
IEEE Transactions on Automatic Control, Vol. 43, 1998, pp. 278-283

Implementation of Efficient Algorithms for Globally
Optimal Trajectories∗

L. C. Polymenakos†

D. P. Bertsekas‡

J. N. Tsitsiklis‡

Abstract

We consider a continuous-space shortest path problem in a two-dimensional plane.
This is the problem of finding a trajectory that starts at a given point, ends at the
boundary of a compact set of <2, and minimizes a cost function of the form

∫ T
0 r(x(t))dt+

q(x(T)). For a discretized version of this problem, a Dijkstra-like method that requires
one iteration per discretization point has been developed by Tsitsiklis [Tsi93]. Here we
develop some new label correcting-like methods based on the Small Label First methods
of Bertsekas [Ber93], and Bertsekas et. al. [BGM94]. We prove the finite termination of
these methods, and we present computational results showing that they are competitive

and often superior to the Dijkstra-like method.

∗Research Supported by NSF Grant No 9300494-DMI.
†Ph.D. Candidate, Laboratory for Information and Decision Systems, M.I.T., Cambridge, MA, 02139.
‡Professor, Laboratory for Information and Decision Systems, M.I.T., Cambridge, MA, 02139

1

2 Implementation of Efficient Algorithms for Globally Optimal Trajectories

1 Introduction: Problem Formulation

In this section we discuss a continuous-space shortest path problem and its discretization. Our
presentation follows closely [Tsi93]. We are given a bounded connected open subset G of <2

and a point x(0) ∈ G. A trajectory starting at x(0) is a continuous function x : [0, T] ∈ <2,
where T is some positive number, such that x(t) ∈ G for all t ∈ [0, T) and x(T) ∈ ∂G, where
∂G is the boundary of G. A trajectory is called admissible is there exists a measurable function
u : [0, T] → <2 such that

x(t) = x(0) +
∫ t

0
u(s)ds

and
‖u(t)‖ ≤ 1, ∀ t ∈ [0, T],

where ‖ · ‖ stands for the Euclidean norm. The cost of an admissible trajectory is defined as

∫ T

0
r(x(t))dt + q(x(T)),

where r : G → (0,∞) and q : ∂G → (0,∞) are given cost functions. We want to find an
admissible trajectory of least cost. Note that we have considered a two-dimensional space for
simplicity. The algorithms and the analysis of this paper admit straightforward generalizations
to higher dimensional spaces.

We consider a method for discretization of this problem described and analyzed by Kushner
and Dupuis [KuD90], who give several earlier references. We form a discretization grid using a
square centered at the origin whose corners are vectors w1, w2, w3, w4 of length h, as shown in
Fig. 1.1. This grid consists of two disjoint finite sets S and B such that for each x ∈ S, the set
of neighbors of x, defined by

N(x) = {x + hwi | i = 1, 2, 3, 4}

is a subset of S∪B. The set S is considered to be a discretization of G and the set B is considered
a discretization of ∂G. We also have two functions f : B → (0,∞) and g : S → (0,∞) that
represent discretizations of the cost functions q and r of the original problem, respectively. The
function g can be usually defined by g(x) = r(x) for every x ∈ S.

We now consider a finite-state optimal control problem, the states of which are the points
x ∈ S ∩B, also referred to as nodes . This problem fits within the framework of the stochastic
shortest problems discussed in [BeT89] and [BeT91], and is defined as follows: At a state x ∈ S,
we must choose a quadrant spanned by the vectors wα and wα+1, where α ∈ {1, 2, 3, 4}, and
w5 = w1, and then choose a parameter θ ∈ [0, 1], that specifies an element θwα + (1 − θ)wα+1

of the line segment connecting wα and wα+1. The cost of the choice (α, θ) is hg(x)τ (θ), where

τ (θ) =
√

θ2 + (1− θ)2,

and
hτ (θ) = ‖θwα + (1 − θ)wα+1‖

Implementation of Efficient Algorithms for Globally Optimal Trajectories 3

 w1

 w2

 w3

 w4

Figure 1.1: A square centered at the origin and the definition of the vectors w1, . . . , w4 of length
h.
[figure1]

is the distance travelled from x to the point θwα + (1− θ)wα+1. The next state is x + wα with
probability θα and x + wα+1 with probability 1− θ. Also, if the state x ∈ B is reached, then a
terminal cost f(x) is incurred and the process terminates.

The optimal cost-to-go function {V ∗(x) | x ∈ G ∪ ∂G} of the original problem, which is
the infimum of the costs of all admissible trajectories that start at x, is approximated by the
optimal cost function {V (x) | x ∈ S ∪ B} of the discretized problem. This latter function
satisfies the following Bellman equations, which can also be viewed as a discretization of the
Hamilton-Jacobi equation for the original problem:

V (x) = min
α=1,2,3,4

min
θ∈[0,1]

 hg(x)τ (θ)︸ ︷︷ ︸
traveling cost

+ θV (x + wα) + (1− θ)V (x + wα+1)︸ ︷︷ ︸
cost-to-go

 , x ∈ S (1.1)

V (x) = f (x), x ∈ B. (1.2)

The above equations, under reasonable assumptions, have a unique solution [BeT89], [BeT91].
We assume in the sequel that indeed Eqs. (1.1), and (1.2) have a unique solution satisfying
V (x) < ∞ for all x ∈ S ∪B. This implies in particular, that for every node x0 ∈ S there exists
at least one sequence of nodes x0, x1, . . . , xk, xk+1 such that xk+1 ∈ B and xi+1 ∈ N(xi), for all
i ∈ {0, . . . , k}. The theory of stochastic shortest path problems [BeT91], guarantees that the
successive approximation method will converge to the solution of the above equations, but does
not guarantee finite termination. However, here we have special structure that is implied by

4 Implementation of Efficient Algorithms for Globally Optimal Trajectories

the positivity of the cost g(x) and the shortest path character of the problem. A key property
in this regard is given in the following proposition, first proved in [Tsi93].

Proposition 1 Let V be the solution of the system of equations (1.1), (1.2). Let x ∈ S, and
let θ and α be such that V (x) = hg(x)τ (θ) + θV (x + wα) + (1 − θ)V (x + wα+1). If θ > 0 then
V (x) > V (x + wα). If 1− θ > 0 then V (x) > V (x + wα+1).

Using the above proposition, it was shown in [Tsi93] that a Gauss-Seidel algorithm that cy-
cles through the nodes terminates finitely. Furthermore, a Dijkstra-like algorithm that requires
only one iteration per node was proposed. As discussed in [Tsi93], the Dijkstra-like algorithm
is much faster in practice as well as in theory than the Jacobi and Gauss-Seidel methods that
are typically used to solve stochastic shortest path problems.

The objective of this paper is twofold. First, we introduce a broad class of successive ap-
proximation methods, which resembles the label correcting methods used to solve deterministic
shortest path problems. These methods can be viewed as Gauss-Seidel methods with the node
order used for iteration being arbitrary (not necessarily cyclical). We show that these methods
terminate (see Prop. 2 in the next section), although they may require more iterations than the
Dijkstra-like algorithm of [Tsi93]. Second, we develop several new label correcting-like meth-
ods, which try to approximate the operation of the Dijksra-like algorithm with smaller overhead
per iteration. These methods are patterned after the Smallest Label First (SLF) method of
[Ber93] and the Smallest Label First - Last Label Last (SLF-LLL) method of [BGM94], which
have been shown experimentally to be very effective for deterministic shortest path problems.
We provide computational results showing that these new methods are competitive and often
superior to the Dijkstra-like algorithm.

2 Generic Label Correcting Algorithm

In this section we describe a general algorithm for solving the stochastic shortest path problem
corresponding to the discretization discussed in section 1. The algorithm, referred to as generic,
is patterned after a generic label correcting method for deterministic shortest path problems;
see for example [GaP88], [Ber91]. It maintains a list of nodes L called the candidate list, and a
label V (x) for each node x ∈ S ∪B. Each label is either a real number or ∞. Initially,

L = B,

V (x) = f(x), ∀ x ∈ B,

V (x) = ∞, ∀ x ∈ S.

For convenience, we also keep track of the direction (α(x), θ(x)) along which the current label
of x was calculated. The algorithm proceeds in iterations and terminates when L is empty. The
typical iteration of the algorithm (assuming that L is not empty) is as follows:

Typical Iteration of the Generic Label Correcting Algorithm

Implementation of Efficient Algorithms for Globally Optimal Trajectories 5

Remove a node x from the candidate list L. For each neighbor y of x that also
belongs to S, if V (y) > V (x), calculate

Ṽ (y) = min
{α=1,2,3,4|x∈{y+wα,y+wα+1}}

min
θ∈[0,1]

[hg(y)τ (θ) + θV (y + wα) + (1− θ)V (y + wα+1)] .

Let (ã, θ̃) be the direction for which the minimum value Ṽ (y) is obtained. If V (y) >
Ṽ (y), then set V (y) = Ṽ (y), a(x) = ã, θ(x) = θ̃, and add y to L if it is not
already in L.

It can be seen that in the course of the algorithm the labels are monotonically nonincreasing
and that V (x) < ∞ if and only if x has entered the candidate list at least once. The following
lemma gives the main properties of the algorithm:

Proposition 2 1. At the end of each iteration the following conditions hold:

(a) V (x) = f(x) for all x ∈ B. Furthermore, nodes in B do not re-enter the candidate
list once removed.

(b) For all x ∈ S, if V (x) < ∞, then

V (x) ≥ hg(x)τ (θ) + θ(x)V (x + wα(x)) + (1− θ(x))V (x + wα(x)+1). (2.1)

(c) If for a node x ∈ S, there is a quadrant α such that x + wα /∈ L and x + wα+1 /∈ L,
then we have:

V (x) ≤ min
θ∈[0,1]

[hg(x)τ(θ) + θV (x + wα) + (1− θ)V (x + wα+1)] . (2.2)

2. The algorithm terminates. The set of labels {V (x) | x ∈ S∪B} obtained upon termination
solves Eqs. (1.1) and (1.2).

Proof:

1. Condition (a) holds since by the rules of the algorithm the labels of the border nodes
cannot change, and only nodes in S can re-enter the candidate list L.
We prove (b) as follows: Just after the label of x is reduced, we have

V (x) = hg(x)τ (θ) + θ(x)V (x + wα(x)) + (1− θ(x))V (x + wα(x)+1).

Since the labels of the neighboring nodes of x are nonincreasing, we see that Eq. (2.1)
holds in subsequent iterations until the value of x is recalculated.
To prove (c), note that initially the nodes not in L have infinite labels. Therefore, (c)
holds trivially at the beginning of the algorithm. Let us now fix a node x and its two
neighbors x+wα, x+wα+1 of some quadrant α. If neither of the nodes x +wα, x +wα+1

enters the candidate list L throughout the algorithm, then (c) holds since the label of
x is nonincreasing. Otherwise, at least one of the nodes x + wα, x + wα+1 enters L at
some time. Consider now an iteration k of the algorithm where node x + wα, or node

6 Implementation of Efficient Algorithms for Globally Optimal Trajectories

x + wα+1 exits L and as a result both nodes are not in L. At this iteration, the label
of x is recalculated and Eq. (2.2) is satisfied. Furthermore, Eq. (2.2) is satisfied in all
subsequent iterations of the algorithm until either termination is reached or one of the
nodes x + wα, x + wα+1 re-enters L at some iteration k′ > k. This is because, for all
iterations performed after k until either termination or iteration k′ is reached, the labels
of x+wα, x+wα+1 remain unchanged while the label of x is nonincreasing. We conclude
that Eq. (2.2) holds throughout the algorithm.

2. We assume that the algorithm does not terminate in order to reach a contradiction. Let
I be the set of nodes that enter L a positive but finite number of times, and let Ī be the
set of nodes that enter L an infinite number of times. Let also J be the set of nodes that
never enter L and whose labels are infinite throughout the algorithm. The sets I, Ī , and
J , and the labels of the nodes in I remain unchanged after some iteration denoted m̄.
Furthermore, the sets I and Ī are nonempty since from Prop. 2.1(a), B ⊂ I , implying
that I is nonempty, and the algorithm does not terminate, implying that Ī is nonempty.

Each time a node enters L, its label is smaller than the preceding time it entered L. Since
the label of a node is bounded below by zero, we conclude that the labels of the nodes in
I ∪ Ī converge. For a node x ∈ I ∪ Ī, let V ∞(x) denote the limiting value of the label of
x, and let α∞(x), θ∞(x) be such that

V ∞(x) = hg(x)τ(θ∞(x)) + θ∞(x)V∞(x + wα∞(x)) + (1− θ∞(x))V ∞(x + wα∞(x)+1). (2.3)

We also define the set P(x) of desired nodes of x as follows:

P(x) =

{x + wα∞(x)} if θ∞(x) = 1
{x + wα∞(x)+1} if θ∞(x) = 0
{x + wα∞(x), x + wα∞(x)+1} otherwise

We observe that, in view of Eq. (2.3), we have

P(x) ∩ Ī 6= ∅, ∀ x ∈ Ī,

since, after iteration m̄, for each x ∈ Ī , the labels of the nodes in P(x) ∩ I remain
constant, while the label of x decreases infinitely many times; if all nodes of P (x) were
in I, Eq. (2.3) would be violated. Thus, each node x ∈ Ī has at least one desired node
in Ī . Consequently, there exists a cycle of nodes of Ī, say (x1, x2, . . . , xk, xk+1) such that
xk+1 = x1 and xi+1 is a desired node of xi, for i = 1, . . . , k. From Prop. 1 we have that
V ∞(xi) > V ∞(xi+1) for all i = 1, . . . , k, which is a contradiction. Thus the algorithm
terminates.

Next we show that all nodes x ∈ S will exit L at least once, so that they must be finite
upon termination. In particular, let us consider a node x1 ∈ S and a sequence of nodes
(x1, . . . , xk, xk+1) such that xk+1 ∈ B and xi+1 ∈ N(xi), for all i = 1, . . . , k. As discussed
in Section 1, such a node sequence exists for every x1 ∈ S. Since the algorithm terminates,
the node xk+1 must exit L, since it belongs to L initially. When node xk+1 exits L, the

Implementation of Efficient Algorithms for Globally Optimal Trajectories 7

label of node xk is calculated and, if xk has never before entered L, its label becomes
finite and it enters L. Repeating this argument using xk in place of xk+1, and proceeding
similarly we can prove that each of the nodes xk−1, . . . , x1 will exit L at least once.

We finally note that upon termination, the list L is empty, so that both Eqs. (2.1) and
(2.2) hold for all x ∈ S, implying that the labels of the nodes satisfy the optimality
conditions (1.1). Q.E.D.

Different algorithms can be derived from our generic label correcting algorithm by using
different ways to choose the node that exits the candidate list at each iteration. In particular, if
a node with the smallest label is chosen to exit the list, then we obtain an analog of Dijkstra’s
algorithm. The key property of this algorithm is that once a node exits the list, it never re-enters
it, as shown in [Tsi93]. Other possibilities are to organize the list according to the schemes
described in [Ber93] and [BGM94]. In the following section we discuss implementations of such
schemes and give some computational results.

3 Implementing Dijkstra-Like and Label Correcting-Like

Algorithms

In this section we compare the Dijkstra-like algorithm discussed above and two recently de-
veloped label correcting algorithms (the SLF-LLL and the SLF-LLL-Threshold methods to be
presented below). The Dijkstra algorithm performs at most one iteration per node, but requires
some extra overhead per iteration. In the label correcting methods, the number of iterations is
larger than for the Dijkstra algorithm, but the overhead is smaller per iteration. The compu-
tational results show that there are cases where the label correcting algorithms outperform the
Dijkstra-like algorithm. In particular, on computer architectures where the computation over-
head is small due to the speed of the floating point operations, the label correcting algorithms
are strongly favored. This is encouraging for one more reason: label correcting algorithms are
parallelizable whereas the Dijkstra algorithm is not. The recent paper of Bertsekas, Guerriero,
and Musmanno [BGM94] explores the parallelization of the label correcting algorithms we con-
sider for the case of deterministic shortest path problems. Their computational results show
that parallelization leads to superlinear speedup, reducing dramatically the total number of
iterations the label correcting algorithms needed to converge. In any case, the algorithms that
we present here are much faster than the traditional algorithms described in [KuD90], where
the nodes are picked for iteration according to a certain fixed order.

3.1 The Algorithms

We describe the algorithms that we tested and we discuss several issues related to their efficient
implementation.

8 Implementation of Efficient Algorithms for Globally Optimal Trajectories

The Dijkstra Algorithm: In our implementation, we maintain the candidate list as a
binary heap. At each iteration, the node removed from the list is the top node i of the heap,
which is the node with the smallest label. As discussed above, node i is permanently labeled
and never enters the heap again. The labels of its temporary labeled neighbors are computed
and the respective nodes are inserted in the binary heap if they are not already there. Observe
that if a node i becomes permanently labeled, then at most three of its neighbors may enter
the binary heap, since at least one of its neighbors, the one having smaller label than node i,
is permanently labeled. The iterations proceed until the list is empty. Our binary heap code is
based on the SHEAP code for deterministic shortest paths of Gallo and Pallotino [GaP88]. In
the presentation of our results we will refer to the implementations of the Dijkstra-like algorithm
with the prefix “DIJ-”.

The Label Correcting-like Algorithms:

1. The SLF-LLL Method: In this algorithm, the candidate list is maintained as a queue.
Nodes enter the list according to the following Smallest Label First (SLF) criterion first
proposed in [Ber93]:

SLF criterion:Whenever a node i not already in the list enters the list, its label
V (i) is compared to the label V (j) of the top node j of the list. If V (i) ≤ V (j)
node i is inserted at the top of the list; otherwise node i is inserted at the bottom
of the list.

This criterion for insertion in the list is combined with another simple criterion for the
extraction of a node from the list. The extraction criterion is called Large Label Last
(LLL), and was proposed in [BGM94]. The node at the top of the list exits the list. If
its label is larger than the average of the labels of all the nodes in the list, then the node
is reinserted at the bottom of the list and its successor node in the list is extracted. This
procedure continues until a node with label less than or equal to the average of the labels
of all the nodes in the list is found. The labels of the neighboring nodes of the node
extracted from the list are recomputed and the corresponding nodes are inserted in the
list according to the SLF criterion.

2. The SLF-LLL-Threshold Method: This is a combination of the SLF-LLL method with
the threshold method of Glover et. al. [GGK86], (see [BGM94]). Here, the candidate
list maintained by the SLF-LLL method is divided in two lists: The nodes on the first
list are the ones that have labels less than or equal to some threshold value. Nodes are
inserted in both lists according to the SLF criterion. Nodes are extracted only from the
first list according to the LLL criterion. When the first list becomes empty, the threshold
is appropriately increased and nodes with label less than or equal to the new threshold
are removed from the second list and inserted to the first list according to the SLF
criterion. The method we chose for increasing the threshold is the following: Initially,
the threshold is set to the minimum node cost minx∈S g(x) plus a user-chosen percentage
of the maximum node cost maxx∈S g(x). Each time the first list empties, the threshold is

Implementation of Efficient Algorithms for Globally Optimal Trajectories 9

increased by the user-chosen percentage of the maximum node cost. If this increase was
not sufficient to transfer any nodes of the second list to the first list, the threshold is set
equal to the minimum node label in the second list plus the user-set percentage of the
maximum node cost. In the presentation of the computational results we will refer to the
SLF-LLL-Threshold algorithm with the prefix “SLF-LLL-TH-”.

In all the above implementations we have used certain tests that help avoid unnecessary
recomputations of the labels of the nodes. The reduction in computation obtained by these
tests is significant. Specifically, recall that the label of a node x is computed by performing
minimizations along four quadrants (parameter α) and the minimization in a particular quad-
rant is based on the labels of two neighboring nodes. In particular, we make the following
observations:

• When a node exits the list, only its neighbors with larger label need to have their label
recomputed (see Prop. 1).

• The recomputation of the label of a node needs to be made only in the quadrants that
involve the neighboring node that exited the list at the beginning of the current iteration.

• If the labels of the two neighboring nodes of node x in a particular quadrant have remained
the same since the last time that the label of x was calculated, no minimization using
that quadrant is needed. We consider implementations of the algorithms both with and
without keeping track of the labels of neighboring nodes. In the presentation of the
computational results we will distinguish the two implementations of an algorithm by
appending the suffixes “-NEIGH” and “-NO-NEIGH”, respectively, to the name of the
algorithm.

• Let two neighboring nodes of node x in a particular quadrant be i and j. If i has greater
label than the current label of x, then the simpler label update V (x) := min{V (x), hg(x)+
V (j)} can be used. Such a label evaluation will be referred to as simplified.

The implementations of all algorithms solve the problem of finding the optimal costs from all
nodes x ∈ S to some border point x̄. In particular, we have set f(x̄) = 0, and for all border
nodes x 6= x̄ we have set the cost f(x) to be a very large number.

3.2 The Test Problems

We implemented a test problem generator called GRIDQUAD. The test problems generated
are grids resulting from a square discretization of parallelograms with sides whose length is an
integer multiple of the discretization step h. Thus G is the interior of the parallelogram and
∂G is the border of the parallelogram. The corresponding discretizations S and B are easy to
obtain. Each node x ∈ S has an associated cost which is the discretized version of the positive
cost function r(x) defined on G. The program GRIDQUAD uses a quadratic function for r(x).
The cost of all boundary nodes x ∈ B is (effectively) infinity except for the two neighbors of the
top righthand corner of the parallelogram border. To make the test problems more interesting,

10 Implementation of Efficient Algorithms for Globally Optimal Trajectories

we have introduced obstacles, i.e., interior points of the parallelogram with infinite cost. These
are considered to be part of ∂G. In our test problems, obstacles occur in rows; all the points
on a row have infinite cost except for a segment of length kh where k is some positive integer.
Obstacle rows are equally spaced at a distance which is an integer multiple of the discretization
step h.

3.3 Test Results

We present the results of some of the computational experiments. The test problems are de-
scribed by giving the dimensions of the grid and the number of obstacles. Costs of interior points
are in the range [1-1000] and are generated by a quadratic function which has its maximum at
the center of the grid. For each algorithm we tested two implementations, one that keeps track
of the values of neighboring nodes in order to avoid unnecessary computations (suffix -NEIGH)
and one that does not maintain such information (suffix -NO-NEIGH). We report running times
on a Macintosh Powerbook 170 and on an Alpha-Dec computer running a version of UNIX.
We also report the number of iterations, label calculations, and simplified label calculations
performed by each algorithm to facilitate the comparison between the algorithms.

Our computational experiments indicate that the label correcting algorithms are competitive
with the Dijkstra algorithm. The SLF-LLL-TH algorithm outperforms consistently the Dijkstra
algorithm, while the SLF-LLL algorithm outperforms the Dijkstra algorithm on the Alpha-Dec
computer and is a bit slower than the Dijkstra algorithm on the Mac. On problems with
obstacles, all algorithms have similar running times. This is because the addition of obstacles
has an effect similar to breaking the problem to several smaller-sized problems. Therefore, the
data structures maintained by the algorithms for the choice of the node to exit the list contain
few nodes and thus need less overhead, leading to similar running times. The differences in
running times are more evident on problems without obstacles.

One final observation is that times on the Alpha-Dec seem to favor the SLF-LLL methods
a lot more than on the Mac. The extra iterations that the label correcting algorithms require
are outweighted on the Alpha-Dec by the amount of time spent on maintaining the heap in the
Dijkstra method. A similar effect is observed when we keep extra data to reduce calculations
(-NEIGH vs. -NO-NEIGH). Although the number of time consuming minimizations as in Eq.
(1.1) is reduced by keeping labels of neighbors, the running time is not improved. This may be
due to a higher penalty for memory access operations than for computations in the Alpha-Dec.

3.4 Conclusions

The computational results indicate that the methods presented in this paper are very efficient
and are apparently much faster than traditional Gauss-Seidel methods that cycle through the
nodes in a fixed order. Furthermore, the label correcting methods developed are parallelizable
as in [BGM94] and will likely lead to efficient parallel algorithms. Finally, the label correcting
methods we presented may also be used in the case where the cost function is of the form
r(x, u). In this case the theory of [Tsi93] cannot be applied and a Dijkstra-like algorithm is not
possible. However, the label correcting algorithms we proposed can be used as heuristics that

Implementation of Efficient Algorithms for Globally Optimal Trajectories 11

specify the order in which the label updates are performed. Their efficient implementation is
an interesting subject for further research.

References

[Ber91] Bertsekas, D. P., Linear Network Optimization, M.I.T. Press, 1991.

[Ber93] Bertsekas, D. P., “A Simple and Fast Label Correcting Algorithm for Shortest
Paths,” Networks, Vol. 23, pp. 703-709, 1993.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N. Parallel and Distributed Computation, Pren-
tice Hall, 1989.

[BeT91] Bertsekas, D. P., and Tsitsiklis, J. N. “An Analysis of Stochastic Shortest Path
Problems,” Math. of Operations Research, Vol. 16, 1991, pp. 580-595.

[BGM94] Bertsekas, D. P., Guerriero, F., and Musmanno, R., “Parallel Asynchronous Label
Correcting Methods for Shortest Paths,” Laboratory for Information and Decision
Systems Report, LIDS-P-2250, M.I.T., May 1994, to appear in JOTA.

[KuD90] Kushner, H. J., and Dupuis, P. G., Numerical Methods for Stochastic Control Prob-
lems in Continuous Time, Springer-Verlag, New York, 1992.

[GaP88] Gallo, G., S., and Pallotino, S., “Shortest Path ALgorithms,” Annals of Operations
Research, Vol. 7, pp. 3-79, 1988.

[GGK86] Glover, F., Glover, R., and Klingman, D., “The Threshold Shortest Path Algo-
rithm,” Networks, Vol. 14, No. 1, 1986.

[Tsi93] Tsitsiklis, J. N.,“Efficient Algorithms for Globally Optimal Trajectories,” Labora-
tory for Information and Decision Systems Report, LIDS-P-2210, M.I.T., October
1993, to appear in IEEE Transactions on Automatic Control.

12 Implementation of Efficient Algorithms for Globally Optimal Trajectories

Problem DIJ-NO-NEIGH DIJ-NEIGH SLF-LLL-NO-NEIGH SLF-LLL-NEIGH
150X150 22.02/0.38 20.8/0.52 25.45/0.42 23.65/0.4
No Obst. 21904/43230/43796 21904/21721/43796 32976/61605/69195 32976/32976/69195

150X150 20.73/0.32 19.60/0.45 20.20/0.33 18.37/0.31
3 Obst. 21474/41469/42977 21474/20873/42977 26131/49214/53138 26131/29234/53138

100X200 19.27/0.29 18.08/0.35 22.95/0.37 22.18/0.35
No Obst. 19404/38289/38787 19404/19193/38787 30729/54588/67360 30729/37368/67360

50X250 11.47/0.169 10.73/0.177 14.48/0.244 14.18/0.23
No Obst. 11904/23232/23794 11904/11650/23794 19505/33574/43556 19505/24553/43556
100X225 21.70/0.33 20.47/0.388 26.67/0.427 26.15/0.4
No Obst 21854/43057/43719 21854/21609/43719 35777/63405/78777 35777/44971/78777
100X225 20.42/0.32 19.25/0.406 19.60/0.371 18.08/0.346
3 Obst. 21387/41191/42783 21387/21387/42783 25590/47856/52116 25590/29373/52116
300X300 */2.05 */2.63 */1.73 */1.71
No Obst. 88804/176412/177614 88804/88450/177614 132476/248243/280171 132476/155172/280171
300X300 */.86 */2.44 */1.5 */1.476
3 Obst 87924/172819/175927 87924/86716/175927 113448/216430/232960 113448/131261/232960

500X500 */6.99 */8.49 */5.25 */5.38
No Obst. 248004/493991/496035 248004/247471/496035 394289/742420/830920 394289/344023/830920

Table 1: Computational results on the Mac and Alpha-Dec. On each problem line, the numbers
on top are the times in seconds on the different machines, and the numbers at the bottom are
the Iterations/label Calculations/Simplified label Calculations. All problems were generated by
the GRIDQUAD program. The cost assigned to a grid position (x, y) which is not a boundary

point or an obstacle is given by 1001−1000 10(x−x0)2+40(y−y0)2

10(x0+1)2+40(y0+1)2 , where (x0, y0) is the central point
of the grid.

