maximize b′µ

subject to
r∑

j=1

ajµj = c, µ ≥ 0.



MINIMAX PROBLEMS

Given φ : X × Z 7→ <, where X ⊂ <n, Z ⊂ <m
consider

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X
or

maximize inf
x∈X

φ(x, z)

subject to z ∈ Z.

• Some important contexts:
− Constrained optimization duality theory
− Zero sum game theory

• We always have

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

• Key question: When does equality hold?



CONSTRAINED OPTIMIZATION DUALITY

• For the problem

minimize f(x)
subject to x ∈ X, g(x) ≤ 0

introduce the Lagrangian function

L(x, µ) = f(x) + µ′g(x)

• Primal problem (equivalent to the original)

min
x∈X

sup
µ≥0

L(x, µ) =




f(x) if g(x) ≤ 0,

∞ otherwise,

• Dual problem

max
µ≥0

inf
x∈X

L(x, µ)

• Key duality question: Is it true that

inf
x∈<n

sup
µ≥0

L(x, µ) = w∗
?
=
q∗ = sup

µ≥0
inf
x∈<n

L(x, µ)



ZERO SUM GAMES

• Two players: 1st chooses i ∈ {1, . . . , n}, 2nd
chooses j ∈ {1, . . . ,m}.
• If i and j are selected, the 1st player gives aij
to the 2nd.

• Mixed strategies are allowed: The two players
select probability distributions

x = (x1, . . . , xn), z = (z1, . . . , zm)

over their possible choices.

• Probability of (i, j) is xizj , so the expected
amount to be paid by the 1st player

x′Az =
∑

i,j

aijxizj

where A is the n×m matrix with elements aij .

• Each player optimizes his choice against the
worst possible selection by the other player. So
− 1st player minimizes maxz x′Az
− 2nd player maximizes minx x′Az



SADDLE POINTS

Definition: (x∗, z∗) is called a saddle point of φ
if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z

Proposition: (x∗, z∗) is a saddle point if and only
if the minimax equality holds and

x∗ ∈ arg min
x∈X

sup
z∈Z

φ(x, z), z∗ ∈ arg max
z∈Z

inf
x∈X

φ(x, z) (*)

Proof: If (x∗, z∗) is a saddle point, then

inf
x∈X

sup
z∈Z

φ(x, z) ≤ sup
z∈Z

φ(x∗, z) = φ(x∗, z∗)

= inf
x∈X

φ(x, z∗) ≤ sup
z∈Z

inf
x∈X

φ(x, z)

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup
z∈Z

inf
x∈X

φ(x, z) = inf
x∈X

φ(x, z∗) ≤ φ(x∗, z∗)

≤ sup
z∈Z

φ(x∗, z) = inf
x∈X

sup
z∈Z

φ(x, z)

Using the minimax equ., (x∗, z∗) is a saddle point.



VISUALIZATION

x

z

Curve of maxima

Curve of minima

f (x,z)

Saddle point
(x*,z*)

^f (x(z),z)

f (x,z(x))^

The curve of maxima f(x, ẑ(x)) lies above the
curve of minima f(x̂(z), z), where

ẑ(x) = arg max
z
f(x, z), x̂(z) = arg min

x
f(x, z)

Saddle points correspond to points where these
two curves meet.



MINIMAX MC/MC FRAMEWORK

• Introduce perturbation function p : <m 7→
[−∞,∞]

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z)− u′z

}
, u ∈ <m

• Apply the MC/MC framework with M = epi(p)

• Introduce ĉl f , the concave closure of f

• We have

sup
z∈Z

φ(x, z) = sup
z∈<m

(ĉlφ)(x, z),

so
w∗ = p(0) = inf

x∈X
sup
z∈<m

(ĉlφ)(x, z).

• The dual function can be shown to be

q(µ) = inf
x∈X

(ĉlφ)(x, µ), ∀ µ ∈ <m

so if φ(x, ·) is concave and closed,

w∗ = inf
x∈X

sup
z∈<m

φ(x, z), q∗ = sup
z∈<m

inf
x∈X

φ(x, z)



PROOF OF FORM OF DUAL FUNCTION

• Write p(u) = inf
x∈X px(u), where

px(u) = sup
z∈Z

{
φ(x, z)− u′z

}
, x ∈ X,

and note that

inf
u∈<m

{
px(u)+u′µ

}
= − sup

u∈<m

{
u′(−µ)−px(u)

}
= −p?x(−µ)

Except for a sign change, px is the conjugate of
(−φ)(x, ·) [assuming (−ĉlφ)(x, ·) is proper], so

p?x(−µ) = −(ĉlφ)(x, µ).

Hence, for all µ ∈ <m,

q(µ) = inf
u∈<m

{
p(u) + u′µ

}

= inf
u∈<m

inf
x∈X

{
px(u) + u′µ

}

= inf
x∈X

inf
u∈<m

{
px(u) + u′µ

}

= inf
x∈X

{
− p?x(−µ)

}

= inf
x∈X

(ĉlφ)(x, µ)



LECTURE 10

LECTURE OUTLINE

• Min Common / Max Crossing duality theorems

• Strong duality conditions

• Existence of dual optimal solutions

• Nonlinear Farkas’ lemma

Reading: Sections 4.3, 4.4, 5.1
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DUALITY THEOREMS

• Assume that w∗ <∞ and that the set

M =
{

(u,w) | there exists w with w ≤ w and (u,w) ∈M
}

is convex.

• Min Common/Max Crossing Theorem I:
We have q∗ = w∗ if and only if for every sequence{

(uk, wk)
}
⊂M with uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk.
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Ĉ = C + S⊥

Nonvertical Vertical

Hyperplane

Level Sets of f Constancy Space Lf ∩∞k=0Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a′x ≥ b}
Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

σX(y)/‖y‖

x M M Wk y C2 C C2
k+1 yk AC
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Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
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(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
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q(µ),

and we refer to q(µ) as the crossing or dual function.
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(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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• Corollary: If M = epi(p) where p is closed
proper convex and p(0) <∞, then q∗ = w∗.)



DUALITY THEOREMS (CONTINUED)

• Min Common/Max Crossing Theorem II:
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Ĉ = C + S⊥

Nonvertical Vertical

Hyperplane

Level Sets of f Constancy Space Lf ∩∞k=0Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a′x ≥ b}
Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

σX(y)/‖y‖

x M M Wk y C2 C C2
k+1 yk AC
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q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately

1

�
(uk, wk)

�
⊂M, uk → 0, w∗ ≤ lim inf

k→∞
wk D

�
(uk, wk)

�
⊂M, uk → 0, w∗ > lim inf

k→∞
wk

(uk, wk) (uk+1, wk+1) w∗ q∗ w∗ = q∗

min
x

�
f1(x) + f2(x)

�
= max

y

�
− f�

1 (y)− f�
2 (−y)

�

f̄�
2,Xk

(−λ)

�B(x) ��B(x) S �� < �

Boundary of S

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

1

134 Geometric Duality Framework Chap. 4

Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
a nonvertical hyperplane in �n+1 is specified by its normal vector (µ, 1) ∈
�n+1, and a scalar ξ as

Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
.

Such a hyperplane crosses the (n+1)st axis at (0, ξ). For M to be contained
in the “upper” closed halfspace that corresponds to Hµ,ξ [the one that
contains the vertical halfline

�
(0, w) | w ≥ 0

�
in its recession cone], it is

necessary and sufficient that

ξ ≤ w + µ�u, ∀ (u, w) ∈ M,

or equivalently
ξ ≤ inf

(u,w)∈M
{w + µ�u}.

For a fixed normal (µ, 1), the maximum crossing level ξ over all hyperplanes
Hµ,ξ is denoted by q(µ) and is given by

q(µ) = inf
(u,w)∈M

{w + µ�u}; (4.2)

(see Fig. 4.1.2). The max crossing problem is to maximize over all µ ∈ �n

the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)
subject to µ ∈ �n.

(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
µ∈�n

q(µ),

and we refer to q(µ) as the crossing or dual function.
Note that both w∗ and q∗ remain unaffected if M is replaced by its

“upwards extension”

M = M +
�
(0, w) | w ≥ 0

�

=
�
(u, w) | there exists w with w ≤ w and (u, w) ∈ M

� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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The sum of a large number of convex sets is almost convex
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Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement
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Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W
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• Furthermore, the set {µ | q(µ) = q∗} is nonempty
and compact if and only if D contains the origin
in its interior.

• Min Common/Max Crossing Theorem
III: Involves polyhedral assumptions, and will be
developed later.



PROOF OF THEOREM I

• Assume that q∗ = w∗. Let
{

(uk, wk)
}
⊂ M be

such that uk → 0. Then,

q(µ) = inf
(u,w)∈M

{w+µ′u} ≤ wk+µ′uk, ∀ k, ∀ µ ∈ <n

Taking the limit as k → ∞, we obtain q(µ) ≤
lim infk→∞ wk, for all µ ∈ <n, implying that

w∗ = q∗ = sup
µ∈<n

q(µ) ≤ lim inf
k→∞

wk

Conversely, assume that for every sequence{
(uk, wk)

}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. If w∗ = −∞, then q∗ = −∞, by
weak duality, so assume that −∞ < w∗. Steps:

• Step 1: (0, w∗ − ε) /∈ cl(M) for any ε > 0.
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
a nonvertical hyperplane in �n+1 is specified by its normal vector (µ, 1) ∈
�n+1, and a scalar ξ as

Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
.

Such a hyperplane crosses the (n+1)st axis at (0, ξ). For M to be contained
in the “upper” closed halfspace that corresponds to Hµ,ξ [the one that
contains the vertical halfline

�
(0, w) | w ≥ 0

�
in its recession cone], it is

necessary and sufficient that

ξ ≤ w + µ�u, ∀ (u, w) ∈ M,

or equivalently
ξ ≤ inf

(u,w)∈M
{w + µ�u}.

For a fixed normal (µ, 1), the maximum crossing level ξ over all hyperplanes
Hµ,ξ is denoted by q(µ) and is given by

q(µ) = inf
(u,w)∈M

{w + µ�u}; (4.2)

(see Fig. 4.1.2). The max crossing problem is to maximize over all µ ∈ �n

the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)
subject to µ ∈ �n.

(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
µ∈�n

q(µ),

and we refer to q(µ) as the crossing or dual function.
Note that both w∗ and q∗ remain unaffected if M is replaced by its

“upwards extension”

M = M +
�
(0, w) | w ≥ 0

�

=
�
(u, w) | there exists w with w ≤ w and (u, w) ∈ M

� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately

1

�
g(x), f(x)

�
− β w∗ − � (uk, wk) (uk+1, wk+1)

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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PROOF OF THEOREM I (CONTINUED)

• Step 2: M does not contain any vertical lines.
If this were not so, (0,−1) would be a direction
of recession of cl(M). Because (0, w∗) ∈ cl(M),
the entire halfline

{
(0, w∗ − ε) | ε ≥ 0

}
belongs to

cl(M), contradicting Step 1.

• Step 3: For any ε > 0, since (0, w∗−ε) /∈ cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w∗− ε) and M . This hyperplane crosses
the (n+ 1)st axis at a vector (0, ξ) with w∗ − ε ≤
ξ ≤ w∗, so w∗ − ε ≤ q∗ ≤ w∗. Since ε can be
arbitrarily small, it follows that q∗ = w∗.
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Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave

1



PROOF OF THEOREM II

• Note that (0, w∗) is not a relative interior point
of M . Therefore, by the Proper Separation The-
orem, there is a hyperplane that passes through
(0, w∗), contains M in one of its closed halfspaces,
but does not fully containM , i.e., for some (µ, β) 6=
(0, 0)

βw∗ ≤ µ′u+ βw, ∀ (u,w) ∈M,

βw∗ < sup
(u,w)∈M

{µ′u+ βw}

Will show that the hyperplane is nonvertical.

• Since for any (u,w) ∈M , the setM contains the
halfline

{
(u,w) | w ≤ w

}
, it follows that β ≥ 0. If

β = 0, then 0 ≤ µ′u for all u ∈ D. Since 0 ∈ ri(D)
by assumption, we must have µ′u = 0 for all u ∈ D
a contradiction. Therefore, β > 0, and we can
assume that β = 1. It follows that

w∗ ≤ inf
(u,w)∈M

{µ′u+ w} = q(µ) ≤ q∗

Since the inequality q∗ ≤ w∗ holds always, we
must have q(µ) = q∗ = w∗.



NONLINEAR FARKAS’ LEMMA

• Let X ⊂ <n, f : X 7→ <, and gj : X 7→ <,
j = 1, . . . , r, be convex. Assume that

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0

Let

Q∗ =
{
µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ X

}
.

Then Q∗ is nonempty and compact if and only if
there exists a vector x ∈ X such that gj(x) < 0
for all j = 1, . . . , r.

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
[
(Θ − θ̂)2

]
= var(Θ) +

(
E[Θ]− θ̂

)2
,

E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})

{x | a′
jx ≤ 0, j = 1, . . . , r}

{x | a′
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

β/α

C = aff(C)∩ (Closed Halfspace Containing C)
Separating Hyperplane H that Properly Separates C and D C and P
β α −1 1 0

1

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
[
(Θ − θ̂)2

]
= var(Θ) +

(
E[Θ]− θ̂

)2
,

E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})

{x | a′
jx ≤ 0, j = 1, . . . , r}

{x | a′
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
[
(Θ − θ̂)2

]
= var(Θ) +

(
E[Θ]− θ̂

)2
,

E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})

{x | a′
jx ≤ 0, j = 1, . . . , r}

{x | a′
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

β/α

C = aff(C)∩ (Closed Halfspace Containing C)
Separating Hyperplane H that Properly Separates C and D C and P
β α −1 1 0

1

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
[
(Θ − θ̂)2

]
= var(Θ) +

(
E[Θ]− θ̂

)2
,

E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})

{x | a′
jx ≤ 0, j = 1, . . . , r}

{x | a′
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

β/α

C = aff(C)∩ (Closed Halfspace Containing C)
Separating Hyperplane H that Properly Separates C and D C and P
β α −1 1 0

1

�
(g(x), f(x)) | x ∈ X

�

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

�
(g(x), f(x)) | x ∈ X

�

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

�
(g(x), f(x)) | x ∈ X

�

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

�
g(x), f(x)

�

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

• The lemma asserts the existence of a nonverti-
cal hyperplane in <r+1, with normal (µ, 1), that
passes through the origin and contains the set

{(
g(x), f(x)

)
| x ∈ X

}

in its positive halfspace.



PROOF OF NONLINEAR FARKAS’ LEMMA

• Apply MC/MC to

M =
{

(u,w) | there is x ∈ X s. t. g(x) ≤ u, f(x) ≤ w
}4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6

Mean Squared
Least squares estimate

E[Θ | X = x]

X = Θ + W

M̃ M = epi(p) (0, w∗) epi(p)
E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})
u v M

(µ, 1)

C1

C2

1

2 Polyhedral Convexity Template Chap. 4

h(y) = (1/2c)y2

h(y) =
{

0 if |y| ≤ 1
∞ if |y| > 1

h(y) =
{

β if y = α
∞ if y #= α

epi(f) w (µ, 1) q(µ)
3 5 9 11 1

3 4 10 1/6
cone({a1, . . . , ar})
u v M a

(µ, 1)

C1

C2

2 Polyhedral Convexity Template Chap. 4

h(y) = (1/2c)y2

h(y) =
{

0 if |y| ≤ 1
∞ if |y| > 1

h(y) =
{

β if y = α
∞ if y #= α

epi(f) w (µ, 1) q(µ)
3 5 9 11 1

3 4 10 1/6
cone({a1, . . . , ar})
u v M a

(µ, 1)

C1

C2

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

w a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

{
(g(x), f(x)) | x ∈ C

}

C = aff(C)∩ (Closed Halfspace Containing C)

M =
{
(u, w) | g(x) ≤ u, f(x) ≤ w for some x ∈ C

}

1

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

(0, w∗) w a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

{
(g(x), f(x)) | x ∈ C

}

C = aff(C)∩ (Closed Halfspace Containing C)

M =
{
(u, w) | g(x) ≤ u, f(x) ≤ w for some x ∈ C

}

1

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

D C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

(0, w∗) w a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

{
(g(x), f(x)) | x ∈ C

}

C = aff(C)∩ (Closed Halfspace Containing C)

M =
{
(u, w) | g(x) ≤ u, f(x) ≤ w for some x ∈ C

}

1

4

Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

D C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}
(0, w∗) w a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

{
(g(x), f(x)) | x ∈ C

}

C = aff(C)∩ (Closed Halfspace Containing C)

M =
{
(u, w) | there exists x ∈ C such that g(x) ≤ u, f(x) ≤ w

}

1

�
(g(x), f(x)) | x ∈ X

�

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

�
g(x), f(x)

�

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

• M is equal to M and is formed as the union of
positive orthants translated to points

(
g(x), f(x)

)
,

x ∈ X.

• The convexity of X, f , and gj implies convexity
of M .

• MC/MC Theorem II applies: we have

D =
{
u | there exists w ∈ < with (u,w) ∈M

}

and 0 ∈ int(D), because
(
(g(x), f(x)

)
∈M .



LECTURE 11

LECTURE OUTLINE

• Min Common/Max Crossing Th. III

• Nonlinear Farkas Lemma/Linear Constraints

• Linear Programming Duality

Reading: Sections 4.5, 5.1-5.2

Recall the MC/MC Theorem II: If −∞ < w∗

and

0 ∈ D =
{
u | there exists w ∈ < with (u,w) ∈M}

then q∗ = w∗ and there exists µ such that q(µ) =
q∗.

�
(uk, wk)

�
⊂M, uk → 0, w∗ ≤ lim inf

k→∞
wk D

�
(uk, wk)

�
⊂M, uk → 0, w∗ > lim inf

k→∞
wk

(uk, wk) (uk+1, wk+1) w∗ q∗ w∗ = q∗

min
x

�
f1(x) + f2(x)

�
= max

y

�
− f�

1 (y)− f�
2 (−y)

�

f̄�
2,Xk

(−λ)

�B(x) ��B(x) S �� < �

Boundary of S

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z
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Its optimal value is denoted by w∗, i.e.,

w∗ = inf
(0,w)∈M

w.

To describe mathematically the max crossing problem, we recall that
a nonvertical hyperplane in �n+1 is specified by its normal vector (µ, 1) ∈
�n+1, and a scalar ξ as

Hµ,ξ =
�
(u, w) | w + µ�u = ξ

�
.

Such a hyperplane crosses the (n+1)st axis at (0, ξ). For M to be contained
in the “upper” closed halfspace that corresponds to Hµ,ξ [the one that
contains the vertical halfline

�
(0, w) | w ≥ 0

�
in its recession cone], it is

necessary and sufficient that

ξ ≤ w + µ�u, ∀ (u, w) ∈ M,

or equivalently
ξ ≤ inf

(u,w)∈M
{w + µ�u}.

For a fixed normal (µ, 1), the maximum crossing level ξ over all hyperplanes
Hµ,ξ is denoted by q(µ) and is given by

q(µ) = inf
(u,w)∈M

{w + µ�u}; (4.2)

(see Fig. 4.1.2). The max crossing problem is to maximize over all µ ∈ �n

the maximum crossing level corresponding to µ, i.e.,

maximize q(µ)
subject to µ ∈ �n.

(4.3)

We also refer to this as the dual problem, we denote

q∗ = sup
µ∈�n

q(µ),

and we refer to q(µ) as the crossing or dual function.
Note that both w∗ and q∗ remain unaffected if M is replaced by its

“upwards extension”
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�
(0, w) | w ≥ 0

�

=
�
(u, w) | there exists w with w ≤ w and (u, w) ∈ M

� (4.4)

(cf. Fig. 4.1.1). It is often more convenient to work with M because in
many cases of interest M is convex while M is not. However, on occasion
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Ĉ = C + S⊥

Nonvertical Vertical

Hyperplane

Level Sets of f Constancy Space Lf ∩∞k=0Ck Rf

Level Sets of f β α −1 1
(µ, 0) cl(C)

1

Negative Halfspace {x | a′x ≥ b}
Positive Halfspace {x | a′x ≤ b}

aff(C) C C ∩ S⊥ d z x

Hyperplane {x | a′x = b} = {x | a′x = a′x}

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

x0 − d x1 x2 x x4 − d x5 − d d

x̂0 x̂1 x̂2 x̂3

a0 a1 a2 a3

f(z)

z

X 0 u w (µ, β) (u, w)
µ

β

′
u + w

σX(y)/‖y‖

x M M Wk y C2 C C2
k+1 yk AC
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MC/MC TH. III - POLYHEDRAL

• Consider the MC/MC problems, and assume
that −∞ < w∗ and:
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M = M̃ −
{

(u, 0) | u ∈ P
}
,
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Polyhedral Convexity Template
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w∗ is uniformly distributed in the interval [−1, 1]
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�
P
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cone
�
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�
{x | a�
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2a2
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�
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�
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�
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�
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h(y) = (1/2c)y2

h(y) =
�

0 if |y| ≤ 1
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�
β if y = α
∞ if y �= α
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epi(f) w (µ, 1) q(µ)
3 5 9 11 1

3 4 10 1/6

1

(2) We have ri(D̃) ∩ P 6= Ø, where

D̃ =
{
u | there exists w ∈ < with (u,w) ∈ M̃}

Then q∗ = w∗, there is a max crossing solution,
and all max crossing solutions µ satisfy µ′d ≤ 0
for all d ∈ RP .

• Comparison with Th. II: Since D = D̃−P ,
the condition 0 ∈ ri(D) of Theorem II is

ri(D̃) ∩ ri(P ) 6= Ø



PROOF OF MC/MC TH. III

• Consider the disjoint convex sets C1 =
{

(u, v) |
v > w for some (u,w) ∈ M̃

}
and C2 =

{
(u,w∗) |

u ∈ P
}

[u ∈ P and (u,w) ∈ M̃ with w∗ > w
contradicts the definition of w∗]

(µ, β)

0} u

v

C1

C2

M̃

w∗

P

• Since C2 is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (µ, β) 6=
(0, 0) such that

βw∗ + µ′z ≤ βv + µ′x, ∀ (x, v) ∈ C1, ∀ z ∈ P

inf
(x,v)∈C1

{
βv + µ′x

}
< sup

(x,v)∈C1

{
βv + µ′x

}

Since (0, 1) is a direction of recession of C1, we see
that β ≥ 0. Because of the relative interior point
assumption, β 6= 0, so we may assume that β = 1.



PROOF (CONTINUED)

• Hence,

w∗ + µ′z ≤ inf
(u,v)∈C1

{v + µ′u}, ∀ z ∈ P,
so that

w∗ ≤ inf
(u,v)∈C1, z∈P

{
v + µ′(u− z)

}

= inf
(u,v)∈M̃−P

{v + µ′u}

= inf
(u,v)∈M

{v + µ′u}

= q(µ)

Using q∗ ≤ w∗ (weak duality), we have q(µ) =
q∗ = w∗.

Proof that all max crossing solutions µ sat-
isfy µ′d ≤ 0 for all d ∈ RP : follows from

q(µ) = inf
(u,v)∈C1, z∈P

{
v + µ′(u− z)

}

so that q(µ) = −∞ if µ′d > 0. Q.E.D.

• Geometrical intuition: every (0,−d) with d ∈
RP , is direction of recession of M .



MC/MC TH. III - A SPECIAL CASE

• Consider the MC/MC framework, and assume:

(1) For a convex function f : <m 7→ (−∞,∞],
an r ×m matrix A, and a vector b ∈ <r:

M =
{

(u,w) | for some (x,w) ∈ epi(f), Ax− b ≤ u
}

so M = M̃ + Positive Orthant, where

M̃ =
{

(Ax− b, w) | (x,w) ∈ epi(f)
}

0} x

epi(f)

w

0} u

M̃

w∗

w

u0}

w∗

(µ, 1)

q(µ)

M = epi(p)

Ax ≤ b

(x∗, w∗) (x,w) "→ (Ax− b, w)

p(u) = inf
Ax−b≤u

f(x)

(2) There is an x ∈ ri(dom(f)) s. t. Ax− b ≤ 0.

Then q∗ = w∗ and there is a µ ≥ 0 with q(µ) = q∗.

• AlsoM = M ≈ epi(p), where p(u) = infAx−b≤u f(x).

• We have w∗ = p(0) = infAx−b≤0 f(x).



NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

• Let X ⊂ <n be convex, and f : X 7→ < and gj :
<n 7→ <, j = 1, . . . , r, be linear so g(x) = Ax − b
for some A and b. Assume that

f(x) ≥ 0, ∀ x ∈ X with Ax− b ≤ 0

Let

Q∗ =
{
µ | µ ≥ 0, f(x)+µ′(Ax−b) ≥ 0, ∀ x ∈ X

}
.

Assume that there exists a vector x ∈ ri(X) such
that Ax− b ≤ 0. Then Q∗ is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w∗ ≥ 0,
implied by the assumption.

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
w∗ is uniformly distributed in the interval [−1, 1]
Θ θ fθ(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 4 10 1/6
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cone({a1, . . . , ar})
u v M
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2 Polyhedral Convexity Template Chap. 4
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Polyhedral Convexity Template

: Polyhedral Set aff(C) Cone K = F1 ∩ F2 infx∈"n
{
f(x) − x′y

}
=

−h(y) (y, 1) Slope = α x Extreme Points of C ∩H H1 H2 x1 x2 v x∗

f(x) = (c/2)x2

(a) (b) (c) Level Sets of f Feasible Set Cone D (translated to x∗)

cone
(
{a1, a2, a3}

)
{x | a′jx ≤ 0, j = 1, 2, 3}

C C∗ y z x H P P̂ C ∩H1 C ∩H1 ∩H2

{y | y′a1 ≤ 0} {y | y′a2 ≤ 0}

w a1 a2 a3 a4 a5 c1 c2 v1 v2 v3

c = µ∗1a1 + µ∗2a2

β α −1 1 0 N(A) R(A′) D = P ∩ aff(C) M = H ∩ aff(C)

{
(g(x), f(x)) | x ∈ C

}

C = aff(C)∩ (Closed Halfspace Containing C)

M =
{
(u, w) | g(x) ≤ u, f(x) ≤ w for some x ∈ C

}

1
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M =
�
(u,w) | Ax− b− u ≤ 0, for some (x, w) ∈ epi(f̃)

�

�
(Ax− b, f(x)) | x ∈ X

�

�
g(x), f(x)

�
− β w∗ − � (uk, wk) (uk+1, wk+1) lim inf

k→∞
wk

(0, w∗ − �) (0, w∗) q(µ) (0, ξ)

Strictly Separating Hyperplane

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

1

M =
�
(u,w) | Ax− b ≤ u, for some (x, w) ∈ epi(f)

�

�
(Ax− b, f(x)) | x ∈ X

�

�
g(x), f(x)

�
− β w∗ − � (uk, wk) (uk+1, wk+1) lim inf

k→∞
wk

(0, w∗ − �) (0, w∗) q(µ) (0, ξ)

Strictly Separating Hyperplane

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u,w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)
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(LINEAR) FARKAS’ LEMMA

• Let A be an m × n matrix and c ∈ <m. The
system Ay = c, y ≥ 0 has a solution if and only if

A′x ≤ 0 ⇒ c′x ≤ 0. (∗)

• Alternative/Equivalent Statement: If P =
cone{a1, . . . , an}, where a1, . . . , an are the columns
of A, then P = (P ∗)∗ (Polar Cone Theorem).

Proof: If y ∈ <n is such that Ay = c, y ≥ 0, then
y′A′x = c′x for all x ∈ <m, which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma
with f(x) = −c′x, g(x) = A′x, and X = <m.
Condition (*) implies the existence of µ ≥ 0 such
that

−c′x+ µ′A′x ≥ 0, ∀ x ∈ <m,

or equivalently

(Aµ− c)′x ≥ 0, ∀ x ∈ <m,

or Aµ = c.



LINEAR PROGRAMMING DUALITY

• Consider the linear program

minimize c′x

subject to a′jx ≥ bj , j = 1, . . . , r,

where c ∈ <n, aj ∈ <n, and bj ∈ <, j = 1, . . . , r.

• The dual problem is

maximize b′µ

subject to
r∑

j=1

ajµj = c, µ ≥ 0.

• Linear Programming Duality Theorem:

(a) If either f∗ or q∗ is finite, then f∗ = q∗ and
both the primal and the dual problem have
optimal solutions.

(b) If f∗ = −∞, then q∗ = −∞.

(c) If q∗ =∞, then f∗ =∞.

Proof: (b) and (c) follow from weak duality. For
part (a): If f∗ is finite, there is a primal optimal
solution x∗, by existence of solutions of quadratic
programs. Use Farkas’ Lemma to construct a dual
feasible µ∗ such that c′x∗ = b′µ∗ (next slide).



PROOF OF LP DUALITY (CONTINUED)

Feasible Set

x∗

a1
a2

c = µ∗
1a1 + µ∗

2a2

Cone D (translated to x∗)

• Let x∗ be a primal optimal solution, and let
J = {j | a′jx∗ = bj}. Then, c′y ≥ 0 for all y in the
cone of “feasible directions”

D = {y | a′jy ≥ 0, ∀ j ∈ J}

By Farkas’ Lemma, for some scalars µ∗j ≥ 0, c can
be expressed as

c =
r∑

j=1

µ∗jaj , µ∗j ≥ 0, ∀ j ∈ J, µ∗j = 0, ∀ j /∈ J.

Taking inner product with x∗, we obtain c′x∗ =
b′µ∗, which in view of q∗ ≤ f∗, shows that q∗ = f∗

and that µ∗ is optimal.



LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (x∗, µ∗) form a primal and dual
optimal solution pair if and only if x∗ is primal-
feasible, µ∗ is dual-feasible, and

µ∗j (bj − a′jx∗) = 0, ∀ j = 1, . . . , r. (∗)

Proof: If x∗ is primal-feasible and µ∗ is dual-
feasible, then

b′µ∗ =
r∑

j=1

bjµ∗j +


c−

r∑

j=1

ajµ∗j



′

x∗

= c′x∗ +
r∑

j=1

µ∗j (bj − a′jx∗)

(∗∗)

So if Eq. (*) holds, we have b′µ∗ = c′x∗, and weak
duality implies that x∗ is primal optimal and µ∗

is dual optimal.
Conversely, if (x∗, µ∗) form a primal and dual

optimal solution pair, then x∗ is primal-feasible,
µ∗ is dual-feasible, and by the duality theorem, we
have b′µ∗ = c′x∗. From Eq. (**), we obtain Eq.
(*).



LECTURE 12

LECTURE OUTLINE

• Convex Programming Duality

• Optimality Conditions

• Mixtures of Linear and Convex Constraints

• Existence of Optimal Primal Solutions

• Fenchel Duality

• Conic Duality

Reading: Sections 5.3.1-5.3.6

Line of analysis so far:

• Convex analysis (rel. int., dir. of recession, hy-
perplanes, conjugacy)

• MC/MC

• Nonlinear Farkas’ Lemma

• Linear programming (duality, opt. conditions)

• We now discuss convex programming, and its
many special cases (reliance on Nonlinear Farkas’
Lemma)



CONVEX PROGRAMMING

Consider the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X ⊂ <n is convex, and f : X 7→ < and
gj : X 7→ < are convex. Assume f∗: finite.

• Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

p(u) = inf
x∈X, g(x)≤u

f(x)

• Consider the Lagrangian function

L(x, µ) = f(x) + µ′g(x),

the dual function

q(µ) =
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise

and the dual problem of maximizing infx∈X L(x, µ)
over µ ≥ 0.



STRONG DUALITY THEOREM

• Assume that f∗ is finite, and that one of the
following two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are affine, and
there exists x ∈ ri(X) such that g(x) ≤ 0.

Then q∗ = f∗ and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

• Proof: Replace f(x) by f(x) − f∗ so that
f(x) − f∗ ≥ 0 for all x ∈ X w/ g(x) ≤ 0. Ap-
ply Nonlinear Farkas’ Lemma. Then, there exist
µ∗j ≥ 0, s.t.

f∗ ≤ f(x) +
r∑

j=1

µ∗jgj(x), ∀ x ∈ X

• It follows that

f∗ ≤ inf
x∈X

{
f(x)+µ∗′g(x)

}
≤ inf
x∈X, g(x)≤0

f(x) = f∗.

Thus equality holds throughout, and we have

f∗ = inf
x∈X



f(x) +

r∑

j=1

µ∗jgj(x)



 = q(µ∗)



QUADRATIC PROGRAMMING DUALITY

• Consider the quadratic program

minimize 1
2x
′Qx+ c′x

subject to Ax ≤ b,
where Q is positive definite.

• If f∗ is finite, then f∗ = q∗ and there exist
both primal and dual optimal solutions, since the
constraints are linear.

• Calculation of dual function:

q(µ) = inf
x∈<n

{ 1
2x
′Qx+ c′x+ µ′(Ax− b)}

The infimum is attained for x = −Q−1(c + A′µ),
and, after substitution and calculation,

q(µ) = − 1
2µ
′AQ−1A′µ−µ′(b+AQ−1c)− 1

2c
′Q−1c

• The dual problem, after a sign change, is

minimize 1
2µ
′Pµ+ t′µ

subject to µ ≥ 0,

where P = AQ−1A′ and t = b+AQ−1c.



OPTIMALITY CONDITIONS

• We have q∗ = f∗, and the vectors x∗ and µ∗ are
optimal solutions of the primal and dual problems,
respectively, iff x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈X

L(x, µ∗), µ∗jgj(x∗) = 0, ∀ j.
(1)

Proof: If q∗ = f∗, and x∗, µ∗ are optimal, then

f∗ = q∗ = q(µ∗) = inf
x∈X

L(x, µ∗) ≤ L(x∗, µ∗)

= f(x∗) +
r∑

j=1

µ∗jgj(x∗) ≤ f(x∗),

where the last inequality follows from µ∗j ≥ 0 and
gj(x∗) ≤ 0 for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if x∗, µ∗ are feasible, and (1) holds,

q(µ∗) = inf
x∈X

L(x, µ∗) = L(x∗, µ∗)

= f(x∗) +
r∑

j=1

µ∗jgj(x∗) = f(x∗),

so q∗ = f∗, and x∗, µ∗ are optimal. Q.E.D.



QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program

minimize 1
2x
′Qx+ c′x

subject to Ax ≤ b,
where Q is positive definite, (x∗, µ∗) is a primal
and dual optimal solution pair if and only if:

• Primal and dual feasibility holds:

Ax∗ ≤ b, µ∗ ≥ 0

• Lagrangian optimality holds [x∗ minimizes L(x, µ∗)
over x ∈ <n]. This yields

x∗ = −Q−1(c+A′µ∗)

• Complementary slackness holds [(Ax∗−b)′µ∗ =
0]. It can be written as

µ∗j > 0 ⇒ a′jx∗ = bj , ∀ j = 1, . . . , r,

where a′j is the jth row of A, and bj is the jth
component of b.



LINEAR EQUALITY CONSTRAINTS

• The problem is

minimize f(x)
subject to x ∈ X, g(x) ≤ 0, Ax = b,

where X is convex, g(x) =
(
g1(x), . . . , gr(x)

)′, f :
X 7→ < and gj : X 7→ <, j = 1, . . . , r, are convex.

• Convert the constraint Ax = b to Ax ≤ b
and −Ax ≤ −b, with corresponding dual variables
λ+ ≥ 0 and λ− ≥ 0.

• The Lagrangian function is

f(x) + µ′g(x) + (λ+ − λ−)′(Ax− b),

and by introducing a dual variable λ = λ+ − λ−,
with no sign restriction, it can be written as

L(x, µ, λ) = f(x) + µ′g(x) + λ′(Ax− b).

• The dual problem is

maximize q(µ, λ) ≡ inf
x∈X

L(x, µ, λ)

subject to µ ≥ 0, λ ∈ <m.



DUALITY AND OPTIMALITY COND.

• Pure equality constraints:

(a) Assume that f∗: finite and there exists x ∈
ri(X) such that Ax = b. Then f∗ = q∗ and
there exists a dual optimal solution.

(b) f∗ = q∗, and (x∗, λ∗) are a primal and dual
optimal solution pair if and only if x∗ is fea-
sible, and

x∗ ∈ arg min
x∈X

L(x, λ∗)

Note: No complementary slackness for equality
constraints.

• Linear and nonlinear constraints:

(a) Assume f∗: finite, that there exists x ∈ X
such that Ax = b and g(x) < 0, and that
there exists x̃ ∈ ri(X) such that Ax̃ = b.
Then q∗ = f∗ and there exists a dual optimal
solution.

(b) f∗ = q∗, and (x∗, µ∗, λ∗) are a primal and
dual optimal solution pair if and only if x∗
is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈X

L(x, µ∗, λ∗), µ∗jgj(x∗) = 0, ∀ j



COUNTEREXAMPLE I

• Strong Duality Counterexample: Consider

minimize f(x) = e−
√
x1x2

subject to x1 = 0, x ∈ X = {x | x ≥ 0}

Here f∗ = 1 and f is convex (its Hessian is > 0 in
the interior of X). The dual function is

q(λ) = inf
x≥0

{
e−
√
x1x2 + λx1

}
=
{

0 if λ ≥ 0,
−∞ otherwise,

(when λ ≥ 0, the expression in braces is nonneg-
ative for x ≥ 0 and can approach zero by taking
x1 → 0 and x1x2 →∞). Thus q∗ = 0.

• The relative interior assumption is violated.

• As predicted by the corresponding MC/MC
framework, the perturbation function

p(u) = inf
x1=u, x≥0

e−
√
x1x2 =

{ 0 if u > 0,
1 if u = 0,
∞ if u < 0,

is not lower semicontinuous at u = 0.



COUNTEREXAMPLE VISUALIZATION
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• Connection with counterexample for preserva-
tion of closedness under partial minimization.



COUNTEREXAMPLE II

• Existence of Solutions Counterexample:
Let X = <, f(x) = x, g(x) = x2. Then x∗ = 0 is
the only feasible/optimal solution, and we have

q(µ) = inf
x∈<
{x+ µx2} = − 1

4µ
, ∀ µ > 0,

and q(µ) = −∞ for µ ≤ 0, so that q∗ = f∗ = 0.
However, there is no µ∗ ≥ 0 such that q(µ∗) =
q∗ = 0.

• The perturbation function is

p(u) = inf
x2≤u

x =
{
−√u if u ≥ 0,
∞ if u < 0.

u

p(u)

0

epi(p)



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) + f2(x)
subject to x ∈ <n,

where f1 : <n 7→ (−∞,∞] and f2 : <n 7→ (−∞,∞]
are closed proper convex functions.

• Convert to the equivalent problem

minimize f1(x1) + f2(x2)
subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2)

• The dual function is

q(λ) = inf
x1∈dom(f1), x2∈dom(f2)

{
f1(x1) + f2(x2) + λ′(x2 − x1)

}

= inf
x1∈<n

{
f1(x1)− λ′x1

}
+ inf
x2∈<n

{
f2(x2) + λ′x2

}

• Dual problem: maxλ{−f?1 (λ) − f?2 (−λ)} =
−minλ{−q(λ)} or

minimize f?1 (λ) + f?2 (−λ)
subject to λ ∈ <n,

where f?1 and f?2 are the conjugates.



FENCHEL DUALITY THEOREM

• Consider the Fenchel framework:

(a) If f∗ is finite and ri
(
dom(f1)

)
∩ri
(
dom(f2)

)
6=

Ø, then f∗ = q∗ and there exists at least one
dual optimal solution.

(b) There holds f∗ = q∗, and (x∗, λ∗) is a primal
and dual optimal solution pair if and only if

x∗ ∈ arg min
x∈<n

{
f1(x)−x′λ∗

}
, x∗ ∈ arg min

x∈<n

{
f2(x)+x′λ∗

}

Proof: For strong duality use the equality con-
strained problem

minimize f1(x1) + f2(x2)
subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2)

and the fact

ri
(
dom(f1)×dom(f2)

)
= ri

(
dom(f1)

)
×
(
dom(f2)

)

to satisfy the relative interior condition.
For part (b), apply the optimality conditions

(primal and dual feasibility, and Lagrangian opti-
mality).



GEOMETRIC INTERPRETATION

Slope λ

Slope λ∗

x∗ x

f1(x)

−f2(x)

q(λ)

f∗ = q∗

−f!
1 (λ)

f!
2 (−λ)

• When dom(f1) = dom(f2) = <n, and f1 and
f2 are differentiable, the optimality condition is
equivalent to

λ∗ = ∇f1(x∗) = −∇f2(x∗)

• By reversing the roles of the (symmetric) primal
and dual problems, we obtain alternative criteria
for strong duality: if q∗ is finite and ri

(
dom(f?1 )

)
∩

ri
(
−dom(f?2 )

)
6= Ø, then f∗ = q∗ and there exists

at least one primal optimal solution.



CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : <n 7→ (−∞,∞] subject to a cone con-
straint.

• The most useful/popular special cases:
− Linear-conic programming
− Second order cone programming
− Semidefinite programming

involve minimization of a linear function over the
intersection of an affine set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.



CONIC DUALITY

• Consider minimizing f(x) over x ∈ C, where f :
<n 7→ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in <n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{ 0 if x ∈ C,
∞ if x /∈ C.

The conjugates are

f?1 (λ) = sup
x∈<n

{
λ′x−f(x)

}
, f?2 (λ) = sup

x∈C
λ′x =

{
0 if λ ∈ C∗,
∞ if λ /∈ C∗,

where C∗ = {λ | λ′x ≤ 0, ∀ x ∈ C}.
• The dual problem is

minimize f?(λ)

subject to λ ∈ Ĉ,

where f? is the conjugate of f and

Ĉ = {λ | λ′x ≥ 0, ∀ x ∈ C}.

Ĉ and −Ĉ are called the dual and polar cones.



CONIC DUALITY THEOREM

• Assume that the optimal value of the primal
conic problem is finite, and that

ri
(
dom(f)

)
∩ ri(C) 6= Ø.

Then, there is no duality gap and the dual problem
has an optimal solution.

• Using the symmetry of the primal and dual
problems, we also obtain that there is no duality
gap and the primal problem has an optimal solu-
tion if the optimal value of the dual conic problem
is finite, and

ri
(
dom(f?)

)
∩ ri(Ĉ) 6= Ø.



LINEAR CONIC PROGRAMMING

• Let f be linear over its domain, i.e.,

f(x) =
{
c′x if x ∈ X,
∞ if x /∈ X,

where c is a vector, and X = b+S is an affine set.

• Primal problem is

minimize c′x

subject to x− b ∈ S, x ∈ C.
• We have

f?(λ) = sup
x−b∈S

(λ− c)′x = sup
y∈S

(λ− c)′(y + b)

=
{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S.

• Dual problem is equivalent to

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• If X ∩ ri(C) = Ø, there is no duality gap and
there exists a dual optimal solution.



ANOTHER APPROACH TO DUALITY

• Consider the problem

minimize f(x)
subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r

and perturbation fn p(u) = infx∈X, g(x)≤u f(x)

• Recall the MC/MC framework withM = epi(p).
Assuming that p is convex and f∗ < ∞, by 1st
MC/MC theorem, we have f∗ = q∗ if and only if
p is lower semicontinuous at 0.

• Duality Theorem: Assume that X, f , and gj
are closed convex, and the feasible set is nonempty
and compact. Then f∗ = q∗ and the set of optimal
primal solutions is nonempty and compact.

Proof: Use partial minimization theory w/ the
function

F (x, u) =
{
f(x) if x ∈ X, g(x) ≤ u,
∞ otherwise.

p is obtained by the partial minimization:

p(u) = inf
x∈<n

F (x, u).

Under the given assumption, p is closed convex.



LECTURE 13

LECTURE OUTLINE

• Subgradients

• Fenchel inequality

• Sensitivity in constrained optimization

• Subdifferential calculus

• Optimality conditions



SUBGRADIENTS

• Let f : <n 7→ (−∞,∞] be a convex function.
A vector g ∈ <n is a subgradient of f at a point
x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g, ∀ z ∈ <n

• g is a subgradient if and only if

f(z)− z′g ≥ f(x)− x′g, ∀ z ∈ <n

so g is a subgradient at x if and only if the hyper-
plane in <n+1 that has normal (−g, 1) and passes
through

(
x, f(x)

)
supports the epigraph of f .

0

(−g, 1)

f(z)

(
x, f(x)

)

z

• The set of all subgradients at x is the subdiffer-
ential of f at x, denoted ∂f(x).



EXAMPLES OF SUBDIFFERENTIALS

• Some examples:

∂f(x)

∂f(x)

0 x x

xx

f(x) = max
{
0, (1/2)(x2 − 1)

}

f(x) = |x|

1

1

1-1

-1

-10

0

0

• If f is differentiable, then ∂f(x) = {∇f(x)}.
Proof: If g ∈ ∂f(x), then

f(x+ z) ≥ f(x) + g′z, ∀ z ∈ <n.

Apply this with z = γ
(
∇f(x)−g

)
, γ ∈ <, and use

1st order Taylor series expansion to obtain

γ‖∇f(x)− g‖2 ≥ o(γ), ∀ γ ∈ <



EXISTENCE OF SUBGRADIENTS

• Note the connection with MC/MC

M = epi(fx), fx(z) = f(x+ z)− f(x)

0

(−g, 1)

f(z)

(
x, f(x)

)

z

0
z

(−g, 1)
Epigraph of fEpigraph of f
Translated

fx(z)

• Let f : <n 7→ (−∞,∞] be a proper convex
function. For every x ∈ ri

(
dom(f)),

∂f(x) = S⊥ +G,

where:
− S is the subspace that is parallel to the affine

hull of dom(f)
− G is a nonempty and compact set.

• Furthermore, ∂f(x) is nonempty and compact
if and only if x is in the interior of dom(f).



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

• Let C be a convex set, and δC be its indicator
function.

• For x /∈ C, ∂δC(x) = Ø, by convention.

• For x ∈ C, we have g ∈ ∂δC(x) iff

δC(z) ≥ δC(x) + g′(z − x), ∀ z ∈ C,

or equivalently g′(z − x) ≤ 0 for all z ∈ C. Thus
∂δC(x) is the normal cone of C at x, denoted
NC(x):

NC(x) =
{
g | g′(z − x) ≤ 0, ∀ z ∈ C

}
.

Sec. 6.2 Properties of Subgradients 5

example, consider the function

f(x) =
{
−√x if 0 ≤ x ≤ 1,
∞ otherwise.

(6.3)

Its subdifferential is

∂f(x) =




− 1

2
√

x
if 0 < x < 1,[

− 1
2 ,∞

)
if x = 1,

Ø if x ≤ 0 or 1 < x,
so it is unbounded or empty at boundary points within dom(f) (the points
0 and 1, respectively).

Example 6.1.1: (Subdifferential of an Indicator Function -
The Normal Cone)

Let us derive the subdifferential of the indicator function of a convex set C:

δC(x) =
{

0 if x ∈ C,
∞ if x /∈ C.

For x /∈ C, we have ∂δC(x) = Ø, by convention. For x ∈ C, we have
g ∈ ∂δC(x) if

δC(z) ≥ δC(x) + g′(z − x), ∀ z ∈ C,

or equivalently g′(z−x) ≤ 0 for all z ∈ C. For x ∈ C, the set of all g satisfying
this relation is called the normal cone of C at x, and is denoted by NC(x):

NC(x) =
{
g | g′(z − x) ≤ 0, ∀ z ∈ C

}
.

Note that the normal cone NC(x) is the polar cone of C − {x}, the set C
translated so that x is moved to the origin.

As an example, for the case of a halfspace

H = {x | a′x ≤ b},
we have

NH(x) =

{
{0} if a′x < b,
{γa | γ ≥ 0} if a′x = b.

For the case of a polyhedral set of the form

P = {x | a′
ix ≤ bi, i = 1, . . . , m},

it can be seen that for x ∈ P ,

NP (x) =

{
{0} if x ∈ int(P ),
cone

(
{ai | i ∈ Ax}

)
otherwise,

where Ax is the set of “active” inequalities at x,

Ax =
{
i ∈ {1, . . . , m} | a′

ix = bi

}
.

Many of the properties of subgradients parallel those of ordinary gra-
dients. For example, the subdifferential of the sum of real-valued convex
functions is equal to the vector sum of the corresponding subdifferentials.
These properties, as well as relations with conjugate convex function the-
ory, will be developed in the next section.

4
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or equivalently g′(z−x) ≤ 0 for all z ∈ C. For x ∈ C, the set of all g satisfying
this relation is called the normal cone of C at x, and is denoted by NC(x):

NC(x) =
{
g | g′(z − x) ≤ 0, ∀ z ∈ C

}
.

Note that the normal cone NC(x) is the polar cone of C − {x}, the set C
translated so that x is moved to the origin.

As an example, for the case of a halfspace

H = {x | a′x ≤ b},
we have

NH(x) =

{
{0} if a′x < b,
{γa | γ ≥ 0} if a′x = b.

For the case of a polyhedral set of the form

P = {x | a′
ix ≤ bi, i = 1, . . . , m},

it can be seen that for x ∈ P ,

NP (x) =

{
{0} if x ∈ int(P ),
cone

(
{ai | i ∈ Ax}

)
otherwise,

where Ax is the set of “active” inequalities at x,

Ax =
{
i ∈ {1, . . . , m} | a′

ix = bi

}
.

Many of the properties of subgradients parallel those of ordinary gra-
dients. For example, the subdifferential of the sum of real-valued convex
functions is equal to the vector sum of the corresponding subdifferentials.
These properties, as well as relations with conjugate convex function the-
ory, will be developed in the next section.
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Sec. 6.2 Properties of Subgradients 5

example, consider the function

f(x) =
{
−√x if 0 ≤ x ≤ 1,
∞ otherwise.

(6.3)

Its subdifferential is

∂f(x) =




− 1

2
√

x
if 0 < x < 1,[

− 1
2 ,∞

)
if x = 1,

Ø if x ≤ 0 or 1 < x,
so it is unbounded or empty at boundary points within dom(f) (the points
0 and 1, respectively).
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we have
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{0} if a′x < b,
{γa | γ ≥ 0} if a′x = b.
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(
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otherwise,
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{
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}
.

Many of the properties of subgradients parallel those of ordinary gra-
dients. For example, the subdifferential of the sum of real-valued convex
functions is equal to the vector sum of the corresponding subdifferentials.
These properties, as well as relations with conjugate convex function the-
ory, will be developed in the next section.
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• For the case of a polyhedral set

C = {x | a′ix ≤ bi, i = 1, . . . ,m},

we have

NC(x) =
{ {0} if x ∈ int(C),

cone
(
{ai | a′ix = bi}

)
if x /∈ int(C).



FENCHEL INEQUALITY

• Let f : <n 7→ (−∞,∞] be proper convex and
let f? be its conjugate. Using the definition of
conjugacy, we have Fenchel’s inequality :

x′y ≤ f(x) + f?(y), ∀ x ∈ <n, y ∈ <n.

• Conjugate Subgradient Theorem: The fol-
lowing two relations are equivalent for a pair of
vectors (x, y):

(i) x′y = f(x) + f?(y).

(ii) y ∈ ∂f(x).

If f is closed, (i) and (ii) are equivalent to

(iii) x ∈ ∂f?(y).
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β α −1 1
epi(f) w (µ, 1) q(µ)
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3 5 9 11 1
3 4 10 1/6
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Least squares estimate
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f!(y) =
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β if y = α
∞ if y "= α

f!!(x) = sup
y∈"n

{
y′x− f!(y)

}

f!(y) =
{

0 if |y| ≤ 1
∞ if |y| > 1

f!(y) = (1/2c)y2

−f!
1 (λ) f!

2 (−λ)

inf
x∈"n

{f(x)− x′y} = −f!(y)

State sampling according to Markov chain P

(µ, 0)
(a) (b) (c)

(0, 0) X (0, 1) cone(X) conv(X)

xα = αx+(1−α)x C x α ε x S Sα x4 f(x) f(z) αf(x)+ (1−α)f(y)
0 αε

dom(f)

f
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αx + (1− α)y
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C x y z x1 x2 x3 x4 f(x) f(z) αf(x) + (1− α)f(y) 0

x x∗
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0 αε
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C x y z x1 x2 x3 x4 f(x) f(z) αf(x) + (1− α)f(y) 0

x x∗

αf(x) + (1− α)f(y) C x y f(x) f(z) z = αx + (1 − α)y

f(z) + (y − z)′∇f(z) f(z) + (x− z)′∇f(z)

1

(a) (b)

∂f�(y) ∂f(x)

cone{a1, . . . , an}

M =
�
(u,w) | Ax− b ≤ u, for some (x, w) ∈ epi(f)

�

�
(Ax− b, f(x)) | x ∈ X

�

�
g(x), f(x)

�
− β w∗ − � (uk, wk) (uk+1, wk+1) lim inf

k→∞
wk

(0, w∗ − �) (0, w∗) q(µ) (0, ξ)

Strictly Separating Hyperplane

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)

w∗ = min
x

�
f1(x) + f2(x)

�
= max

y

�
f�
1 (y) + f�

2 (−y)
�

= q∗

fx(d) d

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,

1
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MINIMA OF CONVEX FUNCTIONS

• Application: Let f be closed proper convex
and let X∗ be the set of minima of f over <n.
Then:

(a) X∗ = ∂f?(0).

(b) X∗ is nonempty if 0 ∈ ri
(
dom(f?)

)
.

(c) X∗ is nonempty and compact if and only if
0 ∈ int

(
dom(f?)

)
.

Proof: (a) From the subgradient inequality,

x∗ minimizes f iff 0 ∈ ∂f(x∗),

and since

0 ∈ ∂f(x∗) iff x∗ ∈ ∂f?(0),

we have

x∗ minimizes f iff x∗ ∈ ∂f?(0),

(b) ∂f?(0) is nonempty if 0 ∈ ri
(
dom(f?)

)
.

(c) ∂f?(0) is nonempty and compact if and only
if 0 ∈ int

(
dom(f?)

)
. Q.E.D.



SENSITIVITY INTERPRETATION

• Consider MC/MC for the case M = epi(p).

• Dual function is

q(µ) = inf
u∈<m

{
p(u) + µ′u

}
= −p?(−µ),

where p? is the conjugate of p.

• Assume p is proper convex and strong duality
holds, so p(0) = w∗ = q∗ = supµ∈<m

{
−p?(−µ)

}
.

Let Q∗ be the set of dual optimal solutions,

Q∗ =
{
µ∗ | p(0) + p?(−µ∗) = 0

}
.

From Conjugate Subgradient Theorem, µ∗ ∈ Q∗
if and only if −µ∗ ∈ ∂p(0), i.e., Q∗ = −∂p(0).

• If p is convex and differentiable at 0, −∇p(0) is
equal to the unique dual optimal solution µ∗.

• Constrained optimization example

p(u) = inf
x∈X, g(x)≤u

f(x),

If p is convex and differentiable,

µ∗j = −∂p(0)
∂uj

, j = 1, . . . , r.



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

• Consider the support function σX(y) of a set
X. To calculate ∂σX(y) at some y, we introduce

r(y) = σX(y + y), y ∈ <n.

• We have ∂σX(y) = ∂r(0) = arg minx∈<n r?(x).

• We have r?(x) = supy∈<n{y′x− r(y)}, or

r?(x) = sup
y∈<n

{y′x− σX(y + y)} = δ(x)− y′x,

where δ is the indicator function of cl
(
conv(X)

)
.

• Hence ∂σX(y) = arg minx∈<n δ(x)− y′x, or

∂σX(y) = arg max
x∈cl
(
conv(X)

) y′x

0

y1

y2

X

∂σX(y2)

∂σX(y1)



EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

• Let

f(x) = max{a′1x+ b1, . . . , a′rx+ br}.

• For a fixed x ∈ <n, consider

Ax =
{
j | a′jx+ bj = f(x)

}

and the function r(x) = max
{
a′jx | j ∈ Ax

}
.

f(x)

x0

Epigraph of f

(−g, 1)

x x0

(−g, 1)
r(x)

• It can be seen that ∂f(x) = ∂r(0).

• Since r is the support function of the finite set
{aj | j ∈ Ax}, we see that

∂f(x) = ∂r(0) = conv
(
{aj | j ∈ Ax}

)



CHAIN RULE

• Let f : <m 7→ (−∞,∞] be convex, and A be a
matrix. Consider F (x) = f(Ax) and assume that
F is proper. If either f is polyhedral or else the
range of R(A) ∩ ri(dom(f)) 6= Ø, we have

∂F (x) = A′∂f(Ax), ∀ x ∈ <n.
Proof: Showing ∂F (x) ⊃ A′∂f(Ax) is simple and
does not require the relative interior assumption.
For the reverse inclusion, let d ∈ ∂F (x) so F (z) ≥
F (x)+(z−x)′d ≥ 0 or f(Az)−z′d ≥ f(Ax)−x′d
for all z, so (Ax, x) solves

minimize f(y)− z′d
subject to y ∈ dom(f), Az = y.

If R(A)∩ ri(dom(f)) 6= Ø, by strong duality theo-
rem, there is a dual optimal solution λ, such that

(Ax, x) ∈ arg min
y∈<m, z∈<n

{
f(y)−z′d+λ′(Az−y)

}

Since the min over z is unconstrained, we have
d = A′λ, so Ax ∈ arg miny∈<m

{
f(y)− λ′y

}
, or

f(y) ≥ f(Ax) + λ′(y −Ax), ∀ y ∈ <m.

Hence λ ∈ ∂f(Ax), so that d = A′λ ∈ A′∂f(Ax).
It follows that ∂F (x) ⊂ A′∂f(Ax). In the polyhe-
dral case, dom(f) is polyhedral. Q.E.D.



SUM OF FUNCTIONS

• Let fi : <n 7→ (−∞,∞], i = 1, . . . ,m, be proper
convex functions, and let

F = f1 + · · ·+ fm.

• Assume that ∩m1=1ri
(
dom(fi)

)
6= Ø.

• Then

∂F (x) = ∂f1(x) + · · ·+ ∂fm(x), ∀ x ∈ <n.

Proof: We can write F in the form F (x) = f(Ax),
where A is the matrix defined by Ax = (x, . . . , x),
and f : <mn 7→ (−∞,∞] is the function

f(x1, . . . , xm) = f1(x1) + · · ·+ fm(xm).

Use the proof of the chain rule.

• Extension: If for some k, the functions fi, i =
1, . . . , k, are polyhedral, it is sufficient to assume

(
∩ki=1 dom(fi)

)
∩
(
∩mi=k+1 ri

(
dom(fi)

))
6= Ø.



CONSTRAINED OPTIMALITY CONDITION

• Let f : <n 7→ (−∞,∞] be proper convex, let X
be a convex subset of <n, and assume that one of
the following four conditions holds:

(i) ri
(
dom(f)

)
∩ ri(X) 6= Ø.

(ii) f is polyhedral and dom(f) ∩ ri(X) 6= Ø.

(iii) X is polyhedral and ri
(
dom(f)

)
∩X 6= Ø.

(iv) f and X are polyhedral, and dom(f) ∩X 6= Ø.

Then, a vector x∗ minimizes f over X iff there
exists g ∈ ∂f(x∗) such that −g belongs to the
normal cone NX(x∗), i.e.,

g′(x− x∗) ≥ 0, ∀ x ∈ X.

Proof: x∗ minimizes

F (x) = f(x) + δX(x)

if and only if 0 ∈ ∂F (x∗). Use the formula for
subdifferential of sum. Q.E.D.



ILLUSTRATION OF OPTIMALITY CONDITION
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• In the figure on the left, f is differentiable and
the condition is that

−∇f(x∗) ∈ NC(x∗),

which is equivalent to

∇f(x∗)′(x− x∗) ≥ 0, ∀ x ∈ X.

• In the figure on the right, f is nondifferentiable,
and the condition is that

−g ∈ NC(x∗) for some g ∈ ∂f(x∗).



LECTURE 14

LECTURE OUTLINE

• Min-Max Duality

• Existence of Saddle Points

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Given φ : X × Z 7→ <, where X ⊂ <n, Z ⊂ <m
consider

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X
and

maximize inf
x∈X

φ(x, z)

subject to z ∈ Z.



REVIEW

• Minimax inequality (holds always)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ inf
x∈X

sup
z∈Z

φ(x, z)

Important issue is whether minimax equality holds.

• Definition: (x∗, z∗) is called a saddle point of
φ if

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z

• Proposition: (x∗, z∗) is a saddle point if and
only if the minimax equality holds and

x∗ ∈ arg min
x∈X

sup
z∈Z

φ(x, z), z∗ ∈ arg max
z∈Z

inf
x∈X

φ(x, z)

• Connection w/ constrained optimization:
− Strong duality is equivalent to

inf
x∈X

sup
µ≥0

L(x, µ) = sup
µ≥0

inf
x∈X

L(x, µ)

where L is the Lagrangian function.
− Optimal primal-dual solution pairs (x∗, µ∗)

are the saddle points of L.



MC/MC FRAMEWORK FOR MINIMAX

• Use MC/MC with M = epi(p) where p : <m 7→
[−∞,∞] is the perturbation function

p(u) = inf
x∈X

sup
z∈Z

{
φ(x, z)− u′z

}
, u ∈ <m

• Important fact: p is obtained by partial min.

• Note that w∗ = p(0) = inf supφ and φ(·, z):
convex for all z implies that M is convex.

• If −φ(x, ·) is closed and convex, the dual func-
tion in MC/MC is

q(z) = inf
x∈X

φ(x, z), q∗ = sup inf φ

u

w

(µ, 1)

q(µ)

M = epi(p)

0

w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

q∗ = sup
z∈Z

inf
x∈X

φ(x, z)

(µ, 1)

q(µ)

u

w

0

M = epi(p)

w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

q∗ = sup
z∈Z

inf
x∈X

φ(x, z)



MINIMAX THEOREM I

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) <∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z 7→
< is closed and convex.

Then, the minimax equality holds if and only if
the function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
q∗ = w∗ in the min common/max crossing frame-
work. Furthermore, w∗ < ∞ by assumption, and
the set M [equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w∗ = q∗ iff for every sequence{

(uk, wk)
}
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. This is equivalent to the lower
semicontinuity assumption on p:

p(0) ≤ lim inf
k→∞

p(uk), for all {uk} with uk → 0



MINIMAX THEOREM II

Assume that:

(1) X and Z are convex.

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞.

(3) For each z ∈ Z, the function φ(·, z) is convex.

(4) For each x ∈ X, the function −φ(x, ·) : Z 7→
< is closed and convex.

(5) 0 lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in supz∈Z infx∈X φ(x, z) is attained by some
z ∈ Z. [Also the set of z where the sup is attained
is compact if 0 is in the interior of dom(p).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.

• Counterexamples of strong duality and exis-
tence of solutions/saddle points can be constructed
from corresponding constrained min examples.



EXAMPLE I

• Let X =
{

(x1, x2) | x ≥ 0
}

and Z = {z ∈ < |
z ≥ 0}, and let

φ(x, z) = e−
√
x1x2 + zx1,

which satisfy the convexity and closedness assump-
tions. For all z ≥ 0,

inf
x≥0

{
e−
√
x1x2 + zx1

}
= 0,

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0,

sup
z≥0

{
e−
√
x1x2 + zx1

}
=
{

1 if x1 = 0,
∞ if x1 > 0,

so infx≥0 supz≥0 φ(x, z) = 1.

• Here

p(u) = inf
x≥0

sup
z≥0

{
e−
√
x1x2 + z(x1 − u)

}

epi(p)

u

p(u)

1

0



EXAMPLE II

• Let X = <, Z = {z ∈ < | z ≥ 0}, and let

φ(x, z) = x+ zx2,

which satisfy the convexity and closedness assump-
tions. For all z ≥ 0,

inf
x∈<
{x+ zx2} =

{
−1/(4z) if z > 0,
−∞ if z = 0,

so supz≥0 infx∈< φ(x, z) = 0. Also, for all x ∈ <,

sup
z≥0
{x+ zx2} =

{
0 if x = 0,
∞ otherwise,

so infx∈< supz≥0 φ(x, z) = 0. However, the sup is
not attained, i.e., there is no saddle point.

• Here

p(u) = inf
x∈<

sup
z≥0
{x+ zx2 − uz}

=
{
−√u if u ≥ 0,
∞ if u < 0.



SADDLE POINT ANALYSIS

• The preceding analysis indicates the importance
of the perturbation function

p(u) = inf
x∈<n

F (x, u),

where

F (x, u) =
{

supz∈Z
{
φ(x, z)− u′z

}
if x ∈ X,

∞ if x /∈ X.

It suggests a two-step process to establish the min-
imax equality and the existence of a saddle point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verify that the inf of supz∈Z φ(x, z) over
x ∈ X, and the sup of infx∈X φ(x, z) over
z ∈ Z are attained, thereby showing that
the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

• Step (1) requires two types of assumptions:

(a) Convexity/concavity/semicontinuity conditions
of Minimax Theorem I (so the MC/MC frame-
work applies).

(b) Conditions for preservation of closedness by
the partial minimization in

p(u) = inf
x∈<n

F (x, u)

e.g., for some u, the nonempty level sets

{
x | F (x, u) ≤ γ

}

are compact.

• Step (2) requires that either Weierstrass’ The-
orem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
is satisfied.



CLASSICAL SADDLE POINT THEOREM

• Assume convexity/concavity/semicontinuity of
φ and that X and Z are compact. Then the set
of saddle points is nonempty and compact.

• Proof: F is convex and closed by the convex-
ity/concavity/semicontinuity of φ, so p is also con-
vex. Using the compactness of Z, F is real-valued
over X × <m, and from the compactness of X,
it follows that p is also real-valued and therefore
continuous. Hence, the minimax equality holds by
the first minimax theorem.

The function supz∈Z φ(x, z) is equal to F (x, 0),
so it is closed, and the set of its minima over x ∈ X
is nonempty and compact by Weierstrass’ Theo-
rem. Similarly the set of maxima of the function
infx∈X φ(x, z) over z ∈ Z is nonempty and com-
pact. Hence the set of saddle points is nonempty
and compact. Q.E.D.



ANOTHER THEOREM

• Use the theory of preservation of closedness
under partial minimization.

• Assume convexity/concavity/semicontinuity of
φ. Consider the functions

t(x) = F (x, 0) =
{

supz∈Z φ(x, z) if x ∈ X,
∞ if x /∈ X,

and

r(z) =
{− infx∈X φ(x, z) if z ∈ Z,
∞ if z /∈ Z.

• If the level sets of t are compact, the minimax
equality holds, and the min over x of

sup
z∈Z

φ(x, z)

[which is t(x)] is attained. (Take u = 0 in the
partial min theorem to show that p is closed.)

• If the level sets of t and r are compact, the set
of saddle points is nonempty and compact.

• Various extensions: Use conditions for preser-
vation of closedness under partial minimization.



SADDLE POINT THEOREM

Assume the convexity/concavity/semicontinuity con-
ditions, and that any one of the following holds:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z ∈ Z
and a scalar γ such that the level set

{
x ∈

X | φ(x, z) ≤ γ
}

is nonempty and compact.

(3) X is compact and there exists a vector x ∈ X
and a scalar γ such that the level set

{
z ∈

Z | φ(x, z) ≥ γ
}

is nonempty and compact.

(4) There exist vectors x ∈ X and z ∈ Z, and a
scalar γ such that the level sets

{
x ∈ X | φ(x, z) ≤ γ

}
,
{
z ∈ Z | φ(x, z) ≥ γ

}
,

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of φ is nonempty and compact.
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• Problem Structures
− Separable problems
− Integer/discrete problems – Branch-and-bound
− Large sum problems
− Problems with many constraints

• Conic Programming
− Second Order Cone Programming
− Semidefinite Programming



SEPARABLE PROBLEMS

• Consider the problem

minimize
m∑

i=1

fi(xi)

s. t.
m∑

i=1

gji(xi) ≤ 0, j = 1, . . . , r, xi ∈ Xi, ∀ i

where fi : <ni 7→ < and gji : <ni 7→ < are given
functions, and Xi are given subsets of <ni .
• Form the dual problem

maximize

m∑

i=1

qi(µ) ≡
m∑

i=1

inf
xi∈Xi

{
fi(xi) +

r∑

j=1

µjgji(xi)

}

subject to µ ≥ 0

• Important point: The calculation of the dual
function has been decomposed into n simpler
minimizations. Moreover, the calculation of dual
subgradients is a byproduct of these mini-
mizations (this will be discussed later)

• Another important point: If Xi is a discrete
set (e.g., Xi = {0, 1}), the dual optimal value is
a lower bound to the optimal primal value. It is
still useful in a branch-and-bound scheme.



LARGE SUM PROBLEMS

• Consider cost function of the form

f(x) =
m∑

i=1

fi(x), m is very large,

where fi : <n 7→ < are convex. Some examples:

• Dual cost of a separable problem.

• Data analysis/machine learning: x is pa-
rameter vector of a model; each fi corresponds to
error between data and output of the model.
− Least squares problems (fi quadratic).
− `1-regularization (least squares plus `1 penalty):

min
x

m∑

j=1

(a′jx− bj)2 + γ

n∑

i=1

|xi|

The nondifferentiable penalty tends to set a large
number of components of x to 0.

• Min of an expected value E
{
F (x,w)

}
, where

w is a random variable taking a finite but very
large number of values wi, i = 1, . . . ,m, with cor-
responding probabilities πi.

• Stochastic programming:

min
x

[
F1(x) + Ew{min

y
F2(x, y, w)

}]

• Special methods, called incremental apply.



PROBLEMS WITH MANY CONSTRAINTS

• Problems of the form

minimize f(x)
subject to a′jx ≤ bj , j = 1, . . . , r,

where r: very large.

• One possibility is a penalty function approach:
Replace problem with

min
x∈<n

f(x) + c
r∑

j=1

P (a′jx− bj)

where P (·) is a scalar penalty function satisfying
P (t) = 0 if t ≤ 0, and P (t) > 0 if t > 0, and c is a
positive penalty parameter.

• Examples:

− The quadratic penalty P (t) =
(
max{0, t}

)2
.

− The nondifferentiable penalty P (t) = max{0, t}.
• Another possibility: Initially discard some of
the constraints, solve a less constrained problem,
and later reintroduce constraints that seem to be
violated at the optimum (outer approximation).

• Also inner approximation of the constraint set.



CONIC PROBLEMS

• A conic problem is to minimize a convex func-
tion f : <n 7→ (−∞,∞] subject to a cone con-
straint.

• The most useful/popular special cases:
− Linear-conic programming
− Second order cone programming
− Semidefinite programming

involve minimization of a linear function over the
intersection of an affine set and a cone.

• Can be analyzed as a special case of Fenchel
duality.

• There are many interesting applications of conic
problems, including in discrete optimization.



PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

• Linear and (convex) quadratic programming.
− Favorable special cases.

• Second order cone programming.

• Semidefinite programming.

• Convex programming.
− Favorable special cases.
− Geometric programming.
− Quasi-convex programming.

• Nonlinear/nonconvex/continuous programming.
− Favorable special cases.
− Unconstrained.
− Constrained.

• Discrete optimization/Integer programming
− Favorable special cases.



CONIC DUALITY

• Consider minimizing f(x) over x ∈ C, where f :
<n 7→ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in <n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{ 0 if x ∈ C,
∞ if x /∈ C.

The conjugates are

f?1 (λ) = sup
x∈<n

{
λ′x−f(x)

}
, f?2 (λ) = sup

x∈C
λ′x =

{
0 if λ ∈ C∗,
∞ if λ /∈ C∗,

where C∗ = {λ | λ′x ≤ 0, ∀ x ∈ C} is the polar
cone of C.

• The dual problem is

minimize f?(λ)

subject to λ ∈ Ĉ,

where f? is the conjugate of f and

Ĉ = {λ | λ′x ≥ 0, ∀ x ∈ C}.

Ĉ = −C∗ is called the dual cone.



LINEAR-CONIC PROBLEMS

• Let f be affine, f(x) = c′x, with dom(f) be-
ing an affine set, dom(f) = b + S, where S is a
subspace.

• The primal problem is

minimize c′x

subject to x− b ∈ S, x ∈ C.

• The conjugate is

f?(λ) = sup
x−b∈S

(λ− c)′x = sup
y∈S

(λ− c)′(y + b)

=
{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S⊥,

so the dual problem can be written as

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• The primal and dual have the same form.

• If C is closed, the dual of the dual yields the
primal.



SPECIAL LINEAR-CONIC FORMS

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ,

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

where x ∈ <n, λ ∈ <m, c ∈ <n, b ∈ <m, A : m×n.

• For the first relation, let x be such that Ax = b,
and write the problem on the left as

minimize c′x

subject to x− x ∈ N(A), x ∈ C
• The dual conic problem is

minimize x′µ

subject to µ− c ∈ N(A)⊥, µ ∈ Ĉ.
• Using N(A)⊥ = Ra(A′), write the constraints
as c− µ ∈ −Ra(A′) = Ra(A′), µ ∈ Ĉ, or

c− µ = A′λ, µ ∈ Ĉ, for some λ ∈ <m.

• Change variables µ = c−A′λ, write the dual as

minimize x′(c−A′λ)

subject to c−A′λ ∈ Ĉ

discard the constant x′c, use the fact Ax = b, and
change from min to max.



SOME EXAMPLES

• Nonnegative Orthant: C = {x | x ≥ 0}.
• The Second Order Cone: Let

C =
{

(x1, . . . , xn) | xn ≥
√
x2

1 + · · ·+ x2
n−1

}

x1

x2

x3

• The Positive Semidefinite Cone: Consider
the space of symmetric n× n matrices, viewed as
the space <n2 with the inner product

< X,Y >= trace(XY ) =
n∑

i=1

n∑

j=1

xijyij

Let C be the cone of matrices that are positive
semidefinite.

• All these are self-dual , i.e., C = −C∗ = Ĉ.



SECOND ORDER CONE PROGRAMMING

• Second order cone programming is the linear-
conic problem

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in <ni , and

Ci : the second order cone of <ni

• The cone here is

C = C1 × · · · × Cm

x1

x2

x3



SECOND ORDER CONE DUALITY

• Using the generic special duality form

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

and self duality of C, the dual problem is

maximize
m∑

i=1

b′iλi

subject to
m∑

i=1

A′iλi = c, λi ∈ Ci, i = 1, . . . ,m,

where λ = (λ1, . . . , λm).

• The duality theory is no more favorable than
the one for linear-conic problems.

• There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones Ci.

• Generally, second order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

• There are many applications.



EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c′x

subject to a′jx ≤ bj , ∀ (aj , bj) ∈ Tj , j = 1, . . . , r,

where c ∈ <n, and Tj is a given subset of <n+1.

• We convert the problem to the equivalent form

minimize c′x

subject to gj(x) ≤ 0, j = 1, . . . , r,

where gj(x) = sup(aj ,bj)∈Tj{a′jx− bj}.
• For special choice where Tj is an ellipsoid,

Tj =
{

(aj +Pjuj , bj +q′juj) | ‖uj‖ ≤ 1, uj ∈ <nj
}

we can express gj(x) ≤ 0 in terms of a SOC:

gj(x) = sup
‖uj‖≤1

{
(aj + Pjuj)′x− (bj + q′juj)

}

= sup
‖uj‖≤1

(P ′jx− qj)′uj + a′jx− bj ,

= ‖P ′jx− qj‖+ a′jx− bj .

Thus, gj(x) ≤ 0 iff (P ′jx−qj , bj−a′jx) ∈ Cj , where
Cj is the SOC of <nj+1.
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• Conic programming

• Semidefinite programming

• Exact penalty functions

• Descent methods for convex/nondifferentiable
optimization

• Steepest descent method



LINEAR-CONIC FORMS

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ,

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

where x ∈ <n, λ ∈ <m, c ∈ <n, b ∈ <m, A : m×n.

• Second order cone programming:

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

where c, bi are vectors, Ai are matrices, bi is a
vector in <ni , and

Ci : the second order cone of <ni

• The cone here is C = C1 × · · · × Cm
• The dual problem is

maximize
m∑

i=1

b′iλi

subject to
m∑

i=1

A′iλi = c, λi ∈ Ci, i = 1, . . . ,m,

where λ = (λ1, . . . , λm).



SEMIDEFINITE PROGRAMMING

• Consider the symmetric n × n matrices. Inner
product < X,Y >= trace(XY ) =

∑n
i,j=1 xijyij .

• Let C be the cone of pos. semidefinite matrices.

• C is self-dual, and its interior is the set of pos-
itive definite matrices.

• Fix symmetric matrices D, A1, . . . , Am, and
vectors b1, . . . , bm, and consider

minimize < D,X >

subject to < Ai, X >= bi, i = 1, . . . ,m, X ∈ C

• Viewing this as a linear-conic problem (the first
special form), the dual problem (using also self-
duality of C) is

maximize
m∑

i=1

biλi

subject to D − (λ1A1 + · · ·+ λmAm) ∈ C

• There is no duality gap if there exists primal
feasible solution that is pos. definite, or there ex-
ists λ such that D− (λ1A1 + · · ·+ λmAm) is pos.
definite.



EXAMPLE: MINIMIZE THE MAXIMUM

EIGENVALUE

• Given n×n symmetric matrix M(λ), depending
on a parameter vector λ, choose λ to minimize the
maximum eigenvalue of M(λ).

• We pose this problem as

minimize z

subject to maximum eigenvalue of M(λ) ≤ z,

or equivalently

minimize z

subject to zI −M(λ) ∈ C,

where I is the n×n identity matrix, and C is the
semidefinite cone.

• If M(λ) is an affine function of λ,

M(λ) = D + λ1M1 + · · ·+ λmMm,

the problem has the form of the dual semidefi-
nite problem, with the optimization variables be-
ing (z, λ1, . . . , λm).



EXAMPLE: LOWER BOUNDS FOR

DISCRETE OPTIMIZATION

• Quadr. problem with quadr. equality constraints

minimize x′Q0x+ a′0x+ b0

subject to x′Qix+ a′ix+ bi = 0, i = 1, . . . ,m,

Q0, . . . , Qm: symmetric (not necessarily ≥ 0).

• Can be used for discrete optimization. For ex-
ample an integer constraint xi ∈ {0, 1} can be
expressed by x2

i − xi = 0.

• The dual function is

q(λ) = inf
x∈<n

{
x′Q(λ)x+ a(λ)′x+ b(λ)

}
,

where

Q(λ) = Q0 +
m∑

i=1

λiQi,

a(λ) = a0 +
m∑

i=1

λiai, b(λ) = b0 +
m∑

i=1

λibi

• It turns out that the dual problem is equivalent
to a semidefinite program ...



EXACT PENALTY FUNCTIONS

• We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

• We consider the problem

minimize f(x)
subject to x ∈ X, g(x) ≤ 0,

where g(x) =
(
g1(x), . . . , gr(x)

)
, X is a convex

subset of <n, and f : <n → < and gj : <n → <
are real-valued convex functions.

• We introduce a convex function P : <r 7→ <,
called penalty function, which satisfies

P (u) = 0, ∀ u ≤ 0, P (u) > 0, if ui > 0 for some i

• We consider solving, in place of the original, the
“penalized” problem

minimize f(x) + P
(
g(x)

)

subject to x ∈ X,



FENCHEL DUALITY

• We have

inf
x∈X

{
f(x) + P

(
g(x)

)}
= inf
u∈<r

{
p(u) + P (u)

}

where p(u) = infx∈X, g(x)≤u f(x) is the primal func-
tion.

• Assume −∞ < q∗ and f∗ < ∞ so that p is
proper (in addition to being convex).

• By Fenchel duality

inf
u∈<r

{
p(u) + P (u)

}
= sup
µ≥0

{
q(µ)−Q(µ)

}
,

where for µ ≥ 0,

q(µ) = inf
x∈X

{
f(x) + µ′g(x)

}

is the dual function, and Q is the conjugate convex
function of P :

Q(µ) = sup
u∈<r

{
u′µ− P (u)

}



PENALTY CONJUGATES

 (1/2c)m2 (c/2)u2

0 u 0 m

Q(m) P(u) = max{0, au}

0 u 0 m

Q(m) 

0 u 0 m

Q(m) P(u)

P(u) = max{0, au +u2}

a

a

Slope = a

u

u

u

µ

µ

µ

0 0

00

0 0

a

Slope = a

Q(µ)P (u) = max{0, au+u2}

P (u) = c max{0, u}

c

P (u) = (c/2)
(
max{0, u}

)2

Q(µ) =
{

(1/2c)µ2 if µ ≥ 0
∞ if µ < 0

Q(µ) =
{ 0 if 0 ≤ µ ≤ c
∞ otherwise

• Important observation: For Q to be flat for
some µ > 0, P must be nondifferentiable at 0.



FENCHEL DUALITY VIEW
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~
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µ

µ

µ
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f̃

q∗ = f∗ = f̃
q(µ)

q(µ)

q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

µ̃

µ̃

µ̃

• For the penalized and the original problem to
have equal optimal values, Qmust be“flat enough”
so that some optimal dual solution µ∗ minimizes
Q, i.e., 0 ∈ ∂Q(µ∗) or equivalently

µ∗ ∈ ∂P (0)

• True if P (u) = c
∑r
j=1 max{0, uj} with c ≥

‖µ∗‖ for some optimal dual solution µ∗.



DIRECTIONAL DERIVATIVES

• Directional derivative of a proper convex f :

f ′(x; d) = lim
α↓0

f(x+ αd)− f(x)
α

, x ∈ dom(f), d ∈ <n

α

Slope: f ′(x; d)

α0

f(x + αd)

Slope: f(x+αd)−f(x)
α

f(x)

• The ratio

f(x+ αd)− f(x)
α

is monotonically nonincreasing as α ↓ 0 and con-
verges to f ′(x; d).

• For all x ∈ ri
(
dom(f)

)
, f ′(x; ·) is the support

function of ∂f(x).



STEEPEST DESCENT DIRECTION

• Consider unconstrained minimization of convex
f : <n 7→ <.

• A descent direction d at x is one for which
f ′(x; d) < 0, where

f ′(x; d) = lim
α↓0

f(x+ αd)− f(x)
α

= sup
g∈∂f(x)

d′g

is the directional derivative.

• Can decrease f by moving from x along descent
direction d by small stepsize α.

• Direction of steepest descent solves the problem

minimize f ′(x; d)
subject to ‖d‖ ≤ 1

• Interesting fact: The steepest descent direc-
tion is −g∗, where g∗ is the vector of minimum
norm in ∂f(x):

min
‖d‖≤1

f ′(x; d) = min
‖d‖≤1

max
g∈∂f(x)

d′g = max
g∈∂f(x)

min
‖d‖≤1

d′g

= max
g∈∂f(x)

(
−‖g‖

)
= − min

g∈∂f(x)
‖g‖



STEEPEST DESCENT METHOD

• Start with any x0 ∈ <n.

• For k ≥ 0, calculate −gk, the steepest descent
direction at xk and set

xk+1 = xk − αkgk

• Difficulties:
− Need the entire ∂f(xk) to compute gk.
− Serious convergence issues due to disconti-

nuity of ∂f(x) (the method has no clue that
∂f(x) may change drastically nearby).

• Example with αk determined by minimization
along −gk: {xk} converges to nonoptimal point.
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• Subgradient methods

• Calculation of subgradients

• Convergence

***********************************************

• Steepest descent at a point requires knowledge
of the entire subdifferential at a point

• Convergence failure of steepest descent
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• Subgradient methods abandon the idea of com-
puting the full subdifferential to effect cost func-
tion descent ...

• Move instead along the direction of a single
arbitrary subgradient



SINGLE SUBGRADIENT CALCULATION

• Subgradient calculation for minimax:

f(x) = sup
z∈Z

φ(x, z)

where Z ⊂ <m and φ(·, z) is convex for all z ∈ Z.

• For fixed x ∈ dom(f), assume that zx ∈ Z
attains the supremum above. Then

gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂f(x)

• Proof: From subgradient inequality, for all y,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx) ≥ φ(x, zx) + g′x(y − x)

= f(x) + g′x(y − x)

• Special case: Dual problem of minx∈X, g(x)≤0 f(x):

max
µ≥0

q(µ) ≡ inf
x∈X

L(x, µ) = inf
x∈X

{
f(x) + µ′g(x)

}

or minµ≥0 F (µ), where F (−µ) ≡ −q(µ).

• If xµ ∈ arg minx∈X
{
f(x) + µ′g(x)

}
then

−g(xµ) ∈ ∂F (µ)



ALGORITHMS: SUBGRADIENT METHOD

• Problem: Minimize convex function f : <n 7→
< over a closed convex set X.

• Iterative descent idea has difficulties in the ab-
sence of differentiability of f .

• Subgradient method:

xk+1 = PX(xk − αkgk),

where gk is any subgradient of f at xk, αk is a
positive stepsize, and PX(·) is projection on X.

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)



KEY PROPERTY OF SUBGRADIENT METHOD

• For a small enough stepsize αk, it reduces the
Euclidean distance to the optimum.

M

mk

mk + s kgk

mk+1 =PM
 (mk + s kgk)

m*

< 90 o

Level sets of qLevel sets of f X

xk

x∗

xk+1 = PX(xk − αkgk)

xk − αkgk

< 90◦

• Proposition: Let {xk} be generated by the
subgradient method. Then, for all y ∈ X and k:

‖xk+1−y‖2 ≤ ‖xk−y‖2−2αk
(
f(xk)−f(y)

)
+α2

k‖gk‖2

and if f(y) < f(xk),

‖xk+1 − y‖ < ‖xk − y‖,

for all αk such that

0 < αk <
2
(
f(xk)− f(y)

)

‖gk‖2
.



PROOF

• Proof of nonexpansive property

‖PX(x)− PX(y)‖ ≤ ‖x− y‖, ∀ x, y ∈ <n.

Use the projection theorem to write
(
z − PX(x)

)′(
x− PX(x)

)
≤ 0, ∀ z ∈ X

from which
(
PX(y) − PX(x)

)′(
x − PX(x)

)
≤ 0.

Similarly,
(
PX(x)− PX(y)

)′(
y − PX(y)

)
≤ 0.

Adding and using the Schwarz inequality,

∥∥PX(y)− PX(x)
∥∥2 ≤

(
PX(y)− PX(x)

)′
(y − x)

≤
∥∥PX(y)− PX(x)

∥∥ · ‖y − x‖
Q.E.D.

• Proof of proposition: Since projection is non-
expansive, we obtain for all y ∈ X and k,

‖xk+1 − y‖2 =
∥∥PX (xk − αkgk)− y

∥∥2

≤ ‖xk − αkgk − y‖2
= ‖xk − y‖2 − 2αkg′k(xk − y) + α2

k‖gk‖2
≤ ‖xk − y‖2 − 2αk

(
f(xk)− f(y)

)
+ α2

k‖gk‖2,
where the last inequality follows from the subgra-
dient inequality. Q.E.D.



CONVERGENCE MECHANISM

• Assume constant stepsize: αk ≡ α
• If ‖gk‖ ≤ c for some constant c and all k,

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2α
(
f(xk)−f(x∗)

)
+α2c2

so the distance to the optimum decreases if

0 < α <
2
(
f(xk)− f(x∗)

)

c2

or equivalently, if xk does not belong to the level
set {

x
∣∣∣ f(x) < f(x∗) +

αc2

2

}

Optimal Solution
Set

Level Set {  | q( )  q* - sC2/2}Level set{
x | f(x) ≤ f∗ + αc2/2

}

Optimal solution set

x0



STEPSIZE RULES

• Constant Stepsize: αk ≡ α.

• Diminishing Stepsize: αk → 0,
∑
k αk =∞

• Dynamic Stepsize:

αk =
f(xk)− fk

c2

where fk is an estimate of f∗:
− If fk = f∗, makes progress at every iteration.

If fk < f∗ it tends to oscillate around the
optimum. If fk > f∗ it tends towards the
level set {x | f(x) ≤ fk}.

− fk can be adjusted based on the progress of
the method.

• Example of dynamic stepsize rule:

fk = min
0≤j≤k

f(xj)− δk,

and δk (the “aspiration level of cost reduction”) is
updated according to

δk+1 =
{
ρδk if f(xk+1) ≤ fk,
max

{
βδk, δ

}
if f(xk+1) > fk,

where δ > 0, β < 1, and ρ ≥ 1 are fixed constants.



SAMPLE CONVERGENCE RESULTS

• Let f = infk≥0 f(xk), and assume that for some
c, we have

c ≥ sup
k≥0

{
‖g‖ | g ∈ ∂f(xk)

}
.

• Proposition: Assume that αk is fixed at some
positive scalar α. Then:

(a) If f∗ = −∞, then f = f∗.

(b) If f∗ > −∞, then

f ≤ f∗ +
αc2

2
.

• Proposition: If αk satisfies

lim
k→∞

αk = 0,
∞∑

k=0

αk =∞,

then f = f∗.

• Similar propositions for dynamic stepsize rules.

• Many variants ...
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LECTURE OUTLINE

• Approximate subgradient methods

• ε-subdifferential

• ε-subgradient methods

• Incremental subgradient methods



APPROXIMATE SUBGRADIENT METHODS

• Consider minimization of

f(x) = sup
z∈Z

φ(x, z)

where Z ⊂ <m and φ(·, z) is convex for all z ∈ Z
(dual minimization is a special case).

• To compute subgradients of f at x ∈ dom(f),
we find zx ∈ Z attaining the supremum above.
Then

gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂f(x)

• Two potential areas of difficulty:
− For subgradient method, we need to solve

exactly the above maximization over z ∈ Z.
− For steepest descent, we need all the subgra-

dients, and then there are convergence diffi-
culties to contend with.

• In this lecture we address the first difficulty, in
the next lecture the second.

• We consider methods that use “approximate”
subgradients.



ε-SUBDIFFERENTIAL

• We enlarge ∂f(x) so that we take into account
“nearby” subgradients.

• Fot a proper convex f : <n 7→ (−∞,∞] and
ε > 0, we say that a vector g is an ε-subgradient
of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g − ε, ∀ z ∈ <n

0

f(z)

(−g, 1)

z

(
x, f(x) − ε

)ε

• The ε-subdifferential ∂εf(x) is the set of all ε-
subgradients of f at x. By convention, ∂εf(x) = Ø
for x /∈ dom(f).

• We have ∩ε↓0∂εf(x) = ∂f(x) and

∂ε1f(x) ⊂ ∂ε2f(x) if 0 < ε1 < ε2



PROPERTIES OF ε-SUBDIFFERENTIALS

• Assume that f is closed proper convex, ε > 0.

• ∂εf(x) is nonempty and closed for all x ∈
dom(f). (Use nonvertical separating hyperplane
theorem.)

z

ε

x

Slopes: endpoints of ∂εf(x)

D
z

ε

x
D

Slope: right endpoint
of ∂εf(x)

f(z)f(z)

0 0

• ∂εf(x) is compact iff x ∈ int
(
dom(f)

)
. True in

particular, if f is real-valued.

• Neighborhood/continuity property: Sub-
gradients at nearby points are ε-subgradients at
given point (for sufficiently large ε).

• The support function of ∂εf(x) is

σ∂εf(x)(y) = sup
g∈∂εf(x)

y′g = inf
α>0

f(x+ αy)− f(x) + ε

α



CALCULATION OF AN ε-SUBGRADIENT

• Consider minimization of

f(x) = sup
z∈Z

φ(x, z), (1)

where x ∈ <n, z ∈ <m, Z is a subset of <m, and
φ : <n × <m 7→ (−∞,∞] is a function such that
φ(·, z) is convex and closed for each z ∈ Z.

• How to calculate ε-subgradient at x ∈ dom(f)?

• Let zx ∈ Z attain the supremum within ε ≥ 0
in Eq. (1), and let gx be some subgradient of the
convex function φ(·, zx).

• For all y ∈ <n, using the subgradient inequality,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx)

≥ φ(x, zx) + g′x(y − x) ≥ f(x)− ε+ g′x(y − x)

i.e., gx is an ε-subgradient of f at x, so

φ(x, zx) ≥ sup
z∈Z

φ(x, z)− ε and gx ∈ ∂φ(x, zx)

⇒ gx ∈ ∂εf(x)



ε-SUBGRADIENT METHOD

• Can be viewed as an approximate subgradient
method, using an ε-subgradient in place of a sub-
gradient.

• Problem: Minimize convex f : <n 7→ < over a
closed convex set X.

• Method:

xk+1 = PX(xk − αkgk)

where gk is an εk-subgradient of f at xk, αk is a
positive stepsize, and PX(·) denotes projection on
X.

• Can be viewed as subgradient method with “er-
rors”.



CONVERGENCE ANALYSIS

• Basic inequality: If {xk} is the ε-subgradient
method sequence, for all y ∈ X and k ≥ 0

‖xk+1−y‖2 ≤ ‖xk−y‖2−2αk
(
f(xk)−f(y)−εk

)
+α2

k‖gk‖2

• Replicate the entire convergence analysis for
subgradient methods, but carry along the εk terms.

• Example: Constant αk ≡ α, constant εk ≡ ε.
Assume ‖gk‖ ≤ c for all k. For any optimal x∗,

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2α
(
f(xk)−f∗−ε

)
+α2c2,

so the distance to x∗ decreases if

0 < α <
2
(
f(xk)− f∗ − ε

)

c2

or equivalently, if xk is outside the level set

{
x
∣∣∣ f(x) ≤ f∗ + ε+

αc2

2

}

• Example: If αk → 0,
∑
k αk →∞, and εk → ε,

we get convergence to the ε-optimal set.



INCREMENTAL SUBGRADIENT METHODS

• Consider minimization of sum

f(x) =
m∑

i=1

fi(x)

• Often arises in duality contexts with m: very
large (e.g., separable problems).

• Incremental method moves x along a sub-
gradient gi of a component function fi NOT
the (expensive) subgradient of f , which is

∑
i gi.

• View an iteration as a cycle of m subiterations,
one for each component fi.

• Let xk be obtained after k cycles. To obtain
xk+1, do one more cycle: Start with ψ0 = xk, and
set xk+1 = ψm, after the m steps

ψi = PX(ψi−1 − αkgi), i = 1, . . . ,m

with gi being a subgradient of fi at ψi−1.

• Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.



CONNECTION WITH ε-SUBGRADIENTS

• Neighborhood property: If x and x are
“near” each other, then subgradients at x can be
viewed as ε-subgradients at x, with ε “small.”

• If g ∈ ∂f(x), we have for all z ∈ <n,

f(z) ≥ f(x) + g′(z − x)
≥ f(x) + g′(z − x) + f(x)− f(x) + g′(x− x)
≥ f(x) + g′(z − x)− ε,

where ε = |f(x) − f(x)| + ‖g‖ · ‖x − x‖. Thus,
g ∈ ∂εf(x), with ε: small when x is near x.

• The incremental subgradient iter. is an ε-subgradient
iter. with ε = ε1 + · · ·+ εm, where εi is the “error”
in ith step in the cycle (εi: Proportional to αk).

• Use

∂ε1f1(x) + · · ·+ ∂εmfm(x) ⊂ ∂εf(x),

where ε = ε1 + · · · + εm, to approximate the ε-
subdifferential of the sum f =

∑m
i=1 fi.

• Convergence to optimal if αk → 0,
∑
k αk →∞.



CONVERGENCE OF INCREMENTAL SUBGR.

• Problem

min
x∈X

m∑

i=1

fi(x)

• Incremental subgradient method

xk+1 = ψm,k, ψi,k = [ψi−1,k − αkgi,k]+ , i = 1, . . . ,m

starting with ψ0,k = xk, where gi,k is a subgradi-
ent of fi at ψi−1,k.

• Analysis parallels/extends the one for nonincre-
mental subgradient methods

• Key Lemma: For all y ∈ X and k,

||xk+1−y||2 ≤ ||xk−y||2−2αk
(
f(xk)−f(y)

)
+α2

kC
2,

where C =
∑m
i=1 Ci and

Ci = sup
k

{
||g|| | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)

}



ERROR BOUND: CONSTANT STEPSIZE

• For αk ≡ α, we have

inf
k≥0

f(xk) ≤ f∗ +
αC2

2
≤ f∗ +

αm2C2
0

2

where
C0 = max{C1, . . . , Cm}

is the max component subgradient bound. (Com-
parable error to the nonincremental method.)

• Sharpness of the estimate: There are prob-
lems for which the upper bound is (almost) sharp
with cyclic order of processing the component func-
tions (see the end-of-chapter problems).

• Lower bound on the error: There is a prob-
lem, where even with best processing order,

f∗ +
αmC2

0

2
≤ inf
k≥0

f(xk)

where
C0 = max{C1, . . . , Cm}

• Question: Is it possible to improve the upper
bound by optimizing the order of processing the
component functions?



RANDOMIZED ORDER METHODS

xk+1 =
[
xk − αkg(ωk, xk)

]+

where ωk is a random variable taking equiprobable
values from the set {1, . . . ,m}, and g(ωk, xk) is a
subgradient of the component fωk at xk.

• Assumptions:

(a) {ωk} is a sequence of independent random
variables. Furthermore, the sequence {ωk}
is independent of the sequence {xk}.

(b) The set of subgradients
{
g(ωk, xk) | k =

0, 1, . . .
}

is bounded, i.e., there exists a pos-
itive constant C0 such that with prob. 1

||g(ωk, xk)|| ≤ C0, ∀ k ≥ 0

• Stepsize Rules:
− Constant: αk ≡ α
− Diminishing:

∑
k αk =∞,

∑
k(αk)2 <∞

− Dynamic



RANDOMIZED METHOD W/ CONSTANT STEP

• With probability 1

inf
k≥0

f(xk) ≤ f∗ +
αmC2

0

2

A better/sharp error bound!

Proof: By adapting key lemma, for all y ∈ X, k

||xk+1−y||2 ≤ ||xk−y||2−2α
(
fωk(xk)−fωk(y)

)
+α2C2

0

Take conditional expectation with Fk = {x0, . . . , xk}

E
{
||xk+1 − y||2 | Fk

}
≤ ||xk − y||2

− 2αE
{
fωk(xk)− fωk(y) | Fk

}
+ α2C2

0

= ||xk − y||2 − 2α
m∑

i=1

1
m

(
fi(xk)− fi(y)

)
+ α2C2

0

= ||xk − y||2 −
2α
m

(
f(xk)− f(y)

)
+ α2C2

0 ,

where the first equality follows since ωk takes the
values 1, . . . ,m with equal probability 1/m.



PROOF CONTINUED I

• Fix γ > 0, consider the level set Lγ defined by

Lγ =
{
x ∈ X | f(x) < f∗ +

2
γ

+
αmC2

0

2

}

and let yγ ∈ Lγ be such that f(yγ) = f∗ + 1
γ .

Define a new process {x̂k} as follows

x̂k+1 =
{[

x̂k − αg(ωk, x̂k)
]+ if x̂k /∈ Lγ ,

yγ otherwise,

where x̂0 = x0. We argue that {x̂k} (and hence
also {xk}) will eventually enter each of the sets
Lγ .

Using key lemma with y = yγ , we have

E
{
||x̂k+1 − yγ ||2 | Fk

}
≤ ||x̂k − yγ ||2 − zk,

where

zk =
{

2α
m

(
f(x̂k)− f(yγ)

)
− α2C2

0 if x̂k /∈ Lγ ,
0 if x̂k = yγ .



PROOF CONTINUED II

• If x̂k /∈ Lγ , we have

zk =
2α
m

(
f(x̂k)− f(yγ)

)
− α2C2

0

≥ 2α
m

(
f∗ +

2
γ

+
αmC2

0

2
− f∗ − 1

γ

)
− α2C2

0

=
2α
mγ

.

Hence, as long as x̂k /∈ Lγ , we have

E
{
||x̂k+1 − yγ ||2 | Fk

}
≤ ||x̂k − yγ ||2 −

2α
mγ

This, cannot happen for an infinite number of it-
erations, so that x̂k ∈ Lγ for sufficiently large
k (the Supermartingale Convergence Theorem is
used here; see the notes.) Hence, in the original
process we have

inf
k≥0

f(xk) ≤ f∗ +
2
γ

+
αmC2

0

2

with probability 1. Letting γ → ∞, we obtain
infk≥0 f(xk) ≤ f∗ + αmC2

0/2. Q.E.D.



A CONVERGENCE RATE RESULT

• Let αk ≡ α in the randomized method. Then,
for any positive scalar ε, we have with prob. 1

min
0≤k≤N

f(xk) ≤ f∗ +
αmC2

0 + ε

2
,

where N is a random variable with

E
{
N
}
≤ m

(
d(x0, X∗)

)2

αε

where d(x0, X∗) is the min distance of x0 to the
optimal set X∗.

• Compare w/ the deterministic method. It is
guaranteed to reach after processing no more than

K =
m
(
d(x0, X

∗)
)2

αε

components the level set

{
x
∣∣∣ f(x) ≤ f∗ +

αm2C2
0 + ε

2

}
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LECTURE OUTLINE

• Return to descent methods

• Fixing the convergence problem of steepest de-
scent

• ε-descent method

• Extended monotropic programming



IMPROVING STEEPEST DESCENT

• Consider minimization of a convex function f :
<n 7→ <, over a closed convex set X.

• Return to iterative descent: Generate {xk} with

f(xk+1) < f(xk)

(unless xk is optimal).

• If f is differentiable, the gradient/steepest de-
scent method is

xk+1 = xk − αk∇f(xk)

Has good convergence for αk sufficiently small or
optimally chosen.

• If f is nondifferentiable, the steepest descent
method is

xk+1 = xk − αkgk
where gk is the vector of minimum norm on ∂f(xk)
... but has convergence difficulties.

• We will discuss another method, called ε-descent:

xk+1 = xk − αkgk

where gk is the vector of minimum norm on ∂εf(xk).
It fixes the convergence difficulties.



REVIEW OF ε-SUBGRADIENTS

• For a proper convex f : <n 7→ (−∞,∞] and
ε > 0, we say that a vector g is an ε-subgradient
of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g − ε, ∀ z ∈ <n

0

f(z)

(−g, 1)

z

(
x, f(x) − ε

)ε

• The ε-subdifferential ∂εf(x) is the set of all ε-
subgradients of f at x. By convention, ∂εf(x) = Ø
for x /∈ dom(f).

• We have ∩ε↓0∂εf(x) = ∂f(x) and

∂ε1f(x) ⊂ ∂ε2f(x) if 0 < ε1 < ε2



ε-SUBGRADIENTS AND CONJUGACY

• For any x ∈ dom(f), consider x-translation of
f , i.e., the function fx given by

fx(d) = f(x+ d)− f(x), ∀ d ∈ <n

and its conjugate

f?x(g) = sup
d∈<n

{
d′g−f(x+d)+f(x)

}
= f?(g)+f(x)−g′x

• We have

g ∈ ∂f(x) iff sup
d∈<n

{
d′g−f(x+d)+f(x)

}
≤ 0,

so ∂f(x) is the 0-level set of f?x :

∂f(x) =
{
g | f?x(g) ≤ 0

}
.

Similarly, ∂εf(x) is the ε-level set of f?x :

∂εf(x) =
{
g | f?x(g) ≤ ε

}



ε-SUBDIFFERENTIALS AS LEVEL SETS

• We have

∂εf(x) =
{
g | f?(g)+f(x)−g′x ≤ ε

}
=
{
g | f?x(g) ≤ ε

}

fx(y)

0

Translated
Epigraph
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0 y
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0 y
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• If f is closed

sup
g∈<n

{
−f?x(g)

}
= f??x (0) = fx(0) = 0

so ∂εf(x) 6= Ø for every x ∈ dom(f) and ε > 0.



PROPERTIES OF ε-SUBDIFFERENTIALS

• Let f : closed proper convex, x ∈ dom(f), ε > 0.

• Then ∂εf(x) is nonempty and closed.

• ∂εf(x) is compact iff f?x has no nonzero di-
rections of recession. True if f is real-valued or
x ∈ int

(
dom(f)

)
[support fn of dom(fx) is reces-

sion fn of f?x ].

• In one dimension: g ∈ ∂εf(x) iff f(x + αd) ≥
f(x)− ε+ αd′g for all d ∈ <n and α > 0.

• So g ∈ ∂εf(x) iff the line with slope d′g that
passes through f(x)− ε lies under f(x+ αd).

Slope = supg∈∂εf(x) d′g

f(x)

f(x) − ε
)

0 α

Slope = infg∈∂εf(x) d′g

ε

Fd(α) = f(x + αd)

• Therefore,

sup
g∈∂εf(x)

d′g = inf
α>0

f(x+ αd)− f(x) + ε

α

This formula for the support function σ∂εf(x)(d)
can be shown also in multiple dimensions.



ε-DESCENT PROPERTIES

• For f : closed proper convex, by definition, 0 ∈
∂εf(x) iff

f(x) ≤ inf
z∈<n

f(z) + ε

• For f : closed proper convex and d ∈ <n,

sup
g∈∂εf(x)

d′g = inf
α>0

f(x+ αd)− f(x) + ε

α

so

infα>0 f(x+ αd) < f(x)− ε iff sup
g∈∂εf(x)

d′g < 0

zx

Slope = supg∈∂εf(x) d′g

Slope = 0

f(x)

f(x) − ε
)

f(x)

f(x) − ε
)

0 0

f(z) f(x + αd)

α

• If 0 /∈ ∂εf(x), we have supg∈∂εf(x) d
′g < 0 for

g = arg min
g∈∂εf(x)

‖g‖,

(Projection Th.), so infα>0 f(x− αg) < f(x)− ε.



ε-DESCENT METHOD

• Method to minimize closed proper convex f :

xk+1 = xk − αkgk

where
−gk = arg min

g∈∂εf(xk)
‖g‖,

and αk is a positive stepsize.

• If gk = 0, i.e., 0 ∈ ∂εf(xk), then xk is an ε-
optimal solution.

• If gk 6= 0, choose αk that reduces the cost func-
tion by at least ε, i.e.,

f(xk+1) = f(xk − αkgk) ≤ f(xk)− ε

• Drawback: Must know ∂εf(xk).

• Motivation for a variant where ∂εf(xk) is ap-
proximated by a set A(xk) that can be computed
more easily than ∂εf(xk).

• Then use

gk = arg min
g∈A(xk)

‖g‖,

[project on A(xk) rather than ∂εf(xk)].



ε-DESCENT - OUTER APPROXIMATION

• Here ∂εf(xk) is approximated by a set A(x)
such that

∂εf(xk) ⊂ A(xk) ⊂ ∂γεf(xk),

where γ is a scalar with γ > 1.

• Then the method terminates with a γε-optimal
solution, and effects at least ε-reduction on f oth-
erwise.

• Example of outer approximation for sum case

f = f1 + · · ·+ fm

Take

A(x) = cl
(
∂εf1(x) + · · ·+ ∂εfm(x)

)
,

based on the fact

∂εf(x) ⊂ cl
(
∂εf1(x) + · · ·+ ∂εfm(x)

)
⊂ ∂mεf(x)

• Application to separable problems where each
∂εfi(x) is a one-dimensional interval. Then to find
an ε-descent direction, we must solve a quadratic
programming/projection problem.



EXTENDED MONOTROPIC PROGRAMMING

• Let
− x = (x1, . . . , xm) with xi ∈ <ni
− fi : <ni 7→ (−∞,∞] is closed proper convex
− S is a subspace of <n1+···+nm

• Extended monotropic programming problem:

minimize
m∑

i=1

fi(xi)

subject to x ∈ S

• Monotropic programming is the special case
where each xi is 1-dimensional.

• Models many important optimization problems
(linear, quadratic, convex network, etc).

• Has a powerful symmetric duality theory.



DUALITY

• Convert to the equivalent form

minimize
m∑

i=1

fi(zi)

subject to zi = xi, i = 1, . . . ,m, x ∈ S
• Assigning a dual vector λi ∈ <ni to the con-
straint zi = xi, the dual function is

q(λ) = inf
x∈S

λ′x+
m∑

i=1

inf
zi∈<ni

{
fi(zi)− λ′izi

}

=
{∑m

i=1 qi(λi) if λ ∈ S⊥,
−∞ otherwise,

where qi(λi) = infzi∈<
{
fi(zi)− λ′izi

}
= −f?i (λi).

• The dual problem is the (symmetric) extended
monotropic program

minimize
m∑

i=1

f?i (λi)

subject to λ ∈ S⊥



OPTIMALITY CONDITIONS

• Assume that −∞ < q∗ = f∗ < ∞. Then
(x∗, λ∗) are optimal primal and dual solution pair
if and only if

x∗ ∈ S, λ∗ ∈ S⊥, λ∗i ∈ ∂fi(x∗i ), ∀ i

• Specialization to the monotropic case (ni =
1 for all i): The vectors x∗ and λ∗ are optimal
primal and dual solution pair if and only if

x∗ ∈ S, λ∗ ∈ S⊥, (x∗i , λ
∗
i ) ∈ Γi, ∀ i

where

Γi =
{

(xi, λi) | xi ∈ dom(fi), f−i (xi) ≤ λi ≤ f+
i (xi)

}

• Interesting application of these conditions to
electrical networks.



STRONG DUALITY THEOREM

• Assume that the extended monotropic program-
ming problem is feasible, and that for all feasible
solutions x, the set

S⊥ + ∂εD1,ε(x) + · · ·+Dm,ε(x)

is closed for all ε > 0, where

Di,ε(x) =
{

(0, . . . , 0, λi, 0, . . . , 0) | λi ∈ ∂εfi(xi)
}

Then q∗ = f∗.

• An unusual duality condition. It is satisfied if
each set ∂εfi(x) is either compact or polyhedral.
Proof is also unusual - uses the ε-descent method!

• Monotropic programming case: If ni = 1,
Di,ε(x) is an interval, so it is polyhedral, and q∗ =
f∗.

• There are some other cases of interest. See the
text.

• The monotropic duality result extends to con-
vex separable problems with nonlinear constraints.
(Hard to prove ...)



LECTURE 20

LECTURE OUTLINE

• Approximation methods

• Cutting plane methods

• Proximal minimization algorithm

• Proximal cutting plane algorithm

• Bundle methods



APPROXIMATION APPROACHES

• Approximation methods replace the original
problem with an approximate problem.

• The approximation may be iteratively refined,
for convergence to an exact optimum.

• A partial list of methods:
− Cutting plane/outer approximation.
− Simplicial decomposition/inner approxima-

tion.
− Proximal methods (including Augmented La-

grangian methods for constrained minimiza-
tion).

− Interior point methods.

• A partial list of combination of methods:
− Combined inner-outer approximation.
− Bundle methods (proximal-cutting plane).
− Combined proximal-subgradient (incremen-

tal option).



SUBGRADIENTS-OUTER APPROXIMATION

• Consider minimization of a convex function f :
<n 7→ <, over a closed convex set X.

• We assume that at each x ∈ X, a subgradient
g of f can be computed.

• We have

f(z) ≥ f(x) + g′(z − x), ∀ z ∈ <n,

so each subgradient defines a plane (a linear func-
tion) that approximates f from below.

• The idea of the outer approximation/cutting
plane approach is to build an ever more accurate
approximation of f using such planes.

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗



CUTTING PLANE METHOD

• Start with any x0 ∈ X. For k ≥ 0, set

xk+1 ∈ arg min
x∈X

Fk(x),

where

Fk(x) = max
{
f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

and gi is a subgradient of f at xi.

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

• Note that Fk(x) ≤ f(x) for all x, and that
Fk(xk+1) increases monotonically with k. These
imply that all limit points of xk are optimal.

Proof: If xk → x then Fk(xk)→ f(x), [otherwise
there would exist a hyperplane strictly separating
epi(f) and (x, limk→∞ Fk(xk))]. This implies that
f(x) ≤ limk→∞ Fk(x) ≤ f(x) for all x. Q.E.D.



CONVERGENCE AND TERMINATION

• We have for all k

Fk(xk+1) ≤ f∗ ≤ min
i≤k

f(xi)

• Termination when mini≤k f(xi)−Fk(xk+1) comes
to within some small tolerance.

• For f polyhedral, we have finite termination
with an exactly optimal solution.

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

• Instability problem: The method can make
large moves that deteriorate the value of f .

• Starting from the exact minimum it typically
moves away from that minimum.



VARIANTS

• Variant I: Simultaneously with f , construct
polyhedral approximations to X.

• Variant II: Central cutting plane methods

x0 x1x2

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

f̃2

Central pair (x2, w2)

Set S1

F1(x)

• Variant III: Proximal methods - to be dis-
cussed next.



PROXIMAL/BUNDLE METHODS

• Aim to reduce the instability problem at the
expense of solving a more difficult subproblem.

• A general form:

xk+1 ∈ arg min
x∈X

{
Fk(x) + pk(x)

}

Fk(x) = max
{
f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

pk(x) =
1

2ck
‖x− yk‖2

where ck is a positive scalar parameter.

• We refer to pk(x) as the proximal term, and to
its center yk as the proximal center .

f(x)

xxk+1 x∗
yk

Fk(x)

γk − pk(x)

γk



PROXIMAL MINIMIZATION ALGORITHM

• Starting point for analysis: A general algorithm
for convex function minimization

xk+1 ∈ arg min
x∈<n

{
f(x) +

1

2ck
‖x− xk‖2

}

− f : <n 7→ (−∞,∞] is closed proper convex
− ck is a positive scalar parameter
− x0 is arbitrary starting point

γk

γk −
1

2ck
‖x− xk‖2

f(x)

xxk+1xk x∗

f(xk)

• Convergence mechanism:

γk = f(xk+1) +
1

2ck
‖xk+1 − xk‖2 < f(xk).

Cost improves by at least 1
2ck
‖xk+1−xk‖2, and this

is sufficient to guarantee convergence.



RATE OF CONVERGENCE I

• Role of penalty parameter ck:

f(x)

xxk+1xk x∗xk+2

f(x)

xxk+1
xk x∗xk+2

• Role of growth properties of f near optimal
solution set:

f(x)

xxk+1xk x∗xk+2

f(x)

xxk+1xk x∗
xk+2



RATE OF CONVERGENCE II

• Assume that for some scalars β > 0, δ > 0, and
α ≥ 1,

f∗ + β
(
d(x)

)α ≤ f(x), ∀ x ∈ <n with d(x) ≤ δ

where
d(x) = min

x∗∈X∗
‖x− x∗‖

i.e., growth of order α from optimal solution set
X∗.

• If α = 2 and limk→∞ ck = c̄, then

lim sup
k→∞

d(xk+1)

d(xk)
≤ 1

1 + βc̄

linear convergence.

• If 1 < α < 2, then

lim sup
k→∞

d(xk+1)
(
d(xk)

)1/(α−1)
<∞

superlinear convergence.



FINITE CONVERGENCE

• Assume growth order α = 1:

f∗ + βd(x) ≤ f(x), ∀ x ∈ <n,

e.g., f is polyhedral.

f(x)

x
X∗

f∗

f∗ + βd(x)

Slope βSlope β

• Method converges finitely (in a single step for
c0 sufficiently large).

f(x)

x

f(x)

xx∗x0x0 x1 x2 = x∗



PROXIMAL CUTTING PLANE METHODS

• Same as proximal minimization algorithm, but
f is replaced by a cutting plane approximation
Fk:

xk+1 ∈ arg min
x∈X

{
Fk(x) +

1

2ck
‖x− xk‖2

}

where

Fk(x) = max
{
f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

• Drawbacks:

(a) Hard stability tradeoff: For large enough
ck and polyhedral X, xk+1 is the exact min-
imum of Fk over X in a single minimization,
so it is identical to the ordinary cutting plane
method. For small ck convergence is slow.

(b) The number of subgradients used in Fk
may become very large; the quadratic pro-
gram may become very time-consuming.

• These drawbacks motivate algorithmic variants,
called bundle methods.



BUNDLE METHODS

• Allow a proximal center yk 6= xk:

xk+1 ∈ arg min
x∈X

{
Fk(x) + pk(x)

}

Fk(x) = max
{
f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}

pk(x) =
1

2ck
‖x− yk‖2

• Null/Serious test for changing yk: For some
fixed β ∈ (0, 1)

yk+1 =

{
xk+1 if f(yk)− f(xk+1) ≥ βδk,
yk if f(yk)− f(xk+1) < βδk,

δk = f(yk)−
(
Fk(xk+1) + pk(xk+1)

)
> 0

Serious Step

δk

f(yk)− f(xk+1)

xyk yk+1 = xk+1

f(x)δk

Fk(x)

f(yk)− f(xk+1)

xyk yk+1 = xk+1

Null Step

f(x)

δk
Fk(x)

f(yk)− f(xk+1)

xxk+1yk = yk+1



LECTURE 22

LECTURE OUTLINE

• Review of Fenchel Duality

• Review of Proximal Minimization

• Augmented Lagrangian Methods

• Dual Proximal Minimization Algorithm



FENCHEL DUALITY FRAMEWORK

• Consider the problem

minimize f1(x) + f2(x)

subject to x ∈ <n,

where f1 : <n 7→ (−∞,∞] and f2 : <n 7→ (−∞,∞]
are closed proper convex functions.

• Line of Analysis: Convert to the equivalent
problem

minimize f1(x1) + f2(x2)

subject to x1 = x2, x1 ∈ dom(f1), x2 ∈ dom(f2)

• Apply convex programming duality for equality
constraints and obtain the dual problem

minimize f?1 (λ) + f?2 (−λ)

subject to λ ∈ <n,

where f?1 and f?2 are the conjugates.

• Complete symmetry of primal and dual (after a
sign change to convert the dual to minimization).



FENCHEL DUALITY THEOREM

• Consider the Fenchel framework:

(a) If f∗ is finite and ri
(
dom(f1)

)
∩ ri
(
dom(f2)

)
6=

Ø, then strong duality holds and there exists
at least one dual optimal solution.

(b) Strong duality holds, and (x∗, λ∗) is a primal
and dual optimal solution pair if and only if

x∗ ∈ arg min
x∈<n

{
f1(x)−x′λ∗

}
, x∗ ∈ arg min

x∈<n

{
f2(x)+x′λ∗

}

• By Fenchel inequality, the last condition is equiv-
alent to

λ∗ ∈ ∂f1(x∗) [or equivalently x∗ ∈ ∂f?1 (λ∗)]

and

−λ∗ ∈ ∂f2(x∗) [or equivalently x∗ ∈ ∂f?2 (−λ∗)]



GEOMETRIC INTERPRETATION

Slope λ

Slope λ∗

x∗ x

f1(x)

−f2(x)

q(λ)

f∗ = q∗

−f!
1 (λ)

f!
2 (−λ)

• When f1 and/or f2 are differentiable, the opti-
mality condition is equivalent to

λ∗ = ∇f1(x∗) and/or λ∗ = −∇f2(x∗)



RECALL PROXIMAL MINIMIZATION

• Applies to minimization of closed convex proper
f :

xk+1 = arg min
x∈<n

{
f(x) +

1

2ck
‖x− xk‖2

}

where f : <n 7→ (−∞,∞], x0 is an arbitrary start-
ing point, and {ck} is a positive scalar parameter
sequence with infk≥0 ck > 0.

• We have f(xk)→ f∗. Also xk → some minimizer
of f , provided one exists.

• Finite convergence for polyhedral f .

• Each iteration can be viewed in terms of Fenchel
duality.

4

Polyhedral Convexity Template

γk

γk −
1
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‖x− xk‖2

xk
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g

fS(s | H0)
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X
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1
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X
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Polyhedral Convexity Template

x0 x1 x2 x3 x4 f(x) X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

αx + (1− α)y, 0 ≤ α ≤ 1

< 90◦

Level set
{
x | f(x) ≤ f∗ + αc2/2
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xk
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Polyhedral Convexity Template
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�
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�

M =
�
(u,w) | there exists x ∈ X

Outer Linearization of f

F (x) H(y) y h(y)

sup
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inf
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z∈Z
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x∈X
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φ(x, z)
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si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets
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Duality Gap Decomposition
Convex and concave part can be estimated separately
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DUAL PROXIMAL MINIMIZATION

• The proximal iteration can be written in the
Fenchel form: minx{f1(x) + f2(x)} with

f1(x) = f(x), f2(x) =
1

2ck
‖x− xk‖2

• The Fenchel dual is

minimize f?1 (λ) + f?2 (−λ)

subject to λ ∈ <n

• We have f?2 (−λ) = −x′kλ + ck
2
‖λ‖2, so the dual

problem is

minimize f?(λ)− x′kλ+
ck
2
‖λ‖2

subject to λ ∈ <n

where f? is the conjugate of f .

• f2 is real-valued, so no duality gap.

• Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.



DUAL PROXIMAL ALGORITHM

• Can solve the Fenchel-dual problem instead of
the primal at each iteration:

λk+1 = arg min
λ∈<n

{
f?(λ)− x′kλ+

ck
2
‖λ‖2

}
(1)

• Lagragian optimality conditions:

xk+1 ∈ arg max
x∈<n

{
x′λk+1 − f(x)

}

xk+1 = arg min
x∈<n

{
x′λk+1 +

1

2ck
‖x− xk‖2

}

or equivalently,

λk+1 ∈ ∂f(xk+1), λk+1 =
xk − xk+1

ck

• Dual algorithm: At iteration k, obtain λk+1

from the dual proximal minimization (1) and set

xk+1 = xk − ckλk+1

• As xk converges to a primal optimal solution x∗,
the dual sequence λk converges to 0 (a subgradient
of f at x∗).



VISUALIZATION

γk

γk −
1

2ck
‖x− xk‖2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

λk+1

Slope = x∗

δk

δk + x′
kλ− ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f!(λ)

• The primal and dual implementations are
mathematically equivalent and generate iden-
tical sequences {xk}.
• Which one is preferable depends on whether f
or its conjugate f? has more convenient structure.

• Special case: When −f is the dual function of
the constrained minimization ming(x)≤0 F (x), the
dual algorithm is equivalent to an important gen-
eral purpose algorithm: the Augmented Lagrangian
method.

• This method (to be discussed shortly) aims to
find a subgradient of the primal function p(u) =
ming(x)≤u F (x) at u = 0 (i.e., a dual optimal solu-
tion).



AUGMENTED LAGRANGIAN METHOD

• Consider the convex constrained problem

minimize f(x)

subject to x ∈ X, Ex = d

• Primal and dual functions:

p(v) = inf
x∈X,

Ex−d=v

f(x), q(λ) = inf
x∈X

{
f(x) +λ′(Ex− d)

}

• Assume p: closed, so (q, p) are “conjugate” pair.

• Proximal algorithms for maximizing q:

λk+1 = arg max
µ∈<m

{
q(λ)− 1

2ck
‖λ− λk‖2

}

vk+1 = arg min
v∈<m

{
p(v) + λ′kv +

ck
2
‖v‖2

}

Dual update: λk+1 = λk + ckvk+1

• Implementation:

vk+1 = Exk+1 − d, xk+1 ∈ arg min
x∈X

Lck (x, λk)

where Lc is the Augmented Lagrangian function

Lc(x, λ) = f(x) + λ′(Ex− d) +
c

2
‖Ex− d‖2



GRADIENT INTERPRETATION

• λk+1 can be viewed as a gradient:

λk+1 =
xk − xk+1

ck
= ∇φck (xk),

where
φc(z) = inf

x∈<n

{
f(x) +

1

2c
‖x− z‖2

}

(For geometrical insight, consider the case where
f is linear in the following figure.)

f(x)

xx∗

f(z)

φc(z)

xc(z)z

φc(z)− 1
2c
‖x− z‖2

Slope ∇φc(z)

• So the dual update xk+1 = xk − ckλk+1 can be
viewed as a gradient iteration for minimizing φc(z)
(which has the same minima as f).

• The gradient is calculated by the dual prox-
imal minimization. Possibilities for faster meth-
ods (e.g., Newton, Quasi-Newton). Useful in aug-
mented Lagrangian methods.



PROXIMAL LINEAR APPROXIMATION

• Convex problem: Min f : <n 7→ < over X.

• Proximal outer linearization method: Same
as proximal minimization algorithm, but f is re-
placed by a cutting plane approximation Fk:

xk+1 ∈ arg min
x∈<n

{
Fk(x) +

1

2ck
‖x− xk‖2

}

λk+1 =
xk − xk+1

ck

where gi ∈ ∂f(xi) for i ≤ k and

Fk(x) = max
{
f(x0)+(x−x0)′g0, . . . , f(xk)+(x−xk)′gk

}
+δX(x)

• Proximal Inner Linearization Method (Dual
proximal implementation): Let F ?k be the con-
jugate of Fk. Set

λk+1 ∈ arg min
λ∈<n

{
F ?k (λ)− x′kλ+

ck
2
‖λ‖2

}

xk+1 = xk − ckλk+1

Obtain gk+1 ∈ ∂f(xk+1), either directly or via

gk+1 ∈ arg max
λ∈<n

{
x′k+1λ− f?(λ)

}

• Add gk+1 to the outer linearization, or xk+1 to
the inner linearization, and continue.



PROXIMAL INNER LINEARIZATION

• It is a mathematical equivalent dual to the outer
linearization method.

Slope = xk

Slope = xk+1

gk+1

f!(λ)F ∗
k (λ)

• Here we use the conjugacy relation between
outer and inner linearization.

• Versions of these methods where the proximal
center is changed only after some “algorithmic
progress” is made:
− The outer linearization version is the (stan-

dard) bundle method.
− The inner linearization version is an inner

approximation version of a bundle method.



LECTURE 23

LECTURE OUTLINE

• Interior point methods

• Constrained optimization case - Barrier method

• Conic programming cases

• Linear programming - Path following



BARRIER METHOD

• Inequality constrained problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where f and gj are real-valued convex and X is
closed convex.

• We assume that the interior (relative to X) set

S =
{
x ∈ X | gj(x) < 0, j = 1, . . . , r

}

is nonempty.

• Note that because S is convex, any feasible point
can be approached through S (the Line Segment
Principle).

• The barrier method is an approximation method.

• It replaces the indicator function of the con-
straint set

δ
(
x | cl(S)

)

by a smooth approximation within the relative in-
terior of S.



BARRIER FUNCTIONS

• Consider a barrier function, that is continuous
and goes to ∞ as any one of the constraints gj(x)
approaches 0 from negative values.

• Examples:

B(x) = −
r∑

j=1

ln
{
−gj(x)

}
, B(x) = −

r∑

j=1

1

gj(x)
.

• Barrier method:

xk = arg min
x∈S

{
f(x) + εkB(x)

}
, k = 0, 1, . . . ,

where the parameter sequence {εk} satisfies 0 <
εk+1 < εk for all k and εk → 0.

S

Boundary of S Boundary of S

e B(x)

e' B(x)
e' < e

Boundary of SBoundary of S

ε′ < ε
εB(x)

ε′B(x)

S



BARRIER METHOD - EXAMPLE

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

minimize f(x) = 1
2

(
(x1)2 + (x2)2

)

subject to 2 ≤ x1,

with optimal solution x∗ = (2, 0).

• Logarithmic barrier: B(x) = − ln (x1 − 2)

• We have xk =
(
1 +
√

1 + εk , 0
)

from

xk ∈ arg min
x1>2

{
1
2

(
(x1)2 + (x2)2

)
− εk ln (x1 − 2)

}

• As εk is decreased, the unconstrained minimum
xk approaches the constrained minimum x∗ = (2, 0).

• As εk → 0, computing xk becomes more difficult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).



CONVERGENCE

• Every limit point of a sequence {xk} generated
by a barrier method is a minimum of the original
constrained problem.

Proof: Let {x} be the limit of a subsequence {xk}k∈K .
Since xk ∈ S and X is closed, x is feasible for the
original problem.

If x is not a minimum, there exists a feasible
x∗ such that f(x∗) < f(x) and therefore also an
interior point x̃ ∈ S such that f(x̃) < f(x). By the
definition of xk,

f(xk) + εkB(xk) ≤ f(x̃) + εkB(x̃), ∀ k,

so by taking limit

f(x) + lim inf
k→∞, k∈K

εkB(xk) ≤ f(x̃) < f(x)

Hence lim infk→∞, k∈K εkB(xk) < 0.
If x ∈ S, we have limk→∞, k∈K εkB(xk) = 0,

while if x lies on the boundary of S, we have by
assumption limk→∞, k∈K B(xk) =∞. Thus

lim inf
k→∞

εkB(xk) ≥ 0,

– a contradiction.



SECOND ORDER CONE PROGRAMMING

• Consider the SOCP

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,

where x ∈ <n, c is a vector in <n, and for i =
1, . . . ,m, Ai is an ni × n matrix, bi is a vector in
<ni , and Ci is the second order cone of <ni .
• We approximate this problem with

minimize c′x+ εk

m∑

i=1

Bi(Aix− bi)

subject to x ∈ <n,

where Bi is the logarithmic barrier function:

Bi(y) = − ln
(
y2
ni − (y2

1 + · · ·+ y2
ni−1)

)
, y ∈ int(Ci),

and {εk} is a positive sequence with εk → 0.

• Essential to use Newton’s method to solve the
approximating problems.

• Interesting complexity analysis



SEMIDEFINITE PROGRAMMING

• Consider the dual SDP

maximize b′λ

subject to C − (λ1A1 + · · ·+ λmAm) ∈ D,

where D is the cone of positive semidefinite ma-
trices.

• The logarithmic barrier method uses approxi-
mating problems of the form

maximize b′λ+ εk ln
(
det(C−λ1A1−· · ·−λmAm)

)

over all λ ∈ <m such that C − (λ1A1 + · · ·+ λmAm)
is positive definite.

• Here εk > 0 and εk → 0.

• Furthermore, we should use a starting point
such that C − λ1A1 − · · · − λmAm is positive def-
inite, and Newton’s method should ensure that
the iterates keep C−λ1A1−· · ·−λmAm within the
positive definite cone.



LINEAR PROGRAMS/LOGARITHMIC BARRIER

• Apply logarithmic barrier to the linear program

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

The method finds for various ε > 0,

x(ε) = arg min
x∈S

Fε(x) = arg min
x∈S

{
c′x− ε

n∑

i=1

lnxi

}
,

where S =
{
x | Ax = b, x > 0}. We assume that S

is nonempty and bounded.

• As ε→ 0, x(ε) follows the central path

Point x(e) on
central path

x•

S

x* (e = 0)

c

• All central paths start at the analytic center

x∞ = arg min
x∈S

{
−

n∑

i=1

lnxi

}
,

and end at optimal solutions of (LP).



PATH FOLLOWING W/ NEWTON’S METHOD

• Newton’s method for minimizing Fε:

x̃ = x+ α(x− x),

where x is the pure Newton iterate

x = arg min
Az=b

{
∇Fε(x)′(z − x) + 1

2 (z − x)′∇2Fε(x)(z − x)
}

• By straightforward calculation

x = x−Xq(x, ε),

q(x, ε) =
Xz

ε
− e, e = (1 . . . 1)′, z = c−A′λ,

λ = (AX2A′)−1AX
(
Xc− εe

)
,

and X is the diagonal matrix with xi, i = 1, . . . , n
along the diagonal.

• View q(x, ε) as a “normalized” Newton incement
[the Newton increment (x−x) transformed by X−1

that maps x into e].

• Consider ‖q(x, ε)‖ as a proximity measure of the
current point to the point x(ε) on the central path.



KEY RESULTS

• It is sufficient to minimize Fε approximately, up
to where ‖q(x, ε)‖ < 1.

• Fact 1: If x > 0, Ax = b, and ‖q(x, ε)‖ < 1,

c′x− min
Ay=b, y≥0

c′y ≤ ε
(
n+
√
n
)
.

Defines a “tube of convergence”.

x•

S

x*
Central Path

Set {x | ||q(x,e0)|| < 1}

x(e2)

x(e1)

x(e0)
x0

x2

x1

• Fact 2: The “termination set”
{
x | ‖q(x, ε)‖ <

1
}

is part of the region of quadratic convergence.

• Fact 2: If ‖q(x, ε)‖ < 1, then the pure Newton
iterate x satisfies

‖q(x, ε)‖ ≤ ‖q(x, ε)‖2 < 1.



SHORT STEP METHODS

S

x*
Central Path

Set {x | ||q(x,ek)|| < 1}

x•

x(ek+1)

x(ek)xk 

xk+1 

Set {x | ||q(x,ek+1)|| < 1}

• Idea: Use a single Newton step before changing
ε (a little bit, so the next point stays within the
“tube of convergence”).

Proposition Let x > 0, Ax = b, and suppose
that for some γ < 1 we have ‖q(x, ε)‖ ≤ γ. Then if
ε = (1− δn−1/2)ε for some δ > 0,

‖q(x, ε)‖ ≤ γ2 + δ

1− δn−1/2
.

In particular, if

δ ≤ γ(1− γ)(1 + γ)−1,

we have ‖q(x, ε)‖ ≤ γ.

• Can be used to establish nice complexity results;
but ε must be reduced VERY slowly.



LONG STEP METHODS

• Main features:
− Decrease ε faster than dictated by complex-

ity analysis.
− Use more than one Newton step per (approx-

imate) minimization.
− Use line search as in unconstrained Newton’s

method.
− Require much smaller number of (approxi-

mate) minimizations.

S

x*
Central Path

x•

x(ek+1)
x(ek)xk 

xk+1 
x(ek+2)xk+2 

(a) (b)

S

x*
Central Path

x•

x(ek+1)

x(ek)xk 

xk+1 

x(ek+2)
xk+2 

Short Step method Long Step method

• The methodology generalizes to quadratic pro-
gramming and convex programming.



LECTURE 24: REVIEW/EPILOGUE

LECTURE OUTLINE

• Basic concepts of convex analysis

• Basic concepts of convex optimization

• Geometric duality framework - MC/MC

• Constrained optimization duality - minimax

• Subgradients - Optimality conditions

• Special problem classes

• Descent/gradient/subgradient methods

• Polyhedral approximation methods



BASIC CONCEPTS OF CONVEX ANALYSIS

• Epigraphs, level sets, closedness, semicontinuity

f(x)

x
Convex function

f(x)

x
Nonconvex function

Epigraph Epigraphf(x) f(x)

xx

Epigraph Epigraph

Convex function Nonconvex function

dom(f) dom(f)

• Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

• Relative interior:
− Nonemptiness for a convex set
− Line segment principle
− Calculus of relative interiors

• Continuity of convex functions

• Nonemptiness of intersections of nested sequences
of closed sets.

• Closure operations and their calculus.

• Recession cones and their calculus.

• Preservation of closedness by linear transforma-
tions and vector sums.



HYPERPLANE SEPARATION

(a)

C1 C2

x

a

(b)

C1

C2
x1

x2

• Separating/supporting hyperplane theorem.

• Strict and proper separation theorems.

• Dual representation of closed convex sets as
unions of points and intersection of halfspaces.

A union of points An intersection of halfspaces

• Nonvertical separating hyperplanes.



CONJUGATE FUNCTIONS

x

Slope = y

0

(−y, 1)

f(x)

inf
x∈"n

{f(x)− x′y} = −f!(y)

• Conjugacy theorem: f = f??

• Support functions

0

y

X

σX(y)/‖y‖

x̂

• Polar cone theorem: C = C??

− Special case: Linear Farkas’ lemma



POLYHEDRAL CONVEXITY

• Extreme points

Extreme
Points

Extreme
Points

Extreme
Points

(a) (b) (c)

• A closed convex set has at least one extreme
point if and only if it does not contain a line.

• Polyhedral sets.

• Finitely generated cones: C = cone
(
{a1, . . . , ar}

)

• Minkowski-Weyl Representation: A set P is
polyhedral if and only if

P = conv
(
{v1, . . . , vm}

)
+ C,

for a nonempty finite set of vectors {v1, . . . , vm}
and a finitely generated cone C.

• Fundamental Theorem of LP: Let P be a poly-
hedral set that has at least one extreme point. A
linear function that is bounded below over P , at-
tains a minimum at some extreme point of P .



BASIC CONCEPTS OF CONVEX OPTIMIZATION

• Weierstrass Theorem and extensions.

• Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Optimal
Solution

Level Sets of f

X

• Role of recession cone and lineality space.

• Partial Minimization Theorems: Character-
ization of closedness of f(x) = infz∈<m F (x, z) in
terms of closedness of F .

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)

x

z

w

x1

x2

O

F (x, z)

f(x) = inf
z

F (x, z)

epi(f)



MIN COMMON/MAX CROSSING DUALITY

00

(a)

Min Common Point w*

Max Crossing Point q*

M

0

(b)

M

_
M

Max Crossing Point q*

Min Common Point w*
w w

u

0

(c)

S

_
M

M
Max Crossing Point q*

Min Common Point w*

w

u

u0 0

0

u u

u

w w

w

M M

M

M

M

Min Common
Point w∗

Min Common
Point w∗

Min Common
Point w∗

Max Crossing
Point q∗

Max Crossing
Point q∗ Max Crossing

Point q∗

(a) (b)

(c)

• Defined by a single set M ⊂ <n+1.

• w∗ = inf(0,w)∈M w

• q∗ = supµ∈<n q(µ)
4
= inf(u,w)∈M{w + µ′u}

• Weak duality: q∗ ≤ w∗

• Two key questions:
− When does strong duality q∗ = w∗ hold?
− When do there exist optimal primal and dual

solutions?



MC/MC THEOREMS (M CONVEX, W ∗ <∞)

• MC/MC Theorem I: We have q∗ = w∗ if and
only if for every sequence

{
(uk, wk)

}
⊂ M with

uk → 0, there holds

w∗ ≤ lim inf
k→∞

wk.

• MC/MC Theorem II: Assume in addition that
−∞ < w∗ and that

D =
{
u | there exists w ∈ < with (u,w) ∈M}

contains the origin in its relative interior. Then
q∗ = w∗ and there exists µ such that q(µ) = q∗.

• MC/MC Theorem III: Similar to II but in-
volves special polyhedral assumptions.

(1) M is a “horizontal translation” of M̃ by −P ,

M = M̃ −
{

(u, 0) | u ∈ P
}
,

where P : polyhedral and M̃ : convex.

(2) We have ri(D̃) ∩ P 6= Ø, where

D̃ =
{
u | there exists w ∈ < with (u,w) ∈ M̃}



IMPORTANT SPECIAL CASE

• Constrained optimization: infx∈X, g(x)≤0 f(x)

• Perturbation function (or primal function)

p(u) = inf
x∈X, g(x)≤u

f(x),

0 u

{
(g(x), f(x)) | x ∈ X

}

M = epi(p)

w∗ = p(0)

p(u)

q∗

• Introduce L(x, µ) = f(x) + µ′g(x). Then

q(µ) = inf
u∈<r

{
p(u) + µ′u

}

= inf
u∈<r, x∈X, g(x)≤u

{
f(x) + µ′u

}

=
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise.



NONLINEAR FARKAS’ LEMMA

• Let X ⊂ <n, f : X 7→ <, and gj : X 7→ <,
j = 1, . . . , r, be convex. Assume that

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0

Let

Q∗ =
{
µ | µ ≥ 0, f(x) + µ′g(x) ≥ 0, ∀ x ∈ X

}
.

• Nonlinear version: Then Q∗ is nonempty and
compact if and only if there exists a vector x ∈ X
such that gj(x) < 0 for all j = 1, . . . , r.

4

Polyhedral Convexity Template

Θ f|theta(θ) X = x Measurement

(µ, β)

3 5 9 11 1
3 x

Mean Squared
Least squares
Estimator
a1 a2

Estimation Error

E
[
(Θ − θ̂)2

]
= var(Θ) +

(
E[Θ]− θ̂

)2
,

E[Θ] var(Θ) Hyperplane {x | y′x = 0}
cone({a1, . . . , ar})

{x | a′
jx ≤ 0, j = 1, . . . , r}

{x | a′
jx ≤ 0, j = 1, . . . , r} Extreme Point y
a1 a2 b
u w M

D = {u | Ax− b ≤ u for some x}

1

4

Polyhedral Convexity Template

epi(f) w (µ, 1) q(µ)
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Outer Linearization of f

F (x) H(y) y h(y)

sup
z∈Z

inf
x∈X

φ(x, z) ≤ sup
z∈Z

inf
x∈X

φ̂(x, z) = q∗ = p̃(0) ≤ p(0) = w∗ = inf
x∈X

sup
z∈Z

φ(x, z)

Shapley-Folkman Theorem: Let S = S1 + · · · + Sm with Si ⊂ �n,
i = 1, . . . ,m
If s ∈ conv(S) then s = s1 + · · · + sm where
si ∈ conv(Si) for all i = 1, . . . ,m,
si ∈ Si for at least m− n− 1 indices i.

The sum of a large number of convex sets is almost convex
Nonconvexity of the sum is caused by a small number (n + 1) of sets

f̃(x) = (čl )f(x)

q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,
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q∗ = (čl )p(0) ≤ p(0) = w∗

Duality Gap Decomposition
Convex and concave part can be estimated separately
q is closed and concave
Min Common Problem
Max Crossing Problem
Weak Duality q∗ ≤ w∗

minimize w

subject to (0, w) ∈ M,

1

• Polyhedral version: Q∗ is nonempty if g is
linear [g(x) = Ax − b] and there exists a vector
x ∈ ri(X) such that Ax− b ≤ 0.



CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,

where X ⊂ <n, f : X 7→ < and gj : X 7→ < are
convex. Assume f∗: finite.

• Connection with MC/MC: M = epi(p) with
p(u) = infx∈X, g(x)≤u f(x)

• Dual function:

q(µ) =
{

infx∈X L(x, µ) if µ ≥ 0,
−∞ otherwise

where L(x, µ) = f(x) + µ′g(x) is the Lagrangian
function.

• Dual problem of maximizing q(µ) over µ ≥ 0.

• Strong Duality Theorem: q∗ = f∗ and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists x ∈ X such that g(x) < 0.

(2) The functions gj , j = 1, . . . , r, are affine, and
there exists x ∈ ri(X) such that g(x) ≤ 0.



OPTIMALITY CONDITIONS

• We have q∗ = f∗, and the vectors x∗ and µ∗ are
optimal solutions of the primal and dual problems,
respectively, iff x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ arg min
x∈X

L(x, µ∗), µ∗jgj(x
∗) = 0, ∀ j.

• For the linear/quadratic program
minimize 1

2x
′Qx+ c′x

subject to Ax ≤ b,

where Q is positive semidefinite, (x∗, µ∗) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:

Ax∗ ≤ b, µ∗ ≥ 0

(b) Lagrangian optimality holds [x∗ minimizes
L(x, µ∗) over x ∈ <n]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Ax∗ − b)′µ∗ = 0,

i.e., µ∗j > 0 implies that the jth constraint is tight.
(Applies to inequality constraints only.)



FENCHEL DUALITY

• Primal problem:

minimize f1(x) + f2(x)

subject to x ∈ <n,

where f1 : <n 7→ (−∞,∞] and f2 : <n 7→ (−∞,∞]
are closed proper convex functions.

• Dual problem:

minimize f?1 (λ) + f?2 (−λ)

subject to λ ∈ <n,

where f?1 and f?2 are the conjugates.

Slope λ

Slope λ∗

x∗ x

f1(x)

−f2(x)

q(λ)

f∗ = q∗

−f!
1 (λ)

f!
2 (−λ)



CONIC DUALITY

• Consider minimizing f(x) over x ∈ C, where f :
<n 7→ (−∞,∞] is a closed proper convex function
and C is a closed convex cone in <n.

• We apply Fenchel duality with the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
∞ if x /∈ C.

• Linear Conic Programming:

minimize c′x

subject to x− b ∈ S, x ∈ C.

• The dual linear conic problem is equivalent to

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.

• Special Linear-Conic Forms:

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ,

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ,

where x ∈ <n, λ ∈ <m, c ∈ <n, b ∈ <m, A : m× n.



SUBGRADIENTS

0

(−g, 1)

f(z)

(
x, f(x)

)

z

• ∂f(x) 6= Ø for x ∈ ri
(
dom(f)

)
.

• Conjugate Subgradient Theorem: If f is closed
proper convex, the following are equivalent for a
pair of vectors (x, y):

(i) x′y = f(x) + f?(y).

(ii) y ∈ ∂f(x).

(iii) x ∈ ∂f?(y).

• Characterization of optimal solution set X∗ =
arg minx∈<n f(x) of closed proper convex f :

(a) X∗ = ∂f?(0).

(b) X∗ is nonempty if 0 ∈ ri
(
dom(f?)

)
.

(c) X∗ is nonempty and compact if and only if
0 ∈ int

(
dom(f?)

)
.



CONSTRAINED OPTIMALITY CONDITION

• Let f : <n 7→ (−∞,∞] be proper convex, let X
be a convex subset of <n, and assume that one of
the following four conditions holds:

(i) ri
(
dom(f)

)
∩ ri(X) 6= Ø.

(ii) f is polyhedral and dom(f) ∩ ri(X) 6= Ø.

(iii) X is polyhedral and ri
(
dom(f)

)
∩X 6= Ø.

(iv) f and X are polyhedral, and dom(f) ∩X 6= Ø.

Then, a vector x∗ minimizes f over X iff there ex-
ists g ∈ ∂f(x∗) such that −g belongs to the normal
cone NX(x∗), i.e.,

g′(x− x∗) ≥ 0, ∀ x ∈ X.

S S⊥ C ∩ S⊥ d z

rf (d) = 0 rf (d) < 0 rf (d) > 0

x∗ x f
(
αx∗ + (1 − α)x

)

x x∗

αf(x) + (1− α)f(y) C x y f(x) f(z) z = αx + (1 − α)y

f(z)

z

X
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z1 = x + d z2 z3 x + d x + d1 x + d2 x + d3

≥ π/2

Recession Cone Rf Level Sets of f β α −1 1
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�
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�
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Strictly Separating Hyperplane

Slope y∗ Slope y −f�
1 (y) f�

2 (−y) f�
1 (y) + f�

2 (−y) q(y)

Primal description: Values f(x) Dual description: Crossing points f�(y)
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COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

• Linear and (convex) quadratic programming.
− Favorable special cases.

• Second order cone programming.

• Semidefinite programming.

• Convex programming.
− Favorable cases, e.g., separable, large sum.
− Geometric programming.

• Nonlinear/nonconvex/continuous programming.
− Favorable special cases.
− Unconstrained.
− Constrained.

• Discrete optimization/Integer programming
− Favorable special cases.

• Caveats/questions:
− Important role of special structures.
− What is the role of “optimal algorithms”?
− Is complexity the right philosophical view to

convex optimization?



DESCENT METHODS

• Steepest descent method: Use vector of min
norm on −∂f(x); has convergence problems.
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• Subgradient method:

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)

• Incremental (possibly randomized) variants for
minimizing large sums.

• ε-descent method: Fixes the problems of steep-
est descent.



APPROXIMATION METHODS I

• Cutting plane:

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

• Instability problem: The method can make
large moves that deteriorate the value of f .

• Proximal Minimization method:

f(x)

xxk+1 x∗
yk

Fk(x)

γk − pk(x)

γk

• Proximal-cutting plane-bundle methods: Com-
binations cutting plane-proximal, with stability
control of proximal center.



APPROXIMATION METHODS II

• Dual Proximal - Augmented Lagrangian meth-
ods: Proximal method applied to the dual prob-
lem of a constrained optimization problem.
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• Interior point methods:
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