
SHORT PAPERS 415 

REFERENCES 

[ I ]  S. C. Pincura “A srability criterion for certain multiplicative nonlinear Ennirol 
systems,” in kruc. 1968 Joint Automatic Control  Conf., Ann Arbor, Mich., pp. 

[2] N. E. Nahi  and S. Partovi, “On the absolute stability of a dynamic system with a 
787-796. 

nonlinear element functlon of two state variables,” IEEE Trans. Automar. Conrr. 
(Short Paper), vol.  AC-13, pp. 573-575, Oct  1968. 

131 N. Saty-rayana, M. A. L. Thathachar,  and M. D. Srinath, “Stability of a class of 
multiphcatlve nonlinear systems,” IEEE Tam. Automat.  Contr. (Short Paper), vol. 
AC-15, pp. 647649, Dec. 1970. 

(41 N. Satyanarayana  and M. D. Srinatb, “Criteria for stability of a class of multiplica- 

75-76, Feb. 1971. 
tive nonlinear systems;. IEEE Trans. Auromar. Contr. (Corresp.), vol.  AC-16,  pp. 

(51  M.-Y. Wu, “Stability criteria for a class of multiplicative time-varying nonlinear 
systems,” IEEE Tram. Automat. Conrr. (Corresp.), vol.  AC-17, pp. 141-142, Feb. 
r 0 7 . 7  

191 

[101 

L 7 , L .  

M. K. Sundareshan, “Lptability analysis of feedback systems ria positive operator 
theory,” Ph.D. dissertation, Dep. of Elec. En&, Indian Inst. of Science, Bangalore, 

J. C. Willems and R. W. Brockett, “Some new rearrangement inequalities having 
India, Nov. 1972. 

application in stability analysis,” IEEE Truns. Automat. Conlr., vol.  AC-13, pp. 
539-549, Oct. 1968. 

&-stability of  nonstationary feedback systems.” IEEE Trans. Auromar. Conrr.. vol. 
M. K. Sundareshan and M. A. L. Thathachar,  ‘Time-domain criteria for the 

AC-18. DD. 8&81. Feb. 1973. ..,== .. . ~ , ~  ~~ ~ - 
IEEE Trans. Automat. Conlr., vol.  AC-19, pp. 217-224, June 1974. 

, “&-stability of nonstationary feedback systems; Frequency-domain criteria,” 

G. Zames, “On the  input-output stability of time-varying nonlinear feedback sys- 
jems-Parf I :  Conditions derived using concepts of loop gain, conicity, and positiv- 
~ty,” IEEE  Tram. Automat. Conrr., vol.  AC-11,  pp.  228-238, Apr. 1966. -. “On the input-output stability of time-varying nonhnear feedback s y s t e m s  

ties,” IEEE Trans. Automat. Conrr., vol.  AC-1 I ,  pp. 46-76, July 1966. 
Part 11: Conditions involving circles in the frequency plane  and sector nonlineari- 

&-stability of nonstationary feedback systems,” IEEE Tans. Automat.  Contr. 
M. K. Sundareshan and M. A. L. Thathachar, “Improved conditions for the 

(Corresp.), vol.  AC-18,  pp. 674675, Dec. 1973. 

multiphers,” IEEE Trum. Automat. Contr., vol.  AC-17, pp. 504-510,  Aug.  1972. 
- “+stability of linear lime-varying s y s t e d n d i t i o n s  involving nOnCaUSd 

Convergence of Discretization  Procedures 
in  Dynamic Programming 

DIMITR! P. BERTSEKAS, %EMBER, IEEE 

Abrrm-The computational solution of discrete-time stochastic op- 
timal  control  problems by dynamic  programming  requires, in most cases, 
discretization of the state and control spaces whenever these spaces are 
infiiite. In this short paper  we  consider a discretization  procedure often 
employed in practice.  Under certain compactness and Lipschitz  continuity 
assumptions we show that  the solution of the discretized  algorithm con- 
verges to the solution of the  continuous  algorithm, as the  discretization 
grids become finer and fiier. Furthermore,  any control law obtained  from 
the  discretized  algorithm  results in a  value of the cost functional  which 
converges to the  optimal v h e  of the  problem. 

I. IYTRODUCTION 

It is well known that the principal framework for analysis and solution 
of sequential stochastic optimization problems is that of dynamic  pro- 
gramming as developed and popularized principally by Bellman [2],  [3]. 
In lack of an analytical solution to the problem under  consideration  a 
computer solution is required. Under these circumstances whenever 
some of the  spaces of definition of the system are infinite, discretization 
of these spaces becomes necessary. In practice one hopes that if there is 
sufficient continuity present in the problem the  computer solution will 
approximate closely the true solution of the problem if a suitable 
discretization grid with a sufficiently large number of points is used. It is 
thus worthwile to have precise theoretical results whch guarantee  con- 
vergence of various discretization procedures under concrete assump- 
tions. Estimates of the convergence rate may also be useful. While it is 
unclear that such theoretical results will have significant impact on the 
way dynamic programming is currently employed, they will, if nothing 
else, help alleviate some of the nagging fears in the practitioner’s mind. 

The question of convergence of discretiza’tion procedures has been 

raised by Bellman and Dreyfus [3]. However, to the author’s knowledge, 
no related theoretical results have  appeared in the literature with the 
exception of a  recent  paper by Fox [IO]. In the  present  paper results in a 
similar vein as  those of Fox are obtained. The two papers are comple- 
mentary however, since the  analytical  approach,  the assumptions, the 
problem formulation, and the discretization procedure are all different. 
In particular, in [lo] the case of discrete probability  distributions (includ- 
ing deterministic problems) is ruled out in an essential way while in our 
case we allow the presence of discrete distributions at  the  outset. Also in 
[IO] discretization is limited to the  state space while we consider dis- 
cretization of both  state and control spaces. 

Some of the  ideas in the paper were clarified during the course of a 
tutorial with T. J. Lee. This interaction is gratefully acknowledged. 

11. DISCRETIZATION PROCEDURES-FINITE HORIZON 
PROBLEMS 

Consider  the following dynamic programming algorithm: 

J , (x )=g , , (x )  x E S N ~ R s N  (1) 

This algorithm is associated with a  stochastic  optimal  control problem 
involving the  discrete time dynamic system 

xk+l=fk(xk,uk.wk),  k=O,l;..,N-l, x,:given (3) 

and the cost functional 

In the  above  equation x, is the system state-element of a Euclidean 
space Rsk, k =0,1,. . . , N. The algorithm (l), (2) is defined over given 
compucr subsets S, c R *, k = 0, 1,. . . , N - 1. The control  input at time k 
is denoted by u, and is an element of some  space C,, k=O, I , . . .  , N -  1. 
In what follows we shall assume that C, is either a subset of a Euclidean 
space or a finite set. The sets U,(x,) c C, are given for each x, E S, and 
represent a statedependent control  constraint. 

We denote by wk the  input  disturbance whch is assumed to be  an 
element of a set W,, k=O, 1;. . ,N-  1. We assume in this section that 
each  set Wk has a finire  number (say I,) of elements. This  assumption is 
valid in many problems of interest, most notably in deterministic prob- 
lems where the  set W, consists of a single element. In problems where 
the sets W, are infinite, our assumption amounts  to replacing the 
dynamic  programming algorithm ( I ) ,  (2) by another algorithm whereby 
the expected value (integral) in (2) is approximated by a finite sum. For 
most problems of interest this finite sum  approximation may be justified 
in the sense that the resulting error can be made  arbitrarily small by 
taking  a sufficiently large number of terms in the finite sum. The reader 
may easily provide relatively mild assumptions  under which the 
approximation is valid in the  above sense. A discretization procedure 
involving the state  and control spaces as well as the  disturbance space, 
together with a  corresponding convergence result may be found in an 
unpublished  report by the  author. Concerning the probabilities of the 
elements of W,, denoted by p ~ ( x k . u k ) .  i =  1; . . ,I , ,  we assume that they 
depend on the  current  state x, and control uk but they do  not explicitly 
depend on the previous values of input  disturbances w0,wI: . . ,wk- 

The functions gN,gk,  fk, k =0,1; . . ,Ar-  1 in (3), (4) are given. Con- 
cerningf,, s,, U,(x), and W, we make the following assumption which is 
necessary in order that the algorithm (I) ,  (2) be well posed: 
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in other problems it is necessary to reformulate the problem so that ( 5 )  
holds. We also assume that all gwen sets are nonempty. 

We shall consider two Wferent sets of assumptions in addition  to the 
ones  already made. In the first set of assumptions the control space C, is 
assumed  to be a finite set  for each k. Some examples of problems in this 
category are hypothesis testing problems in statistics [l], [7] where a 
finite number of actions  are of interest (accept hypothesis i .   i=  1; . . , I ,  
or take another sample), asset selling and purchasing problems [ 161, [ 151 
(accept the current offer, reject the offer and wait for  the next), and 
other problems in a similar vein. In the second set of assumptions the 
control space C, is assumed to be a Euclidean space. Such problems 
abound in stochastic  control, inventory control. planning and scheduling 
problems, etc., and require discretization of both  the  state space and the 
control space. The reader may easily extend our analysis and results to 
cases where the  control space is the  union or the Cartesian product of a 
finite set and a Euclidean space. 

Assumptions  A 

Assumption A.1: The control spaces C,. k = 0.1: . . , B -  1 are finite 
sets and 

U , ( x ) = C ,  VxES,,k=0,1 : . . . N -  1. (6) 

Assumption B.3: The probabdities p:(x,u) .  i = 1,.  . . ,Z, of the elements 
of the finite set W, = { 1.2;. . , I , )  satisfy for all k  the Lipschitz condi- 
tion 

IPil(x.u)-P:(x',u')l<n7k~llx-x'll+IIu-u'll) 

Vx.x '€S , .u ,u 'E  U,.i€ W, (16) 

where E,, k = 0,l.. . . , N- 1 are positive constants. 
Prior  to  considering discretization of the  dynamic  programming 

algorithm we establish the Lipschitz continuity of the "cost-to-go" func- 
tions J ,  : S,+R of (1). (2). 

Proposition I :  Under Assumptions A or Assumptions B the functions 
J, :S , -+R,  k=0,1;.. . A - 1 .  given  by ( I ) ,  (2). satisfy 

I J , ( X ) - J , ( X ' ) I < A , ~ ~ X - X ' ~ ~  Vx,.r'€Sk.k=0,1:..,N (17) 

where A,, k = 0.1.' . . , X ,  are some positive constants. 

k = N  with A.h,=",. For k = N - 1  we have that for each x . . x ' ~ S , , - ,  
Prooj Under Assumptions A we have by (9) that (17) holds for 

Assumptions  B 

Assumption B.1: The control space C,.k=O, I : . .  .hr- 1 is a compact 
subset of a Euclidean space. The sets U,(x)  are  compact for every x E S, 
and in addition  the  set 

is compact. Furthermore  the sets U,(x)  satisfy 

U k ( x ) c L l , ( x ' ) + { u l ! I u I I ~ ~ p k l l x - x ' l l }  V x , x ' E S k ,  

k=O,I ; . . ,N-l  (12) 

where P, are positive constants. ( l k s  last assumption, (12),  is equivalent 
to assuming that the point-to-set map x+ U,(x)  is Lipschitz continuous 
in the Hausdorff metric sense [9].) 

Assumpfion 8.2:  The functions f,, g ,  satisfy the following Lipschitz 
conditions for all x ,x '  E S,, u, u' E U,, w E W,, k = 0.1.' . ,-V - 1 
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Now using (18), the Lipschitz condition Assumptions B.2,  B.3, and the 
above equality it is straightforward to show that 

IJN-I(x)-JN-I(x’)I 

where 

Strengthening the  above estimate and using (18) and  our assumptions we 
obtain 

IJN-I(X)-JN--I(X’)I<AN-IIIX-X’!I 
where 

and the result is proved for k =  N - 1. Similarly the result is proved 
under Assumptions B f o r d  k. Q.E.D. 

We now proceed to describe procedures for discretizing the algorithm 
(I), (2) under  Assumptions A and Assumptions B. 

Discretization Procedure Under Assumptions A 

We partition each compact set S, into n, mutually disjoint sets 
Si,S;,.. . . ,Sp such that Sk = UX and select arbitrary points 
x; E Sl ,  i = 1,. . . ,nk .  We  approximate the dynamic  programming 
algorithm (1):  (2),  by the following algorithm which is defined on the 
finite grids Gk where 

Gk={x/!~~;-.,~kn*} k=O,l; . . ,N-l .  (20) 
We have 

j N ( x ) = g N ( x )  if x E G,v (21) 

. i N ( x ) = g N ( x h )  if xESh,i=1,2;- . ,nN (22) 

.ik(x)=za:kg{ gk(X,U,W)fjk+l[fk(X,U,W)]IX,U,k} i f X E G k  (23) 

j k ( x ) = j k ( x L )  if xESL,i=1,2;. . ,nk,k=0,1 ..., N-1. (24) 

The algorithm above  corresponds  to  computing  the “cost-to-go” func- 
tions jk  on  the finite grid by means of the  dynamic programming 
algorithm (21),  (23): and extending their definition on the whole c?mpact 
set Sk by making them constant  on  each section S; of S,. Thus Jk may 
be viewed as a piecewise-constant approximation of Jk .  An alternative 
way of viewing the discretized algorithm (21),  (23) is to observe that it 
corresponds  to  a stochastic control problem involving a  certain finite 
state system (defined over the finite state spaces G,. . . I G N )  and  an 
appropriately  reformulated cost functional. 

Carrying out the  dynamic  programming algorithm (21), (23) involves a 
finite  number of operations. Simultaneously we obtain  an optimal con- 
trol law as a sequence of functions ;, : Gk+Ck 

defined  on  the respective grids G,, k =O; . . ,N-  1, where &(x;) maxi- 
m i z e s  the right-hand side of (23) when x =  x;, i =  1,2,- . . ,nk. We extend 
the  definition  of this control law over the whole state space by defining 
for everyxESk.  k=O,I;.-,N-l 

p k ( x ) = b k ( x ; )  if x E s ~ , i = l ; . . , n  k .  (25) 

Thus we obtain  a piecewise-constant control law {bpi,* .. ,pAr-l} 
defined over the whole space. The value of  $e cost functional corre- 
sponding  to { h,pI,. . . ,pN- is denoted by Jo(xo), and is obtained by 
the  last step of the algorithm 

i N ( x ) = g N ( x ) .  XES, (26) 

Denote by d, the maximum diameter of the sets S; 

We shall be interested in whether jk  and jk  converge in some sense to Jk 
for each  k as d, tends to zero. 

Discretization Procedure Under Assumptions B 

Here  the state spaces Sk are discretized in the  same way as under 
Assumptions A. In addition finite grids Hk of points in u k  are selected 

We assume that 

Uk(xL)nHk#@ V i = l ; ~ ~ , n , , k = O , l ; ~ - , N - l  

where (ZI denotes  the  empty set. 

algorithm: 

j N ( x ) = g N ( x )  if x E G ,  (31) 

j N ( x ) = g N ( x i )  if x E S b , i = l , . . . , n , v  (32) 

We now approximate  the algorithm (I), (2) by the following 

if x € G k  (33) 

j k ( x ) = j k ( x ; )  if xESL,i=1,2,-*. ,nk 

k=O?l , . . * ,N- l .  (34) 

Similarly as under  Assumptions A  we obtain a control  law 
{ ;o , . . . r f iN- l}  defined on the grids G,$k=O,I,...,N-l which is ex- 
tended  over  the  whole  state  space  to  yield  the  control  law 
{ k,p1; .. , P , ~ - ~ }  by means of the piecewise-constant approximation 
(25). The corresponding value io (xo)  of the cost functional is given by 
equations identical to (26),  (27). 

Again we are  interested in the question whether j, and ik converge in 
some sense to Jk for each  k as both d, and d, tend to zero where 

iO(X) . i l (X)> .  . .9i ,V-l(X) This  question is answered in the affirmative in the next section. 
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111. CONVERGENCE RESULTS (25)]. By using (23), (27), and (18),  we have 

The following proposition is the  main result of this short paper. It 
shows convergence of the discretization procedures and justifies the 
employment of the  control law obtained from the discretized algorithm 
as a  suboptimal  control law. 

Proposition 2: There  exist  positive  constants ao .a lr -  . . .a,\-$ 
&,PI;. . .& (independent of the grids G,,,..~.GN,Ho..~..HN-l used 
in the discretization procedure) such that under Assumptions A 

and under Assumptions B 

I J k ( x ) - ; k ( x ) I <  &(dS+dc) VxESkrk=O,l :... N (38) 

IJ,(x)-jk(x)I< &(ds+dc) VxESk,k=O,l; . . ,hr (39) 

where Jk,jk,jk,ds,dc are given  by (I) ,  (2), (21H24) [or (31)-(34)]. ( 2 6 t  
(281, (35). 

Proof: We first prove the proposition under Assumptions A.  We 
have by (21),  (22), JN(x)=JN(x) for all x E G,, while for  any XES;. 
i =  1;. . 

1 *N 

Hence (36) holds for k = N with aN = M N .  Also J N ( x )  = J,,(x). Vx E S,v 
and hence (37) also holds for k = N. 

Toprove (36) for k = N - 1  we have by (23) for any i=1.2,.-..nN-l 

where the last step follows by (40). 

tion 1 
Also for any x E SA- l , i =  1;. . ,nN- I we have using (41) and Proposi- 

IJN- l (~~-JN-I (x ) I=IJ ,v - I (x ) -J .~~- I (x .~~- I ) I  

Hence (36) holds for  k = N - I with aN- = A N -  + uN, and similarly it is 
shown to hold for all k. 

To prove (37) for k = N -  1 let XES.;.-,. We have by (24) and the 
previous inequality 

Iv. IhTINlTE HORIZON hOBLEhlS  WITH 

D I S C O L ~ D  COST FLWCTIONALS 

In this section we obtain  a convergence result for the case of an 
infinite horizon problem with a  discounted cost functional by making 
use of the results of the previous two sections. Consider  the  functional 
equation  for J ,  : S + R  

where c is the  discount  factor, O <  c < 1. This  equation is associated with 
a  stochastic  control problem over an infinite horizon involving the 
stationary system 
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with x,, : given and the  discounted cost functional 
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S X U X W it may be easily shown that for every m 

For a discussion of such problems we refer to [ I  11-[  131,  [15]. The 
notation adopted corresponds in the obvious manner to the  notation of 
Section 11. Time indices are dropped in view  of stationarity. All assump- 
tions of Section I1 made prior to Assumptions A or B are  in effect with 
obvious modifications to  account  for  stationarity. Again we may intro- 
duce assumptions  analogous  to Assumptions A and B for S, U(x) , f ,g  
and W (call them Assumptions A and B3 and corresponding discretiza- 
tion procedures. The assumption (5) in the infinite horizon setting is 
equivalent to assuming strong reachability of the set S as defined in [4], 
[5]. Many problems of practical interest must be appropriately reformu- 
lated in order  for this assumption to  be satisfied (see [5], [6D. The 
corresponding discretization grids are  denoted by 

n 

G = { X ' , X * ; . . , X " ) C S =  U Si 
i =  I 

H = { u ' , u 2 ; - . , u P } c U =  u U ( X ) .  
X € S  

The discretized functional  equation  under Assumptions A' is given by 

Under Assumptions B the discretized functional  equation becomes 

if x E G  (49) 

J , ( x ) = J , ( x ' )  if x ~ S ' , i = l ; - . , n .  (50) 

Under either Assumptions A or B each of the  functional  equations (44), 
(47H50)  has a unique solution in the  normed  space of all  bounded real 
valued functions over S with the sup-norm, which may be obtained from 
the fixed poin t  of certain  corresponding  contraction mappings [8], [15]. 
Furthermore  the solution of  (473-(50) together with associated stationary 
control laws can be conveniently calculated by Howard's policy iteration 
algorithm [l  11 or linear programming [ 141, [ 151, which require a finite 
number of arithmetical operations. 

Consider now for concreteness Assumptions A and let J"(x )  denote 
the  optimal value function corresponding to an m-stage truncation of the 
infinite horizon problem, Le., corresponding to the cost functional 

In view  of the fact that g(x ,u ,w)  is bounded  above and below over 

where r is  some positive constant. Consider also  the discretized 
algorithm  for  the m-stage truncated problem. We have  again 

while by Proposition 2 

where 

and a, is a positive scalar  depending on rn but  not  depending on the 
grid G and hence on ds. Combining (51H53)  and using the triangle 
inequality we have 

sup J J , ( x ) - J , ( x ) l <  - + a,ds, Vm E { 1,2;. . ). (54) 2rc 
X E S  1-c 

It follows that given any e > 0 there exists a 6 > 0 such that d, < 6 implies 

Equivalently it follows that 

It is also evident that (55) can be established under Assumptions B 
(analogous to Assumptions B of Section 11) in a similar manner. Equa- 
tion (55) shows the uniform convergence of the discretized algorithm and 
constitutes  the  basic result of this section. 
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