
Convex Optimization Theory

Athena Scientific, 2009

by

Dimitri P. Bertsekas

Massachusetts Institute of Technology

Supplementary Chapter 6 on

Convex Optimization Algorithms

This chapter aims to supplement the book Convex Optimization Theory,
Athena Scientific, 2009 with material on convex optimization algorithms.
The chapter will be periodically updated. This version is dated

May 1, 2014

6

Convex Optimization

Algorithms

Contents

6.1. Convex Optimization Models: An Overview p. 251
6.1.1. Lagrange Dual Problems p. 251
6.1.2. Fenchel Duality and Conic Programming p. 257
6.1.3. Additive Cost Problems p. 269
6.1.4. Large Number of Constraints p. 272
6.1.5. Exact Penalty Functions p. 275

6.2. Algorithmic Descent - Steepest Descent p. 282
6.3. Subgradient Methods p. 286

6.3.1. Convergence Analysis p. 291
6.3.2. ǫ-Subgradient Methods p. 298
6.3.3. Incremental Subgradient Methods p. 301
6.3.4. Randomized Incremental Subgradient Methods . . p. 308

6.4. Polyhedral Approximation Methods p. 315
6.4.1. Outer Linearization - Cutting Plane Methods . . . p. 316
6.4.2. Inner Linearization - Simplicial Decomposition . . p. 323
6.4.3. Duality of Outer and Inner Linearization p. 326
6.4.4. Generalized Simplicial Decomposition p. 328
6.4.5. Generalized Polyhedral Approximation p. 334
6.4.6. Simplicial Decomposition for Conic Programming . p. 347

6.5. Proximal Methods p. 357
6.5.1. Proximal Algorithm p. 359
6.5.2. Proximal Cutting Plane Method p. 369
6.5.3. Bundle Methods p. 371

6.6. Dual Proximal Algorithms p. 375
6.6.1. Proximal Inner Linearization Methods p. 377
6.6.2. Augmented Lagrangian Methods p. 381

249

250 Convex Optimization Algorithms Chap. 6

6.7. Incremental Proximal Methods p. 384
6.7.1. Incremental Subgradient-Proximal Methods . . . p. 390
6.7.2. Incremental Constraint Projection-Proximal Methods p. 396

6.8. Generalized Proximal Algorithms and Extensions . . . p. 398
6.9. Interior Point Methods p. 406

6.9.1. Primal-Dual Methods for Linear Programming . . p. 410
6.9.2. Interior Point Methods for Conic Programming . . p. 415

6.10. Gradient Projection - Optimal Complexity Algorithms p. 416
6.10.1. Gradient Projection Methods p. 417
6.10.2. Gradient Projection with Extrapolation p. 423
6.10.3. Nondifferentiable Cost – Smoothing p. 427
6.10.4. Proximal Gradient Methods p. 430

6.11. Notes, Sources, and Exercises p. 431
References . p. 451

Sec. 6.1 Convex Optimization Models: An Overview 251

In this supplementary chapter, we discuss several algorithmic approaches
for minimizing convex functions. A major type of problem that we aim to
solve is dual problems, which by their nature involve convex nondifferen-
tiable minimization. The fundamental reason is that the negative of the
dual function in the MC/MC framework is typically a conjugate function
(cf. Section 4.2.1), which is generically closed and convex, but often non-
differentiable (it is differentiable only at points where the supremum in the
definition of conjugacy is uniquely attained; cf. Prop. 5.4.3). Accordingly
most of the algorithms that we discuss do not require differentiability for
their application. We refer to general nonlinear programming textbooks
for methods (e.g., [Ber99]) that rely on differentiability, such as gradient
and Newton-type methods.

6.1 CONVEX OPTIMIZATION MODELS: AN OVERVIEW

We begin with a broad overview of some important types of convex op-
timization problems, and some of their principal characteristics. Convex
optimization algorithms have a broad range of applications, but they are
particularly useful for large/challenging problems with special structure,
usually connected in some way to duality. We discussed in Chapter 5 two
important duality structures. The first is Lagrange duality for constrained
optimization, which arises by assigning dual variables to inequality con-
straints. The second is Fenchel duality together with its special case, conic
duality. Both of these duality structures arise often in applications, and in
this chapter we provide an overview and discuss some examples in Sections
6.1.1 and 6.1.2, respectively. In Sections 6.1.3 and 6.1.4, we discuss some
additional structures involving a large number of additive terms in the cost,
or a large number of constraints. These types of problems also arise often
in the context of duality. Finally, in Section 6.1.5, we discuss an impor-
tant technique, based on conjugacy and duality, whereby we can transform
convex constrained optimization problems to equivalent unconstrained (or
less constrained) ones.

6.1.1 Lagrange Dual Problems

We first focus on Lagrange duality (cf. Sections 5.3.1-5.3.4). It involves the
problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(6.1)

where X is a set, g(x) =
(

g1(x), . . . , gr(x)
)′
, and f : X 7→ ℜ and gj : X 7→

ℜ, j = 1, . . . , r, are given functions. We refer to this as the primal problem,
and we denote its optimal value by f∗.

252 Convex Optimization Algorithms Chap. 6

The dual problem is

maximize q(µ)

subject to µ ∈ ℜr, µ ≥ 0,
(6.2)

where the dual function q is given by

q(µ) = inf
x∈X

L(x, µ), µ ≥ 0, (6.3)

and L is the Lagrangian function defined by

L(x, µ) = f(x) + µ′g(x), x ∈ X, µ ∈ ℜr.

The dual optimal value is

q∗ = sup
µ∈ℜr

q(µ).

The weak duality relation q∗ ≤ f∗ is easily shown by writing for all µ ≥ 0,
and x ∈ X with g(x) ≤ 0,

q(µ) = inf
z∈X

L(z, µ) ≤ f(x) +
r
∑

j=1

µjgj(x) ≤ f(x),

so
q∗ = sup

µ≥0
q(µ) ≤ inf

x∈X, g(x)≤0
f(x) = f∗.

We state this formally as follows.

Proposition 6.1.1: (Weak Duality Theorem) For any feasible
solutions x and µ of the primal and dual problems, respectively, we
have q(µ) ≤ f(x). Moreover, q∗ ≤ f∗.

Generally the solution process is simplified when strong duality holds.
The following strong duality result has been shown in Prop. 5.3.1.

Proposition 6.1.2: (Convex Programming Duality - Existence
of Dual Optimal Solutions) Consider the problem (6.1). Assume
that f∗ is finite, and that one of the following two conditions holds:

(1) There exists x ∈ X such that gj(x) < 0 for all j = 1, . . . , r.

(2) The functions gj, j = 1, . . . , r, are affine, and there exists x ∈
ri(X) such that g(x) ≤ 0.

Then q∗ = f∗ and the set of optimal solutions of the dual problem is
nonempty. Under condition (1) this set is also compact.

Sec. 6.1 Convex Optimization Models: An Overview 253

The following proposition gives necessary and sufficient conditions for
optimality (see Prop. 5.3.2).

Proposition 6.1.3: (Optimality Conditions) Consider the prob-
lem (6.1). There holds q∗ = f∗, and (x∗, µ∗) are a primal and dual
optimal solution pair if and only if x∗ is feasible, µ∗ ≥ 0, and

x∗ ∈ argmin
x∈X

L(x, µ∗), µ∗
jgj(x

∗) = 0, j = 1, . . . , r. (6.4)

Partially Polyhedral Constraints

The preceding results for the inequality-constrained problem (6.1) can be
refined by making more specific assumptions regarding available polyhedral
structure in the constraint functions and the abstract constraint set X . Let
us first consider an extension of problem (6.1) where there are additional
linear equality constraints:

minimize f(x)

subject to x ∈ X, g(x) ≤ 0, Ax = b,
(6.5)

where X is a convex set, g(x) =
(

g1(x), . . . , gr(x)
)′
, f : X 7→ ℜ and

gj : X 7→ ℜ, j = 1, . . . , r, are convex functions, A is an m× n matrix, and
b ∈ ℜm. We can deal with this problem by simply converting the constraint
Ax = b to the equivalent set of linear inequality constraints

Ax ≤ b, −Ax ≤ −b, (6.6)

with corresponding dual variables λ+ ≥ 0 and λ− ≥ 0. The Lagrangian
function is

f(x) + µ′g(x) + (λ+ − λ−)′(Ax− b),

and by introducing a dual variable

λ = λ+ − λ− (6.7)

with no sign restriction, it can be written as

L(x, µ, λ) = f(x) + µ′g(x) + λ′(Ax− b).

The dual problem is

maximize inf
x∈X

L(x, µ, λ)

subject to µ ≥ 0, λ ∈ ℜm.

254 Convex Optimization Algorithms Chap. 6

The following is the standard duality result; see Prop. 5.3.5.

Proposition 6.1.4: (Convex Programming - Linear Equality
and Nonlinear Inequality Constraints) Consider problem (6.5).
Assume that f∗ is finite, that there exists x ∈ X such that Ax = b
and g(x) < 0, and that there exists x̃ ∈ ri(X) such that Ax̃ = b. Then
q∗ = f∗ and there exists at least one dual optimal solution.

In the special case of a problem with just linear equality constraints:

minimize f(x)

subject to x ∈ X, Ax = b,
(6.8)

the Lagrangian function is

L(x, λ) = f(x) + λ′(Ax − b),

and the dual problem is

maximize inf
x∈X

L(x, λ)

subject to λ ∈ ℜm.

The corresponding duality result is given as Prop. 5.3.3, and for the case
where there are additional linear inequality constraints, as Prop. 5.3.4.

Discrete Optimization and Lower Bounds

The preceding propositions deal with situations where the most favorable
form of duality (q∗ = f∗) holds. However, duality can be useful even when
there is duality gap, as often occurs in problems of the form (6.1) that have
a finite constraint set X . An example is integer programming, where the
components of x must be integers from a bounded range (usually 0 or 1).
An important special case is the linear 0-1 integer programming problem

minimize c′x

subject to Ax ≤ b, xi = 0 or 1, i = 1, . . . , n.

A principal approach for solving such problems is the branch-and-

bound method , which is described in many sources. This method relies on
obtaining lower bounds to the optimal cost of restricted problems of the
form

minimize f(x)

subject to x ∈ X̃, g(x) ≤ 0,

Sec. 6.1 Convex Optimization Models: An Overview 255

where X̃ is a subset of X ; for example in the 0-1 integer case where X
specifies that all xi should be 0 or 1, X̃ may be the set of all 0-1 vectors
x such that one or more components xi are fixed at either 0 or 1 (i.e., are
restricted to satisfy xi = 0 for all x ∈ X̃ or xi = 1 for all x ∈ X̃). These
lower bounds can often be obtained by finding a dual-feasible (possibly
dual-optimal) solution µ of this problem and the corresponding dual value

q(µ) = inf
x∈X̃

{

f(x) + µ′g(x)
}

, (6.9)

which by weak duality, is a lower bound to the optimal value of the re-
stricted problem minx∈X̃, g(x)≤0 f(x). When X̃ is finite, q is concave and
polyhedral, so that solving the dual problem amounts to minimizing the
polyhedral function −q over the nonnegative orthant.

Separable Problems - Decomposition

Let us now discuss an important problem structure that involves Lagrange
duality, and arises frequently in applications. Consider the problem

minimize
n
∑

i=1

fi(xi)

subject to a′jx ≤ bj , j = 1, . . . , r,

(6.10)

where x = (x1, . . . , xn), each fi : ℜ 7→ ℜ is a convex function of the
single scalar component xi, and aj and bj are some vectors and scalars,
respectively. Then by assigning a dual variable µj to the constraint a′jx ≤
bj , we obtain the dual problem [cf. Eq. (6.2)]

maximize
n
∑

i=1

qi(µ)−
r
∑

j=1

µjbj

subject to µ ≥ 0,

(6.11)

where

qi(µ) = inf
xi∈ℜ

fi(xi) + xi

r
∑

j=1

µjaji

,

and µ = (µ1, . . . , µr). Note that the minimization involved in the calcu-
lation of the dual function has been decomposed into n simpler minimiza-
tions. These minimizations are often conveniently done either analytically
or computationally, in which case the dual function can be easily evalu-
ated. This is the key advantageous structure of separable problems: it
facilitates computation of dual function values (as well as subgradients as
we will see in Section 6.3), and it is amenable to decomposition/distributed
computation.

256 Convex Optimization Algorithms Chap. 6

There are also other separable problems that are more general than
the one of Eq. (6.10). An example is when x has m components x1, . . . , xm
of dimensions n1, . . . , nm, respectively, and the problem has the form

minimize

m
∑

i=1

fi(xi)

subject to
m
∑

i=1

gi(xi) ≤ 0, xi ∈ Xi, i = 1, . . . ,m,

(6.12)

where fi : ℜni 7→ ℜ and gi : ℜni 7→ ℜr are given functions, and Xi are
given subsets of ℜni . The advantage of convenient computation of the dual
function value using decomposition extends to such problems as well. We
may also note that when the components x1, . . . , xm are one-dimensional,
and the functions fi and sets Xi are convex, there is a particularly fa-
vorable strong duality result for the separable problem (6.12), even when
the constraint functions gi are nonlinear but consist of convex components
gij : ℜ 7→ ℜ, j = 1, . . . , r; see Tseng [Tse09].

Partitioning

An important point regarding large-scale optimization problems is that
there are several different ways to introduce duality in their solution. For
example an alternative strategy to take advantage of separability, often
called partitioning, is to divide the variables in two subsets, and minimize
first with respect to one subset while taking advantage of whatever simpli-
fication may arise by fixing the variables in the other subset. In particular,
the problem

minimize F (x) +G(y)

subject to Ax+By = c, x ∈ X, y ∈ Y,

can be written as

minimize F (x) + inf
By=c−Ax, y∈Y

G(y)

subject to x ∈ X,

or
minimize F (x) + p(c−Ax)

subject to x ∈ X,

where p is the primal function of the minimization problem involving y
above:

p(u) = inf
By=u, y∈Y

G(y);

(cf. Section 4.2.3). This primal function and its subgradients can often be
conveniently calculated using duality.

Sec. 6.1 Convex Optimization Models: An Overview 257

6.1.2 Fenchel Duality and Conic Programming

We recall the Fenchel duality framework from Section 5.3.5. It involves the
problem

minimize f1(x) + f2(Ax)

subject to x ∈ ℜn,
(6.13)

where A is an m× n matrix, f1 : ℜn 7→ (−∞,∞] and f2 : ℜm 7→ (−∞,∞]
are closed convex functions, and we assume that there exists a feasible solu-
tion. The dual problem, after a sign change to convert it to a minimization
problem, can be written as

minimize f⋆
1 (A

′λ) + f⋆
2 (−λ)

subject to λ ∈ ℜm,
(6.14)

where f⋆
1 and f⋆

2 are the conjugate functions of f1 and f2. We denote by
f∗ and q∗ the optimal primal and dual values. The following is given as
Prop. 5.3.8.

Proposition 6.1.5: (Fenchel Duality)

(a) If f∗ is finite and
(

A · ri
(

dom(f1)
))

∩ ri
(

dom(f2)
)

6= Ø, then
f∗ = q∗ and there exists at least one dual optimal solution.

(b) There holds f∗ = q∗, and (x∗, λ∗) is a primal and dual optimal
solution pair if and only if

x∗ ∈ arg min
x∈ℜn

{

f1(x)−x′A′λ∗
}

and Ax∗ ∈ arg min
z∈ℜn

{

f2(z)+z′λ∗
}

.

(6.15)

An important problem structure, which can be analyzed as a special
case of the Fenchel duality framework is the conic programming problem
discussed in Section 5.3.6:

minimize f(x)

subject to x ∈ C,
(6.16)

where f : ℜn 7→ (−∞,∞] is a closed proper convex function and C is a
closed convex cone in ℜn.

Indeed, let us apply Fenchel duality with A equal to the identity and
the definitions

f1(x) = f(x), f2(x) =
{

0 if x ∈ C,
∞ if x /∈ C.

258 Convex Optimization Algorithms Chap. 6

The corresponding conjugates are

f⋆
1 (λ) = sup

x∈ℜn

{

λ′x− f(x)
}

, f⋆
2 (λ) = sup

x∈C

λ′x =

{

0 if λ ∈ C∗,
∞ if λ /∈ C∗,

where

C∗ = {λ | λ′x ≤ 0, ∀ x ∈ C}

is the polar cone of C (note that f⋆
2 is the support function of C; cf.

Example 1.6.1). The dual problem [cf. Eq. (6.14)] is

minimize f⋆(λ)

subject to λ ∈ Ĉ,
(6.17)

where f⋆ is the conjugate of f and Ĉ is the negative polar cone (also called
the dual cone of C):

Ĉ = −C∗ = {λ | λ′x ≥ 0, ∀ x ∈ C}.

Note the symmetry between the primal and dual problems (6.16) and
(6.17). The strong duality relation f∗ = q∗ can be written as

inf
x∈C

f(x) = − inf
λ∈Ĉ

f⋆(λ).

The following proposition translates the conditions of Prop. 6.1.5 to
guarantee that there is no duality gap and that the dual problem has an
optimal solution (cf. Prop. 5.3.9).

Proposition 6.1.6: (Conic Duality Theorem) Assume that the
optimal value of the primal conic problem (6.16) is finite, and that
ri
(

dom(f)
)

∩ ri(C) 6= Ø. Then, there is no duality gap and the dual
problem (6.17) has an optimal solution.

Using the symmetry of the primal and dual problems, we also obtain
that there is no duality gap and the primal problem (6.16) has an optimal
solution if the optimal value of the dual conic problem (6.17) is finite and
ri
(

dom(f⋆)
)

∩ ri(Ĉ) 6= Ø. It is also possible to exploit polyhedral structure
in f and/or C, using Prop. 5.3.6. Furthermore, we may derive primal and
dual optimality conditions using Prop. 6.1.5(b).

Sec. 6.1 Convex Optimization Models: An Overview 259

Linear-Conic Problems

An important special case of conic programming, called linear-conic prob-

lem, arises when dom(f) is affine and f is linear over dom(f), i.e.,

f(x) =

{

c′x if x ∈ b+ S,
∞ if x /∈ b+ S,

where b and c are given vectors, and S is a subspace. Then the primal
problem can be written as

minimize c′x

subject to x− b ∈ S, x ∈ C.
(6.18)

To derive the dual problem, we note that

f⋆(λ) = sup
x−b∈S

(λ− c)′x

= sup
y∈S

(λ − c)′(y + b)

=

{

(λ− c)′b if λ− c ∈ S⊥,
∞ if λ− c /∈ S⊥.

It can be seen that the dual problem (6.17), after discarding the superfluous
term c′b from the cost, can be written as

minimize b′λ

subject to λ− c ∈ S⊥, λ ∈ Ĉ.
(6.19)

Figure 6.1.1 illustrates the primal and dual linear-conic problems.
The following proposition translates the conditions of Prop. 6.1.6 to

the linear-conic duality context.

Proposition 6.1.7: (Linear-Conic Duality Theorem) Assume
that the primal problem (6.18) has finite optimal value. Assume fur-
ther that either (b+S)∩ ri(C) 6= Ø or C is polyhedral. Then, there is
no duality gap and the dual problem has an optimal solution.

Proof: Under the condition (b + S) ∩ ri(C) 6= Ø, the result follows from
Prop. 6.1.6. For the case where C is polyhedral, the result follows from the
more refined version of the Fenchel duality theorem, discussed at the end
of Section 5.3.5. Q.E.D.

260 Convex Optimization Algorithms Chap. 6

x∗

λ∗

b

c

b + S

c + S⊥

C = Ĉ

λ ∈ (c + S⊥) ∩ Ĉ

(Dual)

x∈(b+S)∩C

(Primal)

Figure 6.1.1. Illustration of primal and dual linear-conic problems for the case of
a 3-dimensional problem, 2-dimensional subspace S, and a self-dual cone (C = Ĉ);
cf. Eqs. (6.18) and (6.19).

Special Forms of Linear-Conic Problems

The primal and dual linear-conic problems (6.18) and (6.19) have been
placed in an elegant symmetric form. There are also other useful formats
that parallel and generalize similar formats in linear programming (cf. Ex-
ample 4.2.1 and Section 5.2). For example, we have the following dual
problem pairs:

min
Ax=b, x∈C

c′x ⇐⇒ max
c−A′λ∈Ĉ

b′λ, (6.20)

min
Ax−b∈C

c′x ⇐⇒ max
A′λ=c, λ∈Ĉ

b′λ, (6.21)

where x ∈ ℜn, λ ∈ ℜm, c ∈ ℜn, b ∈ ℜm, and A is an m× n matrix.
To verify the duality relation (6.20), let x be any vector such that

Ax = b, and let us write the primal problem on the left in the primal conic
form (6.18) as

minimize c′x

subject to x− x ∈ N(A), x ∈ C,
(6.22)

where N(A) is the nullspace of A. The corresponding dual conic problem
(6.19) is to solve for µ the problem

minimize x′µ

subject to µ− c ∈ N(A)⊥, µ ∈ Ĉ.
(6.23)

Sec. 6.1 Convex Optimization Models: An Overview 261

Since N(A)⊥ is equal to Ra(A′), the range of A′, the constraints of problem
(6.23) can be equivalently written as c−µ ∈ −Ra(A′) = Ra(A′), µ ∈ Ĉ, or

c− µ = A′λ, µ ∈ Ĉ,

for some λ ∈ ℜm. Making the change of variables µ = c − A′λ, the dual
problem (6.23) can be written as

minimize x′(c−A′λ)

subject to c−A′λ ∈ Ĉ.

By discarding the constant x′c from the cost function, using the fact Ax =
b, and changing from minimization to maximization, we see that this dual
problem is equivalent to the one in the right-hand side of the duality pair
(6.20). The duality relation (6.21) is proved similarly.

We next discuss two important special cases of conic programming:
second order cone programming and semidefinite programming. These pro-
blems involve some special cones, and an explicit definition of the affine
set constraint. They arise in a variety of practical settings, and their com-
putational difficulty tends to lie between that of linear and quadratic pro-
gramming on one hand, and general convex programming on the other
hand.

Second Order Cone Programming

Consider the cone

C =

{

(x1, . . . , xn) | xn ≥
√

x21 + · · ·+ x2n−1

}

,

known as the second order cone (see Fig. 6.1.2). The dual cone is

Ĉ = {y | 0 ≤ y′x, ∀ x ∈ C} =

{

y

∣

∣

∣

∣

∣

0 ≤ inf
‖(x1,...,xn−1)‖≤xn

y′x

}

,

and it can be shown that Ĉ = C. This property is referred to as self-duality
of the second order cone, and is fairly evident from Fig. 6.1.2. For a proof,
we write

inf
‖(x1,...,xn−1)‖≤xn

y′x = inf
xn≥0

{

ynxn + inf
‖(x1,...,xn−1)‖≤xn

n−1
∑

i=1

yixi

}

= inf
xn≥0

{

ynxn − ‖(y1, . . . , yn−1)‖ xn
}

=

{

0 if ‖(y1, . . . , yn−1)‖ ≤ yn,
−∞ otherwise.

262 Convex Optimization Algorithms Chap. 6

x1

x2

x3

x1

1 x2

2 x3

Figure 6.1.2. The second order cone in ℜ3:

C =

{

(x1, . . . , xn) | xn ≥
√

x2
1 + · · ·+ x2

n−1

}

.

Combining the last two relations, we have

y ∈ Ĉ if and only if 0 ≤ yn − ‖(y1, . . . , yn−1)‖,
so Ĉ = C.

Note that linear inequality constraints of the form a′ix − bi ≥ 0 can
be written as

(

0
a′i

)

x−
(

0
bi

)

∈ Ci,

where Ci is the second order cone of ℜ2. As a result, linear-conic problems
involving second order cones contain as special cases linear programming
problems.

The second order cone programming problem (SOCP for short) is

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,
(6.24)

where x ∈ ℜn, c is a vector in ℜn, and for i = 1, . . . ,m, Ai is an ni × n
matrix, bi is a vector in ℜni , and Ci is the second order cone of ℜni . It is
seen to be a special case of the primal problem in the left-hand side of the
duality relation (6.21), where

A =

A1
...
Am

 , b =

b1
...
bm

 , C = C1 × · · · × Cm.

Sec. 6.1 Convex Optimization Models: An Overview 263

Thus from the right-hand side of the duality relation (6.21), and the
self-duality relation C = Ĉ, the corresponding dual linear-conic problem
has the form

maximize

m
∑

i=1

b′iλi

subject to

m
∑

i=1

A′
iλi = c, λi ∈ Ci, i = 1, . . . ,m,

(6.25)

where λ = (λ1, . . . , λm). By applying the duality result of Prop. 6.1.7, we
have the following.

Proposition 6.1.8: (Second Order Cone Duality Theorem)
Consider the primal SOCP (6.24), and its dual problem (6.25).

(a) If the optimal value of the primal problem is finite and there
exists a feasible solution x such that

Aix− bi ∈ int(Ci), i = 1, . . . ,m,

then there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exists
a feasible solution λ = (λ1, . . . , λm) such that

λi ∈ int(Ci), i = 1, . . . ,m,

then there is no duality gap, and the primal problem has an
optimal solution.

Note that while Prop. 6.1.7 requires a relative interior point condition,
the preceding proposition requires an interior point condition. The reason
is that the second order cone has nonempty interior, so its relative interior
coincides with its interior.

The SOCP arises in many application contexts, and significantly, it
can be solved numerically with powerful specialized algorithms that belong
to the class of interior point methods, to be discussed in Chapter 3. We
refer to the literature for a more detailed description and analysis (see e.g.,
Ben-Tal and Nemirovski [BeT01], and Boyd and Vanderberghe [BoV04]).

Generally, SOCPs can be recognized from the presence of convex
quadratic functions in the cost or the constraint functions. The following
are illustrative examples.

264 Convex Optimization Algorithms Chap. 6

Example 6.1.1: (Robust Linear Programming)

Frequently, there is uncertainty about the data of an optimization problem,
so one would like to have a solution that is adequate for a whole range of
the uncertainty. A popular formulation of this type, is to assume that the
constraints contain parameters that take values in a given set, and require that
the constraints are satisfied for all values in that set. This approach is also
known as a set membership description of the uncertainty and has also been
used in fields other than optimization, such as set membership estimation,
and minimax control.

As an example, consider the problem

minimize c′x

subject to a′jx ≤ bj , ∀ (aj , bj) ∈ Tj , j = 1, . . . , r,
(6.26)

where c ∈ ℜn is a given vector, and Tj is a given subset of ℜn+1 to which
the constraint parameter vectors (aj , bj) must belong. The vector x must
be chosen so that the constraint a′jx ≤ bj is satisfied for all (aj , bj) ∈ Tj ,
j = 1, . . . , r.

Generally, when Tj contains an infinite number of elements, this prob-
lem involves a correspondingly infinite number of constraints. To convert the
problem to one involving a finite number of constraints, we note that

a′jx ≤ bj , ∀ (aj , bj) ∈ Tj if and only if gj(x) ≤ 0,

where
gj(x) = sup

(aj,bj)∈Tj

{a′jx− bj}. (6.27)

Thus, the robust linear programming problem (6.26) is equivalent to

minimize c′x

subject to gj(x) ≤ 0, j = 1, . . . , r.

For special choices of the set Tj , the function gj can be expressed in
closed form, and in the case where Tj is an ellipsoid, it turns out that the
constraint gj(x) ≤ 0 can be expressed in terms of a second order cone. To see
this, let

Tj =
{

(aj + Pjuj , bj + q′juj) | ‖uj‖ ≤ 1, uj ∈ ℜnj
}

, (6.28)

where Pj is a given n × nj matrix, aj ∈ ℜn and qj ∈ ℜnj are given vectors,
and bj is a given scalar. Then, from Eqs. (6.27) and (6.28),

gj(x) = sup
‖uj‖≤1

{

(aj + Pjuj)
′x− (bj + q′juj)

}

= sup
‖uj‖≤1

(P ′
jx− qj)

′uj + a′jx− bj ,

Sec. 6.1 Convex Optimization Models: An Overview 265

and finally
gj(x) = ‖P ′

jx− qj‖+ a′jx− bj .

Thus,

gj(x) ≤ 0 if and only if (P ′
jx− qj , bj − a′jx) ∈ Cj ,

where Cj is the second order cone of ℜnj+1; i.e., the “robust” constraint
gj(x) ≤ 0 is equivalent to a second order cone constraint. It follows that in
the case of ellipsoidal uncertainty, the robust linear programming problem
(6.26) is a SOCP of the form (6.24).

Example 6.1.2: (Quadratically Constrained Quadratic
Problems)

Consider the quadratically constrained quadratic problem

minimize x′Q0x+ 2q′0x+ p0

subject to x′Qjx+ 2q′jx+ pj ≤ 0, j = 1, . . . , r,

where Q0, . . . , Qr are symmetric n × n positive definite matrices, q0, . . . , qr
are vectors in ℜn, and p0, . . . , pr are scalars. We show that the problem can
be converted to the second order cone format. A similar conversion is also
possible for the quadratic programming problem where Q0 is positive definite
and Qj = 0, j = 1, . . . , r.

Indeed, since each Qj is symmetric and positive definite, we have

x′Qjx+ 2q′jx+ pj =
(

Q
1/2
j x

)′

Q
1/2
j x+ 2

(

Q
−1/2
j qj

)′

Q
1/2
j x+ pj

= ‖Q
1/2
j x+Q

−1/2
j qj‖

2 + pj − q′jQ
−1
j qj ,

for j = 0, 1, . . . , r. Thus, the problem can be written as

minimize ‖Q
1/2
0 x+Q

−1/2
0 q0‖

2 + p0 − q′0Q
−1
0 q0

subject to ‖Q
1/2
j x+Q

−1/2
j qj‖

2 + pj − q′jQ
−1
j qj ≤ 0, j = 1, . . . , r,

or, by neglecting the constant p0 − q′0Q
−1
0 q0,

minimize ‖Q
1/2
0 x+Q

−1/2
0 q0‖

subject to ‖Q
1/2
j x+Q

−1/2
j qj‖ ≤

(

q′jQ
−1
j qj − pj

)1/2
, j = 1, . . . , r.

By introducing an auxiliary variable xn+1, the problem can be written as

minimize xn+1

subject to ‖Q
1/2
0 x+Q

−1/2
0 q0‖ ≤ xn+1

‖Q
1/2
j x+Q

−1/2
j qj‖ ≤

(

q′jQ
−1
j qj − pj

)1/2
, j = 1, . . . , r.

It can be seen that this problem has the second order cone form (6.24).
We finally note that the problem of this example is special in that it

has no duality gap, assuming its optimal value is finite, i.e., there is no need
for the interior point conditions of Prop. 6.1.8. This can be traced to the fact
that linear transformations preserve the closure of sets defined by quadratic
constraints (see e.g., BNO03], Section 1.5.2).

266 Convex Optimization Algorithms Chap. 6

Semidefinite Programming

Consider the space of symmetric n× n matrices, viewed as the space ℜn2

with the inner product

< X, Y >= trace(XY) =

n
∑

i=1

n
∑

j=1

xijyij .

Let C be the cone of matrices that are positive semidefinite, called the
positive semidefinite cone. The interior of C is the set of positive definite
matrices.

The dual cone is

Ĉ =
{

Y | trace(XY) ≥ 0, ∀ X ∈ C
}

,

and it can be shown that Ĉ = C, i.e., C is self-dual. Indeed, if Y /∈ C,
there exists a vector v ∈ ℜn such that

0 > v′Y v = trace(vv′Y).

Hence the positive semidefinite matrix X = vv′ satisfies 0 > trace(XY),
so Y /∈ Ĉ and it follows that C ⊃ Ĉ. Conversely, let Y ∈ C, and let X be
any positive semidefinite matrix. We can express X as

X =

n
∑

i=1

λieie′i,

where λi are the nonnegative eigenvalues of X , and ei are corresponding
orthonormal eigenvectors. Then,

trace(XY) = trace

(

Y
n
∑

i=1

λieie′i

)

=
n
∑

i=1

λie′iY ei ≥ 0.

It follows that Y ∈ Ĉ, and C ⊂ Ĉ.
The semidefinite programming problem (SDP for short) is to mini-

mize a linear function of a symmetric matrix over the intersection of an
affine set with the positive semidefinite cone. It has the form

minimize < D,X >

subject to < Ai, X >= bi, i = 1, . . . ,m, X ∈ C,
(6.29)

where D, A1, . . . , Am, are given n× n symmetric matrices, and b1, . . . , bm,
are given scalars. It is seen to be a special case of the primal problem in
the left-hand side of the duality relation (6.20).

Sec. 6.1 Convex Optimization Models: An Overview 267

The SDP is a fairly general problem. In particular, it can also be
shown that a SOCP can be cast as a SDP (see the end-of-chapter exercises).
Thus SDP involves a more general structure than SOCP. This is consistent
with the practical observation that the latter problem is generally more
amenable to computational solution.

We can view the SDP as a problem with linear cost, linear constraints,
and a convex set constraint (as in Section 5.3.3). Then, similar to the case
of SOCP, it can be verified that the dual problem (6.19), as given by the
right-hand side of the duality relation (6.20), takes the form

maximize b′λ

subject to D − (λ1A1 + · · ·+ λmAm) ∈ C,
(6.30)

where b = (b1, . . . , bm) and the maximization is over the vector λ =
(λ1, . . . , λm). By applying the duality result of Prop. 6.1.7, we have the
following proposition.

Proposition 6.1.9: (Semidefinite Duality Theorem) Consider
the primal problem (6.29), and its dual problem (6.30).

(a) If the optimal value of the primal problem is finite and there
exists a primal-feasible solution, which is positive definite, then
there is no duality gap, and the dual problem has an optimal
solution.

(b) If the optimal value of the dual problem is finite and there exist
scalars λ1, . . . , λm such that D− (λ1A1+ · · ·+λmAm) is positive
definite, then there is no duality gap, and the primal problem
has an optimal solution.

Example 6.1.3: (Minimizing the Maximum Eigenvalue)

Given a symmetric n×n matrix M(λ), which depends on a parameter vector
λ = (λ1, . . . , λm), we want to choose λ so as to minimize the maximum
eigenvalue of M(λ). We pose this problem as

minimize z

subject to maximum eigenvalue of M(λ) ≤ z,

or equivalently

minimize z

subject to zI −M(λ) ∈ C,

where I is the n× n identity matrix, and C is the semidefinite cone. If M(λ)
is an affine function of λ,

M(λ) =M0 + λ1M1 + · · ·+ λmMm,

268 Convex Optimization Algorithms Chap. 6

this problem has the form of the dual problem (6.30), with the optimization
variables being (z, λ1, . . . , λm).

Example 6.1.4: (Semidefinite Relaxation - Lower Bounds
for Discrete Optimization Problems)

Semidefinite programming provides an effective means for deriving lower bounds
to the optimal value of several types of discrete optimization problems. As
an example, consider the following quadratic problem with quadratic equality
constraints

minimize x′Q0x+ a′0x+ b0

subject to x′Qix+ a′ix+ bi = 0, i = 1, . . . ,m,
(6.31)

where Q0, . . . , Qm are symmetric n × n matrices, a0, . . . , am are vectors in
ℜn, and b0, . . . , bm are scalars.

This problem can be used to model broad classes of discrete optimiza-
tion problems. To see this, consider an integer constraint that a variable xi

must be either 0 or 1. Such a constraint can be expressed by the quadratic
equality x2

i −xi = 0. Furthermore, a linear inequality constraint a′jx ≤ bj can
be expressed as the quadratic equality constraint y2j + a′jx− bj = 0, where yj
is an additional variable.

Introducing a multiplier vector λ = (λ1, . . . , λm), the dual function is
given by

q(λ) = inf
x∈ℜn

{

x′Q(λ)x+ a(λ)′x+ b(λ)
}

,

where

Q(λ) = Q0 +

m
∑

i=1

λiQi, a(λ) = a0 +

m
∑

i=1

λiai, b(λ) = b0 +

m
∑

i=1

λibi.

Let f∗ and q∗ be the optimal values of problem (6.31) and its dual,
and note that by weak duality, we have f∗ ≥ q∗. By introducing an auxiliary
scalar variable ξ, we see that the dual problem is to find a pair (ξ, λ) that
solves the problem

maximize ξ

subject to q(λ) ≥ ξ.

The constraint q(λ) ≥ ξ of this problem can be written as

inf
x∈ℜn

{

x′Q(λ)x+ a(λ)′x+ b(λ)− ξ
}

≥ 0,

or equivalently, introducing a scalar variable t,

inf
x∈ℜn, t∈ℜ

{

(tx)′Q(λ)(tx) + a(λ)′(tx)t+
(

b(λ)− ξ
)

t2
}

≥ 0.

Sec. 6.1 Convex Optimization Models: An Overview 269

This relation can be equivalently written as

inf
x∈ℜn, t∈ℜ

{

x′Q(λ)x+ a(λ)′xt+
(

b(λ)− ξ
)

t2
}

≥ 0,

or
(

Q(λ) 1
2
a(λ)

1
2
a(λ)′ b(λ)− ξ

)

∈ C, (6.32)

where C is the positive semidefinite cone. Thus the dual problem is equivalent
to the SDP of maximizing ξ over all (ξ, λ) satisfying the constraint (6.32), and
its optimal value q∗ is a lower bound to f∗.

6.1.3 Additive Cost Problems

In this section we focus on a structural characteristic that arises in several
important contexts, including dual problems: a cost function that is the
sum of a large number of components,

f(x) =

m
∑

i=1

fi(x), (6.33)

where the functions fi : ℜn 7→ ℜ are convex. Such functions can be mini-
mized with special methods, called incremental , which exploit their addi-
tive structure (see Chapter 2).

An important special case is the cost function of the dual/separable
problem (6.11); after a sign change to convert to minimization it takes the
form (6.33). We provide a few more examples.

Example 6.1.5: (ℓ1-Regularization)

Many problems in data analysis/machine learning involve an additive cost
function, where each term fi(x) corresponds to error between data and the
output of a parametric model, with x being a vector of parameters. A clas-
sical example is least squares problems, where fi has a quadratic structure.
Often a regularization function is added to the least squares objective, to
induce desirable properties of the solution. Recently, nondifferentiable regu-
larizarion functions have become increasingly important, as in the so called
ℓ1-regularization problem

minimize

m
∑

j=1

(a′jx− bj)
2 + γ

n
∑

i=1

|xi|

subject to (x1, . . . , xn) ∈ ℜn,

(sometimes called the lasso method), which arises in statistical inference. Here
aj and bj are given vectors and scalars, respectively, and γ is a positive
scalar. The ℓ1 regularization term affects the solution in a different way than
a quadratic term (it tends to set a large number of components of x to 0; see
the end-of-chapter references). There are several interesting variations of the
ℓ1-regularization approach, with many applications, for which we refer to the
literature.

270 Convex Optimization Algorithms Chap. 6

Example 6.1.6: (Maximum Likelihood Estimation)

We observe a sample of a random vector Z whose distribution PZ(·;x) depends
on an unknown parameter vector x ∈ ℜn. For simplicity we assume that Z
can take only a finite set of values, so that PZ(z;x) is the probability that
Z takes the value z when the parameter vector has the value x. We wish
to estimate x based on the given sample value z, by using the maximum
likelihood method, i.e., by solving the problem

maximize PZ(z;x)

subject to x ∈ ℜn.
(6.34)

The cost function PZ(z; ·) of this problem may either have an additive
structure or may be equivalent to a problem that has an additive structure.
For example the event that Z = z may be the union of a large number of
disjoint events, so PZ(z;x) is the sum of the probabilities of these events. For
another important context, suppose that the data z consists ofm independent
samples y1, . . . , ym drawn from a distribution PY (·;x), in which case

PZ(z;x) = PY (y1;x) · · ·PY (ym;x).

Then the maximization (6.34) is equivalent to the additive cost minimization

minimize

m
∑

i=1

fi(x)

subject to x ∈ ℜn,

where
fi(x) = − logPY (yi;x).

In many applications the number of samples m is very large, in which case
special methods that exploit the additive structure of the cost are recom-
mended.

Example 6.1.7: (Minimization of an Expected Value -
Stochastic Programming)

An important context where additive cost functions arise is the minimization
of an expected value

minimize E
{

F (x,w)
}

subject to x ∈ X,
(6.35)

where w is a random variable taking a finite but large number of values wi,
i = 1, . . . ,m, with corresponding probabilities πi. Then the cost function
consists of the sum of the m functions πiF (x,wi).

Sec. 6.1 Convex Optimization Models: An Overview 271

For example, in stochastic programming , a classical model of two-stage
optimization under uncertainty, a vector x ∈ X is selected, a random event
occurs that has m possible outcomes w1, . . . , wm, and then another vector
y ∈ Y is selected with knowledge of the outcome that occurred. Then for
optimization purposes, we need to specify a different vector yi ∈ Y for each
outcome wi. The problem is to minimize the expected cost

F (x) +

m
∑

i=1

πiGi(yi),

where Gi(yi) is the cost associated with the occurrence of wi and πi is the
corresponding probability. This is a problem with an additive cost function.
Additive cost function problems also arise from problem (6.35) in a different
way, when the expected value E

{

F (x,w)
}

is approximated by an m-sample
average

f(x) =
1

m

m
∑

i=1

F (x,wi),

where wi are independent samples of the random variable w. The minimum
of the sample average f(x) is then taken as an approximation of the minimum
of E

{

F (x,w)
}

.

Example 6.1.8: (Weber Problem in Location Theory)

A basic problem in location theory is to find a point x in the plane whose
sum of weighted distances from a given set of points y1, . . . , ym is minimized.
Mathematically, the problem is

minimize

m
∑

i=1

wi‖x− yi‖

subject to x ∈ ℜn,

where w1, . . . , wm are given positive scalars. This problem descends from the
famous Fermat-Torricelli-Viviani problem (see [BMS99] for an account of the
history).

The structure of the additive cost function (6.33) often facilitates the
use of a distributed computing system that is well-suited for the incremental
approach. The following is an illustrative example.

Example 6.1.9: (Distributed Incremental Optimization –
Sensor Networks)

Consider a network of m sensors where data are collected and are used to
solve some inference problem involving a parameter vector x. If fi(x) repre-
sents an error penalty for the data collected by the ith sensor, the inference

272 Convex Optimization Algorithms Chap. 6

problem is of the form (6.33). While it is possible to collect all the data at
a fusion center where the problem will be solved in centralized manner, it
may be preferable to adopt a distributed approach in order to save in data
communication overhead and/or take advantage of parallelism in computa-
tion. In such an approach the current iterate xk is passed on from one sensor
to another, with each sensor i performing an incremental iteration involving
just its local component function fi, and the entire cost function need not be
known at any one location. We refer to Blatt, Hero, and Gauchman [BHG08],
and Rabbat and Nowak [RaN04], [RaN05] for further discussion.

The approach of computing incrementally the values and subgradients
of the components fi in a distributed manner can be substantially extended
to apply to general systems of asynchronous distributed computation, where
the components are processed at the nodes of a computing network, and the
results are suitably combined, as discussed by Nedić, Bertsekas, and Borkar
[NBB01].

Let us finally note a generalization of the problem of this section,
which arises when the functions fi are convex and extended real-valued.
This is essentially equivalent to constraining x to lie in the intersection of
the domains of fi, typically resulting in a problem of the form

minimize
m
∑

i=1

fi(x)

subject to x ∈ ∩m
i=1Xi,

where fi are convex and real-valued andXi are closed convex sets. Methods
that are suitable for the unconstrained version of the problem where Xi ≡
ℜn can often be modified to apply to the constrained version, as we will
see later.

6.1.4 Large Number of Constraints

Problems of the form

minimize f(x)

subject to a′jx ≤ bj , j = 1, . . . , r,
(6.36)

where the number r of constraints is very large often arise in practice, either
directly or via reformulation from other problems. They can be handled in
a variety of ways. One possibility is to adopt a penalty function approach,
and replace problem (6.36) with

minimize f(x) + c

r
∑

j=1

P (a′jx− bj)

subject to x ∈ ℜn,

(6.37)

Sec. 6.1 Convex Optimization Models: An Overview 273

where P (·) is a scalar penalty function satisfying P (t) = 0 if t ≤ 0, and
P (t) > 0 if t > 0, and c is a positive penalty parameter. For example, one
may use the quadratic penalty

P (t) =
(

max{0, t}
)2
.

An interesting alternative is to use

P (t) = max{0, t},

in which case it can be shown that the optimal solutions of problems (6.36)
and (6.37) coincide when c is sufficiently large (see Section 6.1.5, as well
as [Ber99], Section 5.4.5, [BNO03], Section 7.3). The cost function of the
penalized problem (6.37) is of the additive form (6.33).

The idea of replacing constraints by penalties is more generally appli-
cable. For example, the constraints in problem (6.36) could be nonlinear,
or abstract of the form x ∈ ∩r

j=1Xj. In the latter case the problem of min-
imizing a Lipschitz continuous function f over ∩r

j=1Xj may be replaced by
unconstrained minimization of

f(x) + c

r
∑

j=1

dist(x;Xj),

where dist(x;Xj) = infy∈Xj ‖y − x‖, and c is a penalty parameter that is
larger than the Lipschitz constant of f (see Section 6.1.5).

Another possibility, which points the way to some major classes of
algorithms, is to initially discard some of the constraints, solve the corre-
sponding less constrained problem, and later reintroduce constraints that
seem to be violated at the optimum. This is known as an outer approxima-

tion of the constraint set; see the cutting plane algorithms of Section 6.4.1.
Another possibility is to use an inner approximation of the constraint set
consisting for example of the convex hull of some of its extreme points; see
the simplicial decomposition methods of Chapter 6.4.2. The ideas of outer
and inner approximation can also be used to approximate nonpolyhedral
convex constraint sets (in effect an infinite number of linear constraints)
by polyhedral ones.

Network Optimization Problems

Problems with a large number of constraints also arise in problems involving
a graph, and can often be handled with algorithms that take into account
the graph structure. The following example is typical.

274 Convex Optimization Algorithms Chap. 6

Example 6.1.10: (Optimal Routing in a Communication
Network)

We are given a directed graph, which is viewed as a model of a data commu-
nication network. We are also given a set W of ordered node pairs w = (i, j).
The nodes i and j are referred to as the origin and the destination of w,
respectively, and w is referred to as an OD pair. For each w, we are given
a scalar rw referred to as the input traffic of w. In the context of routing
of data in a communication network, rw (measured in data units/second) is
the arrival rate of traffic entering and exiting the network at the origin and
the destination of w, respectively. The routing objective is to divide each rw
among the many paths from origin to destination in a way that the resulting
total arc flow pattern minimizes a suitable cost function. We denote:

Pw: A given set of paths that start at the origin and end at the destination
of w. All arcs on each of these paths are oriented in the direction from
the origin to the destination.

xp: The portion of rw assigned to path p, also called the flow of path p.

The collection of all path flows {xp | p ∈ Pw, w ∈ W } must satisfy the
constraints

∑

p∈Pw

xp = rw, ∀ w ∈ W, (6.38)

xp ≥ 0, ∀ p ∈ Pw, w ∈W. (6.39)

The total flow Fij of arc (i, j) is the sum of all path flows traversing the arc:

Fij =
∑

all paths p
containing (i,j)

xp. (6.40)

Consider a cost function of the form
∑

(i,j)

Dij(Fij). (6.41)

The problem is to find a set of path flows {xp} that minimize this cost function
subject to the constraints of Eqs. (6.38)-(6.40). We assume that Dij is a
convex and continuously differentiable function of Fij with first derivative
denoted by D′

ij . In data routing applications, the form of Dij is often based
on a queueing model of average delay (see [BeG92]).

The preceding problem is known as a multicommodity network flow

problem. The terminology reflects the fact that the arc flows consist of several
different commodities; in the present example, the different commodities are
the data of the distinct OD pairs.

By expressing the total flows Fij in terms of the path flows in the cost
function (6.41) [using Eq. (6.40)], the problem can be formulated in terms of
the path flow variables {xp | p ∈ Pw, w ∈ W } as

minimize D(x)

subject to
∑

p∈Pw

xp = rw, ∀ w ∈ W,

xp ≥ 0, ∀ p ∈ Pw, w ∈ W,

Sec. 6.1 Convex Optimization Models: An Overview 275

where

D(x) =
∑

(i,j)

Dij

∑

all paths p
containing (i,j)

xp

and x is the vector of path flows xp. There is a potentially huge number
of variables as well as constraints in this problem. However, by judiciously
taking into account the special structure of the problem, the constraint set
can be simplified and the number of variables can be reduced to a manageable
size, using algorithms that will be discussed later.

6.1.5 Exact Penalty Functions

In this section, we discuss a transformation that is often useful in the con-
text of algorithmic solution of constrained convex optimization problems.
In particular, we derive a form of equivalence between a constrained convex
optimization problem, and a penalized problem that is less constrained or is
entirely unconstrained. The motivation is that in some analytical contexts,
it is useful to be able to work with an equivalent problem that is less con-
strained. Furthermore, some convex optimization algorithms do not have
constrained counterparts, but can be applied to a penalized unconstrained
problem.

We consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,
(6.42)

where g(x) =
(

g1(x), . . . , gr(x)
)

, X is a convex subset of ℜn, and f :
ℜn → ℜ and gj : ℜn → ℜ are real-valued convex functions. We denote
by f∗ the primal optimal value, and by q∗ the dual optimal value, i.e.,
q∗ = supµ≥0 q(µ), where

q(µ) = inf
x∈X

{

f(x) + µ′g(x)
}

.

We assume that −∞ < q∗ and f∗ <∞.
We introduce a convex function P : ℜr 7→ ℜ, called penalty function,

which satisfies
P (u) = 0, ∀ u ≤ 0, (6.43)

P (u) > 0, if uj > 0 for some j = 1, . . . , r. (6.44)

We consider solving, in place of the original problem (6.42), the “penalized”
problem

minimize f(x) + P
(

g(x)
)

subject to x ∈ X,
(6.45)

276 Convex Optimization Algorithms Chap. 6

where the inequality constraints have been replaced by the extra cost
P
(

g(x)
)

for their violation.
Interesting examples of penalty functions are

P (u) =
c

2

r
∑

j=1

(

max{0, uj}
)2
,

and

P (u) = c

r
∑

j=1

max{0, uj},

where c is a positive penalty parameter. A generic property is that P is
monotone in the sense

u ≤ v ⇒ P (u) ≤ P (v). (6.46)

To see this, we argue by contradiction. If there exist u and v with u ≤ v and
P (u) > P (v), then by continuity of P , there must exist u close enough to
u such that u < v and P (u) > P (v). Since P is convex, it is monotonically
increasing along the halfline

{

u + α(u − v) | α ≥ 0
}

, and since P (u) >
P (v) ≥ 0, P takes positive values along this halfline. However, since u < v,
this halfline eventually enters the negative orthant, where P takes the value
0 by Eq. (6.43), a contradiction.

The convex conjugate function of P is given by

Q(µ) = sup
u∈ℜr

{

u′µ− P (u)
}

,

and it can be seen that

Q(µ) ≥ 0, ∀ µ ∈ ℜr,

Q(µ) = ∞, if µj < 0 for some j = 1, . . . , r.

Some interesting penalty functions P are shown in Fig. 6.1.3, together with
their conjugates.

Consider the primal function of the original constrained problem,

p(u) = inf
x∈X, g(x)≤u

f(x), u ∈ ℜr.

Since −∞ < q∗ and f∗ < ∞ by assumption, we have p(0) < ∞ and
p(u) > −∞ for all u ∈ ℜr [since for any µ with q(µ) > −∞, we have
p(u) ≥ q(µ) − µ′u > −∞ for all u ∈ ℜr], so that p is proper (this will

Sec. 6.1 Convex Optimization Models: An Overview 277

 (1/2c)m2 (c/2)u2

0 u 0 m

Q(m) P(u) = max{0, au}

0 u 0 m

Q(m)

0 u 0 m

Q(m) P(u)

P(u) = max{0, au +u2}

a

a

Slope = a

u

u

u

µ

µ

µ

a 0 0

0a 0

a 0 a 0

a

Slope = a

Q(µ)) P (u) = max{0, au+u2}

P (u) = c max{0, u}

c

P (u) = (c/2)
(

max{0, u}
)2

Q(µ) =

{

(1/2c)µ2 if µ ≥ 0
∞ if µ < 0

()

Q(µ) =
{

0 if 0 ≤ µ ≤ c

∞ otherwise

Figure 6.1.3. Illustration of conjugates of various penalty functions.

be needed for application of the Fenchel duality theorem). We have, using
also the monotonicity relation (6.46),

inf
x∈X

{

f(x) + P
(

g(x)
)}

= inf
x∈X

inf
u∈ℜr , g(x)≤u

{

f(x) + P
(

g(x)
)}

= inf
x∈X

inf
u∈ℜr , g(x)≤u

{

f(x) + P (u)
}

= inf
x∈X,u∈ℜr , g(x)≤u

{

f(x) + P (u)
}

= inf
u∈ℜr

inf
x∈X,g(x)≤u

{

f(x) + P (u)
}

= inf
u∈ℜr

{

p(u) + P (u)
}

.

We can now use the Fenchel duality theorem (Prop. 6.1.5) with the
identifications f1 = p, f2 = P , and A = I. We use the conjugacy relation

278 Convex Optimization Algorithms Chap. 6

between the primal function p and the dual function q to write

inf
u∈ℜr

{

p(u) + P (u)
}

= sup
µ≥0

{

q(µ)−Q(µ)
}

, (6.47)

so that
inf
x∈X

{

f(x) + P
(

g(x)
)}

= sup
µ≥0

{

q(µ)−Q(µ)
}

; (6.48)

see Fig. 6.1.4. Note that the conditions for application of the Fenchel Du-
ality Theorem are satisfied since the penalty function P is real-valued, so
that the relative interiors of dom(p) and dom(P) have nonempty intersec-
tion. Furthermore, as part of the conclusions of the Primal Fenchel duality
theorem, it follows that the supremum over µ ≥ 0 in Eq. (6.48) is attained.

µ0 m

q(m)

0 m

0 m

q* = f* = f
~

~
f

f + Q(m)
~

f + Q(m)
~

f + Q(m)
~

q(m)

q(m)

~
f

m~

m~

m~

µ

µ

µ

a 0

a 0

a 0

f̃

f̃

q∗ = f∗ = f̃
q(µ)

q(µ)

q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

f̃ + Q(µ)

µ̃

µ̃

µ̃

Figure 6.1.4. Illustration of the duality
relation (6.48), and the optimal values of
the penalized and the dual problem. Here
f∗ is the optimal value of the original prob-
lem, which is assumed to be equal to the
optimal dual value q∗, while f̃ is the opti-
mal value of the penalized problem,

f̃ = inf
x∈X

{

f(x) + P
(

g(x)
)}

.

The point of contact of the graphs of the
functions f̃ + Q(µ) and q(µ) corresponds
to the vector µ̃ that attains the maximum
in the relation

f̃ = max
µ≥0

{

q(µ)−Q(µ)
}

.

It can be seen from Fig. 6.1.4 that in order for the penalized problem
(6.45) to have the same optimal value as the original constrained problem
(6.42), the conjugate Q must be “sufficiently flat” so that it is minimized
by some dual optimal solution µ∗, i.e., 0 ∈ ∂Q(µ∗) for some dual opti-
mal solution µ∗, which by the Fenchel Inequality Theorem (Prop. 5.4.3),

Sec. 6.1 Convex Optimization Models: An Overview 279

is equivalent to µ∗ ∈ ∂P (0). This is part (a) of the following proposition.
Parts (b) and (c) of the proposition deal with issues of equality of corre-
sponding optimal solutions. The proposition assumes the convexity and
other assumptions made in the early part in this section regarding problem
(6.42) and the penalty function P .

Proposition 6.1.10:

(a) The penalized problem (6.45) and the original constrained prob-
lem (6.42) have equal optimal values if and only if there exists a
dual optimal solution µ∗ such that µ∗ ∈ ∂P (0).

(b) In order for some optimal solution of the penalized problem (6.45)
to be an optimal solution of the constrained problem (6.42), it is
necessary that there exists a dual optimal solution µ∗ such that

u′µ∗ ≤ P (u), ∀ u ∈ ℜr. (6.49)

(c) In order for the penalized problem (6.45) and the constrained
problem (6.42) to have the same set of optimal solutions, it is
sufficient that there exists a dual optimal solution µ∗ such that

u′µ∗ < P (u), ∀ u ∈ ℜr with uj > 0 for some j. (6.50)

Proof: (a) We have using Eqs. (6.47) and (6.48),

p(0) ≥ inf
u∈ℜr

{

p(u) + P (u)
}

= sup
µ≥0

{

q(µ)−Q(µ)
}

= inf
x∈X

{

f(x) + P
(

g(x)
)}

.

Since f∗ = p(0), we have f∗ = inf
x∈X

{

f(x) + P
(

g(x)
)}

if and only if
equality holds in the above relation. This is true if and only if

0 ∈ arg min
u∈ℜr

{

p(u) + P (u)
}

,

which by Prop. 5.4.7, is true if and only if there exists some µ∗ ∈ −∂p(0)
with µ∗ ∈ ∂P (0). Since the set of dual optimal solutions is −∂p(0) (see
Example 5.4.2), the result follows.

(b) If x∗ is an optimal solution of both problems (6.42) and (6.45), then by
feasibility of x∗, we have P

(

g(x∗)
)

= 0, so these two problems have equal
optimal values. From part (a), there must exist a dual optimal solution
µ∗ ∈ ∂P (0), which is equivalent to Eq. (6.49), by the subgradient inequality.

(c) If x∗ is an optimal solution of the constrained problem (6.42), then
P
(

g(x∗)
)

= 0, so we have

f∗ = f(x∗) = f(x∗) + P
(

g(x∗)
)

≥ inf
x∈X

{

f(x) + P
(

g(x)
)}

.

280 Convex Optimization Algorithms Chap. 6

The condition (6.50) implies the condition (6.49), so that by part (a),
equality holds throughout in the above relation, showing that x∗ is also
an optimal solution of the penalized problem (6.45).

Conversely, if x∗ is an optimal solution of the penalized problem
(6.45), then x∗ is either feasible [satisfies g(x∗) ≤ 0], in which case it is an
optimal solution of the constrained problem (6.42) [in view of P

(

g(x)
)

= 0
for all feasible vectors x], or it is infeasible in which case gj(x∗) > 0 for
some j. In the latter case, by using the given condition (6.50), it follows
that there exists an ǫ > 0 such that

µ∗′g(x∗) + ǫ < P
(

g(x∗)
)

.

Let x̃ be a feasible vector such that f(x̃) ≤ f∗ + ǫ. Since P
(

g(x̃)
)

= 0 and

f∗ = minx∈X

{

f(x) + µ∗′g(x)
}

, we obtain

f(x̃) + P
(

g(x̃)
)

= f(x̃) ≤ f∗ + ǫ ≤ f(x∗) + µ∗′g(x∗) + ǫ.

By combining the last two equations, we obtain

f(x̃) + P
(

g(x̃)
)

< f(x∗) + P
(

g(x∗)
)

,

which contradicts the hypothesis that x∗ is an optimal solution of the
penalized problem (6.45). This completes the proof. Q.E.D.

Note that in the case where the necessary condition (6.49) holds but
the sufficient condition (6.50) does not, it is possible that the constrained
problem (6.42) has optimal solutions that are not optimal solutions of the
penalized problem (6.45), even though the two problems have the same
optimal value.

To elaborate on Prop. 6.1.10, consider the penalty function

P (u) = c

r
∑

j=1

max{0, uj},

where c > 0. The condition µ∗ ∈ ∂P (0), or equivalently, u′µ∗ ≤ P (u) for
all u ∈ ℜr [cf. Eq. (6.49)], is equivalent to

µ∗
j ≤ c, ∀ j = 1, . . . , r.

Similarly, the condition u′µ∗ < P (u) for all u ∈ ℜr with uj > 0 for some j
[cf. Eq. (6.50)], is equivalent to

µ∗
j < c, ∀ j = 1, . . . , r.

Sec. 6.1 Convex Optimization Models: An Overview 281

A General Exact Penalty Function

Let us finally discuss the case of a general Lipschitz continuous (not nec-
essarily convex) cost function and an abstract constraint set X ⊂ ℜn. The
idea is to use a penalty that is proportional to the distance from X :

dist(x;X) = inf
y∈X

‖x− y‖.

We have the following proposition.

Proposition 6.1.11: Let f : Y 7→ ℜ be a function defined on a subset
Y of ℜn. Assume that f is Lipschitz continuous with constant L, i.e.,

∣

∣f(x)− f(y)
∣

∣ ≤ L‖x− y‖, ∀ x, y ∈ Y.

Let also X be a nonempty closed subset of Y , and c be a scalar with
c > L. Then x∗ minimizes f over X if and only if x∗ minimizes

Fc(x) = f(x) + c dist(x;X)

over Y .

Proof: For a vector x ∈ Y , let x̂ denote a vector of X that is at minimum
distance from x. We have for all x ∈ Y ,

Fc(x) = f(x)+ c‖x− x̂‖ = f(x̂)+
(

f(x)−f(x̂)
)

+ c‖x− x̂‖ ≥ f(x̂) = Fc(x̂),

with strict inequality if x 6= x̂. Hence minima of Fc can only lie within X ,
while Fc = f within X . This shows that x∗ minimizes f over X if and only
if x∗ minimizes Fc over Y . Q.E.D.

The following proposition provides a generalization.

Proposition 6.1.12: Let f : Y 7→ ℜ be a function defined on a
subset Y of ℜn, and let Xi, i = 1, . . . ,m, be closed subsets of Y with
nonempty intersection. Assume that f is Lipschitz continuous over Y .
Then there is a scalar c > 0 such that for all c ≥ c, the set of minima
of f over ∩m

i=1Xi coincides with the set of minima of

f(x) + c
m
∑

i=1

dist(x;Xi)

over Y .

282 Convex Optimization Algorithms Chap. 6

Proof: Let L be the Lipschitz constant for f , and let c1, . . . , cm be scalars
satisfying

ck > L+ c1 + · · ·+ ck−1, ∀ k = 1, . . . ,m,

where c0 = 0. Define

F k(x) = f(x) + c1 dist(x;X1) + · · ·+ ck dist(x;Xk), k = 1, . . . ,m,

and for k = 0, denote F 0(x) = f(x), c0 = 0. By applying Prop. 6.1.11, the
set of minima of Fm over Y coincides with the set of minima of Fm−1 over
Xm, since cm is greater than L + c1 + · · · + cm−1, the Lipschitz constant
for Fm−1. Similarly, for all k = 1, . . . ,m, the set of minima of F k over
∩m
i=k+1Xi coincides with the set of minima of F k−1 over ∩m

i=kXi. Thus,
for k = 1, we obtain that the set of minima of f + c

∑m
i=1 dist(·;Xi) = Fm

over Y coincides with the set of minima of f = F 0 over ∩m
i=1Xi. Q.E.D.

Example 6.1.11: (Finding a Point in a Set Intersection)

As an example of the preceding analysis, consider a feasibility problem that
arises in many contexts. It involves finding a point with certain properties
within a set intersection ∩m

i=1Xi, where eachXi is a closed convex set. Propo-
sition 6.1.12 applies to this problem with f(x) ≡ 0, and can be used to convert
the problem to one with an additive cost structure. In this special case of
course, the penalty parameter c may be chosen to be any positive constant.
We will revisit a more general version of this problem in Section 6.7.1.

6.2 ALGORITHMIC DESCENT - STEEPEST DESCENT

Most of the algorithms for minimizing a convex function f : ℜn 7→ ℜ over
a convex set X generate a sequence {xk} ⊂ X and involve one or both of
the following two ideas:

(a) Iterative descent , whereby the generated sequence {xk} satisfies

φ(xk+1) < φ(xk) if and only if xk is not optimal,

where φ is a merit function, that measures the progress of the algo-
rithm towards optimality, and is minimized only at optimal points,
i.e.,

argmin
x∈X

φ(x) = argmin
x∈X

f(x).

Examples are φ(x) = f(x) and φ(x) = minx∗∈X∗ ‖x− x∗‖, where X∗

is the set of minima of f over X , assumed nonempty and closed.

Sec. 6.2 Algorithmic Descent - Steepest Descent 283

(b) Approximation, whereby the generated sequence {xk} is obtained by
solving at each k an approximation to the original optimization prob-
lem, i.e.,

xk+1 ∈ arg min
x∈Xk

Fk(x),

where Fk is a function that approximates f and Xk is a set that
approximates X . These may depend on the prior iterates x0, . . . , xk,
as well as other parameters. Key ideas here are that minimization
of Fk over Xk should be easier than minimization of f over X , and
that xk should be a good starting point for obtaining xk+1 via some
(possibly special purpose) method. Of course, the approximation of
f by Fk and/or X by Xk should improve as k increases, and there
should be some convergence guarantees as k → ∞.

The methods to be discussed in this chapter revolve around these two
ideas and their combinations, and are often directed towards solving dual
problems of fairly complex primal optimization problems. Of course, an
implicit assumption here is that there is special structure that favors the
use of duality. We start with a discussion of the descent approach in this
section, and we continue with it in Sections 6.3 and 6.10. We discuss the
approximation approach in Sections 6.4-6.9.

Steepest Descent

A natural iterative descent approach to minimizing f over X is based on
cost improvement: starting with a point x0 ∈ X , construct a sequence
{xk} ⊂ X such that

f(xk+1) < f(xk), k = 0, 1, . . . ,

unless xk is optimal for some k, in which case the method stops. For
example, if X = ℜn and dk is a descent direction at xk, in the sense that
the directional derivative f ′(xk; dk) is negative, we may effect descent by
moving from xk by a small amount along dk. This suggests a descent
algorithm of the form

xk+1 = xk + αkdk,

where dk is a descent direction, and αk is a positive stepsize, which is small
enough so that f(xk+1) < f(xk).

For the case where f is differentiable and X = ℜn, there are many
popular algorithms based on cost improvement. For example, in the clas-
sical gradient method, we use dk = −∇f(xk). Since for a differentiable f
the directional derivative at xk is given by

f ′(xk; d) = ∇f(xk)′d,

284 Convex Optimization Algorithms Chap. 6

it follows that
dk

‖dk‖
= arg min

‖d‖≤1
f ′(xk; d)

[assuming that ∇f(xk) 6= 0]. Thus the gradient method uses the direction
with greatest rate of cost improvement, and for this reason it is also called
the method of steepest descent .

More generally, for minimization of a real-valued convex function f :
ℜn 7→ ℜ, let us view the steepest descent direction at x as the solution of
the problem

minimize f ′(x; d)

subject to ‖d‖ ≤ 1.
(6.51)

We will show that this direction is −g∗, where g∗ is the vector of minimum
norm in ∂f(x).

Indeed, we recall from Prop. 5.4.8, that f ′(x; ·) is the support function
of the nonempty and compact subdifferential ∂f(x),

f ′(x; d) = max
g∈∂f(x)

d′g, ∀ x, d ∈ ℜn. (6.52)

Next we note that the sets
{

d | ‖d‖ ≤ 1
}

and ∂f(x) are compact, and the
function d′g is linear in each variable when the other variable is fixed, so
by Prop. 5.5.3, we have

min
‖d‖≤1

max
g∈∂f(x)

d′g = max
g∈∂f(x)

min
‖d‖≤1

d′g,

and a saddle point exists. Furthermore, according to Prop. 3.4.1, for any
saddle point (d∗, g∗), g∗ maximizes the function min‖d‖≤1 d′g = −‖g‖ over
∂f(x), so g∗ is the unique vector of minimum norm in ∂f(x). Moreover,
d∗ minimizes maxg∈∂f(x) d′g or equivalently f ′(x; d) [by Eq. (6.52)] subject
to ‖d‖ ≤ 1 (so it is a direction of steepest descent), and minimizes d′g∗

subject to ‖d‖ ≤ 1, so it has the form

d∗ = − g∗

‖g∗‖

[except if 0 ∈ ∂f(x), in which case d∗ = 0]. In conclusion, for each x ∈ ℜn,
the opposite of the vector of minimum norm in ∂f(x) is the unique direction
of steepest descent.

The steepest descent method has the form

xk+1 = xk − αkgk, (6.53)

where gk is the vector of minimum norm in ∂f(xk), and αk is a positive
stepsize such that f(xk+1) < f(xk) (assuming that xk is not optimal, which
is true if and only if gk 6= 0).

Sec. 6.2 Algorithmic Descent - Steepest Descent 285

One limitation of the steepest descent method is that it does not
easily generalize to extended real-valued functions f because ∂f(xk) may
be empty for xk at the boundary of dom(f). Another limitation is that
it requires knowledge of the set ∂f(x), as well as finding the minimum
norm vector on this set (a potentially nontrivial optimization problem). A
third serious drawback of the method is that it may get stuck far from the
optimum, depending on the stepsize rule. Somewhat surprisingly, this can
happen even if the stepsize αk is chosen to minimize f along the halfline

{xk − αgk | α ≥ 0}.

An example is given in Exercise 6.8. The difficulty in this example is that
at the limit, f is nondifferentiable and has subgradients that cannot be
approximated by subgradients at the iterates, arbitrarily close to the limit.
Thus, the steepest descent direction may undergo a large/discontinuous
change as we pass to the convergence limit. By contrast, this would not
happen if f were continuously differentiable at the limit, and in fact the
steepest descent method has sound convergence properties when used for
minimization of differentiable functions (see Section 6.10.1).

Gradient Projection

In the constrained case where X is a strict closed convex subset of ℜn, the
descent approach based on the iteration

xk+1 = xk + αkdk

becomes more complicated because it is not enough for dk to be a descent
direction at xk. It must also be a feasible direction in the sense that xk+αdk
must belong to X for small enough α > 0. Generally, in the case where
f is convex but nondifferentiable it is not easy to find feasible descent
directions. However, in the case where f is differentiable there are several
possibilities, including the gradient projection method , which has the form

xk+1 = PX

(

xk − α∇f(xk)
)

, (6.54)

where α > 0 is a constant stepsize and PX(·) denotes projection on X (see
Fig. 6.2.1). Note that the projection is well defined since X is closed and
convex (cf. Prop. 1.1.9).

Indeed, from the geometry of the projection theorem (cf. Fig. 6.2.1),
we have

∇f(xk)′(xk+1 − xk) ≤ 0,

and the inequality is strict unless xk+1 = xk, in which case the optimality
condition of Prop. 5.4.7 implies that xk is optimal. Thus if xk is not

286 Convex Optimization Algorithms Chap. 6

xk

xk+1

X x

X xk − α∇f(xk)

Figure 6.2.1. Illustration of the gradi-
ent projection iteration at xk. We move
from xk along the along the direction

−∇f(xk) and project xk−α∇f(xk) onto
X to obtain xk+1. We have

∇f(xk)
′(xk+1 − xk) ≤ 0,

and unless xk+1 = xk, in which case
xk minimizes f over X, the angle be-
tween ∇f(xk) and (xk+1−xk) is strictly
greater than 90 degrees, in which case

∇f(xk)
′(xk+1 − xk) < 0.

optimal, xk+1−xk defines a feasible descent direction at xk. Based on this
fact, we can show with some further analysis the descent property

f(xk+1) < f(xk)

when α is sufficiently small; see Section 6.10.1, where we will discuss the
properties of the gradient projection method and some variations, and we
will show that it has satisfactory convergence behavior under quite general
conditions.

The difficulty in extending the cost improvement approach to nondif-
ferentiable cost functions motivates alternative approaches. In one of the
most popular algorithmic schemes, we abandon the idea of cost function
descent, but aim to reduce the distance to the optimal solution set. This
leads to the class of subgradient methods, discussed in the next section.

6.3 SUBGRADIENT METHODS

The simplest form of a subgradient method for minimizing a real-valued
convex function f : ℜn 7→ ℜ over a closed convex set X is given by

xk+1 = PX(xk − αkgk), (6.55)

where gk is a subgradient of f at xk, αk is a positive stepsize, and PX(·)
denotes projection on the set X . Thus contrary to the steepest descent
method (6.53), a single subgradient is required at each iteration, rather
than the entire subdifferential. This is often a major advantage.

The following example shows how to compute a subgradient of func-
tions arising in duality and minimax contexts, without computing the full
subdifferential.

Sec. 6.3 Subgradient Methods 287

Example 6.3.1: (Subgradient Calculation in Minimax
Problems)

Let

f(x) = sup
z∈Z

φ(x, z), (6.56)

where x ∈ ℜn, z ∈ ℜm, φ : ℜn × ℜm 7→ (−∞,∞] is a function, and Z is a
subset of ℜm. We assume that φ(·, z) is convex and closed for each z ∈ Z, so f
is also convex and closed. For a fixed x ∈ dom(f), let us assume that zx ∈ Z
attains the supremum in Eq. (6.56), and that gx is some subgradient of the
convex function φ(·, zx), i.e., gx ∈ ∂φ(x, zx). Then by using the subgradient
inequality, we have for all y ∈ ℜn,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx) ≥ φ(x, zx) + g′x(y − x) = f(x) + g′x(y − x),

i.e., gx is a subgradient of f at x, so

gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂f(x).

We have thus obtained a convenient method for calculating a single
subgradient of f at x at little extra cost: once a maximizer zx ∈ Z of φ(x, ·)
is found, any gx ∈ ∂φ(x, zx) is a subgradient of f at x. On the other hand,
calculating the entire subdifferential ∂f(x) may be much more complicated.

Example 6.3.2: (Subgradient Calculation in Dual Problems)

Consider the problem

minimize f(x)

subject to x ∈ X, g(x) ≤ 0,

and its dual
maximize q(µ)

subject to µ ≥ 0,

where f : ℜn 7→ ℜ, g : ℜn 7→ ℜr are given (not necessarily convex) functions,
X is a subset of ℜn, and

q(µ) = inf
x∈X

L(x,µ) = inf
x∈X

{

f(x) + µ′g(x)
}

is the dual function.
For a given µ ∈ ℜr, suppose that xµ minimizes the Lagrangian over

x ∈ X,

xµ ∈ arg min
x∈X

{

f(x) + µ′g(x)
}

.

288 Convex Optimization Algorithms Chap. 6

Then we claim that−g(xµ) is a subgradient of the negative of the dual function

f = −q at µ, i.e.,

q(ν) ≤ q(µ) + (ν − µ)′g(xµ), ∀ ν ∈ ℜr .

This is a special case of the preceding example, and can also be verified
directly by writing for all ν ∈ ℜr,

q(ν) = inf
x∈X

{

f(x) + ν′g(x)
}

≤ f(xµ) + ν′g(xµ)

= f(xµ) + µ′g(xµ) + (ν − µ)′g(xµ)

= q(µ) + (ν − µ)′g(xµ).

Note that this calculation is valid for all µ ∈ ℜr for which there is a minimizing
vector xµ, and yields a subgradient of the function

− inf
x∈X

{

f(x) + µ′g(x)
}

,

regardless of whether µ ≥ 0.

An important characteristic of the subgradient method (6.55) is that
the new iterate may not improve the cost for any value of the stepsize; i.e.,
for some k, we may have

f
(

PX(xk − αgk)
)

> f(xk), ∀ α > 0,

(see Fig. 6.3.1). However, it turns out that if the stepsize is small enough,
the distance of the current iterate to the optimal solution set is reduced (this
is illustrated in Fig. 6.3.2). Part (b) of the following proposition provides
a formal proof of the distance reduction property and an estimate for the
range of appropriate stepsizes. Essential for this proof is the following
nonexpansion property of the projection†

‖PX(x)− PX(y)‖ ≤ ‖x− y‖, ∀ x, y ∈ ℜn. (6.57)

† To show the nonexpansion property, note that from the projection theorem
(Prop. 1.1.9),

(

z − PX(x)
)′(

x− PX(x)
)

≤ 0, ∀ z ∈ X.

Since PX(y) ∈ X, we obtain

(

PX(y)− PX(x)
)′(

x− PX(x)
)

≤ 0.

Similarly,
(

PX(x)− PX(y)
)′(

y − PX(y)
)

≤ 0.

By adding these two inequalities, we see that

(

PX(y)− PX(x)
)′(

x− PX(x)− y + PX(y)
)

≤ 0.

Sec. 6.3 Subgradient Methods 289

Proposition 6.3.1: Let {xk} be the sequence generated by the sub-
gradient method (6.55). Then, for all y ∈ X and k ≥ 0:

(a) We have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
k‖gk‖2.

(b) If f(y) < f(xk), we have

‖xk+1 − y‖ < ‖xk − y‖,

for all stepsizes αk such that

0 < αk <
2
(

f(xk)− f(y)
)

‖gk‖2
.

Proof: (a) Using the nonexpansion property of the projection [cf. Eq.
(6.57)], we obtain for all y ∈ X and k,

‖xk+1 − y‖2 =
∥

∥PX (xk − αkgk)− y
∥

∥

2

≤ ‖xk − αkgk − y‖2
= ‖xk − y‖2 − 2αkg′k(xk − y) + α2

k‖gk‖2
≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
k‖gk‖2,

where the last inequality follows from the subgradient inequality.

(b) Follows from part (a). Q.E.D.

Part (b) of the preceding proposition suggests the stepsize rule

αk =
f(xk)− f∗

‖gk‖2
, (6.58)

where f∗ is the optimal value. This rule selects αk to be in the middle of
the range

(

0,
2
(

f(xk)− f(x∗)
)

‖gk‖2

)

By rearranging this relation and by using the Schwarz inequality, we have

∥

∥PX(y)− PX(x)
∥

∥

2
≤
(

PX(y)− PX(x)
)′
(y − x) ≤

∥

∥PX(y)− PX(x)
∥

∥ · ‖y − x‖,

from which the nonexpansion property of the projection follows.

290 Convex Optimization Algorithms Chap. 6

M

mk

mk + sgk

m*

Level sets of q

mk+1 =PM
 (mk + s gk)

Level sets of f

X
xk

xk − αkgk

xk+1 = PX(xk − αkgk)

x∗

gk

∂f(xk)

Figure 6.3.1. Illustration of how the iterate PX(xk −αgk) may not improve the
cost function with a particular choice of subgradient gk, regardless of the value of
the stepsize α.

M

mk

mk + s kgk

mk+1 =PM
 (mk + s kgk)

m*

< 90
o

Level sets of qLevel sets of f X

xk

x∗

xk+1 = PX(xk − αkgk)

xk − αkgk

< 90◦

Figure 6.3.2. Illustration of how, given a nonoptimal xk, the distance to any
optimal solution x∗ is reduced using a subgradient iteration with a sufficiently
small stepsize. The crucial fact, which follows from the definition of a subgradient,
is that the angle between the subgradient gk and the vector x∗ − xk is greater
than 90 degrees. As a result, if αk is small enough, the vector xk −αkgk is closer
to x∗ than xk. Through the projection on X, PX(xk − αkgk) gets even closer to
x∗.

Sec. 6.3 Subgradient Methods 291

where x∗ is an optimal solution [cf. Prop. 6.3.1(b)], and reduces the distance
of the current iterate to x∗.

Unfortunately, however, the stepsize (6.58) requires that we know f∗,
which is rare. In practice, one must use some simpler scheme for selecting
a stepsize. The simplest possibility is to select αk to be the same for all
k, i.e., αk ≡ α for some α > 0. Then, if the subgradients gk are bounded
(‖gk‖ ≤ c for some constant c and all k), Prop. 6.3.1(a) shows that for all
optimal solutions x∗, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2α
(

f(xk)− f∗
)

+ α2c2,

and implies that the distance to x∗ decreases if

0 < α <
2
(

f(xk)− f∗
)

c2

or equivalently, if xk is outside the level set
{

x
∣

∣

∣ f(x) ≤ f∗ +
αc2

2

}

;

(see Fig. 6.3.3). Thus, if α is taken to be small enough, the conver-
gence properties of the method are satisfactory. Since a small stepsize
may result in slow initial progress, it is common to use a variant of this
approach whereby we start with moderate stepsize values αk, which are
progressively reduced up to a small positive value α, using some heuristic
scheme. Other possibilities for stepsize choice include a diminishing step-
size, whereby αk → 0, and schemes that replace the unknown optimal value
f∗ in Eq. (6.58) with an estimate.

6.3.1 Convergence Analysis

We will now discuss the convergence of the subgradient method

xk+1 = PX(xk − αkgk).

Throughout our analysis in this section, we denote by {xk} the correspond-
ing generated sequence, we write

f∗ = inf
x∈X

f(x), X∗ =
{

x ∈ X | f(x) = f∗
}

, f = lim inf
k→∞

f(xk),

and we assume the following:

Assumption 6.3.1: (Subgradient Boundedness) For some scalar
c, we have

c ≥ sup
{

‖g‖ | g ∈ ∂f(xk)
}

, ∀ k ≥ 0.

292 Convex Optimization Algorithms Chap. 6

Optimal Solution

Set

Level Set {! | q(!) ! q* - sC2/2}

!"

Level set

t
{

x | f(x) ≤ f∗ + αc2/2
}

Optimal solution set

t x0

Figure 6.3.3. Illustration of a principal convergence property of the subgradient
method with a constant stepsize α, and assuming a bound c on the subgradient
norms ‖gk‖. When the current iterate is outside the level set

{

x

∣

∣

∣
f(x) ≤ f∗ +

αc2

2

}

,

the distance to any optimal solution is reduced at the next iteration. As a result
the method gets arbitrarily close to (or inside) this level set.

We note that Assumption 6.3.1 is satisfied if f is polyhedral, an im-
portant special case in practice, or if X is compact, [see Prop. 5.4.2(a)].
Similarly, Assumption 6.3.1 will hold if it can be ascertained somehow that
{xk} is bounded.

We will consider three different types of stepsize rules:

(a) A constant stepsize.

(b) A diminishing stepsize.

(c) A dynamically chosen stepsize based on the value f∗ [cf. Prop. 6.3.1(b)]
or a suitable estimate.

We first consider the case of a constant stepsize rule.

Proposition 6.3.2: Assume that αk is fixed at some positive scalar α.

(a) If f∗ = −∞, then f = f∗.

(b) If f∗ > −∞, then

f ≤ f∗ +
αc2

2
.

Proof: We prove (a) and (b) simultaneously. If the result does not hold,

Sec. 6.3 Subgradient Methods 293

there must exist an ǫ > 0 such that

f > f∗ +
αc2

2
+ 2ǫ.

Let ŷ ∈ X be such that

f ≥ f(ŷ) +
αc2

2
+ 2ǫ,

and let k0 be large enough so that for all k ≥ k0 we have

f(xk) ≥ f − ǫ.

By adding the preceding two relations, we obtain for all k ≥ k0,

f(xk)− f(ŷ) ≥ αc2

2
+ ǫ.

Using Prop. 6.3.1(a) for the case where y = ŷ together with the above
relation and Assumption 6.3.1, we obtain for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αǫ.

Thus we have

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αǫ

≤ ‖xk−1 − ŷ‖2 − 4αǫ

· · ·
≤ ‖xk0 − ŷ‖2 − 2(k + 1− k0)αǫ,

which cannot hold for k sufficiently large – a contradiction. Q.E.D.

The next proposition gives an estimate of the number of iterations
needed to guarantee a level of optimality up to the threshold tolerance
αc2/2 given in the preceding proposition. As can be expected, the number
of necessary iterations depends on the distance

d(x0) = min
x∗∈X∗

‖x0 − x∗‖,

of the initial point x0 to the optimal solution set X∗.

Proposition 6.3.3: Assume that αk is fixed at some positive scalar α,
and that X∗ is nonempty. Then for any positive scalar ǫ, we have

min
0≤k≤K

f(xk) ≤ f∗ +
αc2 + ǫ

2
, (6.59)

where

K =

⌊

d(x0)2

αǫ

⌋

.

294 Convex Optimization Algorithms Chap. 6

Proof: Assume, to arrive at a contradiction, that Eq. (6.59) does not hold,
so that for all k with 0 ≤ k ≤ K, we have

f(xk) > f∗ +
αc2 + ǫ

2
.

By using this relation in Prop. 6.3.1(a) with y ∈ X∗ and αk = α, we obtain
for all k with 0 ≤ k ≤ K,

min
x∗∈X∗

‖xk+1 − x∗‖2 ≤ min
x∗∈X∗

‖xk − x∗‖2 − 2α
(

f(xk)− f∗
)

+α2c2

≤ min
x∗∈X∗

‖xk − x∗‖2 − (α2c2 + αǫ) + α2c2

= min
x∗∈X∗

‖xk − x∗‖2 − αǫ.

Summation of the above inequalities over k for k = 0, . . . ,K, yields

min
x∗∈X∗

‖xK+1 − x∗‖2 ≤ min
x∗∈X∗

‖x0 − x∗‖2 − (K + 1)αǫ,

so that
min

x∗∈X∗
‖x0 − x∗‖2 − (K + 1)αǫ ≥ 0,

which contradicts the definition of K. Q.E.D.

By letting α = ǫ/c2, we see from the preceding proposition that we
can obtain an ǫ-optimal solution in O(1/ǫ2) iterations of the subgradient
method. Note that the number of iterations is independent of the dimension
n of the problem.

We next consider the case where the stepsize αk diminishes to zero,
but satisfies

∑∞
k=0 αk = ∞ [for example, αk = β/(k + γ), where β and γ

are some positive scalars]. This condition is needed so that the method can
“travel” infinitely far if necessary to attain convergence; otherwise, if

min
x∗∈X∗

‖x0 − x∗‖ > c
∞
∑

k=0

αk,

where c is the constant in Assumption 6.3.1, convergence to X∗ starting
from x0 is impossible.

Proposition 6.3.4: If αk satisfies

lim
k→∞

αk = 0,

∞
∑

k=0

αk = ∞,

then f = f∗.

Sec. 6.3 Subgradient Methods 295

Proof: Assume, to arrive at a contradiction, that there exists an ǫ > 0
such that

f − 2ǫ > f∗.

Then there exists a point ŷ ∈ X such that

f − 2ǫ > f(ŷ).

Let k0 be large enough so that for all k ≥ k0, we have

f(xk) ≥ f − ǫ.

By adding the preceding two relations, we obtain for all k ≥ k0,

f(xk)− f(ŷ) > ǫ.

By setting y = ŷ in Prop. 6.3.1(a), and by using the above relation and
Assumption 6.3.1, we have for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αkǫ+ α2
kc

2 = ‖xk − ŷ‖2 − αk (2ǫ− αkc2) .

Since αk → 0, without loss of generality, we may assume that k0 is large
enough so that

2ǫ− αkc2 ≥ ǫ, ∀ k ≥ k0.

Therefore for all k ≥ k0 we have

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − αkǫ ≤ · · · ≤ ‖xk0 − ŷ‖2 − ǫ
k
∑

j=k0

αj ,

which cannot hold for k sufficiently large. Q.E.D.

We now discuss the stepsize rule

αk = γk
f(xk)− f∗

‖gk‖2
, 0 < γ ≤ γk ≤ γ < 2, ∀ k ≥ 0, (6.60)

where γ and γ are some scalars. We first consider the case where f∗ is
known. We later modify the stepsize, so that f∗ can be replaced by a
dynamically updated estimate.

Proposition 6.3.5: Assume that X∗ is nonempty. Then, if αk is
determined by the dynamic stepsize rule (6.60), {xk} converges to
some optimal solution.

296 Convex Optimization Algorithms Chap. 6

Proof: From Prop. 6.3.1(a) with y = x∗ ∈ X∗, we have

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−2αk

(

f(xk)−f∗
)

+α2
k‖gk‖2, ∀ x∗ ∈ X∗, k ≥ 0.

By using the definition of αk [cf. Eq. (6.60)] and the fact ‖gk‖ ≤ c (cf.
Assumption 6.3.1), we obtain

‖xk+1−x∗‖2 ≤ ‖xk−x∗‖2−γ(2−γ)
(

f(xk)− f∗
)2

c2
, ∀ x∗ ∈ X∗, k ≥ 0.

This implies that {xk} is bounded. Furthermore, f(xk) → f∗, since other-
wise we would have ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ − ǫ for some suitably small
ǫ > 0 and infinitely many k. Hence for any limit point x of {xk}, we have
x ∈ X∗, and since the sequence {‖xk − x∗‖} is decreasing, it converges to
‖x− x∗‖ for every x∗ ∈ X∗. If there are two distinct limit points x̃ and x
of {xk}, we must have x̃ ∈ X∗, x ∈ X∗, and ‖x̃ − x∗‖ = ‖x − x∗‖ for all
x∗ ∈ X∗, which is possible only if x̃ = x. Q.E.D.

In most practical problems the optimal value f∗ is not known. In this
case we may modify the dynamic stepsize (6.60) by replacing f∗ with an
estimate. This leads to the stepsize rule

αk = γk
f(xk)− fk

‖gk‖2
, 0 < γ ≤ γk ≤ γ < 2, ∀ k ≥ 0, (6.61)

where fk is an estimate of f∗. We consider a procedure for updating fk,
whereby fk is given by

fk = min
0≤j≤k

f(xj)− δk, (6.62)

and δk is updated according to

δk+1 =

{

ρδk if f(xk+1) ≤ fk,
max

{

βδk, δ
}

if f(xk+1) > fk,
(6.63)

where δ, β, and ρ are fixed positive constants with β < 1 and ρ ≥ 1.
Thus in this procedure, we essentially “aspire” to reach a target level

fk that is smaller by δk over the best value achieved thus far [cf. Eq. (6.62)].
Whenever the target level is achieved, we increase δk (if ρ > 1) or we keep
it at the same value (if ρ = 1). If the target level is not attained at a given
iteration, δk is reduced up to a threshold δ. This threshold guarantees that
the stepsize αk of Eq. (6.61) is bounded away from zero, since from Eq.
(6.62), we have f(xk)− fk ≥ δ and hence

αk ≥ γ
δ

c2
.

Sec. 6.3 Subgradient Methods 297

As a result, the method behaves similar to the one with a constant stepsize
(cf. Prop. 6.3.2), as indicated by the following proposition.

Proposition 6.3.6: Assume that αk is determined by the dynamic
stepsize rule (6.61) with the adjustment procedure (6.62)–(6.63). If
f∗ = −∞, then

inf
k≥0

f(xk) = f∗,

while if f∗ > −∞, then

inf
k≥0

f(xk) ≤ f∗ + δ.

Proof: Assume, to arrive at a contradiction, that

inf
k≥0

f(xk) > f∗ + δ. (6.64)

Each time the target level is attained [i.e., f(xk) ≤ fk−1], the current best
function value min0≤j≤k f(xj) decreases by at least δ [cf. Eqs. (6.62) and
(6.63)], so in view of Eq. (6.64), the target value can be attained only a
finite number of times. From Eq. (6.63) it follows that after finitely many
iterations, δk is decreased to the threshold value and remains at that value
for all subsequent iterations, i.e., there is an index k such that

δk = δ, ∀ k ≥ k. (6.65)

In view of Eq. (6.64), there exists y ∈ X such that infk≥0 f(xk)− δ ≥
f(y). From Eqs. (6.62) and (6.65), we have

fk = min
0≤j≤k

f(xj)− δ ≥ inf
k≥0

f(xk)− δ ≥ f(y), ∀ k ≥ k,

so that

αk

(

f(xk)− f(y)
)

≥ αk

(

f(xk)− fk
)

= γk

(

f(xk)− fk
‖gk‖

)2

, ∀ k ≥ k.

By using Prop. 6.3.1(a) with y = y, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
k‖gk‖2, ∀ k ≥ 0.

By combining the preceding two relations and the definition of αk [cf.
Eq. (6.61)], we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2γk

(

f(xk)− fk
‖gk‖

)2

+ γ2k

(

f(xk)− fk
‖gk‖

)2

= ‖xk − y‖2 − γk(2− γk)

(

f(xk)− fk
‖gk‖

)2

≤ ‖xk − y‖2 − γ(2− γ)
δ2

‖gk‖2
, ∀ k ≥ k,

298 Convex Optimization Algorithms Chap. 6

where the last inequality follows from the facts γk ∈ [γ, γ] and f(xk)−fk ≥
δ for all k. By summing the above inequalities over k and using Assumption
6.3.1, we have

‖xk − y‖2 ≤ ‖xk − y‖2 − (k − k)γ(2− γ)
δ2

c2
, ∀ k ≥ k,

which cannot hold for sufficiently large k – a contradiction. Q.E.D.

We will now consider various types of subgradient methods, which use
approximate subgradients. As we will see, there may be several different
reasons for this approximation; for example, computational savings in the
subgradient calculation, exploitation of special problem structure, or faster
convergence.

6.3.2 ǫ-Subgradient Methods

Subgradient methods require the computation of a subgradient at the cur-
rent point, but in some contexts, it may be necessary or convenient to use
an approximation to a subgradient which we now introduce.

0

f(z)

(−g, 1)

z

(

x, f(x) − ǫ

)

ǫ

Figure 6.3.4. Illustration of an ǫ-subgra-
dient of a convex function f . A vector g

is an ǫ-subgradient at x ∈ dom(f) if and
only if there is a hyperplane with normal
(−g, 1), which passes through the point
(

x, f(x) − ǫ
)

, and separates this point
from the epigraph of f .

Given a proper convex function f : ℜn 7→ (−∞,∞] and a scalar ǫ > 0,
we say that a vector g is an ǫ-subgradient of f at a point x ∈ dom(f) if

f(z) ≥ f(x) + (z − x)′g − ǫ, ∀ z ∈ ℜn. (6.66)

The ǫ-subdifferential ∂ǫf(x) is the set of all ǫ-subgradients of f at x, and
by convention, ∂ǫf(x) = Ø for x /∈ dom(f). It can be seen that

∂ǫ1f(x) ⊂ ∂ǫ2f(x) if 0 < ǫ1 < ǫ2,

and that
∩ǫ↓0∂ǫf(x) = ∂f(x).

Sec. 6.3 Subgradient Methods 299

To interpret geometrically an ǫ-subgradient, note that the defining
relation (6.66) can be written as

f(z)− z′g ≥
(

f(x)− ǫ
)

− x′g, ∀ z ∈ ℜn.

Thus g is an ǫ-subgradient at x if and only if the epigraph of f is contained
in the positive halfspace corresponding to the hyperplane in ℜn+1 that has
normal (−g, 1) and passes through

(

x, f(x)−ǫ
)

, as illustrated in Fig. 6.3.4.
Figure 6.3.5 illustrates the definition of the ǫ-subdifferential ∂ǫf(x)

for the case of a one-dimensional function f . The figure indicates that if
f is closed, then [in contrast with ∂f(x)] ∂ǫf(x) is nonempty at all points
of dom(f). This follows by the Nonvertical Hyperplane Theorem (Prop.
1.5.8).

z

ǫ

x

Slopes: endpoints of ∂ǫf(x)
Slope: right endpoint of ∂ f

D
z

ǫ

x

D

Slope: right endpoint
of ∂ǫf(x)

f(z)f(z)

= 0 = 0

Figure 6.3.5. Illustration of the ǫ-subdifferential ∂ǫf(x) of a one-dimensional
function f : ℜ 7→ (−∞,∞], which is closed and convex, and has as effective domain
an interval D. The ǫ-subdifferential is an interval with endpoints corresponding
to the slopes indicated in the figure. These endpoints can be −∞ (as in the figure
on the right) or ∞.

The following example motivates the use of ǫ-subgradients in the con-
text of duality and minimax problems. It shows that ǫ-subgradients may be
computed more economically than subgradients, through an approximate
minimization.

Example 6.3.3: (ǫ-Subgradient Calculation in Minimax and
Dual Problems)

As in Example 6.3.1, let us consider the minimization of

f(x) = sup
z∈Z

φ(x, z), (6.67)

where x ∈ ℜn, z ∈ ℜm, Z is a subset of ℜm, and φ : ℜn×ℜm 7→ (−∞,∞] is a
function such that φ(·, z) is convex and closed for each z ∈ Z. We showed in

300 Convex Optimization Algorithms Chap. 6

Example 6.3.1 that if we carry out the maximization over z in Eq. (6.67), we
can then obtain a subgradient at x. We will show with a similar argument,
that if we carry out the maximization over z approximately, within ǫ, we
can then obtain an ǫ-subgradient at x, which we can use in turn within an
ǫ-subgradient method.

Indeed, for a fixed x ∈ dom(f), let us assume that zx ∈ Z attains the
supremum within ǫ > 0 in Eq. (6.67), i.e.,

φ(x, zx) ≥ sup
z∈Z

φ(x, z)− ǫ = f(x)− ǫ,

and that gx is some subgradient of the convex function φ(·, zx), i.e., gx ∈
∂φ(x, zx). Then, for all y ∈ ℜn, we have using the subgradient inequality,

f(y) = sup
z∈Z

φ(y, z) ≥ φ(y, zx) ≥ φ(x, zx) + g′x(y − x) ≥ f(x)− ǫ+ g′x(y − x),

i.e., gx is an ǫ-subgradient of f at x, so

φ(x, zx) ≥ sup
z∈Z

φ(x, z)− ǫ and gx ∈ ∂φ(x, zx) ⇒ gx ∈ ∂ǫf(x).

We now consider the class of ǫ-subgradient methods for minimizing a
real-valued convex function f : ℜn 7→ ℜ over a closed convex set X , given
by

xk+1 = PX(xk − αkgk), (6.68)

where gk is an ǫk-subgradient of f at xk, αk is a positive stepsize, and PX(·)
denotes projection on X . Their convergence behavior and analysis are
similar to those of subgradient methods, except that ǫ-subgradient methods

generally aim to converge to the ǫ-optimal set , where ǫ = limk→∞ ǫk, rather
than the optimal set, as subgradient methods do.

To get a sense of the convergence proof, note that there is a simple
modification of the basic inequality of Prop. 6.3.1(a). In particular, if {xk}
is the sequence generated by the ǫ-subgradient method, we can show that
for all y ∈ X and k ≥ 0

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)− ǫk
)

+ α2
k‖gk‖2.

Using this inequality, one can essentially replicate the convergence analysis
of Section 6.3.1. As an example, consider the case of constant αk and
ǫk: αk ≡ α for some α > 0 and ǫk ≡ ǫ for some ǫ > 0. Then, if the
ǫ-subgradients gk are bounded, with ‖gk‖ ≤ c for some constant c and all
k, we obtain for all optimal solutions x∗,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2α
(

f(xk)− f∗ − ǫ
)

+ α2c2,

Sec. 6.3 Subgradient Methods 301

where f∗ = infx∈X f(x) is the optimal value. This implies that the distance
to x∗ decreases if

0 < α <
2
(

f(xk)− f∗ − ǫ
)

c2

or equivalently, if xk is outside the level set

{

x
∣

∣

∣ f(x) ≤ f∗ + ǫ+
αc2

2

}

(cf. Fig. 6.3.3). With analysis similar to the one for the subgradient case,
we can also show that if αk → 0,

∑∞
k=0 αk = ∞, and ǫk → ǫ ≥ 0, we have

lim inf
k→∞

f(xk) ≤ f∗ + ǫ

(cf. Prop. 6.3.4).

6.3.3 Incremental Subgradient Methods

An interesting form of approximate subgradient method is an incremental

variant, which applies to minimization over a closed convex set X of an
additive cost function of the form

f(x) =

m
∑

i=1

fi(x),

where the functions fi : ℜn 7→ ℜ are convex. We mentioned several contexts
where cost functions of this type arise in Section 6.1.3. The idea of the
incremental approach is to sequentially take steps along the subgradients
of the component functions fi, with intermediate adjustment of x after
processing each component function.

Incremental methods are particularly interesting when the number of
cost terms m is very large, and much larger than the dimension n (think
here of n in the tens and hundreds, and m in the thousands and millions).
Then a full subgradient step is very costly, and one hopes to make progress
with approximate but much cheaper incremental steps.

In the incremental subgradient method, an iteration is viewed as a

cycle of m subiterations . If xk is the vector obtained after k cycles, the
vector xk+1 obtained after one more cycle is

xk+1 = ψm,k, (6.69)

where starting with ψ0,k = xk, we obtain ψm,k after the m steps

ψi,k = PX(ψi−1,k − αkgi,k), i = 1, . . . ,m, (6.70)

302 Convex Optimization Algorithms Chap. 6

with gi,k being a subgradient of fi at ψi−1,k.
The motivation for this method is faster convergence. In particular,

we hope that far from the solution, a single cycle of the incremental sub-
gradient method will be as effective as several (as many as m) iterations of
the ordinary subgradient method (think of the case where the components
fi are similar in structure).

One way to explain the convergence mechanism of the incremental
method is to establish a connection with the ǫ-subgradient method (6.68).
An important fact here is that if two vectors x and x are “near” each other,

then subgradients at x can be viewed as ǫ-subgradients at x, with ǫ “small.”
In particular, if g ∈ ∂f(x), we have for all z ∈ ℜn,

f(z) ≥ f(x) + g′(z − x)

≥ f(x) + g′(z − x) + f(x)− f(x) + g′(x− x)

≥ f(x) + g′(z − x)− ǫ,

where
ǫ = max

{

0, f(x)− f(x)
}

+ ‖g‖ · ‖x− x‖.
Thus, we have g ∈ ∂ǫf(x), and ǫ is small when x is near x.

We now observe from Eq. (6.70) that the ith step within a cycle of
the incremental subgradient method involves the direction gi,k, which is
a subgradient of fi at the corresponding vector ψi−1,k. If the stepsize αk

is small, then ψi−1,k is close to the vector xk available at the start of the
cycle, and hence gi,k is an ǫi-subgradient of fi at xk, where ǫi is small. In
particular, if we ignore the projection operation in Eq. (6.70), we have

xk+1 = xk − αk

m
∑

i=1

gi,k,

where gi is a subgradient of fi at ψi−1,k, and hence an ǫi-subgradient of fi
at xk, where ǫi is “small” (proportional to αk). Let us also use the formula

∂ǫ1f1(x) + · · ·+ ∂ǫmfm(x) ⊂ ∂ǫf(x),

where ǫ = ǫ1 + · · · + ǫm, to approximate the ǫ-subdifferential of the sum
f =

∑m
i=1 fi. (This relation follows from the definition of ǫ-subgradient.)

Then, it can be seen that the incremental subgradient iteration can be
viewed as an ǫ-subgradient iteration with ǫ = ǫ1 + · · ·+ ǫm. The size of ǫ
depends on the size of αk, as well as the function f , and we generally have
ǫ → 0 as αk → 0. As a result, for the case where αk → 0 and

∑∞
k=0 αk =

∞, the incremental subgradient method converges to the optimal value,
similar to the ordinary subgradient method. If the stepsize αk is kept
constant, convergence to a neighborhood of the solution can be expected.
These results will be established more precisely and in greater detail in the
analysis that follows.

Sec. 6.3 Subgradient Methods 303

Convergence Analysis

Incremental subgradient methods have a rich theory, which includes con-
vergence and rate of convergence analysis, optimization and randomization
issues of the component order selection, and distributed computation as-
pects. Our analysis in this section is selective, and focuses on the case of a
constant stepsize. We refer to the sources cited at the end of the chapter
for a fuller discussion.

We use the notation

f∗ = inf
x∈X

f(x), X∗ =
{

x ∈ X | f(x) = f∗
}

,

d(x) = inf
x∗∈X∗

‖x− x∗‖,

where ‖·‖ denotes the standard Euclidean norm. In our analysis, we assume
the following:

Assumption 6.3.2: (Subgradient Boundedness) We have

ci ≥ sup
k≥0

{

‖g‖ | g ∈ ∂fi(xk) ∪ ∂fi(ψi−1,k)
}

, i = 1, . . . ,m,

for some scalars c1, . . . , cm.

We note that Assumption 6.3.2 is satisfied if each fi is real-valued and
polyhedral. In particular, Assumption 6.3.2 holds for the dual of an integer
programming problem, where for each i and all x the set of subgradients
∂fi(x) is the convex hull of a finite number of points. More generally,
since each component fi is real-valued and convex over the entire space
ℜn, the subdifferential ∂fi(x) is nonempty and compact for all x and i
(Prop. 5.4.1). If the set X is compact or the sequences {ψi,k} are bounded,
then Assumption 6.3.2 is satisfied since the set ∪x∈B∂fi(x) is bounded for
any bounded set B (cf. Prop. 5.4.2).

The following is a key result, which parallels Prop. 6.3.1(a) for the
(nonincremental) subgradient method.

Proposition 6.3.7: Let {xk} be the sequence generated by the in-
cremental method (6.69), (6.70). Then for all y ∈ X and k ≥ 0, we
have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
kc

2, (6.71)

where c =
∑m

i=1 ci and ci are the scalars of Assumption 6.3.2.

304 Convex Optimization Algorithms Chap. 6

Proof: Using the nonexpansion property of the projection, the subgradi-
ent boundedness (cf. Assumption 6.3.2), and the subgradient inequality for
each component function fi, we obtain for all y ∈ X ,

‖ψi,k − y‖2 =
∥

∥PX (ψi−1,k − αkgi,k)− y
∥

∥

2

≤ ‖ψi−1,k − αkgi,k − y‖2
≤ ‖ψi−1,k − y‖2 − 2αkg′i,k(ψi−1,k − y) + α2

kc
2
i

≤ ‖ψi−1,k − y‖2 − 2αk

(

fi(ψi−1,k)− fi(y)
)

+ α2
kc

2
i , ∀ i, k.

By adding the above inequalities over i = 1, . . . ,m, we have for all y ∈ X
and k,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

m
∑

i=1

(

fi(ψi−1,k)− fi(y)
)

+ α2
k

m
∑

i=1

c2i

= ‖xk − y‖2 − 2αk

(

f(xk)− f(y) +

m
∑

i=1

(

fi(ψi−1,k)− fi(xk)
)

)

+ α2
k

m
∑

i=1

c2i .

By strengthening the above inequality, we have for all y ∈ X and k, using
also the fact ψ0,k = xk,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ 2αk

m
∑

i=1

ci||ψi−1,k − xk||+ α2
k

m
∑

i=1

c2i

≤ ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
k

2
m
∑

i=2

ci

i−1
∑

j=1

cj

 +
m
∑

i=1

c2i

= ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
k

(

m
∑

i=1

ci

)2

= ‖xk − y‖2 − 2αk

(

f(xk)− f(y)
)

+ α2
kc

2,

where in the first inequality we use the relation

fi(xk)− fi(ψi−1,k) ≤ ‖g̃i,k‖ · ‖ψi−1,k − xk‖ ≤ ci‖ψi−1,k − xk‖

with g̃i,k ∈ ∂fi(xk), and in the second inequality we use the relation

‖ψi,k − xk‖ ≤ αk

i
∑

j=1

cj , i = 1, . . . ,m, k ≥ 0,

Sec. 6.3 Subgradient Methods 305

which follows from Eqs. (6.69), (6.70), and Assumption 6.3.2. Q.E.D.

Among other things, Prop. 6.3.7 guarantees that given the current
iterate xk and some other point y ∈ X with lower cost than xk, the next
iterate xk+1 will be closer to y than xk, provided the stepsize αk is suffi-
ciently small [less than 2

(

f(xk)− f(y)
)

/c2]. In particular, for any optimal
solution x∗ ∈ X∗, any ǫ > 0, and any αk ≤ ǫ/c2, either

f(xk) ≤ f∗ + ǫ,

or else

‖xk+1 − x∗‖ < ‖xk − x∗‖.

As in the case of the (nonincremental) subgradient method, for a
constant stepsize rule, convergence can be established to a neighborhood of
the optimum, which shrinks to 0 as the stepsize approaches 0. Convergence
results for diminishing stepsize, and dynamic stepsize rules, which parallel
Props. 6.3.4-6.3.6 can also be similarly established (see the sources cited at
the end of the chapter).

Proposition 6.3.8: Let {xk} be the sequence generated by the in-
cremental method (6.69), (6.70), with the stepsize αk fixed at some
positive constant α.

(a) If f∗ = −∞, then
lim inf
k→∞

f(xk) = f∗.

(b) If f∗ > −∞, then

lim inf
k→∞

f(xk) ≤ f∗ +
αc2

2
,

where c =
∑m

i=1 ci.

Proof: We prove (a) and (b) simultaneously. If the result does not hold,
there must exist an ǫ > 0 such that

lim inf
k→∞

f(xk)−
αc2

2
− 2ǫ > f∗.

Let ŷ ∈ X be such that

lim inf
k→∞

f(xk)−
αc2

2
− 2ǫ ≥ f(ŷ),

306 Convex Optimization Algorithms Chap. 6

and let k0 be large enough so that for all k ≥ k0, we have

f(xk) ≥ lim inf
k→∞

f(xk)− ǫ.

By adding the preceding two relations, we obtain for all k ≥ k0,

f(xk)− f(ŷ) ≥ αc2

2
+ ǫ.

Using Prop. 6.3.7 for the case where y = ŷ together with the above relation,
we obtain for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk − ŷ‖2 − 2αǫ.

This relation implies that for all k ≥ k0,

‖xk+1 − ŷ‖2 ≤ ‖xk−1 − ŷ‖2 − 4αǫ ≤ · · · ≤ ‖xk0 − ŷ‖2 − 2(k + 1− k0)αǫ,

which cannot hold for k sufficiently large – a contradiction. Q.E.D.

The preceding proposition involves only the iterates at the end of
cycles. However, by shifting the starting index in each cycle and repeating
the preceding proof, we see that

lim inf
k→∞

f(ψi,k) ≤ f∗ +
αc2

2
, ∀ i = 1, . . . ,m. (6.72)

The next proposition gives an estimate of the number K of cycles
needed to guarantee a given level of optimality up to the threshold tolerance
αc2/2 given in the preceding proposition.

Proposition 6.3.9: Assume that X∗ is nonempty. Let {xk} be the
sequence generated by the incremental method (6.69), (6.70), with the
stepsize αk fixed at some positive constant α. Then for any positive
scalar ǫ we have

min
0≤k≤K

f(xk) ≤ f∗ +
αc2 + ǫ

2
, (6.73)

where K is given by

K =

⌊

d(x0)2

αǫ

⌋

.

Proof: Assume, to arrive at a contradiction, that Eq. (6.73) does not hold,
so that for all k with 0 ≤ k ≤ K, we have

f(xk) > f∗ +
αc2 + ǫ

2
.

Sec. 6.3 Subgradient Methods 307

By using this relation in Prop. 6.3.7 with αk replaced by α, we obtain for
all k with 0 ≤ k ≤ K,

(

d(xk+1)
)2 ≤

(

d(xk)
)2

− 2α
(

f(xk)− f∗
)

+α2c2

≤
(

d(xk)
)2 − (α2c2 + αǫ) + α2c2

=
(

d(xk)
)2 − αǫ.

Summation of the above inequalities over k for k = 0, . . . ,K, yields

(

d(xK+1)
)2 ≤ d(x0)2 − (K + 1)αǫ,

so that
d(x0)2 − (K + 1)αǫ ≥ 0,

which contradicts the definition of K. Q.E.D.

Note that the estimate (6.73) involves only the iterates obtained at
the end of cycles. Since every cycle consists of m subiterations, the total
number N of component functions that must be processed in order for Eq.
(6.73) to hold is given by

N = mK = m

⌊

(d(x0)
)2

αǫ

⌋

.

The Role of the Order of Processing the Components

The error tolerance estimate αc2/2 of Prop. 6.3.8 and Eq. (6.72) is an upper
bound, and assumes the worst possible order of processing the components
fi within a cycle. One question that arises is whether this bound is sharp, in
the sense that there exists a problem and a processing order, such that for
each stepsize α, we can find a starting point for which the sequence {ψi,k}
generated by the method satisfies Eq. (6.72). Exercise 6.17 provides an
example where the bound is satisfied within a constant that is independent
of the problem data, i.e., for an unfavorable processing order and starting
point, the method satisfies

lim inf
k→∞

f(ψi,k) = f∗ +
βαc2

2
, ∀ i = 1, . . . ,m, (6.74)

where β is a positive constant that is fairly close to 1. Thus, there is not
much room for improvement of the worst-order error tolerance estimate
αc2/2.

On the other hand, suppose that we are free to choose the best possible
order of processing the components fi within a cycle. Would it then be

308 Convex Optimization Algorithms Chap. 6

possible to lower the tolerance estimate αc2/2, and by how much? We claim
that with such an optimal choice, it is impossible to lower the tolerance
estimate by more than a factor ofm. To see this, consider the case where all
the fi are the one-dimensional functions fi(x) = (c/m)|x|. Then, because
all functions fi are identical, the order of processing the components is
immaterial. If we start at x0 = (αc)/2m, then it can be seen that the
method oscillates between x0 and −x0, and the corresponding function
value is

f(x0) = f(−x0) =
m
∑

i=1

c

m

∣

∣

∣

αc

2m

∣

∣

∣ =
αc2

2m
.

Since f∗ = 0, this example shows that there exists a problem and a starting
point such that

lim inf
k→∞

f(ψi,k) = f∗ +
αc2

2m
, ∀ i = 1, . . . ,m. (6.75)

Thus from Eqs. (6.74) and (6.75), we see that for a given stepsize α,
the achievable range for the bound on the difference

lim inf
k→∞

f(ψi,k)− f∗

corresponding to the incremental subgradient method with a fixed process-
ing order is

[

αc2

2m
,
αc2

2

]

. (6.76)

By this we mean that there exists a choice of problem for which we can
do no better that the lower end of the above range, even with optimal
processing order choice; moreover, for all problems and processing orders,
we will do no worse than the upper end of the above range.

From the bound range (6.76), it can be seen that for a given stepsize
α, there is significant difference in the performance of the method with the
best and the worst processing orders. Unfortunately, it is difficult to find
the best processing order for a given problem. In the next section, we will
show that, remarkably, by randomizing the order, we can achieve the lower

tolerance error estimate
αc2

2m

with probability 1 .

6.3.4 Randomized Incremental Subgradient Methods

It can be verified that the convergence analysis of the preceding subsection
goes through assuming any order for processing the component functions
fi, as long as each component is taken into account exactly once within

Sec. 6.3 Subgradient Methods 309

a cycle. In particular, at the beginning of each cycle, we could reorder
the components fi by either shifting or reshuffling and then proceed with
the calculations until the end of the cycle. However, the order used can
significantly affect the rate of convergence of the method. Unfortunately,
determining the most favorable order may be very difficult in practice. A
popular technique for incremental methods is to reshuffle randomly the
order of the functions fi at the beginning of each cycle. A variation of this
method is to pick randomly a function fi at each iteration rather than to
pick each fi exactly once in every cycle according to a randomized order.
In this section, we analyze this type of method for the case of a constant
stepsize.

We focus on the randomized method given by

xk+1 = PX

(

xk − αg(ωk, xk)
)

, (6.77)

where ωk is a random variable taking equiprobable values from the set
{1, . . . ,m}, and g(ωk, xk) is a subgradient of the component fωk

at xk.
This simply means that if the random variable ωk takes a value j, then the
vector g(ωk, xk) is a subgradient of fj at xk. Throughout this section we
assume the following.

Assumption 6.3.3: For the randomized method (6.77):

(a) {ωk} is a sequence of independent random variables, each uni-
formly distributed over the set {1, . . . ,m}. Furthermore, the
sequence {ωk} is independent of the sequence {xk}.

(b) The set of subgradients
{

g(ωk, xk) | k = 0, 1, . . .
}

is bounded,
i.e., there is a positive constant c0 such that with probability 1

‖g(ωk, xk)‖ ≤ c0, ∀ k ≥ 0.

Note that if the setX is compact or the components fi are polyhedral,
then Assumption 6.3.3(b) is satisfied. The proofs of several propositions in
this section rely on the Supermartingale Convergence Theorem as stated
for example in Bertsekas and Tsitsiklis [BeT96], p. 148.

Proposition 6.3.10: (Supermartingale Convergence Theorem)
Let Yk, Zk, and Wk, k = 0, 1, 2, . . ., be three sequences of random
variables and let Fk, k = 0, 1, 2, . . ., be sets of random variables such
that Fk ⊂ Fk+1 for all k. Suppose that:

(1) The random variables Yk, Zk, and Wk are nonnegative, and are
functions of the random variables in Fk.

310 Convex Optimization Algorithms Chap. 6

(2) For each k, we have

E
{

Yk+1 | Fk

}

≤ Yk − Zk +Wk.

(3) There holds, with probability 1,
∑∞

k=0Wk <∞.

Then, we have
∑∞

k=0 Zk < ∞, and the sequence Yk converges to a
nonnegative random variable Y , with probability 1.

The following proposition parallels Prop. 6.3.8 for the deterministic
incremental method.

Proposition 6.3.11: Let {xk} be the sequence generated by the ran-
domized incremental method (6.77).

(a) If f∗ = −∞, then with probability 1

inf
k≥0

f(xk) = f∗.

(b) If f∗ > −∞, then with probability 1

inf
k≥0

f(xk) ≤ f∗ +
αmc20
2

.

Proof: By adapting Prop. 6.3.7 to the case where f is replaced by fωk
,

we have

‖xk+1−y‖2 ≤ ‖xk−y‖2−2α
(

fωk
(xk)−fωk

(y)
)

+α2c20, ∀ y ∈ X, k ≥ 0.

By taking the conditional expectation with respect to Fk = {x0, . . . , xk},
the method’s history up to xk, we obtain for all y ∈ X and k,

E
{

‖xk+1 − y‖2 | Fk

}

≤ ‖xk − y‖2 − 2αE
{

fωk
(xk)− fωk

(y) | Fk

}

+ α2c20

= ‖xk − y‖2 − 2α
m
∑

i=1

1

m

(

fi(xk)− fi(y)
)

+ α2c20

= ‖xk − y‖2 − 2α

m

(

f(xk)− f(y)
)

+ α2c20,

(6.78)
where the first equality follows since ωk takes the values 1, . . . ,m with equal
probability 1/m.

Sec. 6.3 Subgradient Methods 311

Now, fix a positive scalar γ, consider the level set Lγ defined by

Lγ =

{

x ∈ X | f(x) < −γ + 1 +
αmc20

2

}

if f∗ = −∞,
{

x ∈ X | f(x) < f∗ + 2
γ +

αmc20
2

}

if f∗ > −∞,

and let yγ ∈ X be such that

f(yγ) =

{−γ if f∗ = −∞,
f∗ + 1

γ if f∗ > −∞.

Note that yγ ∈ Lγ by construction. Define a new process {x̂k} as follows

x̂k+1 =

{

PX

(

x̂k − αg(ωk, x̂k)
)

if x̂k /∈ Lγ ,
yγ otherwise,

where x̂0 = x0. Thus the process {x̂k} is identical to {xk}, except that once
xk enters the level set Lγ , the process terminates with x̂k = yγ (since yγ ∈
Lγ). We will now argue that {x̂k} (and hence also {xk}) will eventually
enter each of the sets Lγ .

Using Eq. (6.78) with y = yγ , we have

E
{

‖x̂k+1 − yγ‖2 | Fk

}

≤ ‖x̂k − yγ‖2 −
2α

m

(

f(x̂k)− f(yγ)
)

+ α2c20,

or equivalently

E
{

‖x̂k+1 − yγ‖2 | Fk

}

≤ ‖x̂k − yγ‖2 − zk, (6.79)

where

zk =

{

2α
m

(

f(x̂k)− f(yγ)
)

− α2c20 if x̂k /∈ Lγ ,
0 if x̂k = yγ .

The idea of the subsequent argument is to show that as long as x̂k /∈ Lγ , the
scalar zk (which is a measure of progress) is strictly positive and bounded
away from 0.

(a) Let f∗ = −∞. Then if x̂k /∈ Lγ , we have

zk =
2α

m

(

f(x̂k)− f(yγ)
)

− α2c20

≥ 2α

m

(

−γ + 1 +
αmc20
2

+ γ

)

− α2c20

=
2α

m
.

Since zk = 0 for x̂k ∈ Lγ , we have zk ≥ 0 for all k, and by Eq. (6.79) and the
Supermartingale Convergence Theorem (cf. Prop. 6.3.10),

∑∞
k=0 zk < ∞

312 Convex Optimization Algorithms Chap. 6

implying that x̂k ∈ Lγ for sufficiently large k, with probability 1. Therefore,
in the original process we have

inf
k≥0

f(xk) ≤ −γ + 1 +
αmc20
2

with probability 1. Letting γ → ∞, we obtain infk≥0 f(xk) = −∞ with
probability 1.

(b) Let f∗ > −∞. Then if x̂k /∈ Lγ , we have

zk =
2α

m

(

f(x̂k)− f(yγ)
)

− α2c20

≥ 2α

m

(

f∗ +
2

γ
+
αmc20
2

− f∗ − 1

γ

)

− α2c20

=
2α

mγ
.

Hence, zk ≥ 0 for all k, and by the Supermartingale Convergence Theorem,
we have

∑∞
k=0 zk < ∞ implying that x̂k ∈ Lγ for sufficiently large k, so

that in the original process,

inf
k≥0

f(xk) ≤ f∗ +
2

γ
+
αmc20
2

with probability 1. Letting γ → ∞, we obtain infk≥0 f(xk) ≤ f∗+αmc20/2.
Q.E.D.

From Prop. 6.3.11(b), it can be seen that when f∗ > −∞, the ran-
domized method (6.77) with a fixed stepsize has a better error bound (by
a factor m, since c2 ≈ m2c20) than the one of the nonrandomized method
(6.69), (6.70), with the same stepsize (cf. Prop. 6.3.8). In effect, the ran-
domized method achieves in an expected sense the error tolerance of the
nonrandomized method with the best processing order [compare with the
discussion in the preceding subsection and Eqs. (6.74) and (6.75)]. Thus
when randomization is used, one can afford to use a larger stepsize α than in
the nonrandomized method. This suggests a rate of convergence advantage
in favor of the randomized method.

A related result is provided by the following proposition, which par-
allels Prop. 6.3.9 for the nonrandomized method.

Sec. 6.3 Subgradient Methods 313

Proposition 6.3.12: Assume that the optimal set X∗ is nonempty,
let Assumption 6.3.3 hold, and let {xk} be the sequence generated by
the randomized incremental method (6.77). Then, for any positive
scalar ǫ, we have with probability 1

min
0≤k≤N

f(xk) ≤ f∗ +
αmc20 + ǫ

2
, (6.80)

where N is a random variable with

E
{

N
}

≤ md(x0)2

αǫ
. (6.81)

Proof: Define a new process {x̂k} by

x̂k+1 =

{

PX

(

x̂k − αg(ωk, x̂k)
)

if x̂k /∈ Lγ ,
yγ otherwise,

where x̂0 = x0 and ŷ is some fixed vector in X∗. The process {x̂k} is
identical to {xk}, except that once xk enters the level set

L =

{

x ∈ X
∣

∣

∣ f(x) < f∗ +
αmc20 + ǫ

2

}

,

the process {x̂k} terminates at ŷ. Similar to the proof of Prop. 6.3.11 [cf.
Eq. (6.78) with y ∈ X∗], for the process {x̂k} we obtain for all k,

E
{

d(x̂k+1)2 | Fk

}

≤ d(x̂k)2 −
2α

m

(

f(x̂k)− f∗
)

+ α2c20

= d(x̂k)2 − zk,
(6.82)

where Fk = {x0, . . . , xk} and

zk =

{

2α
m

(

f(x̂k)− f∗
)

− α2c20 if x̂k 6∈ L,
0 otherwise.

In the case where x̂k 6∈ L, we have

zk ≥ 2α

m

(

f∗ +
αmc20 + ǫ

2
− f∗

)

− α2c20 =
αǫ

m
. (6.83)

By the Supermartingale Convergence Theorem (cf. Prop. 6.3.10), from Eq.
(6.82) we have

∞
∑

k=0

zk <∞

314 Convex Optimization Algorithms Chap. 6

with probability 1, so that zk = 0 for all k ≥ N , where N is a random
variable. Hence x̂N ∈ L with probability 1, implying that in the original
process we have

min
0≤k≤N

f(xk) ≤ f∗ +
αmc20 + ǫ

2

with probability 1. Furthermore, by taking the total expectation in Eq.
(6.82), we obtain for all k,

E
{

d(x̂k+1)2
}

≤ E
{

d(x̂k)2
}

− E{zk}

≤ d(x0)2 − E

k
∑

j=0

zj

,

where in the last inequality we use the facts x̂0 = x0 and

E
{

d(x0)2
}

= d(x0)2.

Therefore

d(x0)2 ≥ E

{

∞
∑

k=0

zk

}

= E

{

N−1
∑

k=0

zk

}

≥ E

{

Nαǫ

m

}

=
αǫ

m
E
{

N
}

,

where the last inequality above follows from Eq. (6.83). Q.E.D.

Comparison of Deterministic and Randomized Methods

Let us now compare the estimate of the above proposition with the corre-
sponding estimate for the deterministic incremental method. We showed in
Prop. 6.3.9 that the deterministic method is guaranteed to reach the level
set

{

x
∣

∣

∣ f(x) ≤ f∗ +
αc2 + ǫ

2

}

after no more than d(x0)2/(αǫ) cycles, where c =
∑

i=1 ci. To compare
this estimate with the one for the randomized method (cf. Prop. 6.3.12),
we note that ci ≤ c0, so that c can be estimated as mc0, while each cycle
requires the processing of m component functions. Thus, the deterministic
method, in order to reach the level set

{

x
∣

∣

∣
f(x) ≤ f∗ +

αm2c20 + ǫ

2

}

,

it must process a total of

N ≤ md(x0)2

αǫ

Sec. 6.4 Polyhedral Approximation Methods 315

component functions (this bound is essentially sharp, as shown in Exercise
6.17).

If in the randomized method we use the same stepsize α, then accord-
ing to Prop. 6.3.12, we will reach with probability 1 the (much smaller) level
set

{

x
∣

∣

∣ f(x) ≤ f∗ +
αmc20 + ǫ

2

}

after processing N component functions, where the expected value of N
satisfies

E
{

N
}

≤ md(x0)2

αǫ
.

Thus, for the same values of α and ǫ, the bound on the number of com-
ponent functions that must be processed in the deterministic method is
the same as the bound on the expected number of component functions
that must be processed in the randomized method. However, the error
term αm2c20 in the deterministic method is m times larger than the corre-
sponding error term in the randomized method. Similarly, if we choose the
stepsize α in the randomized method to achieve the same error level (in
cost function value) as in the deterministic method, then the corresponding
expected number of iterations becomes m times smaller.

Practical computational experience generally suggests that a random-
ized order of cost function component selection yields faster convergence
than a cyclic order. Aside from random independent sampling of the com-
ponent functions fi, another randomization technique is to reshuffle ran-
domly the order of the fi after each cycle. For a large number of com-
ponents m, practical experience suggests that this randomization scheme
has similar convergence and rate of convergence behavior as the indepen-
dent random sampling scheme. For small m, the practical performance of
the order reshuffling scheme may be even better than random independent
sampling. A plausible reason is that the order reshuffling scheme has the
nice property of allocating exactly one computation slot to each compo-
nent in an m-slot cycle. By comparison, choosing components by uniform
sampling allocates one computation slot to each component on the average,
but some components may not get a slot while others may get more than
one. A nonzero variance in the number of slots that any fixed component
gets within a cycle, may be detrimental to performance.

6.4 POLYHEDRAL APPROXIMATION METHODS

In this section, we will discuss methods, which (like the subgradient method)
calculate a single subgradient at each iteration, but use all the subgradi-
ents previously calculated to construct piecewise linear approximations of
the cost function and/or the constraint set. In Sections 6.4.1 and 6.4.2,

316 Convex Optimization Algorithms Chap. 6

we focus on the problem of minimizing a convex function f : ℜn 7→ ℜ
over a closed convex set X , and we assume that at each x ∈ X , a sub-
gradient of f can be computed. In Sections 6.4.3-6.4.6, we discuss various
generalizations.

6.4.1 Outer Linearization - Cutting Plane Methods

Cutting plane methods are rooted in the representation of a closed convex
set as the intersection of its supporting halfspaces. The idea is to ap-
proximate either the constraint set or the epigraph of the cost function by
the intersection of a limited number of halfspaces, and to gradually refine
the approximation by generating additional halfspaces through the use of
subgradients.

The typical iteration of the simplest cutting plane method is to solve
the problem

minimize Fk(x)

subject to x ∈ X,

where the cost function f is replaced by a polyhedral approximation Fk,
constructed using the points x0, . . . , xk generated so far and associated
subgradients g0, . . . , gk, with gi ∈ ∂f(xi) for all i. In particular, for k =
0, 1, . . .,

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x − xk)′gk
}

(6.84)

and xk+1 minimizes Fk(x) over x ∈ X ,

xk+1 ∈ argmin
x∈X

Fk(x); (6.85)

see Fig. 6.4.1. We assume that the minimum of Fk(x) above is attained for
all k. For those k for which this is not guaranteed, artificial bounds may
be placed on the components of x, so that the minimization will be carried
out over a compact set and consequently the minimum will be attained by
Weierstrass’ Theorem.

The following proposition establishes the associated convergence prop-
erties.

Proposition 6.4.1: Every limit point of a sequence {xk} generated
by the cutting plane method is an optimal solution.

Proof: Since for all i, gi is a subgradient of f at xi, we have

f(xi) + (x− xi)′gi ≤ f(x), ∀ x ∈ X,

Sec. 6.4 Polyhedral Approximation Methods 317

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x
∗

Figure 6.4.1. Illustration of the cutting plane method. With each new iterate xk,
a new hyperplane f(xk) + (x − xk)

′gk is added to the polyhedral approximation
of the cost function.

so from the definitions (6.84) and (6.85) of Fk and xk, it follows that

f(xi) + (xk − xi)′gi ≤ Fk−1(xk) ≤ Fk−1(x) ≤ f(x), ∀ x ∈ X, i < k.
(6.86)

Suppose that a subsequence {xk}K converges to x. Then, since X is closed,
we have x ∈ X , and by using Eq. (6.86), we obtain for all k and all i < k,

f(xi) + (xk − xi)′gi ≤ Fk−1(xk) ≤ Fk−1(x) ≤ f(x).

By taking the upper limit above as i → ∞, k → ∞, i < k, i ∈ K, k ∈ K,
we obtain

lim sup
i→∞, k→∞, i<k

i∈K, k∈K

{

f(xi) + (xk − xi)′gi
}

≤ lim sup
k→∞, k∈K

Fk−1(xk) ≤ f(x).

Since the subsequence {xk}K is bounded and the union of the subdif-
ferentials of a real-valued convex function over a bounded set is bounded (cf.
Prop. 5.4.2), it follows that the subgradient subsequence {gi}K is bounded.
Therefore we have

lim
i→∞, k→∞, i<k

i∈K, k∈K

(xk − xi)′gi = 0, (6.87)

while by the continuity of f , we have

f(x) = lim
i→∞, i∈K

f(xi). (6.88)

318 Convex Optimization Algorithms Chap. 6

Combining the three preceding relations, we obtain

lim sup
k→∞, k∈K

Fk−1(xk) = f(x).

This equation together with Eq. (6.86) yields

f(x) ≤ f(x), ∀ x ∈ X,

showing that x is an optimal solution. Q.E.D.

Note that the preceding proof goes through even when f is real-
valued and lower-semicontinuous overX (rather than overℜn), provided we
assume that {gk} is a bounded sequence [Eq. (6.87) then still holds, while
Eq. (6.88) holds as an inequality, but this does not affect the subsequent
argument]. Note also that the inequalities

Fk−1(xk) ≤ f∗ ≤ min
i≤k

f(xi), k = 0, 1, . . . ,

provide bounds to the optimal value f∗ of the problem. In practice,
the iterations are stopped when the upper and lower bound difference
mini≤k f(xi)− Fk−1(xk) comes within some small tolerance.

An important special case arises when f is polyhedral of the form

f(x) = max
i∈I

{

a′ix+ bi
}

, (6.89)

where I is a finite index set, and ai and bi are given vectors and scalars,
respectively. Then, any vector aik that maximizes a′ixk+bi over {ai | i ∈ I}
is a subgradient of f at xk (cf. Example 5.4.4). We assume that the cutting
plane method selects such a vector at iteration k, call it aik . We also assume
that the method terminates when

Fk−1(xk) = f(xk).

Then, since Fk−1(x) ≤ f(x) for all x ∈ X and xk minimizes Fk−1 over X ,
we see that, upon termination, xk minimizes f over X and is therefore op-
timal. The following proposition shows that the method converges finitely;
see also Fig. 6.4.2.

Proposition 6.4.2: Assume that the cost function f is polyhedral of
the form (6.89). Then the cutting plane method, with the subgradi-
ent selection and termination rules just described, obtains an optimal
solution in a finite number of iterations.

Sec. 6.4 Polyhedral Approximation Methods 319

x0 0 x1x2x3

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x
∗

Figure 6.4.2. Illustration of the finite convergence property of the cutting plane
method in the case where f is polyhedral. What happens here is that if xk is not
optimal, a new cutting plane will be added at the corresponding iteration, and
there can be only a finite number of cutting planes.

Proof: If (aik , bik) is equal to some pair (aij , bij) generated at some earlier
iteration j < k, then

f(xk) = a′ikxk + bik = a′ijxk + bij ≤ Fk−1(xk) ≤ f(xk),

where the first inequality follows since a′ijxk+bij corresponds to one of the

hyperplanes defining Fk−1, and the last inequality follows from the fact
Fk−1(x) ≤ f(x) for all x ∈ X . Hence equality holds throughout in the
preceding relation, and it follows that the method terminates if the pair
(aik , bik) has been generated at some earlier iteration. Since the number of
pairs (ai, bi), i ∈ I, is finite, the method must terminate finitely. Q.E.D.

Despite the finite convergence property shown in Prop. 6.4.2, the
cutting plane method has several drawbacks:

(a) It can take large steps away from the optimum, resulting in large
cost increases, even when it is close to (or even at) the optimum.
For example, in Fig. 6.4.2, f(x1) is much larger than f(x0). This
phenomenon is referred to as instability, and has another undesir-
able effect, namely that xk may not be a good starting point for the
algorithm that minimizes Fk(x).

(b) The number of subgradients used in the cutting plane approximation
Fk increases without bound as k → ∞ leading to a potentially large
and difficult linear program to find xk. To remedy this, one may
occasionally discard some of the cutting planes. To guarantee con-
vergence, it is essential to do so only at times when improvement in
the cost is recorded, e.g., f(xk) ≤ mini<k f(xi)−δ for some small pos-

320 Convex Optimization Algorithms Chap. 6

itive δ. Still one has to be judicious about discarding cutting planes,
as some of them may reappear later.

(c) The convergence is often slow. Indeed, for challenging problems, even
when f is polyhedral, one should base termination on the upper and
lower bounds

Fk(xk+1) ≤ min
x∈X

f(x) ≤ min
0≤i≤k+1

f(xi),

rather than wait for finite termination to occur.

To overcome some of the limitations of the cutting plane method, a
number of variants have been proposed, some of which are discussed in the
present section. In Section 6.5 we will discuss proximal methods, which are
aimed at limiting the effects of instability.

Partial Cutting Plane Methods

In some cases the cost function has the form

f(x) + c(x),

where f : X 7→ ℜ and c : X 7→ ℜ are convex functions, but one of them,
say c, is convenient for optimization, e.g., is quadratic. It may then be
preferable to use a piecewise linear approximation of f only, while leaving
c unchanged. This leads to a partial cutting plane algorithm, involving
solution of the problems

minimize Fk(x) + c(x)

subject to x ∈ X,

where as before

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x − xk)′gk
}

(6.90)

with gi ∈ ∂f(xi) for all i, and xk+1 minimizes Fk(x) over x ∈ X ,

xk+1 ∈ argmin
x∈X

{

Fk(x) + c(x)
}

.

The convergence properties of this algorithm are similar to the ones
shown earlier. In particular, if f is polyhedral, the method terminates
finitely, cf. Prop. 6.4.2. The idea of partial piecewise approximation arises
in a few contexts to be discussed in the sequel.

Sec. 6.4 Polyhedral Approximation Methods 321

Linearly Constrained Versions

Consider the case where the constraint set X is polyhedral of the form

X = {x | c′ix+ di ≤ 0, i ∈ I},

where I is a finite set, and ci and di are given vectors and scalars, respec-
tively. Let

p(x) = max
i∈I

{c′ix+ di},

so the problem is to maximize f(x) subject to p(x) ≤ 0. It is then possible
to consider a variation of the cutting plane method, where both functions
f and p are replaced by polyhedral approximations. The method is

xk+1 ∈ arg max
Pk(x)≤0

Fk(x).

As earlier,

Fk(x) = min
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk
}

,

with gi being a subgradient of f at xi. The polyhedral approximation Pk

is given by

Pk(x) = max
i∈Ik

{ci′x+ di},

where Ik is a subset of I generated as follows: I0 is an arbitrary subset of
I, and Ik is obtained from Ik−1 by setting Ik = Ik−1 if p(xk) ≤ 0, and by
adding to Ik−1 one or more of the indices i /∈ Ik−1 such that ci′xk + di > 0
otherwise.

Note that this method applies even when f is a linear function. In
this case there is no cost function approximation, i.e., Fk = f , just outer
approximation of the constraint set, i.e., X ⊂

{

x | Pk(x) ≤ 0
}

.
The convergence properties of this method are very similar to the ones

of the earlier method. In fact propositions analogous to Props. 6.4.1 and
6.4.2 can be formulated and proved. There are also versions of this method
where X is a general closed convex set, which is iteratively approximated
by a polyhedral set.

Central Cutting Plane Methods

Let us discuss a method that is based on a somewhat different approxima-
tion idea. Like the preceding methods, it maintains a polyhedral approxi-
mation

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk
}

322 Convex Optimization Algorithms Chap. 6

to f , but it generates the next vector xk+1 by using a different mechanism.
In particular, instead of minimizing Fk as in Eq. (6.85), the method obtains
xk+1 by finding a “central pair” (xk+1, wk+1) within the subset

Sk =
{

(x,w) | x ∈ X, Fk(x) ≤ w ≤ f̃k
}

,

where f̃k is the best upper bound to the optimal value that has been found
so far,

f̃k = min
i≤k

f(xi)

(see Fig. 6.4.3).

x0 0 x1x2

f(x)

) X

X x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x x
∗

f̃2

al pa
2 2

Central pair (x2, w2)

Set S1

F1(x)

Figure 6.4.3. Illustration of the set

Sk =
{

(x, w) | x ∈ X, Fk(x) ≤ w ≤ f̃k

}

in the central cutting plane method.

There is a variety of methods for finding the central pair (xk+1, wk+1).
Roughly, the idea is that it should be “somewhere in the middle” of Sk.
For example, consider the case where Sk is polyhedral with nonempty inte-
rior. Then (xk+1, wk+1) could be the analytic center of Sk, where for any
polyhedron

P = {y | a′py ≤ cp, p = 1, . . . ,m}
with nonempty interior, its analytic center is defined as the unique maxi-
mizer of

∑m
p=1 ln(cp−a′py) over y ∈ P . Another possibility is the ball center

of S, i.e., the center of the largest inscribed sphere in Sk; for the generic
polyhedron P with nonempty interior, the ball center can be obtained by
solving the following problem with optimization variables (y, σ):

maximize σ

subject to a′p(y + d) ≤ cp, ∀ ‖d‖ ≤ σ, p = 1, . . . ,m.

Sec. 6.4 Polyhedral Approximation Methods 323

It can be seen that this problem is equivalent to the linear program

maximize σ

subject to a′py + ‖ap‖σ ≤ cp, p = 1, . . . ,m.

Central cutting plane methods have satisfactory convergence proper-
ties, even though they do not terminate finitely in the case of a polyhedral
cost function f . They are closely related to the interior point methods to
be discussed in Section 6.9, and they have benefited from advances in the
practical implementation of these methods.

6.4.2 Inner Linearization - Simplicial Decomposition

We now consider an inner approximation approach, whereby we approxi-
mate X with the convex hull of an ever expanding finite set Xk ⊂ X that
consists of extreme points of X plus an arbitrary starting point x0 ∈ X .
The addition of new extreme points to Xk is done in a way that guarantees
a cost improvement each time we minimize f over conv(Xk) (unless we are
already at the optimum).

In this section, we assume a differentiable convex cost function f :
ℜn 7→ ℜ and a bounded polyhedral constraint set X . The method is then
appealing under two conditions:

(1) Minimizing a linear function over X is much simpler than minimizing
f over X . (The method makes sense only if f is nonlinear.)

(2) Minimizing f over the convex hull of a relative small number of ex-
treme points is much simpler than minimizing f overX . (The method
makes sense only if X has a large number of extreme points.)

Several classes of important large-scale problems, arising for example in
communication and transportation networks, have structure that satisfies
these conditions (see the end-of-chapter references).

At the typical iteration we have the current iterate xk, and the set
Xk that consists of the starting point x0 together with a finite collection
of extreme points of X (initially X0 = {x0}). We first generate x̃k+1 as an
extreme point of X that solves the linear program

minimize ∇f(xk)′(x− xk)

subject to x ∈ X.
(6.91)

We then add x̃k+1 to Xk,

Xk+1 = {x̃k+1} ∪Xk,

and we generate xk+1 as an optimal solution of the problem

minimize f(x)

subject to x ∈ conv(Xk+1).
(6.92)

324 Convex Optimization Algorithms Chap. 6

Level sets of f

2 ∇f(x0)

) ∇f(x1)

) ∇f(x2)

) ∇f(x3)

X

x0

0 x1

0 x1

1 x2

2 x3

1 x2

2 x3
3 x4 = x

∗

3 x4

Figure 6.4.4. Successive iterates of the simplicial decomposition method. For
example, the figure shows how given the initial point x0, and the calculated
extreme points x̃1, x̃2, we determine the next iterate x2 as a minimizing point of
f over the convex hull of {x0, x̃1, x̃2}. At each iteration, a new extreme point of
X is added, and after four iterations, the optimal solution is obtained.

The process is illustrated in Fig. 6.4.4.
For a convergence proof, note that there are two possibilities for the

extreme point x̃k+1 that solves problem (6.91):

(a) We have

0 ≤ ∇f(xk)′(x̃k+1 − xk) = min
x∈X

∇f(xk)′(x− xk),

in which case xk minimizes f over X , since it satisfies the necessary
and sufficient optimality condition of Prop. 1.1.8.

(b) We have

0 > ∇f(xk)′(x̃k+1 − xk), (6.93)

in which case x̃k+1 /∈ conv(Xk), since xk minimizes f over x ∈
conv(Xk), so that ∇f(xk)′(x− xk) ≥ 0 for all x ∈ conv(Xk).

Since case (b) cannot occur an infinite number of times (x̃k+1 /∈ Xk and X
has finitely many extreme points), case (a) must eventually occur, so the
method will find a minimizer of f over X in a finite number of iterations.

Note that the essence of the preceding convergence proof is that x̃k+1

does not belong to Xk, unless the optimal solution has been reached. Thus

Sec. 6.4 Polyhedral Approximation Methods 325

it is not necessary that x̃k+1 solves exactly the linearized problem (6.91).
Instead it is sufficient that x̃k+1 is an extreme point and that the condition
(6.93) is satisfied. In fact an even more general procedure will work: it is
not necessary that x̃k+1 be an extreme point of X . Instead it is sufficient
that x̃k+1 be selected from a finite subset X̃ ⊂ X such that conv(X̃) = X ,
and that the condition (6.93) is satisfied. These ideas may be used in
variants of the simplicial decomposition method whereby problem (6.91) is
solved inexactly.

There are a few other variants of the method. For example to address
the case where X is an unbounded polyhedral set, one may augment X
with additional constraints to make it bounded. There are extensions that
allow for a nonpolyhedral constraint set, which is approximated by the
convex hull of some of its extreme points in the course of the algorithm;
see the literature cited at the end of the chapter. Finally, one may use
variants, known as restricted simplicial decomposition methods, which allow
discarding some of the extreme points generated so far. In particular, given
the solution xk+1 of problem (6.92), we may discard from Xk+1 all points
x̃ such that

∇f(xk+1)′(x̃− xk+1) > 0,

while possibly adding to the constraint set the additional constraint

∇f(xk+1)′(x− xk+1) ≤ 0. (6.94)

The idea is that the costs of the subsequent points xk+j , j > 1, generated by
the method will all be no greater than the cost of xk+1, so they will satisfy
the constraint (6.94). In fact a stronger result can be shown: any number of
extreme points may be discarded, as long as conv(Xk+1) contains xk+1 and
x̃k+1 [the proof is based on the theory of feasible direction methods (see
e.g., [Ber99]) and the fact that x̃k+1 − xk+1 is a descent direction for f , so
a point with improved cost can be found along the line segment connecting
xk+1 and x̃k+1].

The simplicial decomposition method has been applied to several
types of problems that have a suitable structure (an important example
is large-scale multicommodity flow problems arising in communication and
transportation network applications; see Example 6.1.10 and the end-of-
chapter references). Experience has generally been favorable and suggests
that the method requires a lot fewer iterations than the cutting plane
method that uses an outer approximation of the constraint set. As an
indication of this, we note that if f is linear, the simplicial decomposition
method terminates in a single iteration, whereas the cutting plane method
may require a very large number of iterations to attain the required solution
accuracy. Moreover simplicial decomposition does not exhibit the kind of
instability phenomenon that is associated with the cutting plane method.
In particular, once an optimal solution belongs to Xk, the method will ter-
minate at the next iteration. By contrast, the cutting plane method, even
after generating an optimal solution, it may move away from that solution.

326 Convex Optimization Algorithms Chap. 6

6.4.3 Duality of Outer and Inner Linearization

We will now aim to explore the relation between outer and inner lin-
earization, as a first step towards a richer class of approximation meth-
ods. In particular, we will show that given a closed proper convex function
f : ℜn 7→ (−∞,∞], an outer linearization of f corresponds to an inner
linearization of the conjugate f⋆ and reversely.

Consider an outer linearization of the epigraph of f defined by vectors
y0, . . . , yk and corresponding hyperplanes that support the epigraph of f
at points x0, . . . , xk:

F (x) = max
i=0,...,k

{

f(xi) + (x− xi)′yi
}

; (6.95)

cf. Fig. 6.4.5. We will show that the conjugate F ⋆ of the outer linearization

F can be described as an inner linearization of the conjugate f⋆ of f .
Indeed, we have

F ⋆(y) = sup
x∈ℜn

{

y′x− F (x)
}

= sup
x∈ℜn

{

y′x− max
i=0,...,k

{

f(xi) + (x− xi)′yi
}

}

= sup
x∈ℜn, ξ∈ℜ

f(xi)+(x−xi)
′yi≤ξ, i=0,...,k

{y′x− ξ}.

By linear programming duality (cf. Prop. 5.2.1), the optimal value of the
linear program in (x, ξ) of the preceding equation can be replaced by the
dual optimal value, and we have with a straightforward calculation

F ⋆(y) = inf
∑k

i=0
αiyi=y,

∑k

i=0
αi=1

αi≥0, i=0,...,k

k
∑

i=0

αi

(

f(xi)− x′iyi
)

,

where αi is the dual variable of the constraint f(xi)+(x−xi)′yi ≤ ξ. Since
the hyperplanes defining F are supporting epi(f), we have

x′iyi − f(xi) = f⋆(yi), i = 0, . . . , k,

so we obtain

F ⋆(y) =

inf∑k

i=0
αiyi=y,

∑k

i=0
αi=1

αi≥0, i=0,...,k

∑k

i=0
αif

⋆(yi) if y ∈ conv{y0, . . . , yk},

∞ otherwise.
(6.96)

Sec. 6.4 Polyhedral Approximation Methods 327

f(x)

X xx0 0 x1 1 x2

F (x)

y) y

Outer Linearization of f

Slope = y0 Sl

Outer Linearization
y0 Slope = y1

nearization of 1 Slope = y2

of

= y2= y1

nearization of

= y0 Sl

Linearization

Outer Linearization of f

Inner Linearization of Conjugate f⋆

) f⋆(y)
) F ⋆(y)

Figure 6.4.5. Illustration of the conjugate F ⋆ of an outer linearization F of a
convex function f (here k = 2). It is a piecewise linear, inner linearization of the
conjugate f⋆ of f . Its break points are the “slopes” y0, . . . , yk of the supporting
planes.

Thus, F ⋆ is a piecewise linear (inner) linearization of f⋆ with domain

dom(F ⋆) = conv{y0, . . . , yk},
and “break points” at yi, i = 0, . . . , k, with values equal to the correspond-
ing values of f⋆. In particular, the epigraph of F ⋆ is the convex hull of
k + 1 vertical halflines corresponding to y0, . . . , yk:

epi(F ⋆) = conv
(

{{

(yi, wi) | f⋆(yi) ≤ wi

}

| i = 0, . . . , k
}

)

(see Fig. 6.4.5).
Note that the inner linearization F ⋆ is determined by y0, . . . , yk, and

is independent of x0, . . . , xk. This indicates that the same is true of its
conjugate F , and indeed, since

f(xi)− y′ixi = −f⋆(yi),

from Eq. (6.95) we obtain

F (x) = max
i=0,...,k

{

y′ix− f⋆(yi)
}

.

However, not every function of the above form qualifies as an outer lin-
earization within our framework: it is necessary that for every yi there
exists xi such that yi ∈ ∂f(xi), or equivalently that ∂f⋆(yi) 6= Ø for all
i = 0, . . . , k. Similarly, not every function of the form (6.96) qualifies as an
inner linearization within our framework: it is necessary that ∂f⋆(yi) 6= Ø

for all i = 0, . . . , k.

328 Convex Optimization Algorithms Chap. 6

6.4.4 Generalized Simplicial Decomposition

We will now describe a generalization of the simplicial decomposition method,
which applies to the problem

minimize f(x) + c(x)

subject to x ∈ ℜn,
(6.97)

where f : ℜn 7→ (−∞,∞] and c : ℜn 7→ (−∞,∞] are closed proper con-
vex functions. This is the problem of the Fenchel duality context, and it
contains as a special case the problem to which the ordinary simplicial de-
composition method of Section 6.4.2 applies (where f is differentiable, and
c is the indicator function of a closed convex set). Note that here f need
not be differentiable and/or real-valued.

We start the algorithm with some finite set X0 ⊂ dom(c). At the
typical iteration, given a finite set Xk ⊂ dom(c), we use the following three
steps to compute vectors xk, x̃k+1, and a new set Xk+1 = Xk ∪ {x̃k+1} to
start the next iteration:

(1) We obtain
xk ∈ arg min

x∈ℜn

{

f(x) + Ck(x)
}

, (6.98)

where Ck is the polyhedral/inner linearization function whose epi-
graph is the convex hull of the finite collection of rays

{

(x̃, w) | c(x̃) ≤
w
}

, x̃ ∈ Xk.

(2) We obtain a subgradient gk ∈ ∂f(xk) such that

−gk ∈ ∂Ck(xk); (6.99)

the existence of such a subgradient is guaranteed by the optimality
condition of Prop. 5.4.7, applied to the minimization in Eq. (6.98),
under suitable conditions.

(3) We obtain x̃k+1 such that

−gk ∈ ∂c(x̃k+1),

and form Xk+1 = Xk ∪ {x̃k+1}.
We assume that f and c are such that the steps (1)-(3) above can

be carried out, and we will provide conditions guaranteeing that this is so.
Note that step (3) is equivalent to finding

x̃k+1 ∈ arg min
x∈ℜn

{

g′k(x− xk) + c(x)
}

, (6.100)

and that this is a linear programming problem in the important special
case where c is polyhedral. Note also that problem (6.98) is a linearized

Sec. 6.4 Polyhedral Approximation Methods 329

version of the original problem (6.97), where c is replaced by Ck(x), which
is an inner linearization of c. To see this, note that if Xk = {x̃i | i ∈ Ik},
where Ik is a finite index set, Ck is given by

Ck(x) =

inf ∑

i∈Ik
αix̃i=x

αi≥0,
∑

i∈Ik
αi=1

∑

i∈Ik
αic(x̃i) if x ∈ conv(Xk),

∞ if x /∈ conv(Xk),

so the minimization (6.98) involves in effect the variables αi, i ∈ Ik, and is
equivalent to

minimize f

∑

i∈Ik

αix̃i

+
∑

i∈Ik

αic(x̃i)

subject to
∑

i∈Ik

αi = 1, αi ≥ 0, i ∈ Ik.

(6.101)

Let us note a few special cases where f is differentiable:

(a) When c is the indicator function of a bounded polyhedral set X ,
and X0 = {x0}, the method reduces to the earlier simplicial decom-
position method (6.91)-(6.92). Indeed, step (1) corresponds to the
minimization (6.92), step (2) simply yields gk = ∇f(xk), and step
(3), as implemented in Eq. (6.100), corresponds to solution of the
linear program (6.91) that generates a new extreme point.

(b) When c is polyhedral, the method can be viewed as essentially the spe-
cial case of the earlier simplicial decomposition method (6.91)-(6.92)
applied to the problem of minimizing f(x) +w subject to x ∈ X and
(x,w) ∈ epi(c) [the only difference is that epi(c) is not bounded, but
this is inconsequential if we assume that dom(c) is bounded, or more
generally that the problem (6.98) has a solution]. In this case, the
method terminates finitely, assuming that the vectors

(

x̃k+1, c(x̃k+1)
)

obtained by solving the linear program (6.100) are extreme points of
epi(c).

(c) When c is a general convex function, the method is illustrated in Fig.
6.4.6. The existence of a solution xk to problem (6.98) is guaranteed
by the compactness of conv(Xk) and Weierstrass’ Theorem, while
step (2) yields gk = ∇f(xk). The existence of a solution to problem
(6.100) must be guaranteed by some assumption such as coercivity of
c.

Let us now consider the case where f is extended real-valued and
nondifferentiable. Then, assuming that

ri
(

dom(f)
)

∩ conv(X0) 6= Ø,

330 Convex Optimization Algorithms Chap. 6

) xk x) xk+1+1 xk+1

x) Slope: −∇f(xk)

) c(x) Const.

) Const.−f(x)

x Ck+1(x)

) Ck(x)

Figure 6.4.6. Illustration of successive iterates of the generalized simplicial de-
composition method in the case where f is differentiable. Given the inner lin-
earization Ck of c, we minimize f + Ck to obtain xk (graphically, we move the
graph of −f vertically until it touches the graph of Ck). We then compute x̃k+1

as a point at which −∇f(xk) is a subgradient of c, and we use it to form the
improved inner linearization Ck+1 of c. Finally, we minimize f +Ck+1 to obtain
xk+1 (graphically, we move the graph of −f vertically until it touches the graph
of Ck+1).

the existence of the subgradient gk is guaranteed by the optimality condi-
tion of Prop. 5.4.7, and the existence of a solution xk to problem (6.98) is
guaranteed by Weierstrass’ Theorem. When c is the indicator function of
a polyhedral set X , the condition of step (2) becomes

g′k(x̃− xk) ≥ 0, ∀ x̃ ∈ conv(Xk), (6.102)

i.e., −gk is in the normal cone of conv(Xk) at xk. The method is illustrated
for this case in Fig. 6.4.7. It terminates finitely, assuming that the vector
x̃k+1 obtained by solving the linear program (6.100) is an extreme point
of X . The reason is that in view of Eq. (6.102), the vector x̃k+1 does not
belong to Xk (unless xk is optimal), so Xk+1 is a strict enlargement of Xk.
In the more general case where c is a general closed proper convex function,
the convergence of the method will be discussed later, in the context of a
more general method.

Let us now address the calculation of a subgradient gk ∈ ∂f(xk) such
that −gk ∈ ∂Ck(xk) [cf. Eq. (6.99)]. This may be a difficult problem as it
may require knowledge of ∂f(xk) as well as ∂Ck(xk). However, in special
cases, gk may be obtained simply as a byproduct of the minimization

xk ∈ arg min
x∈ℜn

{

f(x) + Ck(x)
}

, (6.103)

[cf. Eq. (6.98)]. In particular, consider the case where c is the indicator of
a closed convex set X , and

f(x) = max
{

f1(x), . . . , fr(x)
}

,

Sec. 6.4 Polyhedral Approximation Methods 331

gk

Level sets of f

e: x̃k+1

X xk

) xk+1

+1 gk

k gk+1

+1 x0

0 x
∗

∗ conv(Xk)

X x

Figure 6.4.7. Illustration of the generalized simplicial decomposition method for
the case where f is nondifferentiable and c is the indicator function of a polyhedral
set X. For each k, we compute a subgradient gk ∈ ∂f(xk) such that −gk lies in
the normal cone of conv(Xk) at xk, and we use it to generate a new extreme point
of X. Note that in contrast to the differentiable case, there may be multiple such
subgradients.

where f1, . . . , fr are differentiable functions. Then the minimization (6.103)
takes the form

minimize z

subject to fj (x) ≤ z, j = 1, . . . , r, x ∈ conv(Xk),
(6.104)

where Xk is a polyhedral inner linearization to X . According to the op-
timality conditions of Prop. 6.1.3, the optimal solution (xk, z∗) together
with dual optimal variables µ∗

j ≥ 0, satisfies

(xk, z∗) ∈ arg min
x∈conv(Xk), z∈ℜ

1−
r
∑

j=1

µ∗
j

 z +

r
∑

j=1

µ∗
jfj(x)

,

and the complementary slackness conditions fj(x̂k) = z∗ if µ∗
j > 0. It

follows that
r
∑

j=1

µ∗
j = 1, µ∗

j ≥ 0, j = 1, . . . , r, (6.105)

and

r
∑

j=1

µ∗
j∇fj(xk)

′

(x− xk) ≥ 0, ∀ x ∈ conv(Xk). (6.106)

332 Convex Optimization Algorithms Chap. 6

From Eq. (6.105) and the analysis of Example 5.4.5, the vector

gk =

r
∑

j=1

µ∗
j∇fj(xk) (6.107)

is a subgradient of f at xk. Furthermore, from Eq. (6.106), it follows that
−gk is in the normal cone of conv(Xk) at xk.

We next consider a more general problem where there are additional
inequality constraints defining the domain of f . This is the case where f
is of the form

f(x) =

{

max
{

f1(x), . . . , fr(x)
}

, if gi(x) ≤ 0, i = 1, . . . , p,
∞ otherwise,

(6.108)

with fj and gi being convex differentiable functions. Applications of this
type include multicommodity flow problems with side constraints (the in-
equalities gi(x) ≤ 0, which are separate from the network flow constraints
that comprise the set C; cf. [Ber98], Chapter 8, [LaP99]). The case where
r = 1 and there are no side constraints is important in a variety of commu-
nication, transportation, and other resource allocation problems, and is one
of the principal successful applications of simplicial decomposition; see e.g.,
[FlH95]. Side constraints and nondifferentiabilities in this context are often
eliminated using barrier, penalty, or Augmented Lagrangian functions, but
this can be awkward and restrictive. Our approach allows a more direct
treatment.

As in the preceding case, we introduce additional dual variables ν∗i ≥
0 for the constraints gi(x) ≤ 0, and we write the Lagrangian optimality
and complementary slackness conditions. Then Eq. (6.106) takes the form

r
∑

j=1

µ∗
j∇fj(x̂k) +

p
∑

i=1

ν∗i ∇gi(x̂k)

′

(x− x̂k) ≥ 0, ∀ x ∈ conv(Xk),

and it can be shown that the vector λ̂k =
∑r

j=1 µ
∗
j∇fj(x̂k)+

∑p
i=1 ν

∗
i ∇gi(x̂k)

is a subgradient of f at x̂k, while −λ̂k ∈ ∂Hk(x̂k) as required by Eq. (6.99).
Note an important advantage of this method over potential competi-

tors: it involves solution of linear programs of the form (6.100) to generate
new extreme points of X , and low-dimensional nonlinear programs of the
form (6.104). When each fj is twice differentiable, the latter programs
can be solved by fast Newton-like methods, such as sequential quadratic
programming (see e.g., [Ber82], [Ber99], [NoW06]).

Dual/Cutting Plane Implementation

We now provide a dual implementation of generalized simplicial decompo-
sition. The result is an outer linearization/cutting plane-type of method,

Sec. 6.4 Polyhedral Approximation Methods 333

which is mathematically equivalent to generalized simplicial decomposition.
The idea is that the problem

minimize f(x) + c(x)

subject to x ∈ ℜn,

[cf. Eq. (6.97)] is in a form suitable for application of Fenchel duality (cf.
Section 5.3.5, with the identifications f1 = f and f2 = c). In particular,
the dual problem is

minimize f⋆
1 (λ) + f⋆

2 (−λ)
subject to λ ∈ ℜn,

where f⋆
1 and f⋆

2 are the conjugates of f and c, respectively. The gener-
alized simplicial decomposition algorithm (6.98)-(6.100) can alternatively
be implemented by replacing f⋆

2 by a piecewise linear/cutting plane outer
linearization, while leaving f⋆

1 unchanged, i.e., by solving at iteration k the
problem

minimize f⋆
1 (λ) + F ⋆

2,k(−λ)
subject to λ ∈ ℜn,

(6.109)

where F ⋆
2,k is an outer linearization of f⋆

2 (the conjugate of Ck). This
problem is the (Fenchel) dual of the problem

minimize f(x) + Ck(x)

subject to x ∈ ℜn,

[cf. problem (6.98) or equivalently, the low-dimensional problem (6.101)].
Note that solutions of problem (6.109) are the subgradients gk satis-

fying Eq. (6.99), while the associated subgradient of f⋆
2 at −gk is the vector

x̃k+1 generated by Eq. (6.100), as shown in Fig. 6.4.8. In fact, the function
F ⋆
2,k has the form

F ⋆
2,k(−λ) = max

i∈Ik−1

{

f⋆
2 (−gi)− x̃′i+1(λ− gi)

}

,

where gi and x̃i+1 are vectors that can be obtained either by using the
primal, the generalized simplicial decomposition method (6.98)-(6.100), or
by using its dual, the cutting plane method based on solving the outer
approximation problems (6.109). The ordinary cutting plane method, de-
scribed in the beginning of Section 6.4.1, is obtained as the special case
where f⋆

1 (λ) ≡ 0.
Whether the primal or the dual implementation is preferable depends

on the structure of the functions f and c. When f (and hence also f⋆
1) is

not polyhedral, the dual implementation may not be attractive, because it
requires the n-dimensional nonlinear optimization (6.109) at each iteration,
as opposed to the typically low-dimensional optimization (6.98). In the
alternative case where f is polyhedral, both methods require the solution
of linear programs.

334 Convex Optimization Algorithms Chap. 6

) − gk
e λConstant− f⋆

1
(λ)

) f⋆

2
(−λ)

) F
∗

2,k(−λ)

+1 Slope: x̃i, i ≤ k

+1 Slope: x̃i, i ≤ k

4 Slope: x̃k+1

Figure 6.4.8. Illustration of the cutting plane implementation of the generalized
simplicial decomposition method. The ordinary cutting plane method, described
in the beginning of Section 6.4.1, is obtained as the special case where f⋆

1 (x) ≡ 0.
In this case, f is the indicator function of the set consisting of just the origin, and
the primal problem is to evaluate c(0).

6.4.5 Generalized Polyhedral Approximation

We will now consider a unified framework for polyhedral approximation,
which combines the cutting plane and simplicial decomposition methods.
We consider the problem

minimize

m
∑

i=1

fi(xi)

subject to (x1, . . . , xm) ∈ S,

(6.110)

where (x1, . . . , xm) is a vector in ℜn1+···+nm , with components xi ∈ ℜni ,
i = 1, . . . ,m, and

fi : ℜni 7→ (−∞,∞] is a closed proper convex function for each i,

S is a subspace of ℜn1+···+nm .

We refer to this as an extended monotropic program (EMP for short).†

† Monotropic programming, a class of problems introduced and extensively

analyzed by Rockafellar in his book [Roc84], is the special case of problem

(6.110) where each component xi is one-dimensional (i.e., ni = 1). The name

“monotropic” means “turning in a single direction” in Greek, and captures the

characteristic monotonicity property of convex functions of a single variable such

as fi.

Sec. 6.4 Polyhedral Approximation Methods 335

A classical example of EMP is single commodity network optimization
problems where xi represents the (scalar) flow of an arc of a directed graph,
and S is the circulation subspace of the graph (see e.g., [Ber98]). Also
problems involving general linear constraints and an additive convex cost
function can be converted to EMP. In particular, the problem

minimize

m
∑

i=1

fi(xi)

subject to Ax = b,

(6.111)

where A is a given matrix and b is a given vector, is equivalent to

minimize

m
∑

i=1

fi(xi) + δZ(z)

subject to Ax− z = 0,

where z is a vector of artificial variables, and δZ is the indicator function
of the set Z = {z | z = b}. This is an EMP where the constraint subspace
is

S =
{

(x, z) | Ax− z = 0
}

.

When the functions fi are linear, problem (6.111) reduces to a linear pro-
gramming problem. When the functions fi(xi) are positive semidefinite
quadratic, problem (6.111) reduces to a convex quadratic programming
problem.

Note also that while the vectors x1, . . . , xm appear independently in
the cost function

m
∑

i=1

fi(xi),

they may be coupled through the subspace constraint. For example, con-
sider a cost function of the form

f(x) = ℓ(x1, . . . , xm) +

m
∑

i=1

fi(xi),

where ℓ is a proper convex function of all the components xi. Then, by
introducing an auxiliary vector z ∈ ℜn1+···+nm , the problem of minimizing
f over a subspace X can be transformed to the problem

minimize ℓ(z) +
m
∑

i=1

fi(xi)

subject to (x, z) ∈ S,

336 Convex Optimization Algorithms Chap. 6

where S is the subspace of ℜ2(n1+···+nm)

S =
{

(x, x) | x ∈ X
}

.

This problem is of the form (6.110).
Another problem that can be converted to the EMP format (6.110)

is

minimize

m
∑

i=1

fi(x)

subject to x ∈ X,

(6.112)

where fi : ℜn 7→ (−∞,∞] are proper convex functions, andX is a subspace
of ℜn. This can be done by introducingm copies of x, i.e., auxiliary vectors
zi ∈ ℜn that are constrained to be equal, and write the problem as

minimize
m
∑

i=1

fi(zi)

subject to (z1, . . . , zm) ∈ S,

where S is the subspace

S =
{

(x, . . . , x) | x ∈ X
}

.

It can thus be seen that convex problems with linear constraints can
generally be formulated as EMP. We will see that these problems share a
powerful and symmetric duality theory, which is similar to Fenchel duality
and forms the basis for a symmetric and general framework for polyhedral
approximation.

The Dual Problem

To derive the appropriate dual problem, we introduce auxiliary vectors
zi ∈ ℜni and we convert the EMP (6.110) to the equivalent form

minimize

m
∑

i=1

fi(zi)

subject to zi = xi, i = 1, . . . ,m, (x1, . . . , xm) ∈ S.

(6.113)

We then assign a multiplier vector λi ∈ ℜni to the constraint zi = xi,
thereby obtaining the Lagrangian function

L(x1, . . . , xm, z1, . . . , zm, λ1, . . . , λm) =

m
∑

i=1

(

fi(zi) + λ′i(xi − zi)
)

. (6.114)

Sec. 6.4 Polyhedral Approximation Methods 337

The dual function is

q(λ) = inf
(x1,...,xm)∈S, zi∈ℜni

L(x1, . . . , xm, z1, . . . , zm, λ1, . . . , λm)

= inf
(x1,...,xm)∈S

m
∑

i=1

λ′ixi +

m
∑

i=1

inf
zi∈ℜni

{

fi(zi)− λ′izi
}

=

{
∑m

i=1 qi(λi) if (λ1, . . . , λm) ∈ S⊥,
−∞ otherwise,

where
qi(λi) = inf

zi∈ℜni

{

fi(zi)− λ′izi
}

, i = 1, . . . ,m,

and S⊥ is the orthogonal subspace of S.
Note that since qi can be written as

qi(λi) = − sup
zi∈ℜ

{

λ′izi − fi(zi)
}

,

it follows that −qi is the conjugate of fi, so by Prop. 1.6.1, −qi is a closed
proper convex function. The dual problem is

maximize

m
∑

i=1

qi(λi)

subject to (λ1, . . . , λm) ∈ S⊥.

(6.115)

Thus, with a change of sign to convert maximization to minimization, the
dual problem becomes

minimize
m
∑

i=1

f⋆
i (λi)

subject to (λ1, . . . , λm) ∈ S⊥,

(6.116)

where f⋆
i is the conjugate of fi, and has the same form as the primal.

Furthermore, assuming that the functions fi are closed, when the dual
problem is dualized, it yields the primal problem, and the duality is fully
symmetric.

Throughout our duality analysis of this section, we denote by fopt and
qopt the optimal primal and dual values, and in addition to the convexity
assumption on fi made earlier, we will assume that appropriate conditions
hold that guarantee the strong duality relation fopt = qopt.

Since the EMP problem can be viewed as a special case of the convex
programming problem of Section 5.3, it is possible to obtain optimality
conditions as special cases of the corresponding conditions (cf. Prop. 5.3.3).

338 Convex Optimization Algorithms Chap. 6

In particular, it can be seen that a pair (x, λ) satisfies the Lagrangian
optimality condition of Prop. 5.3.3, applied to the Lagrangian (6.114), if
and only if xi attains the infimum in the equation

qi(λi) = inf
zi∈ℜni

{

fi(zi)− λ′izi
}

, i = 1, . . . ,m,

or equivalently,

λi ∈ ∂fi(xi), i = 1, . . . ,m. (6.117)

Thus, by applying Prop. 5.3.3, we obtain the following.

Proposition 6.4.3: (EMP Optimality Conditions) There holds
−∞ < qopt = fopt < ∞ and (xopt1 , . . . , xoptm , λopt1 , . . . , λoptm) are an op-
timal primal and dual solution pair of the EMP problem if and only
if

(xopt1 , . . . , xoptm) ∈ S, (λopt1 , . . . , λoptm) ∈ S⊥,

and

xopti ∈ arg min
xi∈ℜn

{

fi(xi)− x′iλ
opt
i

}

, i = 1, . . . ,m. (6.118)

Note that by the Conjugate Subgradient Theorem (Prop. 5.4.3), the
condition (6.118) of the preceding proposition is equivalent to either one of
the following two subgradient conditions:

λopti ∈ ∂fi(x
opt
i), xopti ∈ ∂f⋆

i (λ
opt
i).

General Polyhedral Approximation Scheme

The EMP formalism allows a broad and elegant algorithmic framework
that combines elements of the cutting plane and simplicial decomposition
methods of the preceding sections. In particular, problem (6.116) will be
approximated, by using inner or outer linearization of some of the functions
fi. The optimal solution of the dual approximate problem will then be used
to construct more refined inner and outer linearizations.

We introduce an algorithm that uses a fixed partition of the index set
{1, . . . ,m}:

{1, . . . ,m} = I ∪ I ∪ Ī

that determines which of the functions fi are outer approximated (set I)
and inner approximated (set Ī).

Sec. 6.4 Polyhedral Approximation Methods 339

For i ∈ I, given a finite set Λi ⊂ dom(f⋆
i) such that ∂f⋆

i (λ̃) 6= Ø for

all λ̃ ∈ Λi, we consider the outer linearization of fi corresponding to Λi:

f
i,Λi

(xi) = max
λ̃∈Λi

{

λ̃′xi − f⋆
i (λ̃)

}

,

or equivalently, as mentioned in Section 6.4.3,

f
i,Λi

(xi) = max
λ̃∈Λi

{

fi(xλ̃) + λ̃′(xi − xλ̃)
}

,

where for each λ̃ ∈ Λi, xλ̃ is such that λ̃ ∈ ∂fi(xλ̃).
For i ∈ Ī, given a finite set Xi ⊂ dom(fi) such that ∂fi(x̃) 6= Ø for

all x̃ ∈ Xi, we consider the inner linearization of fi corresponding to Xi by

f̄i,Xi(xi) =

min ∑

x̃∈Xi
αx̃x̃=xi,

∑

x̄∈Xi
αx̃=1, αx̃≥0, x̃∈Xi

∑

x̃∈Xi
αx̃fi(x̃) if xi ∈ conv(Xi),

∞ otherwise.

As mentioned in Section 6.4.3, this is the function whose epigraph is the
convex hull of the halflines

{

(xi, w) | fi(xi) ≤ w
}

, xi ∈ Xi (cf. Fig. 6.4.5).
We assume that at least one of the sets I and Ī is nonempty. At

the start of the typical iteration, we have for each i ∈ I, a finite subset
Λi ⊂ dom(f⋆

i), and for each i ∈ Ī , a finite subset Xi ⊂ dom(fi). The
iteration is as follows:

Typical Iteration:

Find a primal-dual optimal solution pair (x̂, λ̂) = (x̂1, λ̂1, . . . , x̂m, λ̂m)
of the EMP

minimize
∑

i∈I

fi(xi) +
∑

i∈I

f
i,Λi

(xi) +
∑

i∈Ī

f̄i,Xi(xi)

subject to (x1, . . . , xm) ∈ S,

(6.119)

where f
i,Λi

and f̄i,Xi are the outer and inner linearizations of fi cor-

responding to Xi and Λi, respectively. Then enlarge the sets Xi and
Λi as follows (see Fig. 6.4.9):

(a) For i ∈ I, we compute a subgradient λ̃i ∈ ∂fi(x̂i) and we add λ̃i
to the corresponding set Λi.

(b) For i ∈ Ī, we compute a subgradient x̃i ∈ ∂f⋆
i (λ̂i) and we add x̃i

to the corresponding set Xi.

If there is no strict enlargement, i.e., for all i ∈ I we have λ̃i ∈ Λi, and
for all i ∈ Ī we have x̃i ∈ Xi, the algorithm terminates.

340 Convex Optimization Algorithms Chap. 6

We will show in a subsequent proposition that if the algorithm termi-
nates, (x̂1, . . . , x̂m, λ̂1, . . . , λ̂m) is a primal and dual optimal solution pair.
If there is strict enlargement and the algorithm does not terminate, we
proceed to the next iteration, using the enlarged sets Λi and Xi.

Note that we implicitly assume that at each iteration, there exists a
primal and dual optimal solution pair of problem (6.119). Furthermore, we
assume that the enlargement step can be carried out, i.e., that ∂fi(x̂i) 6= Ø

for all i ∈ I and ∂f⋆
i (λ̂i) 6= Ø for all i ∈ Ī. Sufficient assumptions may

need to be imposed on the problem to guarantee that this is so.

ŷi x̂i

fi(xi)

fi(xi)

ŷi x̂i

f i,Xi
(xi)

λ̃i Slope λ̂i

λ̃i Slope λ̂i

λ̃i Slope λ̂i

λ̂i f
i,Λi

(xi)

∈

New slope λ̃i

New break point x̃i

Figure 6.4.9. Illustration of the enlargement step in the polyhedral approx-
imation method, after we obtain a primal-dual optimal solution pair (x̂, λ̂) =

(x̂1, λ̂1, . . . , x̂m, λ̂m). Note that in the figure on the right, we use the fact

x̃i ∈ ∂f⋆
i (λ̂i) ⇐⇒ λ̂i ∈ ∂fi(x̃i)

(cf. the Conjugate Subgradient Theorem, Prop. 5.4.3). The enlargement step on
the left (finding λ̃i) is also equivalent to λ̃i satisfying x̂i ∈ ∂f⋆

i (λ̃i), or equivalently,
solving the optimization problem

maximize
{

λ′
ix̂i − f⋆

i (λi)
}

subject to λi ∈ ℜni .

The enlargement step on the right (finding x̃i) is also equivalent to solving the
optimization problem

maximize
{

λ̂′
ixi − fi(xi)

}

subject to xi ∈ ℜni .

We refer to the preceding algorithm as the generalized polyhedral ap-

proximation or GPA algorithm. Note two prerequisites for the algorithm

Sec. 6.4 Polyhedral Approximation Methods 341

to be effective:

(1) The (partially) linearized problem (6.119) must be easier to solve than
the original problem (6.116). For example, problem (6.119) may be
a linear program, while the original may be nonlinear (cf. the cutting
plane method of Section 6.4.1); or it may effectively have much smaller
dimension than the original (cf. the simplicial decomposition method
of Section 6.4.2).

(2) Finding the enlargement vectors (λ̃i for i ∈ I, and x̃i for i ∈ Ī)
must not be too difficult. This can be done by the differentiation
λ̃i ∈ ∂fi(x̂i) for i ∈ I, and x̃i ∈ ∂f⋆

i (λ̂i) or i ∈ Ī. Alternatively, if this
is not convenient for some of the functions (e.g., because some of the
fi or the f⋆

i are not available in closed form), one may calculate λi
and/or x̃i via the relations

x̂i ∈ ∂f⋆
i (λ̃i), λ̂i ∈ ∂fi(x̃i);

(cf. the Conjugate Subgradient Theorem, Prop. 5.4.3). This involves
solving optimization problems. For example, finding x̃i such that
λ̂i ∈ ∂fi(x̃i) for i ∈ Ī is equivalent to solving the problem

maximize
{

λ̂′ixi − fi(xi)
}

subject to xi ∈ ℜni ,

and may be nontrivial (cf. Fig. 6.4.9).

The facility of solving the linearized problem (6.119) and carrying out
the subsequent enlargement step may guide the choice of functions that
are inner or outer linearized. If xi is one-dimensional, as is often true in
separable-type problems, the enlargement step is typically quite easy.

There are two potential advantages of the GPA algorithm over the
earlier cutting plane and simplicial decomposition methods, depending on
the problem’s structure:

(a) The refinement process may be faster, because at each iteration, mul-
tiple cutting planes and break points are added (as many as one per
function fi). As a result, in a single iteration, a more refined approx-
imation may result, compared with classical methods where a single
cutting plane or extreme point is added. Moreover, when the com-
ponent functions fi are scalar, adding a cutting plane/break point to
the polyhedral approximation of fi can be very simple, as it requires
a one-dimensional differentiation or minimization for each fi.

(b) The approximation process may preserve some of the special struc-
ture of the cost function and/or the constraint set. For example if
the component functions fi are scalar, or have partially overlapping

342 Convex Optimization Algorithms Chap. 6

dependences, e.g.,

f(x1, . . . , xm) = f1(x1, x2) + f2(x2, x3) + · · ·
+ fm−1(xm−1, xm) + fm(xm),

the minimization of f by the classical cutting plane method leads to
general/unstructured linear programming problems. By contrast, us-
ing separate outer approximation of the components functions leads
to linear programs with special structure, which can be solved effi-
ciently by specialized methods, such as network flow algorithms, or
interior point algorithms that can exploit the sparsity structure of the
problem.

The symmetric duality of the EMP can be exploited in the implemen-
tation of the GPA algorithm. In particular, the algorithm may be applied
to the dual problem of problem (6.116):

minimize

m
∑

i=1

f⋆
i (λi)

subject to (λ1, . . . , λm) ∈ S⊥,

(6.120)

where f⋆
i is the conjugate of fi. Then the inner (or outer) linearized index

set Ī of the primal becomes the outer (or inner, respectively) linearized in-
dex set of the dual. At each iteration, the algorithm solves the approximate
dual EMP,

minimize
∑

i∈I

f⋆
i (λi) +

∑

i∈I

f̄⋆
i,Λi

(λi) +
∑

i∈Ī

f⋆

i,Xi
(λi)

subject to (λ1, . . . , λm) ∈ S⊥,

(6.121)

which is simply the dual of the approximate primal EMP (6.119) [since the
outer (or inner) linearization of f⋆

i is the conjugate of the inner (or respec-
tively, outer) linearization of fi]. Thus the algorithm produces mathemat-
ically identical results when applied to the primal or the dual EMP. The
choice of whether to apply the algorithm in its primal or its dual form is
simply a matter of whether calculations with fi or with their conjugates
f⋆
i are more or less convenient. In fact, when the algorithm makes use of

both the primal solution (x̂1, . . . , x̂m) and the dual solution (λ̂1, . . . , λ̂m)
in the enlargement step, the question of whether the starting point is the
primal or the dual EMP becomes moot: it is best to view the algorithm as
applied to the pair of primal and dual EMP, without designation of which
is primal and which is dual.

Sec. 6.4 Polyhedral Approximation Methods 343

Termination and Convergence

Now let us show the optimality of the primal and dual solution pair ob-
tained upon termination of the algorithm. We will use two basic properties
of outer approximations. The first is that for any closed proper convex
functions f and f , we have

f ≤ f, f(x) = f(x) =⇒ ∂f(x) ⊂ ∂f(x). (6.122)

The second is that for any outer linearization f
Λ
of f , we have

λ̃ ∈ Λ, λ̃ ∈ ∂f(x) =⇒ f
Λ
(x) = f(x). (6.123)

The first property follows from the definition of subgradients, whereas the
second property follows from the definition of f

Λ
.

Proposition 6.4.4: (Optimality at Termination) If the GPA
algorithm terminates at some iteration, the corresponding primal and
dual solutions, (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m), form a primal and dual
optimal solution pair of the EMP problem.

Proof: From Prop. 6.4.3 and the definition of (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m)
as a primal and dual optimal solution pair of the approximate problem
(6.119), we have

(x̂1, . . . , x̂m) ∈ S, (λ̂1, . . . , λ̂m) ∈ S⊥.

We will show that upon termination, we have for all i

λ̂i ∈ ∂fi(x̂i), (6.124)

which by Prop. 6.4.3 implies the desired conclusion.
Since (x̂1, . . . , x̂m) and (λ̂1, . . . , λ̂m) are a primal and dual optimal

solution pair of problem (6.119), Eq. (6.124) holds for all i /∈ I ∪ Ī (cf.
Prop. 6.4.3). We will complete the proof by showing that it holds for all
i ∈ I (the proof for i ∈ Ī follows by a dual argument).

Indeed, let us fix i ∈ I and let λ̃i ∈ ∂fi(x̂i) be the vector generated
by the enlargement step upon termination. We must have λ̃i ∈ Λi, since
there is no strict enlargement upon termination. Since f

i,Λi
is an outer

linearization of fi, by Eq. (6.123), the fact λ̃i ∈ Λi, λ̃i ∈ ∂fi(x̂i) implies

f
i,Λi

(x̂i) = fi(x̂i),

344 Convex Optimization Algorithms Chap. 6

which in turn implies by Eq. (6.122) that

∂f
i,Λi

(x̂i) ⊂ ∂fi(x̂i).

By Prop. 6.4.3, we also have λ̂i ∈ ∂f
i,Λi

(x̂i), so λ̂i ∈ ∂fi(x̂i). Q.E.D.

As in Sections 6.4.1, 6.4.2, convergence can be easily established in
the case where the functions fi, i ∈ Ī ∪ I, are polyhedral, assuming that
care is taken to ensure that the corresponding enlargement vectors λ̃i are
chosen from a finite set of extreme points. In particular, assume that:

(a) All outer linearized functions fi are real-valued and polyhedral, and
all inner linearized functions fi the conjugates f⋆

i are real-valued and
polyhedral.

(b) The vectors λ̃i and x̃i added to the polyhedral approximations are
elements of the finite representations of the corresponding f⋆

i and fi.

Then at each iteration there are two possibilities: either (x̂, λ̂) is an optimal
primal-dual pair for the original problem and the algorithm terminates, or
the approximation of one of the fi, i ∈ I ∪ Ī, will be refined/improved.
Since there can be only a finite number of refinements, convergence in a
finite number of iterations follows.

Other convergence results are possible, extending some of the analysis
of Sections 6.4.1, 6.4.2. In particular, let (x̂k, λ̂k) be the primal and dual
pair generated at iteration k, and let λ̃ki ∈ ∂fi(x̂ki) for i ∈ I, and x̃ki ∈
∂f⋆

i (λ̂
k
i) for i ∈ Ī be the vectors used for the corresponding enlargements.

If the set Ī is empty (no inner approximation) and the sequence {λ̃ki } is
bounded for every i ∈ I, then we can easily show that every limit point
of {x̂k} is primal optimal. To see this, note that for all k, ℓ ≤ k − 1, and
(x1, . . . , xm) ∈ S, we have

∑

i/∈I

fi(x̂ki) +
∑

i∈I

(

fi(x̂ℓi) + (x̂ki − x̂ℓi)
′λ̃ℓi
)

≤
∑

i/∈I

fi(x̂ki) +
∑

i∈I

f
i,Λk−1

i

(x̂ki)

≤
m
∑

i=1

fi(xi).

Let {x̂k}K be a subsequence converging to a vector x̄. By taking the limit
as ℓ→ ∞, k ∈ K, ℓ ∈ K, ℓ < k, and using the closedness of fi, we obtain

m
∑

i=1

fi(x̄i) ≤ lim inf
k→∞, k∈K

∑

i/∈I

fi(x̂ki) + lim inf
ℓ→∞, ℓ∈K

∑

i∈I

fi(x̂ℓi) ≤
m
∑

i=1

fi(xi)

for all (x1, . . . , xm) ∈ S. It follows that x̄ is primal optimal, i.e., every limit
point of {x̂k} is optimal. The preceding convergence argument also goes

Sec. 6.4 Polyhedral Approximation Methods 345

through even if the sequences {λ̃ki } are not assumed bounded, as long as the
limit points x̄i belong to the relative interior of the corresponding functions
fi (this follows from the subgradient decomposition result of Prop. 5.4.1).

Exchanging the roles of primal and dual, we similarly obtain a conver-
gence result for the case where I is empty (no outer linearization): assuming

that the sequence {x̃ki } is bounded for every i ∈ Ī, every limit point of {λ̂k}
is dual optimal.

We finally state a more general convergence result from Bertsekas and
Yu [BeY11], which applies to the mixed case where we simultaneously use
outer and inner approximation (both Ī and I are nonempty). The proof is
more complicated than the preceding ones, and we refer to [BeY11] for a
detailed analysis.

Proposition 6.4.5: Consider the GPA algorithm. Let (x̂k, λ̂k) be
a primal and dual optimal solution pair of the approximate problem
at the kth iteration, and let λ̃ki , i ∈ I and x̃ki , i ∈ Ī be the vectors
generated at the corresponding enlargement step. Suppose that there
exist convergent subsequences

{

x̂ki
}

K
, i ∈ I,

{

λ̂ki
}

K
, i ∈ Ī, such that

the sequences
{

λ̃ki
}

K
, i ∈ I,

{

x̃ki
}

K
, i ∈ Ī, are bounded. Then:

(a) Any limit point of the sequence
{

(x̂k, λ̂k)
}

K
is a primal and dual

optimal solution pair of the original problem.

(b) The sequence of optimal values of the approximate problems con-
verges to the optimal value fopt.

Application to Generalized Simplicial Decomposition

Let us now show that the general polyhedral approximation scheme con-
tains as a special case the algorithm of the preceding section for the problem

minimize f(x) + c(x)

subject to x ∈ ℜn,
(6.125)

where f : ℜn 7→ (−∞,∞] and c : ℜn 7→ (−∞,∞] are closed, proper, convex
functions; cf. Section 6.4.4. As a consequence, it also contains as special
cases the ordinary cutting plane and simplicial decomposition methods of
Sections 6.4.1 and 6.4.2, respectively.

We recast the problem into the EMP

minimize f1(x1) + f2(x2)

subject to (x1, x2) ∈ S,

346 Convex Optimization Algorithms Chap. 6

where

f1(x1) = f(x1), f2(x2) = c(x2), S =
{

(x1, x2) | x1 = x2
}

.

The dual problem takes the form

minimize f⋆
1 (λ1) + f⋆

2 (λ2)

subject to (λ1, λ2) ∈ S⊥,

where f⋆
1 and f⋆

2 are the conjugates of f1 and f2, respectively. Since

S⊥ =
{

(λ1, λ2) | λ1 = −λ2
}

,

the dual problem is

minimize f⋆
1 (λ) + f⋆

2 (−λ)
subject to λ ∈ ℜn.

Let f2 be replaced by an inner linearization f̄2,X or by an outer linearization

f
2,−Λ

, and let (λ̂,−λ̂) be a dual optimal solution at the typical iteration.

At the end of the iteration, X is enlarged to include a vector x̃ such that
−λ̂ ∈ ∂f2(x̃) in the case of inner linearization, or Λ is enlarged to include

λ̂ in the case of outer linearization. A comparison with the development
of Section 6.4.4 verifies that when inner (or outer) linearization of f2 is
used, this method coincides with the generalized simplicial decomposition
algorithm (or cutting plane algorithm, respectively) given there.

Application to Network Optimization and Monotropic
Programming

Network optimization problems involve a directed graph with set of nodes
N and set of arcs A. A classical problem is to minimize a cost function

∑

a∈A

fa(xa),

where fa is a scalar closed proper convex function, and xa is the flow of
arc a ∈ A. The minimization is over all flow vectors x =

{

xa | a ∈ A
}

that
belong to the circulation subspace S of the graph (at each node, the sum
of all incoming arc flows is equal to the sum of all outgoing arc flows).

The GPA method that uses inner linearization of all the functions fa
that are nonlinear is particularly attractive for this problem, because of the
favorable structure of the corresponding approximate EMP:

minimize
∑

a∈A

f̄a,Xa(xa)

subject to x ∈ S,

Sec. 6.4 Polyhedral Approximation Methods 347

where for each arc a, f̄a,Xa is the inner approximation of fa, corresponding
to a finite set of break points Xa ⊂ dom(fa). By suitably introducing
multiple arcs in place of each arc, we can recast this problem as a linear
minimum cost network flow problem that can be solved using very fast
polynomial algorithms. These algorithms, simultaneously with an optimal
primal (flow) vector, yield a dual optimal (price differential) vector (see
e.g., [Ber98], Chapters 5-7). Furthermore, because the functions fa are
scalar, the enlargement step is very simple.

Some of the preceding advantages of GPA method with inner lin-
earization carry over to monotropic programming problems (ni = 1 for all
i), the key idea being the simplicity of the enlargement step. Furthermore,
there are effective algorithms for solving the associated approximate pri-
mal and dual EMP, such as out-of-kilter methods [Roc84], [Tse01], and
ǫ-relaxation methods [Ber98], [TsB00].

6.4.6 Simplicial Decomposition for Conic Programming

We will now aim to extend the range of applications of the generalized poly-
hedral approximation approach for EMP by allowing conic-like constraint
sets. Our motivation is that the algorithmic framework of the preceding
subsection is not well-suited for the case where some of the component
functions of the cost are indicator functions of cones. There are two main
reasons for this:

(1) The enlargement procedure requires the minimization of a polyhedral
approximation function over a cone, which may not have a solution.

(2) The inner linearization method approximates a cone (an unbounded
set) by the convex hull of a finite number of points (a compact set). It
seems evident that a cone generated by a finite number of directions
should provide a more effective approximation.

Motivated by these concerns, we extend our generalized polyhedral
approximation approach so that it applies to the problem of minimizing
the sum

∑m
i=1 fi(xi) of convex extended real-valued functions fi, subject to

(x1, . . . , xm) being in the intersection of a given subspace and the Cartesian
product of closed convex cones.

For simplicity, we focus on the pure simplicial decomposition ap-
proach (and by duality on the pure cutting plane approach). It is straight-
forward to extend our algorithms to the mixed case, where some of the
component functions are inner linearized while others are outer linearized.

As a first step, we recall the conjugacy relation between inner and
outer linearization for a closed proper convex function f and its conjugate
f⋆, which we discussed earlier. In particular, for a given finite set of vectors
X , the inner linearization fX of f is the polyhedral function whose epigraph
is the convex hull of the union of the vertical halflines corresponding to

348 Convex Optimization Algorithms Chap. 6

x ∈ X :

epi(fX) = conv
(

∪x∈X

{

(x,w) | f(x) ≤ w
}

)

(6.126)

(see Fig. 6.4.5). The conjugate of fX is an outer linearization of f⋆ defined
by hyperplanes that support the epigraph of f at points λx, x ∈ X , such
that x ∈ ∂f⋆(λx) for each x ∈ X . It is given by

f
⋆

X(λ) = max
x∈X

{

f⋆(λx) + (λ− λx)′x
}

. (6.127)

Note that f
⋆

X is a real-valued polyhedral function, and that its values f
⋆

X(λ)
do not depend on the vectors λx, as long as x ∈ ∂f⋆(λx) for all x ∈ X (cf.
Fig. 6.4.5).

When the preceding definition of inner linearization is specialized to
the indicator function δ(· | C) of a closed convex set C, it amounts to
approximating C with the convex hull of the finite number of points X ⊂
C. The conjugate of δ(· | C) is the support function of C, and its outer
linearization is the support function of the convex hull of X .

) C C

C C∗

) Set of generating vectors X

) cone(X) cone(

) cone(X)∗

Figure 6.4.10. Illustration of cone(X)
as an inner linearization of a cone C and
its polar cone(X)∗ as an outer lineariza-
tion of the polar

C∗ = {y | y′x ≤ 0, ∀ x ∈ C}.

If C is a closed convex cone, we will be using alternative and more
symmetric outer and inner linearizations, which are based on generated
cones rather than convex hulls. In particular, given a finite subset X ⊂ C,
we view cone(X) as an inner linearization of C and its polar cone(X)∗

as an outer linearization of the polar C∗ (see Fig. 6.4.10). This type of
linearization has a twofold advantage: a cone is approximated by a cone
(rather than by a compact set), and outer and linear linearizations yield
convex functions of the same type as the original (indicator functions of
cones).

Sec. 6.4 Polyhedral Approximation Methods 349

Duality and Optimality Conditions

We now introduce a version of the EMP problem, generalized to include
cone constraints. It is given by

minimize

m
∑

i=1

fi(xi) +

r
∑

i=m+1

δ(xi | Ci)

subject to (x1, . . . , xr) ∈ S,

(6.128)

where (x1, . . . , xr) is a vector in ℜn1+···+nr , with components xi ∈ ℜni ,
i = 1, . . . , r, and

fi : ℜni 7→ (−∞,∞] is a closed proper convex function for each i.

S is a subspace of ℜn1+···+nr .

Ci ⊂ ℜni , i = m + 1, . . . , r, is a closed convex cone, and δ(xi | Ci)
denotes the indicator function of Ci.

According to the EMP duality theory, the dual problem is

minimize

m
∑

i=1

f⋆
i (λi) +

r
∑

i=m+1

δ(λi | C⋆
i)

subject to (λ1, . . . , λr) ∈ S⊥,

(6.129)

and has the same form as the primal problem (6.128). Furthermore, since
fi is assumed closed proper and convex, and Ci is assumed closed convex,
we have f⋆⋆

i = fi and (C⋆
i)

⋆ = C , where f⋆⋆
i is the conjugate of f⋆

i and
(C⋆

i)
⋆ is the polar of C⋆

i . Thus when the dual problem is dualized, it yields
the primal problem, and the duality is fully symmetric.

To derive an appropriate dual problem, we introduce auxiliary vectors
zi ∈ ℜni and we convert problem (6.128) to the equivalent form

minimize

m
∑

i=1

fi(zi) +

r
∑

i=m+1

δ(zi | Ci)

subject to zi = xi, i = 1, . . . , r, (x1, . . . , xr) ∈ S.

(6.130)

Then we assign a multiplier vector λi ∈ ℜni to the constraint zi = xi, and
obtain the dual problem

minimize

m
∑

i=1

f⋆
i (λi) +

r
∑

i=m+1

δ(λi | C∗
i)

subject to (λ1, . . . , λr) ∈ S⊥.

(6.131)

350 Convex Optimization Algorithms Chap. 6

which has the same form as the primal problem (6.128). (We leave the
verification of this as an exercise for the reader.)

To state the associated optimality conditions, we first provide some
preliminary duality relations for cones. We say that (x, λ) is a dual pair

with respect to the closed convex cones C and C⋆ if

x = PC(x+ λ) and λ = PC⋆(x+ λ).

The following result shows that there is a (necessarily unique) representa-
tion of a vector y as y = x+ λ, where (x, λ) is a dual pair with respect to
C and C⋆.

Proposition 6.4.6: (Cone Decomposition Theorem) Let C be
a nonempty closed convex cone in ℜn and C⋆ be its polar cone.

(a) Any vector y can be written as y = PC(y) + PC⋆(y).

(b) The following conditions are equivalent:

(i) (x, λ) is a dual pair with respect to C and C⋆.

(ii) x ∈ C, λ ∈ C⋆, and x ⊥ λ.

Proof: (a) We denote ξ = y − PC(y), and we will show that ξ = PC⋆(y).
Indeed, by the projection theorem (Prop. 1.1.9), we have

ξ′
(

z − PC(y)
)

≤ 0, ∀ z ∈ C. (6.132)

Since C is a cone, we have (1/2)PC(y) ∈ C and 2PC(y) ∈ C, so by taking
z = (1/2)PC(y) and z = 2PC(y) in Eq. (6.132), it follows that

ξ′PC(y) = 0. (6.133)

By combining Eqs. (6.132) and (6.133), we obtain ξ′z ≤ 0 for all z ∈ C,
implying that ξ ∈ C⋆. Moreover, since PC(y) ∈ C, we have

(y − ξ)′(z − ξ) = PC(y)′(z − ξ) = PC(y)′z ≤ 0, ∀ z ∈ C⋆,

where the second equality follows from Eq. (6.133). Thus ξ satisfies the
necessary and sufficient condition for being the projection PC⋆(y).

(b) Suppose that property (i) holds, i.e., x and λ are the projections of
x+ λ on C and C⋆, respectively. Then we have, using also Eq. (6.133),

x ∈ C, λ ∈ C⋆,
(

(x+ λ)− x)
)′
x = 0,

or
x ∈ C, λ ∈ C⋆, λ′x = 0,

Sec. 6.4 Polyhedral Approximation Methods 351

which is property (ii).
Conversely, suppose that property (ii) holds. Then, since λ ∈ C⋆, we

have λ′z ≤ 0 for all z ∈ C, and hence

(

(x + λ)− x
)′
(z − x) = λ′(z − x) = λ′z ≤ 0, ∀ z ∈ C,

where the second equality follows from the fact x ⊥ λ. Thus x satisfies
the necessary and sufficient condition for being the projection PC(x + λ).
Similarly, we show that λ is the projection PC⋆(x + λ). Q.E.D.

Let us denote by fopt and qopt the optimal primal and dual values.
Assuming that strong duality holds (qopt = fopt), we can use the optimality
conditions, whereby (xopt, λopt) form an optimal primal and dual solution
pair if and only if they satisfy the standard primal feasibility, dual feasi-
bility, and Lagrangian optimality conditions (cf. Prop. 5.3.3). By working
out these conditions similar to our earlier analysis, we obtain the following
proposition.

Proposition 6.4.7: (Optimality Conditions) We have −∞ <
qopt = fopt <∞, and xopt = (xopt1 , . . . , xoptr) and λopt = (λopt1 , . . . , λoptr)
are optimal primal and dual solutions, respectively, of problems (6.128)
and (6.131) if and only if

(xopt1 , . . . , xoptr) ∈ S, (λopt1 , . . . , λoptr) ∈ S⊥, (6.134)

xopti ∈ ∂f⋆
i (λ

opt
i), i = 1, . . . ,m, (6.135)

(xopti , λopti) is a dual pair with respect to Ci and C⋆
i , i = m+1, . . . , r.

(6.136)

Note that the condition xopti ∈ ∂f⋆
i (λ

opt
i) of the preceding proposition

is equivalent to

λopti ∈ ∂fi(x
opt
i)

(cf. the Conjugate Subgradient Theorem, Prop. 5.4.3). Thus the optimality
conditions are fully symmetric, consistently with the symmetric form of the
primal and dual problems (6.128) and (6.131).

Simplicial Decomposition for Conical Constraints

We will now introduce our algorithm, whereby problem (6.128) is approxi-
mated by using inner linearization of some of the functions fi and of all the
cones Ci. The optimal primal and dual solution pair of the approximate
problem is then used to construct more refined inner linearizations. The

352 Convex Optimization Algorithms Chap. 6

algorithm uses a fixed subset Ī ⊂ {1, . . . ,m}, which corresponds to func-
tions fi that are inner linearized. For notational convenience, we denote
by I the complement of Ī in {1, . . . ,m}, so that

{1, . . . ,m} = I ∪ Ī ,

and we also denote†
Ic = {m+ 1, . . . , r}.

At the typical iteration of the algorithm, we have for each i ∈ Ī, a
finite set Xi such that ∂fi(xi) 6= Ø for all xi ∈ Xi, and for each i ∈ Ic a
finite set Xi ⊂ Ci. The iteration is as follows.

Typical Iteration:

Step 1: (Approximate Problem Solution) Find a primal and
dual optimal solution pair

(x̂, λ̂) = (x̂1, . . . , x̂r, λ̂1, . . . , λ̂r)

of the problem

minimize
∑

i∈I

fi(xi) +
∑

i∈Ī

f̄i,Xi(xi) +
∑

i∈Ic

δ
(

xi | cone(Xi)
)

subject to (x1, . . . , xr) ∈ S,

(6.137)

where f̄i,Xi are the inner linearizations of fi corresponding to Xi.

Step 2: (Enlargement and Test for Termination) Enlarge the
sets Xi as follows (see Fig. 6.4.11):

(a) For i ∈ Ī, we add any subgradient x̃i ∈ ∂f⋆
i (λ̂i) to Xi.

(b) For i ∈ Ic, we add the projection x̃i = PCi(λ̂i) to Xi.

If there is no strict enlargement for all i ∈ Ī, i.e., we have x̃i ∈ Xi, and
moreover x̃i = 0 for all i ∈ Ic, the algorithm terminates. Otherwise,
we proceed to the next iteration, using the enlarged sets Xi.

Note that we implicitly assume that at each iteration, there exists a
primal and dual optimal solution pair of problem (6.137). The algorithm

† We allow Ī to be empty, so that none of the functions fi is inner linearized.

In this case the portions of the subsequent algorithmic descriptions and analysis

that refer to the functions fi with i ∈ Ī should be simply omitted. Also, there is

no loss of generality in using Ic = {m+1, . . . , r}, since the indicator functions of

the cones that are not linearized, may be included within the set of functions fi,

i ∈ I .

Sec. 6.4 Polyhedral Approximation Methods 353

fi(xi)

ŷi x̂i

f i,Xi
(xi)

λ̃i Slope λ̂i

λ̃i Slope λ̂i

New break point x̃i

) Ci

i C∗

i

∗

i
λ̂i

i x̂i

) New generating vector x̃i

X cone(Xi) New generating vector ˜

Figure 6.4.11. Illustration of the enlargement step of the algorithm, after we
obtain a primal and dual optimal solution pair (x̂1, . . . , x̂r , λ̂1, . . . , λ̂r). The en-
largement step on the left [finding x̃i with x̃i ∈ ∂f⋆

i (λ̂i) for i ∈ Ī] is also equiva-

lent to finding x̃i satisfying λ̂i ∈ ∂fi(x̃i), or equivalently, solving the optimization
problem

maximize
{

λ̂′
ixi − fi(xi)

}

subject to xi ∈ ℜni .

The enlargement step on the right, for i ∈ Ic, is to add to Xi the vector x̃i =
PCi

(λ̂i), the projection on Ci of λ̂i.

for finding such a pair is left unspecified. Furthermore, we assume that the
enlargement step can be carried out, i.e., that ∂f⋆

i (λ̂i) 6= Ø for all i ∈ Ī.
Sufficient assumptions may need to be imposed on the problem to guarantee
that this is so. Regarding the termination condition x̃i = 0 for i ∈ Ic, note
that it is simpler and weaker than the alternative conditions x̃i ∈ Xi or
x̃i ∈ cone(Xi), which imply that x̃i = 0 [if PCi(λ̂i) = x̃i ∈ cone(Xi), then

PCi(λ̂i) = Pcone(Xi)(λ̂i), while by the optimality conditions for problem

(6.137), Pcone(Xi)(λ̂i) = 0 and hence x̃i = PCi(λ̂i) = 0].
As an illustration of the algorithm, we apply it to the problem

minimize f(x)

subject to x ∈ C,
(6.138)

where f : ℜn 7→ (−∞,∞] is a closed proper convex function and C is
a closed convex cone. We reformulate this problem into our basic form
(6.128) as

minimize f(x1) + δ(x2 | C)
subject to (x1, x2) ∈ S

def
=
{

(x1, x2) | x1 = x2
}

.
(6.139)

354 Convex Optimization Algorithms Chap. 6

Note that primal and dual optimal solutions of this problem have the form
(x∗, x∗) and (λ∗,−λ∗), respectively, since

S⊥ = {(λ1, λ2) | λ1 + λ2 = 0}.

By transcribing our algorithm to this special case, we see that if x̂k and λ̂k

are generated by x̂k ∈ argminx∈cone(Xk) f(x) and

λ̂k ∈ ∂f(x̂k), −λ̂k ∈ Ncone(Xk)(x̂
k), (6.140)

then (x̂k, x̂k) and (λ̂k,−λ̂k) are optimal primal and dual solutions of the
corresponding approximate problem of the algorithm [since Eq. (6.140) is
the optimality condition (6.135) for problem (6.137)].

Convergence Analysis

We now discuss the convergence properties of the algorithm of this section.
We will show that when the algorithm terminates, it does so at an optimal
solution.

Proposition 6.4.8: (Optimality at Termination) If the algo-
rithm of this section terminates at some iteration, the corresponding
primal and dual solutions, (x̂1, . . . , x̂r) and (λ̂1, . . . , λ̂r), form a primal
and dual optimal solution pair of problem (6.128).

Proof: We will verify that upon termination, the three conditions of Prop.
6.4.7 are satisfied for the original problem (6.128). From the definition of

(x̂1, . . . , x̂r) and (λ̂1, . . . , λ̂r) as a primal and dual optimal solution pair of
the approximate problem (6.137), we have

(x̂1, . . . , x̂r) ∈ S, (λ̂1, . . . , λ̂r) ∈ S⊥,

thereby satisfying the first condition (6.134). Upon termination PCi(λ̂i) =

0, so λ̂i ∈ C∗
i . Also from the optimality conditions of Prop. 6.4.7, applied

to the approximate problem (6.137), we have that for all i ∈ Ic, (x̂i, λ̂i)
is a dual pair with respect to cone(Xi) and cone(Xi)∗, so that by Prop.

6.4.6(b), x̂i ⊥ λ̂i and x̂i ∈ Ci. Thus by Prop. 6.4.6(b), (x̂i, λ̂i) is a dual
pair with respect to Ci and C∗

i , and the optimality condition (6.136) is
satisfied.

Finally, we show that upon termination, we have

x̂i ∈ ∂f⋆
i (λ̂i), ∀ i ∈ I ∪ Ī , (6.141)

Sec. 6.4 Polyhedral Approximation Methods 355

which by Prop. 6.4.7 will imply the desired conclusion. Since (x̂1, . . . , x̂r)

and (λ̂1, . . . , λ̂r) are a primal and dual optimal solution pair of problem
(6.137), Eq. (6.141) holds for all i ∈ I (cf. Prop. 6.4.7). We will complete
the proof by showing that it holds for all i ∈ Ī.

Indeed, let us fix i ∈ Ī and let x̃i ∈ ∂f⋆
i (λ̂i) be the vector generated

by the enlargement step upon termination, so that x̃i ∈ Xi. Since f̄i,Xi is

an inner linearization of fi, f
⋆

i,Xi
is an outer linearization of f⋆

i of the form
(6.127):

f
⋆

i,Xi
(λ) = max

x∈Xi

{

f⋆(λx) + (λ− λx)′x
}

,

where the vectors λx can be any vectors such that x ∈ ∂f⋆
i (λx). Therefore,

the fact x̃i ∈ Xi, x̃i ∈ ∂f⋆
i (λ̂i) implies that

f
⋆

i,Xi
(λ̂i) = f⋆

i (λ̂i),

which in turn shows that

∂f
⋆

i,Xi
(λ̂i) ⊂ ∂f⋆

i (λ̂i).

By Eq. (6.135), we also have x̂i ∈ ∂f
⋆

i,Xi
(λ̂i), so x̂i ∈ ∂f⋆

i (λ̂i). Thus Eq.

(6.141) is shown for i ∈ Ī, and all the optimality conditions of Prop. 6.4.7
are satisfied for the original problem (6.128). Q.E.D.

The next proposition is a convergence result that is similar to the one
we showed earlier, for the case of pure inner linearization.

Proposition 6.4.9: (Convergence) Consider the algorithm of this
section, under the strong duality condition −∞ < qopt = fopt < ∞.

Let (x̂k, λ̂k) be the primal and dual optimal solution pair of the ap-
proximate problem (6.137), generated at the kth iteration, and let x̃ki ,
i ∈ Ī, be the vectors generated at the corresponding enlargement step.
Consider a subsequence {λ̂k}K that converges to a vector λ̂. Then:

(a) λ̂i ∈ C∗
i for all i ∈ Ic.

(b) If the subsequences {x̃ki }K, i ∈ Ī, are bounded, λ̂ is dual optimal,
and the optimal value of the inner approximation problem (6.137)
converges monotonically from above to fopt, while the optimal
value of the dual problem of (6.137) converges monotonically
from below to −fopt.

Proof: (a) Let us fix i ∈ Ic. Since x̃ki = PCi(λ̂
k
i), the subsequence {x̃ki }K

converges to x̃i = PCi(λ̂i). We will show that x̃i = 0, which implies that

λ̂i ∈ C∗
i .

356 Convex Optimization Algorithms Chap. 6

Denote X∞
i = ∪∞

k=0X
k
i . Since λ̂ki ∈ cone(Xk

i)
∗, we have x′iλ̂

k
i ≤ 0

for all xi ∈ Xk
i , so that x′iλ̂i ≤ 0 for all xi ∈ X∞

i . Since x̃i belongs to

the closure of X∞
i , it follows that x̃′iλ̂i ≤ 0. On the other hand, since

x̃i = PCi(λ̂i), by the projection theorem for cones we have x̃′i(λ̂i − x̃i) = 0,

which together with x̃′iλ̂i ≤ 0, implies that ‖x̃i‖2 ≤ 0, or x̃i = 0.

(b) From the definition of f
⋆

i,Xk
i
[cf. Eq. (6.127)], we have for all i ∈ Ī and

k, ℓ ∈ K with ℓ < k,

f⋆
i (λ̂

ℓ
i) + (λ̂ki − λ̂ℓi)

′x̃ℓi ≤ f
⋆

i,Xk
i
(λ̂ki).

Using this relation and the optimality of λ̂k for the kth approximate dual
problem to write for all k, ℓ ∈ K with ℓ < k

∑

i∈I

f⋆
i (λ̂

k
i) +

∑

i∈Ī

(

f⋆
i (λ̂

ℓ
i) + (λ̂ki − λ̂ℓi)

′x̃ℓi
)

≤
∑

i∈I

f⋆
i (λ̂

k
i) +

∑

i∈Ī

f
⋆

i,Xk
i
(λ̂ki)

≤
∑

i∈I

f⋆
i (λi) +

∑

i∈Ī

f
⋆

i,Xk
i
(λi),

for all (λ1, . . . , λm) such that there exist λi ∈ cone(Xk
i)

∗, i ∈ Ic, with
(λ1, . . . , λr) ∈ S. Since C∗

i ⊂ cone(Xk
i)

∗, it follows that

∑

i∈I

f⋆
i (λ̂

k
i) +

∑

i∈Ī

(

f⋆
i (λ̂

ℓ
i) + (λ̂ki − λ̂ℓi)

′x̃ℓi
)

≤
∑

i∈I

f⋆
i (λi) +

∑

i∈Ī

f
⋆

i,Xk
i
(λi)

≤
m
∑

i=1

f⋆
i (λi),

(6.142)
for all (λ1, . . . , λm) such that there exist λi ∈ C∗

i , i ∈ Ic, with (λ1, . . . , λr) ∈
S, where the last inequality holds since f

⋆

i,Xk
i
is an outer linearization of

f⋆
i .

By taking limit inferior in Eq. (6.142), as k, ℓ → ∞ with k, ℓ ∈ K,
and by using the lower semicontinuity of f⋆

i , which implies that

f⋆
i (λ̂i) ≤ lim inf

ℓ→∞, ℓ∈K
f⋆
i (λ̂

ℓ
i), i ∈ Ic,

we obtain
m
∑

i=1

f⋆
i (λ̂i) ≤

m
∑

i=1

f⋆
i (λi) (6.143)

for all (λ1, . . . , λm) such that there exist λi ∈ C∗
i , i ∈ Ic, with (λ1, . . . , λr) ∈

S. We have λ̂ ∈ S and λ̂i ∈ C∗
i for all i ∈ Ic, from part (a). Thus Eq.

(6.143) implies that λ̂ is dual optimal. The sequence of optimal values of the
dual approximation problem [the dual of problem (6.137)] is monotonically

Sec. 6.5 Proximal Methods 357

nondecreasing (since the outer approximation is monotonically refined) and

converges to −fopt since λ̂ is dual optimal. This sequence is the opposite
of the sequence of optimal values of the primal approximation problem
(6.137), so the latter sequence is monotonically nonincreasing and converges
to fopt. Q.E.D.

We have dealt so far with cases where the constraint set involves
the intersection of compact sets and cones, which can be inner linearized
separately. However, we can also deal with vector sums of compact sets and
cones, which again can be linearized separately.† In particular the problem

minimize f(x)

subject to x ∈ X + C,

where X is a compact set and C is a closed convex cone, can be written as

minimize f(x1) + δ(x2|X) + δ(x3|C)
subject to x1 = x2 + x3,

which is of the form (6.128) with S =
{

(x1, x2, x3) | x1 = x2 + x3
}

.
We finally note that for efficient implementation, the projection on

the cones Ci required at the enlargement step, should be done with an
algorithm that takes advantage of the special structure of these cones. In
the case of a polyhedral cone, the problem of projection is a quadratic
programming problem. In the case of special nonpolyhedral cones, such
as the second order and semidefinite cones, there are efficient specialized
algorithms for which we refer to the literature (see e.g., Fukushima, Luo,
and Tseng [FLT02]).

6.5 PROXIMAL METHODS

In this section we introduce a general approximation approach for “regu-
larizing” (i.e., improving the structure) of convex optimization problems
and algorithms. As one motivation, let us recall that one of the drawbacks
of the cutting plane method for minimizing a convex function f : ℜn 7→ ℜ
over a convex set X is the instability phenomenon, whereby the method
can take large steps away from the current point, with significant deteri-
oration of the cost function value. A way to limit the effects of this is to
introduce a quadratic term pk(x), called “proximal term,” that penalizes

† Note that by the Minkowski-Weyl Theorem, any polyhedral set can be

decomposed as the vector sum of the convex hull of a finite number of points and

a cone generated by a finite number of points; see Prop. 2.3.2.

358 Convex Optimization Algorithms Chap. 6

large deviations from some reference point yk. Thus in this method, xk+1

is obtained as

xk+1 ∈ argmin
x∈X

{

Fk(x) + pk(x)
}

, (6.144)

where similar to the cutting plane method,

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk
}

,

and

pk(x) =
1

2ck
‖x− yk‖2,

where ck is an adjustable positive scalar parameter (cf. Fig. 6.5.1). The
method for choosing the “proximal center” yk will be described later; often
yk = xk. The purpose of the proximal term is to provide a measure of
stability to the cutting plane method at the expense of solving a more
difficult subproblem at each iteration (e.g., a quadratic versus a linear
program, in the case where X is polyhedral).

f(x)

X x
xk+1 x

∗
) yk

Fk(x)
γk − pk(x)

γk

f(xk+1) + (x− xk+1)′gk+1

Figure 6.5.1. Using a proximal term to reduce the effect of instability in the
cutting plane method. The point xk+1 is the one at which the graph of the
negative proximal term −pk(x), raised by some amount γk, just touches the graph
of Fk. Then xk+1 tends to be closer tor yk, with the distance ‖xk+1 − yk‖
depending on the size of the proximal term, i.e., the parameter ck.

We can view iteration (6.144) as an approximate version of a general
algorithm for minimizing a convex function. This algorithm embodies ideas
of great significance in optimization, and will be discussed in the next sec-
tion. We will return to cutting plane approximations that use subgradients
in Sections 6.5.2 and 6.5.3.

Sec. 6.5 Proximal Methods 359

6.5.1 Proximal Algorithm

Consider the minimization of a closed proper convex function f : ℜn 7→
(−∞,∞], let f∗ denote the optimal value

f∗ = inf
x∈ℜn

f(x),

and let X∗ denote the set of minima of f (which could be empty),

X∗ = arg min
x∈ℜn

f(x).

We may view this as a general constrained optimization problem where the
constraint is x ∈ dom(f). We consider the algorithm

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

, (6.145)

where x0 is an arbitrary starting point and ck is a positive scalar parameter.
This is known as the proximal algorithm. Its chief utility is regularization:
the quadratic term ‖x− xk‖2 makes the function that is minimized in the
iteration (6.145) strictly convex and coercive. This guarantees that xk+1

is well-defined as the unique point attaining the minimum in Eq. (6.145);
see Fig. 6.5.2.

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

Figure 6.5.2. Geometric view of the proximal algorithm (6.145). The minimum
of f(x) + 1

2ck
‖x− xk‖

2 is attained at the unique point xk+1 at which the graph

of the quadratic function − 1
2ck

‖x− xk‖
2, raised by the amount

γk = f(xk+1) +
1

2ck
‖xk+1 − xk‖

2,

just touches the graph of f .

360 Convex Optimization Algorithms Chap. 6

The degree of regularization is controlled by the parameter ck. For
small values of ck, xk+1 tends to stay close to xk (a form of instability
reduction), albeit at the expense of slower convergence. The convergence
mechanism is illustrated in Fig. 6.5.3.

For another connection, let us consider two successive points xk and
xk+1 generated by the algorithm. The subdifferential of the function

f(x) +
1

2ck
‖x− xk‖2

at xk+1 must contain 0 and is equal to

∂f(xk+1) +
xk+1 − xk

ck
,

(cf. Prop. 5.4.6), so that

xk − xk+1

ck
∈ ∂f(xk+1). (6.146)

Using this formula, we see that the move from xk to xk+1 is “nearly” a
subgradient step. In particular, while xk − xk+1 is not a multiple of a
vector in ∂f(xk), it is “close” to being one, if ∂f(xk) ≈ ∂f(xk+1). Indeed,
the proximal algorithm bears a connection to subgradient methods, as well
as to polyhedral approximation methods, which will be become apparent in
what follows, as variants of the proximal minimization idea are developed.
For the moment we focus on the convergence properties of the basic method.

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X x
xk+1

xk x
∗xk+2

Figure 6.5.3. Illustration of the role of the parameter ck in the convergence
process of the proximal algorithm. In the figure on the left, ck is large, the graph
of the quadratic term is “blunt,” and the method makes fast progress toward the
optimal solution set X∗. In the figure on the right, ck is small, the graph of the
quadratic term is “pointed,” and the method makes slow progress.

Sec. 6.5 Proximal Methods 361

Convergence

The proximal algorithm has excellent convergence properties, the most
basic of which is the following.

Proposition 6.5.1: (Convergence) Let {xk} be a sequence gener-
ated by the proximal algorithm (6.145). Then, assuming that

∑∞
k=0 ck =

∞, we have
f(xk) ↓ f∗,

and if X∗ is nonempty, {xk} converges to some point in X∗.

Proof: We first note that since xk+1 minimizes f(x) + 1
2ck

‖x − xk‖2, we
have by setting x = xk,

f(xk+1) +
1

2ck
‖xk+1 − xk‖2 ≤ f(xk), ∀ k. (6.147)

It follows that
{

f(xk)
}

is monotonically nondecreasing. Hence f(xk) ↓ f∞,
where f∞ is either a scalar or −∞, and satisfies f∞ ≥ f∗.

For any y ∈ ℜn, we have

‖xk − y‖2 = ‖xk+1 − y + xk − xk+1‖2
= ‖xk+1 − y‖2 + 2(xk+1 − y)′(xk − xk+1) + ‖xk+1 − xk‖2,

and from the subgradient relation (6.146),

f(xk+1) +
1

ck
(xk − xk+1)′(y − xk+1) ≤ f(y).

Combining these two relations, we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2ck
(

f(xk+1)− f(y)
)

− ‖xk+1 − xk‖2
≤ ‖xk − y‖2 − 2ck

(

f(xk+1)− f(y)
)

,
(6.148)

and for any N ≥ 0, by adding over k = 0, . . . , N , we have

‖xN+1 − y‖2 + 2

N
∑

k=0

ck
(

f(xk+1)− f(y)
)

≤ ‖x0 − y‖2, ∀ y ∈ ℜn, N ≥ 0,

so that

2

N
∑

k=0

ck
(

f(xk+1)− f(y)
)

≤ ‖x0 − y‖2, ∀ y ∈ ℜn, N ≥ 0.

362 Convex Optimization Algorithms Chap. 6

Taking the limit as N → ∞, we have

2

∞
∑

k=0

ck
(

f(xk+1)− f(y)
)

≤ ‖x0 − y‖2, ∀ y ∈ ℜn. (6.149)

Assume to arrive at a contradiction that f∞ > f∗, and let ŷ be such
that f∞ > f(ŷ) ≥ f∗. Since

{

f(xk)
}

is monotonically nondecreasing, we
have

f(xk+1)− f(ŷ) ≥ f∞ − f(ŷ) > 0.

Then in view of the assumption
∑∞

k=0 ck = ∞, Eq. (6.149) leads to a
contradiction. Thus f∞ = f∗.

Consider now the case where X∗ is nonempty, and let x∗ be any point
in X∗. Applying Eq. (6.148) with y = x∗, we have

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2ck
(

f(xk+1)− f(x∗)
)

, k = 0, 1,
(6.150)

Thus ‖xk − x∗‖2 is monotonically nonincreasing, so {xk} is bounded, and
each of its limit points must belong to X∗, since

{

f(xk)
}

monotonically
decreases to f∗ and f is closed. Also, by Eq. (6.150), the distance of xk
to each limit point is monotonically nonincreasing, so {xk} converges to a
unique limit, which must be an element of X∗. Q.E.D.

Rate of Convergence

The following proposition shows that the convergence rate of the algorithm
depends on the magnitude of ck and on the order of growth of f near the
optimal solution set (see also Fig. 6.5.4).

f(x)

X xxk+1xk x
∗

xk+2

f(x)

X xxk+1
xk x

∗

xk+2

Figure 6.5.4. Illustration of the role of the growth properties of f near X∗ in
the convergence rate of the proximal algorithm. In the figure on the left, f grows
slowly and the convergence is slow. In the figure on the right, f grows fast and
the convergence is fast.

Sec. 6.5 Proximal Methods 363

Proposition 6.5.2: (Rate of Convergence) Let {xk} be a se-
quence generated by the proximal algorithm (6.145), under the as-
sumptions that

∑∞
k=0 ck = ∞ and X∗ is nonempty. Assume further

that for some scalars β > 0, δ > 0, and α ≥ 1, we have

f∗ + β
(

d(x)
)α ≤ f(x), ∀ x ∈ ℜn with d(x) ≤ δ, (6.151)

where
d(x) = min

x∗∈X∗
‖x− x∗‖.

(a) For all k sufficiently large, we have

d(xk+1) + βck
(

d(xk+1)
)α−1 ≤ d(xk). (6.152)

(b) Let 1 < α < 2 and xk /∈ X∗ for all k. Then if infk≥0 ck > 0,

lim sup
k→∞

d(xk+1)
(

d(xk)
)1/(α−1)

<∞.

(c) Let α = 2 and xk /∈ X∗ for all k. Then if limk→∞ ck = c with
c ∈ (0,∞),

lim sup
k→∞

d(xk+1)

d(xk)
≤ 1

1 + βc
,

while if limk→∞ ck = ∞,

lim
k→∞

d(xk+1)

d(xk)
= 0.

Proof: (a) Since Eq. (6.152) clearly holds when xk+1 ∈ X∗, we assume
that xk+1 /∈ X∗ and we denote by x̂k+1 the projection of xk+1 on X∗.
From the subgradient relation (6.146), we have

f(xk+1) +
1

ck
(xk − xk+1)′(x̂k+1 − xk+1) ≤ f(x̂k+1) = f∗.

Using the hypothesis, {xk} converges to some point in X∗, so it follows
from Eq. (6.151) that

f∗ + β
(

d(xk+1)
)α ≤ f(xk+1),

for k sufficiently large. Combining the preceding two relations, we obtain

βck
(

d(xk+1)
)α ≤ (xk+1 − xk)′(x̂k+1 − xk+1),

364 Convex Optimization Algorithms Chap. 6

for k sufficiently large. We add to both sides (xk+1 − x̂k)′(xk+1 − x̂k+1),
yielding

(xk+1 − x̂k)′(xk+1 − x̂k+1) + βck
(

d(xk+1)
)α ≤ (xk − x̂k)′(xk+1 − x̂k+1),

and we use the fact

‖xk+1 − x̂k+1‖2 ≤ (xk+1 − x̂k)′(xk+1 − x̂k+1),

which follows from the Projection Theorem (cf. Prop. 1.1.9/App. B), to
obtain

‖xk+1 − x̂k+1‖2 + βck
(

d(xk+1)
)α ≤ ‖xk − x̂k‖‖xk+1 − x̂k+1‖.

Dividing with ‖xk+1 − x̂k+1‖ (which is nonzero), Eq. (6.152) follows.

(b) From Eq. (6.152) and the fact α < 2, the desired relation follows.

(c) For α = 2, Eq. (6.152) becomes

(1 + βck)d(xk+1) ≤ d(xk),

from which the result follows. Q.E.D.

Proposition 6.5.2 shows that as the growth order α in Eq. (6.151)
increases, the rate of convergence becomes slower. The threshold case is
when α = 2; then the distance of the iterates to X∗ decreases at least at the
rate of a geometric progression if ck remains bounded, and decreases even
faster (superlinearly) if ck → ∞. Generally, the convergence is accelerated
if ck is increased with k, rather than kept constant; this is illustrated most
clearly when α = 2 [cf. part (c) of Prop. 6.5.2]. When 1 < α < 2, the
convergence rate is faster than that of a geometric progression (superlinear);
see Prop. 6.5.2(b). When α > 2, the convergence rate is slower than when
α = 2 (sublinear); see Exercise 6.10.

The case where α = 1 allows for a cost function f that is polyhedral.
Then the proximal algorithm converges finitely (in fact in a single iteration
for c0 sufficiently large), as illustrated in Fig. 6.5.5 and as shown in the
following proposition.

Proposition 6.5.3: (Finite Convergence) Assume that X∗ is
nonempty and that there exists a scalar β > 0 such that

f∗ + βd(x) ≤ f(x), ∀ x ∈ ℜn, (6.153)

where d(x) = minx∗∈X∗ ‖x−x∗‖. Then if
∑∞

k=0 ck = ∞, the proximal
algorithm (6.145) converges to X∗ finitely [that is, there exists k > 0
such that xk ∈ X∗ for all k ≥ k]. Furthermore, if c0 ≥ d(x0)/β, the
algorithm converges in a single iteration (i.e., x1 ∈ X∗).

Sec. 6.5 Proximal Methods 365

f(x)

X x

f(x)

X xx
∗

x0x0 x1 x2 = x
∗

Figure 6.5.5. Finite convergence of the proximal algorithm when f(x) grows at
a linear rate near the optimal solution set X∗ (e.g., f is polyhedral). In the figure
on the right, we have convergence in a single iteration for a large enough value of
c.

Proof: The assumption (6.151) of Prop. 6.5.2 holds with α = 1 and all
δ > 0, so Eq. (6.152) becomes

d(xk+1) + βck ≤ d(xk), if xk+1 /∈ X∗.

If
∑∞

k=0 ck = ∞ and xk /∈ X∗ for all k, by adding the preceding inequality
over all k, we obtain a contradiction. Hence we must have xk ∈ X∗ for
k sufficiently large. Similarly, if c0 ≥ d(x0)/β, we must have x1 ∈ X∗.
Q.E.D.

The condition (6.153) is illustrated in Fig. 6.5.6. It can be shown that
the condition holds when f is a polyhedral function and X∗ is nonempty
(see Exercise 6.9).

It is also possible to prove the one-step convergence property of Prop.
6.5.3 with a simpler argument that does not rely on Prop. 6.5.2 and Eq.
(6.152). Indeed, assume that x0 6= X∗, let x̂0 be the projection of x0 on
X∗, and consider the function

f̃(x) = f∗ + βd(x) +
1

2c0
‖x− x0‖2. (6.154)

Its subdifferential at x̂0 is given by (cf. Prop. 5.4.6)

∂f̃(x̂0) =

{

βγ
x0 − x̂0
‖x0 − x̂0‖

+
1

c0
(x̂0 − x0)

∣

∣

∣ γ ∈ [0, 1]

}

=

{(

βγ

d(x0)
− 1

c0

)

(x0 − x̂0)
∣

∣

∣ γ ∈ [0, 1]

}

.

It follows that if c0 ≥ d(x0)/β, then 0 ∈ ∂f̃(x̂0), so that x̂0 minimizes f̃(x).
Since from Eqs. (6.153) and (6.154), we have

f̃(x) ≤ f(x) +
1

2c0
‖x− x0‖2, ∀ x ∈ ℜn,

366 Convex Optimization Algorithms Chap. 6

f(x)

X x
X∗

f∗

f∗ + βd(x)

Slope βSlope β

Figure 6.5.6. Illustration of the condition

f∗ + βd(x) ≤ f(x), ∀ x ∈ ℜn,

[cf. Eq. (6.153)].

with equality when x = x̂0, it follows that x̂0 minimizes f(x)+ 1
2c0

‖x−x0‖2
over x ∈ X , and is therefore equal to the first iterate x1 of the proximal
algorithm.

From the preceding discussion and graphical illustrations, it can be
seen that the rate of convergence of the proximal algorithm is improved by
choosing large values of c. However, the corresponding regularization ef-
fect is reduced as c is increased, and this may adversely affect the proximal
minimizations. In practice, it is often suggested to start with a moderate
value of c, and gradually increase this value in subsequent proximal mini-
mizations. How fast c can increase depends on the method used to solve
the corresponding proximal minimization problems. If a fast Newton-like
method is used, a fast rate of increase of c (say by a factor 5-10) may be
possible, resulting in very few proximal minimizations. If instead a rela-
tively slow first order method is used, it may be best to keep c constant at
a moderate value, which is usually determined by trial and error.

Gradient and Subgradient Interpretations

We have already interpreted the proximal algorithm as an approximate sub-
gradient method [cf. Eq. (6.146)]. For another interesting interpretation,
consider the function

φc(z) = inf
x∈ℜn

{

f(x) +
1

2c
‖x− z‖2

}

, (6.155)

for a fixed positive value of c. It is easily seen that

inf
x∈ℜn

f(x) ≤ φc(z) ≤ f(z), ∀ z ∈ ℜn,

Sec. 6.5 Proximal Methods 367

from which it follows that the set of minima of f and φc coincide (this is also
evident from the geometric view of the proximal minimization given in Fig.
6.5.7). The following proposition shows that φc is a convex differentiable
function, and calculates its gradient.

f(x)

X xx
∗

f(z)

φc(z)

xc(z)
z

z

φc(z) −
1

2c

‖x − z‖2

Slope ∇φc(z)

Figure 6.5.7. Illustration of the function

φc(z) = inf
x∈ℜn

{

f(x) +
1

2c
‖x− z‖2

}

.

We have φc(z) ≤ f(z) for all z ∈ ℜn, and at the set of minima of f , φc coincides
with f . We also have

∇φc(z) =
z − xc(z)

c
.

For some geometric insight as to why this relation holds, consider the case where
f is linear and note the definition of φc in the figure.

Proposition 6.5.4: The function φc of Eq. (6.155) is convex and
differentiable, and we have

∇φc(z) =
z − xc(z)

c
∀ z ∈ ℜn, (6.156)

where xc(z) is the unique minimizer in Eq. (6.155).

Proof: We first note that φc is convex, since it is obtained by partial
minimization of f(x) + 1

2c‖x− z‖2, which is convex as a function of (x, z)
(cf. Prop. 3.3.1). Furthermore, φc is real-valued, since the infimum in Eq.
(6.155) is attained.

Let us fix z, and for notational simplicity, denote z = xc(z). To show
that φc is differentiable with the given form of gradient, we note that by
the optimality condition of Prop. 5.4.7, we have v ∈ ∂φc(z) if and only if z

368 Convex Optimization Algorithms Chap. 6

attains the minimum over y ∈ ℜn of

φc(y)− v′y = inf
x∈ℜn

{

f(x) +
1

2c
‖x− y‖2

}

− v′y.

Equivalently, v ∈ ∂φc(z) if and only if (z, z) attains the minimum over
(x, y) ∈ ℜ2n of the function

F (x, y) = f(x) +
1

2c
‖x− y‖2 − v′y,

which is equivalent to (0, 0) ∈ ∂F (z, z), or

0 ∈ ∂f(z) +
z − z

c
, v =

z − z

c
. (6.157)

[This last step is obtained by viewing F as the sum of the function f and
the differentiable function

1

2c
‖x− y‖2 − v′y,

and by writing

∂F (x, y) =
{

(g, 0) | g ∈ ∂f(x)
}

+

{

x− y

c
,
y − x

c
− v

}

;

cf. Prop. 5.4.6.] The right side of Eq. (6.157) uniquely defines v, so that v
is the unique subgradient of φc at z, and it has the form v = (z − z)/c, as
required by Eq. (6.156). From the left side of Eq. (6.157), we also see that
v = ∇φc(z) ∈ ∂f

(

xc(z)
)

. Q.E.D.

Using the gradient formula (6.156), we see that the proximal iteration
can be written as

xk+1 = xk − ck∇φck(xk),

so it is a gradient iteration for minimizing φck (which has the same min-
ima as f , as noted earlier). This interpretation provides insight into the
mechanism of the algorithm and has formed the basis for various acceler-
ation schemes, particularly in connection with the Augmented Lagrangian
method, a popular constrained minimization method to be discussed in
Section 6.6.2 (see also the book [Ber82] and the references quoted there).

Sec. 6.5 Proximal Methods 369

6.5.2 Proximal Cutting Plane Method

Let us consider minimization of a real-valued convex function f : ℜn 7→ ℜ,
over a closed convex set X , by using the proximal algorithm. Since f may
not be differentiable, it is natural to try polyhedral approximation ideas
for minimizing

f(x) +
1

2ck
‖x− xk‖2

over X (assuming of course that at each x ∈ X , a subgradient of f can be
computed). In particular, we may consider replacing the original function
f with a simpler polyhedral approximation Fk, thereby simplifying the
corresponding proximal minimization. A special advantage of this idea is
that once a cutting plane has been constructed at some iteration, it can be
used for approximation of f at all future iterations. Thus one may perform
the proximal minimizations approximately, and update the proximal center
xk after any number of cutting plane iterations, while carrying over the
computed cutting planes from one proximal minimization to the next. An
extreme form of implementation of this idea is to update xk after a single
cutting plane iteration, as in the following algorithm.

At the typical iteration, we perform a proximal iteration, aimed at
minimizing the current polyhedral approximation to f given by [cf. Eq.
(6.90)]

Fk(x) = max
{

f(x0) + (x − x0)′g0, . . . , f(xk) + (x− xk)′gk
}

, (6.158)

i.e.,

xk+1 ∈ argmin
x∈X

{

Fk(x) +
1

2ck
‖x− xk‖2

}

, (6.159)

where ck is a positive scalar parameter. A subgradient gk+1 of f at xk+1 is
then computed, Fk+1 is accordingly updated, and the process is repeated.
We call this the proximal cutting plane method .

The method terminates if xk+1 = xk; in this case, Eqs. (6.158) and
(6.159) imply that

f(xk) = Fk(xk) ≤ Fk(x)+
1

2ck
‖x−xk‖2 ≤ f(x)+

1

2ck
‖x−xk‖2, ∀ x ∈ X,

so xk is a point where the proximal algorithm terminates, and it must
therefore be optimal by Prop. 6.5.1. Note, however, that unless f and X
are polyhedral, finite termination is unlikely.

The convergence properties of the method are easy to derive, based
on what we already know. The idea is that Fk asymptotically converges
to f , at least near the generated iterates, so asymptotically, the algorithm
essentially becomes the proximal algorithm, and inherits the corresponding

370 Convex Optimization Algorithms Chap. 6

convergence properties. Let us derive a finite convergence result for the
polyhedral case.

Proposition 6.5.5: (Finite Termination of the Proximal Cut-
ting Plane Method) Consider the proximal cutting plane method
for the case where f and X are polyhedral, with

f(x) = max
i∈I

{

a′ix+ bi
}

,

where I is a finite index set, and ai and bi are given vectors and scalars,
respectively. Assume that the optimal solution set is nonempty and
that the subgradient added to the cutting plane approximation at each
iteration is one of the vectors ai, i ∈ I. Then the method terminates
finitely with an optimal solution.

Proof: Since there are only finitely many vectors αi to add, eventually
the polyhedral approximation Fk will not change, i.e., Fk = Fk for all

k > k̄. Thus, for k ≥ k, the method will become the proximal algorithm
for minimizing Fk, so by Prop. 6.5.3, it will terminate with a point x that
minimizes Fk subject to x ∈ X . But then, we will have concluded an
iteration of the cutting plane method for minimizing f over X , with no
new vector added to the approximation Fk, which implies termination of
the cutting plane method, necessarily at a minimum of f over X . Q.E.D.

The proximal cutting plane method aims at increased stability over
the ordinary cutting plane method, but it has some drawbacks:

(a) There is a potentially difficult tradeoff in the choice of the parameter
ck. In particular, stability is achieved only by choosing ck small,
since for large values of ck the changes xk+1 −xk may be substantial.
Indeed for a polyhedral function f and large enough ck, the method
finds the exact minimum of Fk over X in a single minimization (cf.
Prop. 6.5.3), so it is identical to the ordinary cutting plane method,
and fails to provide any stabilization. On the other hand, small values
of ck lead to slow rate of convergence.

(b) The number of subgradients used in the approximation Fk may grow
to be very large, in which case the quadratic program solved in Eq.
(6.159) may become very time-consuming.

These drawbacks motivate algorithmic variants, called bundle methods ,
which we will discuss next. The main difference is that the proximal center
xk is updated only after making enough progress in minimizing f to ensure
a certain measure of stability.

Sec. 6.5 Proximal Methods 371

6.5.3 Bundle Methods

In the basic form of a bundle method, the iterate xk+1 is obtained by
minimizing over X the sum of Fk, a cutting plane approximation to f , and
a quadratic proximal term pk(x):

xk+1 ∈ argmin
x∈X

{

Fk(x) + pk(x)
}

. (6.160)

The proximal center of pk need not be xk (as in the proximal cutting plane
method), but is rather one of the past iterates xi, i ≤ k.

In one version of the method, Fk is given by

Fk(x) = max
{

f(x0) + (x − x0)′g0, . . . , f(xk) + (x− xk)′gk
}

, (6.161)

while pk(x) is of the form

pk(x) =
1

2ck
‖x− yk‖2,

where yk ∈ {xi | i ≤ k}. Following the computation of xk+1, the new
proximal center yk+1 is set to xk+1, or is left unchanged (yk+1 = yk)
depending on whether, according to a certain test, “sufficient progress”
has been made or not. An example of such a test is

f(yk)− f(xk+1) ≥ βδk,

where β is a fixed scalar with β ∈ (0, 1), and

δk = f(yk)−
(

Fk(xk+1) + pk(xk+1)
)

.

Thus,

yk+1 =

{

xk+1 if f(yk)− f(xk+1) ≥ βδk,
yk if f(yk)− f(xk+1) < βδk,

(6.162)

and initially y0 = x0. In the parlance of bundle methods, iterations where
yk+1 is updated to xk+1 are called serious steps , while iterations where
yk+1 = yk are called null steps .

The method terminates if xk+1 = yk; in this case, Eqs. (6.160) and
(6.161) imply that

f(yk)+pk(yk) = Fk(yk)+pk(yk) ≤ Fk(x)+pk(x) ≤ f(x)+pk(x), ∀ x ∈ X,

so yk is a point where the proximal algorithm terminates, and must there-
fore be optimal. Of course, finite termination is unlikely, unless f and X
are polyhedral. An important point, however, is that prior to termination,
we have δk > 0. Indeed, since

Fk(xk+1) + pk(xk+1) ≤ Fk(yk) + pk(yk) = Fk(yk),

372 Convex Optimization Algorithms Chap. 6

and Fk(yk) = f(yk), we have

0 ≤ f(yk)−
(

Fk(xk+1) + pk(xk+1)
)

= δk,

with equality only if xk+1 = yk, i.e., when the algorithm terminates.
The scalar δk is illustrated in Fig. 6.5.8. Since f(yk) = Fk(yk) [cf.

Eq. (6.161)], δk represents the reduction in the proximal objective Fk + pk
in moving from yk to xk+1. If the reduction in the true objective,

f(yk)− f(xk+1),

does not exceed a fraction β of δk (or is even negative as in the right-hand
side of Fig. 6.5.8), this indicates a large discrepancy between proximal and
true objective, and an associated instability. As a result the algorithm
foregoes the move from yk to xk+1 with a null step [cf. Eq. (6.162)], but
improves the cutting plane approximation by adding the new plane corre-
sponding to xk+1. Otherwise, it performs a serious step, with the guarantee
of true cost improvement afforded by the test (6.162).

Serious Step

δk

f(yk)− f(xk+1)

X x) yk yk+1 = xk+1

f(x)
δk

Fk(x)

f(yk)− f(xk+1)

X x) yk yk+1 = xk+1

Null Step

f(x)

δk

Fk(x)

f(yk)− f(xk+1)

X xxk+1x) yk = yk+1

Figure 6.5.8. Illustration of the test (6.162) for a serious or a null step in the
bundle method. It is based on

δk = f(yk)−
(

Fk(xk+1) + pk(xk+1)
)

,

the reduction in proximal cost, which is always positive, except at termination. A
serious step is performed if and only if the reduction in true cost, f(yk)−f(xk+1),
exceeds a fraction β of the reduction δk in proximal cost.

The convergence analysis of the bundle method just presented fol-
lows the corresponding arguments for the cutting plane and the proximal

Sec. 6.5 Proximal Methods 373

method. The idea is that the method makes “substantial” progress with ev-
ery serious step. Furthermore, null steps cannot be performed indefinitely,
for in this case, the polyhedral approximation to f will become increasingly
accurate and the reduction in true cost will converge to the reduction in
proximal cost. Then, since β < 1, the test for a serious step will be passed.
In the case where f and X are polyhedral, the method converges finitely,
similar to the case of the proximal and proximal cutting plane algorithms
(cf. Props. 6.5.3 and 6.5.5).

Proposition 6.5.6: (Finite Termination of the Bundle Method)
Consider the bundle method for the case where f and X are polyhe-
dral, with

f(x) = max
i∈I

{

a′ix+ bi
}

,

where I is a finite index set, and ai and bi are given vectors and scalars,
respectively. Assume that the optimal solution set is nonempty and
that the subgradient added to the cutting plane approximation at each
iteration is one of the vectors ai, i ∈ I. Then the method terminates
finitely with an optimal solution.

Proof: Since there are only finitely many vectors αi to add, eventually the
polyhedral approximation Fk will not change, i.e., Fk = Fk for all k > k̄.
We note that Fk(xk+1) = f(xk+1) for all k > k̄, since otherwise a new
cutting plane would be added to Fk. Thus, for k > k̄,

f(yk)− f(xk+1) = f(yk)− Fk(xk+1)

= f(yk)− (Fk(xk+1) + pk(xk+1)) + pk(xk+1)

= δk + pk(xk+1)

≥ βδk.

Therefore, according to Eq. (6.162), the method will perform serious steps
for all k > k̄, and become identical to the proximal cutting plane algorithm,
which converges finitely by Prop. 6.5.5. Q.E.D.

Discarding Old Subgradients

We mentioned earlier that one of the drawbacks of the cutting plane al-
gorithms is that the number of subgradients used in the approximation
Fk may grow to be very large. The monitoring of progress through the
test (6.162) for serious/null steps can also be used to discard some of the
accumulated cutting planes. For example, at the end of a serious step,
upon updating the proximal center yk to yk+1 = xx+1, we may discard any
subset of the cutting planes.

374 Convex Optimization Algorithms Chap. 6

It may of course be useful to retain some of the cutting planes, par-
ticularly the ones that are “active” or “nearly active” at yk+1, i.e., those
i ≤ k for which the linearization error

Fk(yk+1)−
(

f(xi) + (yk+1 − xi)′gi
)

is 0 or close to 0, respectively. The essential validity of the method is
maintained, by virtue of the fact that

{

f(yk)
}

is a monotonically decreasing
sequence, with “sufficiently large” cost reductions between proximal center
updates.

An extreme possibility is to discard all past subgradients following a
serious step from yk to xk+1. Then, after a subgradient gk+1 at xk+1 is
calculated, the next iteration becomes

xk+2 = argmin
x∈X

{

f(xk+1) + g′k+1(x− xk+1) +
1

2ck+1
‖x− xk+1‖2

}

.

It can be seen that we have

xk+2 = PX(xk+1 − ck+1gk+1),

where PX(·) denotes projection on X , so after discarding all past subgradi-
ents following a serious step, the next iteration is an ordinary subgradient
iteration with stepsize equal to ck+1.

Another possibility is (following the serious step) to replace all the
cutting planes with a single cutting plane: the one obtained from the hy-
perplane that passes through

(

xk+1, Fk(xk+1)
)

and separates the epigraphs
of the functions Fk(x) and γk − 1

2ck
(x− yk), where

γk = Fk(xk+1) +
1

2ck
(x− yk),

(see Fig. 6.5.9). This is the cutting plane

Fk(xk+1) + ĝ′k(x− xk+1), (6.163)

where ĝk is given by

ĝk =
yk − xk+1

ck
. (6.164)

The next iteration will then be performed with just two cutting planes: the
one just given in Eq. (6.163) and a new one obtained from xk+1,

f(xk+1) + g′k+1(x− xk+1),

where gk+1 ∈ ∂f(xk+1).
The vector ĝk is sometimes called an “aggregate subgradient,” be-

cause it can be shown to be a convex combination of the past subgradients
g0, . . . , gk. This is evident from Fig. 6.5.9, and can also be verified by using
quadratic programming duality arguments (see Exercise 6.18).

There are also many other variants of bundle methods, which aim at
increased efficiency and the exploitation of special structure. We refer to
the literature for related algorithms and their analyses.

Sec. 6.6 Dual Proximal Algorithms 375

X x) yk yk+1 = xk+1

f(x)
Fk(x)

) yk yk+1 = xk+1

Slope ĝk =
yk−xk+1

ck

γk

Figure 6.5.9. Illustration of the cutting plane

Fk(xk+1) + ĝ′k(x− xk+1),

where

ĝk =
yk − xk+1

ck
.

The “slope” ĝk can be shown to be a convex combination of the subgradients that
are “active” at xk+1.

6.6 DUAL PROXIMAL ALGORITHMS

In this section, we will develop an equivalent dual implementation of the
proximal algorithm, based on Fenchel duality. We will then apply it to the
cutting plane/bundle setting, taking advantage of the duality between the
simplicial decomposition and cutting plane methods, developed in Section
6.4.3. We will also apply it in a special way to obtain a popular constrained
optimization algorithm, the Augmented Lagrangian method.

We recall the proximal algorithm of Section 6.5.1:

xk+1 = arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

, (6.165)

where f : ℜn 7→ (−∞,∞], x0 is an arbitrary starting point, and {ck} is a
positive scalar parameter sequence with infk≥0 ck > 0. We note that the
minimization above is in a form suitable for application of Fenchel duality
(cf. Section 5.3.5) with the identifications

f1(x) = f(x), f2(x) =
1

2ck
‖x− xk‖2.

We can write the Fenchel dual problem as

minimize f⋆
1 (y) + f⋆

2 (−y)
subject to y ∈ ℜn,

(6.166)

376 Convex Optimization Algorithms Chap. 6

where f⋆
1 and f⋆

2 are the conjugate functions of f1 and f2, respectively. We
have

f⋆
2 (y) = sup

x∈ℜn

{

x′y−f2(x)
}

= sup
x∈ℜn

{

x′y − 1

2ck
‖x− xk‖2

}

= x′ky+
ck
2
‖y‖2,

where the last equality follows by noting that the supremum over x is
attained at x = xk + cky. Denoting by f⋆ the conjugate of f ,

f⋆
1 (y) = f⋆(y) = sup

x∈ℜn

{

x′y − f(x)
}

,

and substituting into Eq. (6.166), we see that the dual problem (6.166) can
be written as

minimize f⋆(y)− x′ky +
ck
2
‖y‖2

subject to y ∈ ℜn.
(6.167)

We also note that since f2 and f⋆
2 are real-valued, the relative interior

condition of the Fenchel duality theorem [Prop. 6.1.5(a)] is satisfied, so
there is no duality gap. In fact both primal and dual problems have a
unique solution, since they involve a closed, strictly convex, and coercive
cost function.

Let yk+1 be the unique solution of problem (6.167). Then yk+1 to-
gether with xk+1 satisfy the necessary and sufficient optimality conditions
of Prop. 6.1.5(b). When applied to the primal problem, these conditions
can be written as

xk+1 ∈ arg max
x∈ℜn

{

x′yk+1 − f(x)
}

,

xk+1 ∈ arg min
x∈ℜn

{

x′yk+1 − f2(x)
}

= arg min
x∈ℜn

{

x′yk+1 +
1

2ck
‖x− xk‖2

}

,

or equivalently,

yk+1 ∈ ∂f(xk+1), xk+1 = xk − ckyk+1; (6.168)

see Fig. 6.6.1. Similarly, when applied to the dual problem, the necessary
and sufficient optimality conditions of Prop. 6.1.5(b) can be written as

xk+1 ∈ ∂f⋆(yk+1), yk+1 =
xk − xk+1

ck
. (6.169)

We thus obtain a dual implementation of the proximal algorithm.
In this algorithm, instead of solving the Fenchel primal problem involved
in the proximal iteration (6.165), we first solve the Fenchel dual problem
(6.167), and then obtain the optimal primal Fenchel solution xk+1 using
the optimality condition (6.168):

Sec. 6.6 Dual Proximal Algorithms 377

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

Optimal primal proximal solution
Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution

Optimal primal proximal solution

Optimal dual proximal solution
Slope yk+1

Figure 6.6.1. Illustration of the optimality conditions (6.168).

Dual Implementation of the Proximal Algorithm:

Find
yk+1 = arg min

y∈ℜn

{

f⋆(y)− x′ky +
ck
2
‖y‖2

}

, (6.170)

and then set
xk+1 = xk − ckyk+1. (6.171)

The dual algorithm is illustrated in Fig. 6.6.2. Note that as xk con-
verges to a minimum x∗ of f , yk converges to 0. Thus the dual iteration
(6.170) does not aim to minimize f⋆, but rather to find a subgradient of
f⋆ at 0, which [by Prop. 5.4.4(a)] minimizes f . In particular, we have
yk ∈ ∂f(xk), xk ∈ ∂f⋆(yk) [cf. Eqs. (6.168) and (6.169)], and as yk con-
verges to 0 and xk converges to a minimum x∗ of f , we have 0 ∈ ∂f(x∗)
and x∗ ∈ ∂f⋆(0).

The primal and dual implementations of the proximal algorithm are
mathematically equivalent and generate identical sequences {xk}, assum-
ing the same starting point x0. Whether one is preferable over the other
depends on which of the minimizations (6.165) and (6.170) is easier, i.e.,
whether f or its conjugate f⋆ has more convenient structure.

6.6.1 Proximal Inner Linearization Methods

In Section 6.5.2 we saw that the proximal algorithm can be combined with
outer linearization to yield the proximal cutting plane algorithm. In this
section we use a dual combination, involving the dual proximal algorithm

378 Convex Optimization Algorithms Chap. 6

γk

γk −
1

2ck

‖x − xk‖2

f(x)

X xxk+1xk

x
∗

x h(λ)
Slope = xk

x h(λ) h (λ)
Slope = xk+1

Slope = x
∗

δk

Primal Proximal Iteration Dual Proximal Iteration

Slope yk+1 y f

y f⋆(y)y) δk + x
′

k
y − ck

2
‖y‖2

Figure 6.6.2. Illustration of primal and dual proximal algorithms. The primal
algorithm aims to find x∗, a minimum of f . The dual algorithm aims to find
x∗ as a subgradient of f⋆ at 0, i.e., it aims to solve the (generalized) equation
x∗ ∈ ∂f⋆(0) (cf. Prop. 5.4.4/COT).

(6.170)-(6.171) and inner linearization (the dual of outer linearization).
This yields a new method, which is connected to the proximal cutting
plane algorithm of Section 6.5.2 by Fenchel duality (see Fig. 6.6.3).

Proximal Point Algorithm Outer Linearization
Proximal Point Algorithm Outer Linearization

Proximal Point Algorithm Outer Linearization

Proximal Cutting Plane Bundle Versions

Dual Proximal Point Algorithm Inner Linearization

Proximal Cutting Plane Bundle Versions
Proximal Cutting Plane Bundle Versions

Proximal Cutting Plane Bundle Versions

Proximal Cutting Plane Bundle Versions
Proximal Simplicial Decomposition Bundle Versions

Proximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel DualityProximal Simplicial Decomposition Bundle Versions Fenchel Duality

Dual Proximal Point Algorithm Inner Linearization
Dual Proximal Point Algorithm Inner Linearization

Proximal Point Algorithm Outer Linearization
Dual Proximal Point Algorithm Inner Linearization

Figure 6.6.3. Relations of the proximal and proximal cutting plane methods,
and their duals. The dual algorithms are obtained by application of the Fenchel
duality theorem.

Let us recall the proximal cutting plane method applied to minimizing
a real-valued convex function f : ℜn 7→ ℜ, over a closed convex set X . The
typical iteration involves a proximal minimization of the current cutting
plane approximation to f given by

Fk(x) = max
{

f(x0) + (x− x0)′g0, . . . , f(xk) + (x− xk)′gk
}

+ δX(x),

Sec. 6.6 Dual Proximal Algorithms 379

where gi ∈ ∂f(xi) for all i and δX is the indicator function of X . Thus,

xk+1 ∈ arg min
x∈ℜn

{

Fk(x) +
1

2ck
‖x− xk‖2

}

, (6.172)

where ck is a positive scalar parameter. A subgradient gk+1 of f at xk+1 is
then computed, Fk+1 is accordingly updated, and the process is repeated.

Similar to the preceding subsection, we may use Fenchel duality to
implement the proximal minimization (6.172) in terms of conjugate func-
tions [cf. Eq. (6.170)]. The Fenchel dual of the minimization involved in
the proximal iteration (6.172) can be written as

minimize F ⋆
k (y)− x′ky +

ck
2
‖y‖2

subject to y ∈ ℜn,
(6.173)

where F ⋆
k is the conjugate of Fk. Once yk+1, the unique minimizer in the

dual proximal iteration (6.173), is computed, xk is updated via

xk+1 = xk − ckyk+1

[cf. Eq. (6.171)]. Then, a subgradient gk+1 of f at xk+1 is obtained either
directly, or as a vector attaining the supremum in the conjugacy relation

f(xk+1) = sup
y∈ℜn

{

x′k+1y − f⋆(y)
}

,

where f⋆ is the conjugate function of f :

gk+1 ∈ arg max
y∈ℜn

{

x′k+1y − f⋆(y)
}

.

We will now discuss the details of the preceding computations, assum-
ing for simplicity that there are no constraints, i.e., X = ℜn. According
to Section 6.4.3, F ⋆

k is a piecewise linear, inner approximation of f⋆. In
particular, F ⋆

k is a piecewise linear (inner) approximation of f⋆ with domain

dom(F ⋆
k) = conv

(

{g0, . . . , gk}
)

,

and “break points” at gi, i = 0, . . . , k, with values equal to the correspond-
ing values of f⋆.

Let us consider the dual proximal optimization of Eq. (6.170). It
takes the form

minimize

k
∑

i=0

αi

(

f⋆(gi)− x′kgi
)

+
ck
2

∥

∥

∥

∥

∥

k
∑

i=0

αigi

∥

∥

∥

∥

∥

2

subject to

k
∑

i=0

αi = 1, αi ≥ 0, i = 0, . . . , k.

(6.174)

380 Convex Optimization Algorithms Chap. 6

x h(λ)
Slope = xk

Slope = xk+1

) gk+1 +1 y f

y f⋆(y)
2 F ⋆

k
(y)

Figure 6.6.4. Illustration of an iteration of the proximal inner linearization al-
gorithm. The proximal minimization determines the “slope” xk+1 of F ⋆

k , which
then determines the next subgradient/break point gk+1 via the maximization

gk+1 ∈ arg max
y∈ℜn

{

x′
k+1y − f⋆(y)

}

,

i.e., gk+1 is a point at which xk+1 is a subgradient of f⋆.

If (αk
0 , . . . , α

k
k) attains the minimum, we have

yk+1 =

k
∑

i=0

αk
i gi, xk+1 = xk − ck

k
∑

i=0

αk
i gi. (6.175)

The next subgradient gk+1 may be obtained from the maximization

gk+1 ∈ arg max
y∈ℜn

{

x′k+1y − f⋆(y)
}

. (6.176)

As Fig. 6.6.4 indicates, gk+1 provides a new break point and an improved
inner approximation to f⋆ [equivalently,

(

gk+1, f⋆(gk+1)
)

is a new extreme
point added to the Minkowski-Weyl representation of epi(F ⋆

k)].
We refer to the algorithm defined by Eqs. (6.174)-(6.176), as the prox-

imal inner linearization algorithm. Note that all the computations of the
algorithm involve the conjugate f⋆ and not f . Thus, if f⋆ is more con-
venient to work with than f , the proximal inner linearization algorithm
is preferable to the proximal cutting plane algorithm. The maximization
(6.176) is often the most challenging part of the algorithm, and the key to
its successful application.

Sec. 6.6 Dual Proximal Algorithms 381

Let us finally note that bundle versions of the algorithm are easily
obtained by introducing a proximity control mechanism, and a correspond-
ing test to distinguish between serious steps, where we update xk via Eq.
(6.175), and null steps, where we leave xk unchanged, but simply add the
extreme point

(

gk+1, f⋆(gk+1)
)

to the current inner approximation of f⋆.

6.6.2 Augmented Lagrangian Methods

In this section, we will develop an equivalent dual implementation of the
proximal algorithm, based on Fenchel duality. We will then apply it to the
cutting plane/bundle setting, taking advantage of the duality between the
simplicial decomposition and cutting plane methods, developed in Section
6.4.3. We will also apply it in a special way to obtain a popular constrained
optimization algorithm, the Augmented Lagrangian method.

Consider the constrained minimization problem

minimize f(x)

subject to x ∈ X, Ex = d,
(6.177)

where f : ℜn 7→ ℜ is a convex function, X is a closed convex set, E is an
m× n matrix, and d ∈ ℜm.†

Consider also the corresponding primal and dual functions

p(v) = inf
x∈X,Ex−d=v

f(x), q(λ) = inf
x∈X

L(x, λ),

where L(x, λ) = f(x) + λ′(Ex− d) is the Lagrangian function. We assume
that p is closed, so that, except for sign changes, q and p are conjugates of
each other [i.e., −q(−λ) is the conjugate convex of p; cf. Section 4.2.1].

Let us apply the proximal algorithm to the dual problem of maximiz-
ing q. It has the form

λk+1 = arg max
λ∈ℜm

{

q(λ) − 1

2ck
‖λ− λk‖2

}

.

In view of the conjugacy relation between q and p (taking also into account
the required sign changes), it can be seen that the dual proximal algorithm
has the form

vk+1 = arg min
v∈ℜm

{

p(v) + λk
′v +

ck
2
‖v‖2

}

; (6.178)

† We focus on linear equality constraints for convenience, but the analysis

can be extended to convex inequality constraints as well. In particular, a lin-

ear inequality constraint of the form a′jx ≤ bj can be converted to an equality

constraint a′jx + zj = bj by using a slack variable constraint zj ≥ 0, which can

be absorbed into the set X. The book [Ber82] is a comprehensive reference on

Augmented Lagrangian methods.

382 Convex Optimization Algorithms Chap. 6

see Fig. 6.6.5. To implement this algorithm, we use the definition of p to
write the above minimization as

min
v∈ℜm

{

inf
x∈X,Ex−d=v

{

f(x)
}

+ λk
′v +

ck
2
‖v‖2

}

= min
v∈ℜm

inf
x∈X,Ex−d=v

{

f(x) + λ′(Ex − d) +
c

2
‖Ex− d‖2

}

= inf
x∈X

{

f(x) + λ′(Ex− d) +
c

2
‖Ex− d‖2

}

= inf
x∈X

Lck(x, λk),

(6.179)

where for any c > 0, Lc is the Augmented Lagrangian function

Lc(x, λ) = f(x) + λ′(Ex− d) +
c

2
‖Ex− d‖2.

The minimizing v and x in Eq. (6.179) are related, and we have

vk+1 = Exk+1 − d,

where xk+1 is any vector that minimizes Lck(x, λk) overX (we assume that
such a vector exists - this is not guaranteed, and must be either assumed
or verified independently).

p(v) +
c

2
‖v‖2

p(v)

vvk+1

inf
x∈X

Lc(x, λk)

Slope = −λ∗

Slope = −λk+1

Slope = −λk

Figure 6.6.5. Illustration of the dual proximal minimization (6.178) and the
update

λk+1 = λk + ckvk+1

in the Augmented Lagrangian method. We have −λk+1 ∈ ∂p(vk+1) based on the
dual Lagrangian optimality conditions [cf. Eq. (6.169)].

Sec. 6.6 Dual Proximal Algorithms 383

Thus, the iteration of the dual algorithm [cf. Eq. (6.171), with a
change of sign of λk inherited from the change of sign in Eq. (6.178)] takes
the form λk+1 = λk + ckvk+1, or

λk+1 = λk + ck(Exk+1 − d), (6.180)

where
xk+1 ∈ argmin

x∈X
Lck(x, λk). (6.181)

The algorithm (6.180)-(6.181) is known as the Augmented Lagrangian me-

thod or the method of multipliers . As we have seen, it is the special case of
the dual proximal algorithm applied to maximization of the dual function
q.

The convergence properties of the Augmented Lagrangian method are
derived from the corresponding properties of the proximal algorithm (cf.
Section 6.5.1). The sequence

{

q(λk)
}

converges to the optimal dual value,
and {λk} converges to an optimal dual solution, provided such a solution
exists (cf. Prop. 6.5.1). Furthermore, convergence in a finite number of
iterations is obtained in the case of a linear programming problem (cf.
Prop. 6.5.3).

Assuming that {λk} converges to an optimal dual solution, we also
claim that every limit point of the generated sequence {xk} is an optimal
solution of the primal problem (6.177). To see this, note that from the
update formula (6.180) we obtain

Exk+1 − d→ 0, ck
(

Exk+1 − d
)

→ 0.

Furthermore, we have

Lck

(

xk+1, λk
)

= min
x∈X

{

f(x) + λ′k(Ex− d) +
ck
2
‖Ex− d‖2

}

.

The preceding relations yield

lim sup
k→∞

f(xk+1) = lim sup
k→∞

Lck

(

xk+1, λk
)

≤ f(x), ∀ x ∈ X with Ex = d,

so if x∗ ∈ X is a limit point of {xk}, we obtain

f(x∗) ≤ f(x), ∀ x ∈ X with Ex = d,

as well as Ex∗ = d (in view of Exk+1 − d→ 0). Therefore any limit point
x∗ of the generated sequence {xk} is an optimal solution of the primal
problem (6.177). However, there is no guarantee that {xk} has a limit
point, and indeed the dual sequence {λk} will converge to a dual optimal
solution, if one exists, even if the primal problem (6.177) does not have an
optimal solution.

384 Convex Optimization Algorithms Chap. 6

Finally, let us consider the “penalized” dual function qc, given by

qc(λ) = max
y∈ℜm

{

q(y)− 1

2c
‖y − λ‖2

}

. (6.182)

Then, according to Prop. 6.5.4, qc is differentiable, and we have

∇qc(λ) =
yc(λ) − λ

c
, (6.183)

where yc(λ) is the unique vector attaining the maximum in Eq. (6.182).
Since yck(λk) = λk+1, we have using Eqs. (6.180) and (6.183),

∇qck(λk) =
λk+1 − λk

ck
= Exk+1 − d, (6.184)

and the multiplier iteration (6.180) can be written as a gradient iteration:

λk+1 = λk + ck∇qck(λk).

This interpretation motivates variations based on faster Newton or Quasi-
Newton methods for maximizing qc (whose maxima coincide with the ones
of q, for any c > 0). There are many algorithms along this line, some
of which involve inexact minimization of the Augmented Lagrangian to
enhance computational efficiency. We refer to the literature cited at the
end of the chapter for analysis of such methods.

6.7 INCREMENTAL PROXIMAL METHODS

In this section we will consider incremental variants of the proximal al-
gorithm, which like the incremental subgradient methods of Section 6.3.3,
apply to additive costs of the form

f(x) =

m
∑

i=1

fi(x),

where the functions fi : ℜn 7→ ℜ are real-valued and convex. We wish to
minimize f over a nonempty closed convex set X .

The idea is to take proximal steps using single component functions
fi, with intermediate adjustment of the proximal center. In particular, we
view an iteration as a cycle of m subiterations. If xk is the vector obtained
after k cycles, the vector xk+1 obtained after one more cycle is

xk+1 = ψm,k, (6.185)

Sec. 6.7 Incremental Proximal Methods 385

where starting with ψ0,k = xk, we obtain ψm,k after the m proximal steps

ψi,k = argmin
x∈X

{

fi(x) +
1

2αk
‖x− ψi−1,k‖2

}

, i = 1, . . . ,m, (6.186)

where αk is a positive parameter.
We will discuss shortly schemes to adjust αk. We will see that αk

plays a role analogous to the stepsize in incremental subgradient methods
(see the subsequent Prop. 6.7.1). In this connection, we note that for
convergence of the method, it is essential that αk → 0, as illustrated in the
following example.

Example 6.7.1:

Consider the unconstrained scalar case (X = ℜ) and the cost function

|x|+ |x− 1|+ |x+ 1|.

Then starting at x0 = 0 and αk ≡ α, with α ∈ (0, 1], the method takes the
form

ψ1,k = argmin
x∈ℜ

{

|x|+
1

2α
|x− xk|

2
}

,

ψ2,k = argmin
x∈ℜ

{

|x− 1|+
1

2α
|x− ψ1,k|

2
}

,

ψ3,k = xk+1 = argmin
x∈ℜ

{

|x+ 1|+
1

2α
|x− ψ2,k|

2
}

,

and generates the sequences ψ1,k = 0, ψ2,k = α, ψ3,k = xk = 0, k = 0, 1,
Thus, starting at the optimal solution x0 = 0 and using a constant parameter
αk ≡ α, the method oscillates proportionately to α.

The following proposition suggests the similarity between incremental
proximal and incremental subgradient methods.

Proposition 6.7.1: The incremental proximal iteration (6.186) can
be written as

ψi,k = PX(ψi−1,k − αkgi,k), i = 1, . . . ,m, (6.187)

where gi,k is some subgradient of fi at ψi,k.

Proof: We use the formula for the subdifferential of the sum of the three
functions fi, (1/2αk)‖x−ψi−1,k‖2, and the indicator function of X (Prop.

386 Convex Optimization Algorithms Chap. 6

5.4.6), together with the condition that 0 should belong to this subdiffer-
ential at the optimum ψi,k. We obtain that

ψi,k = argmin
x∈X

{

fi(x) +
1

2αk
‖x− ψi−1,k‖2

}

if and only if

1

αk
(ψi−1,k − ψi,k) ∈ ∂fi(ψi,k) +NX(ψi,k),

where NX(ψi,k) is the normal cone of X at ψi,k. This is true if and only if

ψi−1,k − ψi,k − αkgi,k ∈ NX(ψi,k),

for some gi,k ∈ ∂fi(ψi,k), which in turn is true if and only if Eq. (6.187)
holds (cf. Prop. 5.4.7). Q.E.D.

Note the difference between the incremental subgradient and proxi-
mal iterations. In the former case any subgradient of fi at ψi,k−1 is used,
while in the latter case a particular subgradient at the next ψi,k is used.
It turns out that for convergence purposes this difference is relatively in-
consequential: we will show that much of the analysis of the preceding
section for incremental subgradient methods carries through with suitable
modifications to the incremental proximal case. To this end, we provide
the following analog of the crucial Prop. 6.3.7. We denote

ci = sup
k≥0

max
{

‖ĝi,k‖, ‖gi,k‖
}

, i = 1, . . . ,m, (6.188)

where ĝi,k is the subgradient of minimum norm in ∂fi(xk) and gi,k is the
subgradient of Eq. (6.187). In the following proposition the scalars ci are
assumed finite (this replaces Assumption 6.3.2).

Proposition 6.7.2: Let {xk} be the sequence generated by the in-
cremental proximal method (6.185), (6.186). Then for all y ∈ X and
k ≥ 0, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk+1)− f(y)
)

+ α2
kc

2, (6.189)

where c =
∑m

i=1 ci is assumed finite.

Proof: Using the nonexpansion property of the projection[cf. Eq. (6.57)],
and the subgradient inequality for each component function fi, we obtain

Sec. 6.7 Incremental Proximal Methods 387

for all y ∈ X , i = 1, . . . ,m, and k ≥ 0,

‖ψi,k − y‖2 =
∥

∥PX (ψi−1,k − αkgi,k)− y
∥

∥

2

≤ ‖ψi−1,k − αkgi,k − y‖2
≤ ‖ψi−1,k − y‖2 − 2αkg′i,k(ψi−1,k − y) + α2

k‖gi,k‖2

≤ ‖ψi−1,k − y‖2 − 2αkg′i,k(ψi,k − y) + α2
kc

2
i

+ 2αkg′i,k(ψi,k − ψi−1,k)

≤ ‖ψi−1,k − y‖2 − 2αk

(

fi(ψi,k)− fi(y)
)

+ α2
kc

2
i

+ 2αkg′i,k(ψi,k − ψi−1,k).

We note that since ψi,k is the projection on X of ψi−1,k − αkgi,k, we have

g′i,k(ψi,k − ψi−1,k) ≤ 0,

which combined with the preceding inequality yields

‖ψi,k − y‖2 ≤ ‖ψi−1,k − y‖2 − 2αk

(

fi(ψi,k)− fi(y)
)

+ α2
kc

2
i , ∀ i, k.

By adding the above inequalities over i = 1, . . . ,m, we have for all
y ∈ X and k,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

m
∑

i=1

(

fi(ψi,k)− fi(y)
)

+ α2
k

m
∑

i=1

c2i

= ‖xk − y‖2 − 2αk

(

f(xk+1)− f(y) +

m
∑

i=1

(

fi(ψi,k)− fi(xk+1)
)

)

+ α2
k

m
∑

i=1

c2i .

By strengthening the above inequality, we have for all y ∈ X and k, using
also the fact ψm,k = xk+1,

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(

f(xk+1)− f(y)
)

+ 2αk

m
∑

i=1

ci||ψi,k − xk+1||+ α2
k

m
∑

i=1

c2i

≤ ‖xk − y‖2 − 2αk

(

f(xk+1)− f(y)
)

+ α2
k

2

m−1
∑

i=1

ci

m
∑

j=i+1

cj

+

m
∑

i=1

c2i

= ‖xk − y‖2 − 2αk

(

f(xk+1)− f(y)
)

+ α2
k

(

m
∑

i=1

ci

)2

= ‖xk − y‖2 − 2αk

(

f(xk+1)− f(y)
)

+ α2
kc

2,

388 Convex Optimization Algorithms Chap. 6

where in the first inequality we use the relation

fi(xk+1)− fi(ψi,k) ≤ ‖ĝi,k+1‖ · ‖ψi,k − xk+1‖ ≤ ci‖ψi,k − xk+1‖,

which follows from the subgradient inequality and the definition (6.188) of
ci, while in the second inequality we use the relation

‖ψi,k − xk+1‖ ≤ αk

m
∑

j=i+1

‖gj,k‖ ≤ αk

m
∑

j=i+1

cj , i = 1, . . . ,m, k ≥ 0,

which follows from Eqs. (6.185)-(6.187), and the definition (6.188) of ci.
Q.E.D.

Among other things, Prop. 6.7.2 guarantees that given the current
iterate xk and some other point y ∈ X having lower cost than xk, the
next iterate xk+1 will be closer to y than xk, provided the stepsize αk is
sufficiently small [less than 2

(

f(xk+1) − f(y)
)

/c2]. In particular, for any
optimal solution x∗ ∈ X∗, any ǫ > 0, and any αk ≤ ǫ/c2, either

f(xk+1) ≤ f∗ + ǫ,

or else
‖xk+1 − x∗‖ < ‖xk − x∗‖.

Using Prop. 6.7.2, we can provide convergence results for the incre-
mental proximal method, which parallel the corresponding results for the
incremental subgradient method. For a constant stepsize, αk ≡ α, conver-
gence can be established to a neighborhood of the optimum, which shrinks
to 0 as α → 0. In particular, Prop. 6.3.8 holds verbatim, and the conver-
gence rate estimate of Prop. 6.3.9 also holds. Furthermore, a convergence
result for a diminishing stepsize, which parallels Prop. 6.3.4 can also be
similarly established. Also, randomization in the order of selecting the
components fi in the proximal iteration can be introduced, with an anal-
ysis that parallels the one of Section 6.3.4.

Incremental Augmented Lagrangian Methods

We will now revisit the Augmented Lagrangian methodology of Section
6.6.2, in the context of large-scale separable problems and incremental prox-
imal methods. Consider the separable constrained minimization problem

minimize

m
∑

i=1

fi(xi)

subject to xi ∈ Xi, i = 1, . . . ,m,

m
∑

i=1

(Eixi − di) = 0,

(6.190)

Sec. 6.7 Incremental Proximal Methods 389

where fi : ℜni 7→ ℜ are convex functions (ni is a positive integer, which
may depend on i), Xi are nonempty closed convex sets, Ei are given r×ni

matrices, and di ∈ ℜr are given vectors. For simplicity and consistency
with Section 6.6.2, we focus on linear equality constraints, but the analysis
can be extended to separable problems with convex inequality constraints
as well.

Similar to our discussion of separable problems in Section 6.1.1, the
dual function is given by

q(λ) = inf
xi∈Xi, i=1,...,m

{

m
∑

i=1

(

fi(xi) + λ′(Eixi − di)
)

}

,

and by decomposing the minimization over the components of x, can be
expressed in the additive form

q(λ) =
m
∑

i=1

qi(λ),

where
qi(λ) = inf

xi∈Xi

{

fi(xi) + λ′(Eixi − di)
}

.

Thus the dual problem,

maximize
m
∑

i=1

qi(λ)

subject to λ ∈ ℜr,

has a suitable form for application of incremental methods, assuming that
the dual function components qi are real-valued.† In particular, the incre-
mental proximal algorithm (6.185)-(6.186) updates the current vector λk
to a new vector λk+1 after a cycle of m subiterations:

λk+1 = ψm,k, (6.191)

where starting with ψ0,k = λk, we obtain ψm,k after the m proximal steps

ψi,k = arg max
λ∈ℜr

{

qi(λ) −
1

2αk
‖λ− ψi−1,k‖2

}

, i = 1, . . . ,m, (6.192)

† The function qi is real-valued for example if Xi is compact. If instead qi
has the form

qi(λ) =
{

q̃i(λ) if λ ∈ Λi,
−∞ if λ /∈ Λi,

where q̃i : ℜ
r 7→ ℜ is a real-valued concave function and Λi is a closed convex set,

then a constrained form of the incremental proximal algorithm applies, which can

deal incrementally with the dual constraint set Λ = ∩m
i=1Λi (see Section 6.7.2).

390 Convex Optimization Algorithms Chap. 6

where αk is a positive parameter.
We now recall the Fenchel duality relation between proximal and Aug-

mented Lagrangian minimization discussed in Section 6.6.2. Based on that
relation, the proximal incremental update (6.192) can be written in terms
of the data of the primal problem as

ψi,k = ψi−1,k + αk(Ei,kxi,k − di), (6.193)

where xi,k is obtained with the minimization

xi,k ∈ arg min
xi∈Xi

Lαk,i(xi, ψi−1,k), (6.194)

and Lαk,i is the “incremental” Augmented Lagrangian function

Lαk,i(xi, λ) = fi(xi) + λ′(Eixi − di) +
αk

2
‖Eixi − di‖2. (6.195)

Note that this algorithm allows decomposition within the Augmented La-
grangian framework, which is not possible in the standard method of Sec-
tion 6.6.2 [cf. Eq. (6.179)], since the addition of the penalty term

c

2

∥

∥

∥

∥

∥

m
∑

i=1

(Eixi − di)

∥

∥

∥

∥

∥

2

to the Lagrangian function destroys its separability.

6.7.1 Incremental Subgradient-Proximal Methods

The incremental proximal method of the preceding section has some ad-
vantages over the incremental subgradient method of Section 6.3.3 [cf. Eqs.
(6.69)-(6.70)], chief among which is the greater stability that character-
izes the proximal method. On the other hand while some cost function
components may be well suited for a proximal iteration, others may not
be because the minimization in Eq. (6.186) is inconvenient. With this in
mind, we may consider combinations of subgradient and proximal methods
for problems of the form

minimize F (x)
def
=

m
∑

i=1

Fi(x)

subject to x ∈ X,

where for all i,
Fi(x) = fi(x) + hi(x),

fi : ℜn 7→ ℜ and hi : ℜn 7→ ℜ are real-valued convex functions, and X is a
nonempty closed convex set.

Sec. 6.7 Incremental Proximal Methods 391

An incremental algorithm for this problem may iterate on the com-
ponents fi with a proximal iteration, and on the components hi with a
subgradient iteration. By choosing all the fi or all the hi to be identically
zero, we obtain as special cases the incremental subgradient and proximal
iterations, respectively. To this end, we may consider several incremen-
tal algorithms that involve a combination of a proximal and a subgradient
iteration. One such algorithm has the form

zk = argmin
x∈X

{

fik (x) +
1

2αk
‖x− xk‖2

}

, (6.196)

xk+1 = PX

(

zk − αkgik(zk)
)

, (6.197)

where ik is the index of the component chosen for iteration and gik(zk)
is an arbitrary subgradient of hik at zk. Note that the iteration is well-
defined because the minimum in Eq. (6.196) is uniquely attained since fi
is continuous and ‖x − xk‖2 is real-valued, strictly convex, and coercive,
while the subdifferential ∂hi(zk) is nonempty since hi is real-valued. Note
also that by choosing all the fi or all the hi to be identically zero, we ob-
tain as special cases the incremental subgradient and incremental proximal
iterations, respectively.

The iterations (6.196) and (6.197) maintain both sequences {zk} and
{xk} within the constraint set X , but it may be convenient to relax this
constraint for either the proximal or the subgradient iteration, thereby
requiring a potentially simpler computation. This leads to the algorithm

zk = arg min
x∈ℜn

{

fik(x) +
1

2αk
‖x− xk‖2

}

, (6.198)

xk+1 = PX

(

zk − αkgik(zk)
)

, (6.199)

where the restriction x ∈ X has been omitted from the proximal iteration,
and the algorithm

zk = xk − αkgik (xk), (6.200)

xk+1 = argmin
x∈X

{

fik(x) +
1

2αk
‖x− zk‖2

}

, (6.201)

where the projection onto X has been omitted from the subgradient itera-
tion. It is also possible to use different stepsize sequences in the proximal
and subgradient iterations.

The convergence and rate of convergence properties of such combined
methods are similar to the ones derived earlier for the pure subgradient
and pure proximal versions (see Bertsekas [Ber10a] and [Ber10b], where
it is shown that their convergence behavior is similar to the one described
earlier for the incremental subgradient method). This includes convergence
within a certain error bound for a constant stepsize, exact convergence to

392 Convex Optimization Algorithms Chap. 6

an optimal solution for an appropriately diminishing stepsize, and improved
convergence rate/iteration complexity when randomization is used to se-
lect the cost component for iteration. However, the combined incremental
subgradient-proximal methods offer greater flexibility, and may exploit the
special structure of problems where the functions fi are suitable for a prox-
imal iteration, while the components hi are not and thus may be preferably
treated with a subgradient iteration.

We now illustrate the incremental methods of this subsection in the
context of some important applications.

Weighted Least Squares and Regularization

Let us consider weighted least squares problems, involving minimization of
a sum of quadratic component functions fi(x) that correspond to errors
between data and the output of a model that is parameterized by a vector
x ∈ ℜn. Often a convex regularization function R(x) is added to the least
squares objective, to induce desirable properties of the solution. This gives
rise to problems of the form

minimize R(x) +
1

2

m
∑

i=1

wi(c′ix− di)2

subject to x ∈ ℜn,

(6.202)

where ci and di are given vectors and scalars, respectively, and wi are
positive weights. Typically, either R(x) ≡ 0 (which corresponds to no
regularization) or R has an additive form, R(x) =

∑n
j=1 Rj(xj), where

x1, . . . , xn are the n components of x. Then if either m is very large or
the data (ci, di) become available sequentially over time, it makes sense to
consider incremental methods.

The classical type of regularization involves a quadratic function R
(as in classical regression and the LMS method),

R(x) =
γ

2
‖x‖2,

where γ is a positive scalar. Then there are several possibilities for applying
incremental gradient, or proximal methods or combinations thereof, since
differentiation and minimization operations involving quadratic functions
can typically be done in closed form.

A popular alternative to quadratic regularization, which is well suited
for some applications, is the use of a nondifferentiable regularization func-
tion. Our incremental methods may still apply because what is important
is that R has a simple form that facilitates the use of proximal algorithms,
such as for example a separable form, so that the proximal iteration on

Sec. 6.7 Incremental Proximal Methods 393

R is simplified through decomposition. As an example, consider the case
where R(x) is given in terms of the ℓ1-norm:

R(x) = γ‖x‖1 = γ

n
∑

j=1

|xj |, (6.203)

γ is a positive scalar and xj is the jth coordinate of x. Then the proximal
iteration

zk = arg min
x∈ℜn

{

γ ‖x‖1 +
1

2αk
‖x− xk‖2

}

decomposes into the n one-dimensional minimizations

zjk = arg min
xj∈ℜ

{

γ |xj |+ 1

2αk
|xj − xjk|2

}

, j = 1, . . . , n,

and can be done in closed form

zjk =

xjk − γαk if γαk ≤ xjk,

0 if −γαk < xjk < γαk,

xjk + γαk if xjk ≤ −γαk,

j = 1, . . . , n. (6.204)

We refer to the literature for a discussion of a broad variety of applications
in estimation and signal processing problems, where nondifferentiable reg-
ularization functions play an important role.

We now note that the incremental algorithms of this section are well-
suited for solution of problems of the form (6.202)-(6.203). For example, the
kth incremental iteration may consist of selecting a data pair (cik , dik) and
performing a proximal iteration of the form (6.204) to obtain zk, followed
by a gradient iteration on the component 1

2wi(c′ikx− dik)
2, starting at zk:

xk+1 = zk − αkwicik (c
′
ik
zk − dik).

This algorithm is a special case of the algorithms of this section with fi(x)
being γ‖x‖1 (we use m copies of this function) and hi(x) =

1
2wi(c′ix−di)2.

It can be viewed as an incremental version of a popular class of algorithms
in signal processing, known as iterative shrinkage/thresholding.

Finally, let us note that as an alternative, the proximal iteration
(6.204) could be replaced by a proximal iteration on γ |xj | for some se-
lected index j, with all indexes selected cyclically in incremental iterations.
Randomized selection of the data pair (cik , dik) is also interesting, partic-
ularly in contexts where the data has a natural stochastic interpretation.

394 Convex Optimization Algorithms Chap. 6

Iterated Projection Algorithms

A feasibility problem that arises in many contexts involves finding a point
with certain properties within a set intersection ∩m

i=1Xi, where each Xi is a
closed convex set. For the case where m is large and each of the sets Xi has
a simple form, incremental methods that make successive projections on
the component sets Xi have a long history. We may consider the following
generalization of the classical feasibility problem,

minimize f(x)

subject to x ∈ ∩m
i=1Xi,

(6.205)

where f : ℜn 7→ ℜ is a convex cost function, and the method

xk+1 = PXik

(

xk − αkg(xk)
)

, (6.206)

where the index ik is chosen from {1, . . . ,m} according to a randomized
rule, and g(xk) is a subgradient of f at xk. The incremental approach is
particularly well-suited for problems of the form (6.205) where the sets Xi

are not known in advance, but are revealed as the algorithm progresses.
While the problem (6.205) does not involve a sum of component functions,
it may be converted into one that does by using an exact penalty function.
In particular, consider the problem

minimize f(x) + γ

m
∑

i=1

dist(x;Xi)

subject to x ∈ ℜn,

(6.207)

where γ is a positive penalty parameter. Then for f Lipschitz continuous
and γ sufficiently large, problems (6.205) and (6.207) are equivalent, as
shown in Prop. 6.1.12.

Regarding algorithmic solution, from Prop. 6.1.12, it follows that we
may consider in place of the original problem (6.205) the additive cost prob-
lem (6.207) for which our algorithms apply. In particular, let us consider
an algorithm that involves a proximal iteration on one of the functions
γ dist(x;Xi) followed by a subgradient iteration on f . A key fact here is
that the proximal iteration involving the distance function dist(·;Xik),

zk = arg min
x∈ℜn

{

γ dist(x;Xik) +
1

2αk
‖x− xk‖2

}

, (6.208)

consists of a projection on Xik of xk, followed by an interpolation. This is
shown in the following proposition.

Sec. 6.7 Incremental Proximal Methods 395

Proposition 6.7.3: Let zk be the vector produced by the proximal
iteration (6.208). If xk ∈ Xik , then zk = xk, while if xk /∈ Xik ,

zk =

{

(1− βk)xk + βkPXik
(xk) if βk < 1,

PXik
(xk) if βk ≥ 1,

(6.209)

where
βk =

αkγ

dist(xk;Xik)
.

Proof: The case xk ∈ Xik is evident, so assume that xk /∈ Xik . From the
nature of the cost function in Eq. (6.208) we see that zk is a vector that
lies in the line segment between xk and PXik

(xk). Hence there are two
possibilities: either

zk = PXik
(xk), (6.210)

or zk /∈ Xik in which case by setting to 0 the gradient at zk of the cost
function in Eq. (6.208) yields

γ
zk − PXik

(zk)
∥

∥

∥zk − PXik
(zk)

∥

∥

∥

=
1

αk
(xk − zk).

This equation implies that xk, zk, and PXik
(zk) lie on the same line, so

that PXik
(zk) = PXik

(xk) and

zk = xk−
αkγ

dist(xk;Xik)

(

xk−PXik
(xk)

)

= (1−βk)xk+βkPXik
(xk). (6.211)

By calculating and comparing the value of the cost function in Eq. (6.208)
for each of the possibilities (6.210) and (6.211), we can verify that (6.211)
gives a lower cost if and only if βk < 1. Q.E.D.

Let us now consider the problem

minimize

m
∑

i=1

(

fi(x) + hi(x)
)

subject to x ∈ ∩m
i=1Xi.

As noted earlier, using Prop. 6.1.12, we can convert this problem to the
unconstrained minimization problem

minimize
m
∑

i=1

(

fi(x) + hi(x) + γdist(x;Xi)
)

subject to x ∈ ℜn,

396 Convex Optimization Algorithms Chap. 6

where γ is sufficiently large. The algorithm (6.200)-(6.201) applied to this
problem, yields the iteration

yk = xk − αkgik(xk), zk = arg min
x∈ℜn

{

fik(x) +
1

2αk
‖x− yk‖2

}

,

(6.212)

xk+1 =

{

(1 − βk)zk + βkPXik
(zk) if βk < 1,

PXik
(zk) if βk ≥ 1,

(6.213)

where ik is the index of the component chosen for iteration and gik(xk) is
an arbitrary subgradient of hik at xk, and

βk =
αkγ

dist(zk;Xik)
, (6.214)

[cf. Eq. (6.209)].
Let us finally note that our incremental methods also apply to the

case where f has an additive form:

minimize

m
∑

i=1

fi(x)

subject to x ∈ ∩m
i=1Xi.

In this case the interpolated projection iterations (6.209) on the sets Xi

are followed by subgradient or proximal iterations on the components fi.
A related problem for which our methods are well-suited is

minimize f(x) + c
r
∑

j=1

max
{

0, gj(x)
}

subject to x ∈ ∩m
i=1Xi,

which is obtained by replacing convex inequality constraints of the form
gj(x) ≤ 0 with the nondifferentiable penalty terms cmax

{

0, gj(x)
}

, where
c > 0 is a penalty parameter (cf. Section 6.1.5). Then a possible incremental
method at each iteration, would either do a subgradient iteration on f , or
select one of the violated constraints (if any) and perform a subgradient
iteration on the corresponding function gj , or select one of the sets Xi and
do an interpolated projection on it.

6.7.2 Incremental Constraint Projection-Proximal Methods

In this subsection we consider incremental algorithms for problems of the
form

minimize f(x)

subject to x ∈ ∩m
i=1Xi,

Sec. 6.7 Incremental Proximal Methods 397

with a focus on the case where the number m of components Xi in the con-
straint set ∩m

i=1Xi is large, so that iterations involving a single component
are desirable. The approach of the preceding subsection [cf. the algorithm
(6.212)-(6.214)] was to replace the problem by an equivalent penalized un-
constrained problem. The reason was that our earlier subgradient-proximal
algorithms require that all cost component functions must be real-valued,
so we may not replace the constraint components Xi by their (extended
real-valued) indicator functions δ(· | Xi). In this section, we summarize a
different approach, which instead treats the constraint components directly.

For generality, let us consider the case where the cost function f is
given as the expected value

f(x) = E
[

fw(x)
]

,

where fw : ℜn 7→ ℜ is a function of x involving a random variable v. The
case f(x) =

∑m
i=1 fi(x) is a special case where w is uniformly distributed

over the subset of integers {1, . . . ,m}.
A natural modification of the subgradient projection and proximal

methods, is to select the constraints Xi randomly, and process them se-
quentially in conjunction with sample component functions fw(·). This
motivates algorithms, which at iteration k, select cost function compo-
nents fwk

, and constraint components Xvk , with {vk} being a sequence of
random variables taking values in {1, . . . ,m}, and {wk} being a sequence
of random variables, generated by some probabilistic process (for example
wk may be independent identically distributed with the same distribution
as w). In particular, two algorithms based on these component sampling
schemes are:

(a) The subgradient projection-like algorithm

xk+1 = Pvk

(

xk − αkg(wk, xk)
)

, (6.215)

where g(wk, xk) is any subgradient of fwk
at xk and Pvk denotes the

projection onto the set Xvk .

(b) The proximal-like algorithm

xk+1 = arg min
x∈Xvk

{

fwk
(x) +

1

2αk
‖x− xk‖2

}

. (6.216)

Note that by using individual constraint set components Xvk , the
projection Pvk in Eq. (6.215), and the proximal minimization in Eq. (6.216)
may be greatly simplified. For example, when X is a polyhedral set, it can
be represented as the intersection of a finite number of halfspaces. Then
the algorithms (6.215) and (6.216) involve successive projections onto or
minimizations over halfspaces, which are often easier to implement and
computationally inexpensive.

398 Convex Optimization Algorithms Chap. 6

By combining the preceding subgradient projection and proximal in-
cremental iterations, we also obtain the following algorithm that involves
random optimality updates and random feasibility updates, of the form

zk = xk − αkg(wk, x̄k), xk+1 = zk − βk (zk − Pvkzk) , (6.217)

where x̄k is a random variable “close” to xk such as

x̄k = xk, or x̄k = xk+1, (6.218)

and {βk} is a sequence of positive scalars. In the case where x̄k = xk,
the kth iteration is a subgradient projection step and takes the form of
Eq. (6.215). In the case where x̄k = xk+1, the corresponding iteration is a
proximal step and takes the form of Eq. (6.216) [cf. Prop. 6.7.1].

The convergence analysis of the algorithm (6.217)-(6.218) requires
that the stepsize αk diminishes to 0, as in earlier incremental methods.
The stepsize βk should either be constant [e.g., βk = 1, in which case the
second iteration in Eq. (6.217) takes the form xk+1 = Pvkzk] or converge to
0 more slowly than αk. In this way the algorithm tends to operate on two
different time scales: the convergence to the feasible set, which is controlled
by βk, is faster than the convergence to the optimal solution, which is
controlled by αk. We refer to Wang and Bertsekas [WaB12], [WaB13] for
this analysis, under a variety of sampling schemes for wk and vk, both
cyclic and randomized, as well as to the earlier paper by Nedić [Ned11],
which first proposed and analyzed constraint projection algorithms.

6.8 GENERALIZED PROXIMAL ALGORITHMS AND
EXTENSIONS

The proximal algorithm admits several extensions, which may be particu-
larly well-suited for specialized application domains, such as inference and
signal processing. Moreover the algorithm, with some unavoidable limi-
tations, applies to nonconvex problems as well. In this section, we will
illustrate some of main ideas and possibilities, without providing a sub-
stantial convergence analysis.

A general form of the algorithm for minimizing a closed proper ex-
tended real-valued function f : ℜn 7→ (−∞,∞] is

xk+1 ∈ arg min
x∈ℜn

{

f(x) +Dk(x, xk)
}

, (6.219)

where Dk : ℜ2n 7→ (−∞,∞] is a regularization term that replaces the
quadratic

1

2ck
‖x− xk‖2

Sec. 6.8 Generalized Proximal Algorithms and Extensions 399

f(x)

X xxk+1xk x
∗

xk+2

γk −Dk(x, xk)

γk+1 −Dk+1(x, xk+1)

γk

γk+1

Figure 6.8.1. Illustration of the generalized proximal algorithm (6.219). The
regularization term need not be quadratic, and the cost function f need not be

convex.

in the proximal algorithm.
The algorithm (6.219) can be graphically interpreted similar to the

proximal algorithm, as illustrated in Fig. 6.8.1. The figure and the conver-
gence and rate of convergence results of the preceding section provide some
qualitative guidelines about the kind of behavior that may be expected
from the algorithm. This behavior, however, may be complicated and/or
unreliable, particularly when the cost function f is nonconvex.

An important question is whether the minimum in Eq. (6.219) is
attained for all k; this is not automatically guaranteed, even if Dk is con-
tinuous and coercive, because f is not assumed convex [take for example
f(x) = −‖x‖3 and Dk(x, xk) = ‖x − xk‖2]. To simplify the presentation,
we will implicitly assume the attainment of the minimum throughout our
discussion; it is guaranteed for example if f is closed, proper, convex, and
Dk(·, xk) is closed, coercive, and its effective domain intersects with dom(f)
for all k (cf. Prop. 3.2.3).

We will now introduce two conditions on Dk that guarantee some
sound behavior for the algorithm. The first is that xk minimizes Dk(·, xk):

Dk(x, xk) ≥ Dk(xk, xk), ∀ x ∈ ℜn, k = 0, 1, (6.220)

With this condition we are assured that the algorithm has a cost improve-
ment property. Indeed, we have

f(xk+1) ≤ f(xk+1) +Dk(xk+1, xk)−Dk(xk, xk)

≤ f(xk) +Dk(xk, xk)−Dk(xk, xk)

= f(xk),

(6.221)

where the first inequality follows from Eq. (6.220), and the second inequal-
ity follows from the definition (6.219) of the algorithm. The condition

400 Convex Optimization Algorithms Chap. 6

(6.220) also guarantees that the algorithm stops at a global minimum of f ,
i.e.,

x∗ ∈ arg min
x∈ℜn

f(x) ⇒ x∗ ∈ arg min
x∈ℜn

{

f(x) +Dk(x, x∗)
}

.

However, for the algorithm to be reliable, an additional condition
is required to guarantee that it produces strict cost improvement when
outside of some set of “desirable points” X∗ (such as the global or the
local minima of f). One such condition is that the algorithm can stop only
at points of X∗, i.e.,

xk ∈ arg min
x∈ℜn

{

f(x) +Dk(x, xk)} ⇒ xk ∈ X∗, (6.222)

in which case, the second inequality in the calculation of Eq. (6.221) is
strict, and we have

f(xk+1) < f(xk), if xk /∈ X∗. (6.223)

A set of assumptions guaranteeing the condition (6.222) are:

(a) f is convex and X∗ is the set of global minima of f .

(b) Dk(·, xk) satisfies Eq. (6.220), and is convex and differentiable at xk.

(c) We have

ri
(

dom(f)
)

∩ ri
(

dom(Dk(·, xk))
)

6= Ø. (6.224)

To see this, note that if

xk ∈ arg min
x∈ℜn

{

f(x) +Dk(x, xk)
}

,

by the Fenchel duality theorem (Prop. 6.1.5), there exists a dual optimal
solution λ∗ such that −λ∗ is a subgradient of Dk(·, xk) at xk, so that
λ∗ = 0 [by Eq. (6.220)], and also λ∗ is a subgradient of f at xk, so that xk
minimizes f . Note that the condition (6.222) may fail if Dk(·, xk) is not
differentiable; for example, if

f(x) = 1
2‖x‖2, Dk(x, xk) =

1
c‖x− xk‖,

then for any c > 0, the points xk ∈ [−1/c, 1/c] minimize f(·) +Dk(·, xk).
Simple examples can also be constructed to show that the relative interior
condition is essential to guarantee the condition (6.222).

We summarize the preceding discussion in the following proposition:

Sec. 6.8 Generalized Proximal Algorithms and Extensions 401

Proposition 6.8.1: Under the conditions (6.220) and (6.222), and
assuming that the minimum of f(x) +Dk(x, xk) over x is attained for
every k, the algorithm

xk+1 ∈ arg min
x∈ℜn

{

f(x) +Dk(x, xk)
}

improves strictly the value of f at each iteration where xk /∈ X∗, and
may only stop (i.e., xk+1 = xk) if xk ∈ X∗.

Of course, cost improvement is a reassuring property for the algorithm
(6.219), but it does not guarantee convergence. Thus, even under the
assumptions of the preceding proposition, the convergence of the algorithm
to a global minimum is not a foregone conclusion. This is true even if f
is assumed convex and has a nonempty set of minima X∗, and Dk(·, xk) is
also convex.

If f is not convex, there may be additional serious difficulties. First,
the global minimum in Eq. (6.219) may be hard to compute, since the
cost function f(·) + Dk(·, xk) may not be convex. Second, the algorithm
may converge to local minima or stationary points of f that are not global
minima; see Fig. 6.8.2. As this figure indicates, convergence to a global min-
imum is facilitated if the regularization term Dk(·, xk) is relatively “flat.”
The algorithm may also not converge at all, even if f has local minima and
the algorithm is started near or at a local minimum of f (see Fig. 6.8.3).

f(x)

X xxk+1xk xk+2

Figure 6.8.2. Illustration of a case where the generalized proximal algorithm
(6.219) converges to a local minimum that is not global. In this example con-
vergence to the global minimum would be attained if the regularization term
Dk(·, xk) were sufficiently “flat.”

In this section, we will not provide a convergence analysis of the gener-
alized proximal algorithm (6.219). We will instead illustrate the algorithm
with some examples.

402 Convex Optimization Algorithms Chap. 6

f(x)

X xxk+1xk xk+2

Figure 6.8.3. Illustration of a case where the generalized proximal algorithm
(6.219) diverges even when started at a local minimum of f .

Example 6.8.1: (Nonquadratic Regularization with Bregman
Distance)

Let φ : ℜn 7→ (−∞,∞] be a convex function, which is differentiable within
an open set containing dom(f), and define

Dk(x, y) =
1

ck

(

φ(x)− φ(y)−∇φ(y)′(x− y)
)

, ∀ x, y ∈ dom(f),

where ck is a positive penalty parameter. This function, with some additional
conditions discussed in Exercise 6.19, is known as the Bregman distance func-

tion. Its use in connection with proximal minimization was suggested by
Censor and Zenios [CeZ92], and followed up by several other authors; see the
end-of-chapter references. Note that for φ(x) = 1

2
‖x‖2, we have

Dk(x, y) =
1

ck

(

1

2
‖x‖2 −

1

2
‖y‖2 − y′(x− y)

)

=
1

2ck
‖x− y‖2,

so the quadratic regularization term of the proximal algorithm is included as
a special case.

It can be seen that because of the convexity of φ, the condition (6.220)
holds (cf. Prop. 1.1.7). Furthermore, because of the differentiability ofDk(·, xk)
(which follows from the differentiability of φ), the condition (6.222) holds as
well when f is convex.

Example 6.8.2: (Majorization-Minimization Algorithm)

An equivalent version of the generalized proximal algorithm (6.219) (known
as majorization-minimization algorithm) is obtained by absorbing the cost
function into the regularization term. This leads to the algorithm

xk+1 ∈ arg min
x∈ℜn

Mk(x, xk), (6.225)

Sec. 6.8 Generalized Proximal Algorithms and Extensions 403

where Mk : ℜ2n 7→ (−∞,∞] satisfies the conditions

Mk(x, x) = f(x), ∀ x ∈ ℜn, k = 0, 1, . . . , (6.226)

Mk(x, xk) ≥ f(xk), ∀ x ∈ ℜn, k = 0, 1, (6.227)

By defining

Dk(x, y) =Mk(x, y)−Mk(x, x),

we have
Mk(x, xk) = f(x) +Dk(x, xk),

so the algorithm (6.225) can be written in the generalized proximal format
(6.219). Moreover the condition (6.227) is equivalent to the condition (6.220),
which guarantees cost improvement [strict if we also assume the condition

xk ∈ arg min
x∈ℜn

Mk(x, xk) ⇒ xk ∈ X∗,

where X∗ is the set of desirable points for convergence, cf. Eq. (6.222) and
Prop. 6.8.1]. The following example illustrates the majorization-minimization
algorithm.

Example 6.8.3: (Regularized Least Squares)

Consider the problem of unconstrained minimization of the function

f(x) = R(x) + ‖Ax− b‖2,

where A is an m × n matrix, b is a vector in ℜm, and R : ℜn 7→ ℜ is a
nonnegative-valued convex regularization function. Let D be any symmet-
ric matrix such that D − A′A is positive definite (for example D may be a
sufficiently large multiple of the identity). Let us define

M(x, y) = R(x) + ‖Ay − b‖2 + 2(x− y)′A′(Ay − b) + (x− y)′D(x− y),

and note that M satisfies the condition M(x, x) = f(x) [cf. Eq. (6.226)], as
well as the condition M(x, xk) ≥ f(xk) for all x and k [cf. Eq. (6.227)] in view
of the calculation

M(x, y)− f(x) = ‖Ay − b‖2 − ‖Ax− b‖2

+ 2(x− y)′A′(Ay − b) + (x− y)′D(x− y)

= (x− y)′(D −A′A)(x− y).

(6.228)

When D is the identity matrix I , by scaling A, we can make the matrix
I − A′A positive definite, and from Eq. (6.228), we have

M(x, y) = R(x) + ‖Ax− b‖2 − ‖Ax− Ay‖2 + ‖x− y‖2.

The majorization-minimization algorithm for this form of M has been used
extensively in signal processing applications.

404 Convex Optimization Algorithms Chap. 6

Example 6.8.4: (Expectation-Maximization Algorithm)

Let us discuss an algorithm that has many applications in problems of statis-
tical inference, and show that it is a special case of the generalized proximal
algorithm (6.219). We observe a sample of a random vector Z whose distribu-
tion PZ(·; x) depends on an unknown parameter vector x ∈ ℜn. For simplicity
we assume that Z can take only a finite set of values, so that PZ(z;x) is the
probability that Z takes the value z when the parameter vector has the value
x. We wish to estimate x based on the given sample value z, by using the
maximum likelihood method, i.e., by solving the problem

maximize logPZ(z;x)

subject to x ∈ ℜn.
(6.229)

Note that in the maximum likelihood method, it is often preferable to min-
imize the logarithm of PZ(z;x) rather than PZ(z;x) itself, because PZ(z;x)
may be a product of probabilities corresponding to independent observations
(see Example 6.1.6).

In many important practical settings the distribution PZ(·;x) is known
indirectly through the distribution PW (·;x) of another random vectorW that
is related to Z via Z = g(W), where g is some function (see Fig. 6.8.4). For
example, Z may be a subvector of W (in statistical methodology, W and Z
are said to be the “complete” and the “incomplete” data, respectively). Of
course, one may calculate PZ(·;x) from PW (·; x) by using the formula

PZ(z;x) =
∑

{w|g(w)=z}

PW (w;x),

but this may be inconvenient because the cost function of problem (6.229)
involves the logarithm of a sum with a potentially large number of terms. An
alternative that often involves more convenient calculations using the loga-
rithm of PW (w;x) is the expectation-maximization method (EM for short),
which we now describe.

Observation

Process
= x

w p) z = g(w)
) g

) PW (·;x)

Figure 6.8.4. Illustration of the estimation context of the EM method. We
are given data z and we want to estimate the parameter vector x. The EM
method uses calculations involving the distribution PW (·;x) of the “complete”
obervation vector w, which defines z via z = g(w).

Sec. 6.8 Generalized Proximal Algorithms and Extensions 405

We consider the following problem, which is equivalent to the maximum
likelihood problem (6.229):

minimize f(x)

subject to x ∈ ℜn,
(6.230)

where
f(x) = − logPZ(z;x). (6.231)

We will derive a suitable regularization term D(x, y), so that the regularized
cost function

f(x) +D(x, y)

is conveniently computed for all x and y, using the known distribution PW (·;x).
The EM algorithm is the generalized proximal algorithm (6.219) with f and
D as described above, and aims to minimize f .

To derive D, we use the definition of conditional probability to write
for any value w

PW (w;x) = PZ(z;x)PW (w | z;x),

so that we have

logPW (w; x) = logPZ(z;x) + logPW (w | z;x), ∀ w.

For any parameter value y (not necessarily equal to x), we take expected value
in the above relation with respect to the conditional distribution PW (· | z; y)
and we obtain for all x and y,

E
{

logPW (w;x) | z; y
}

= logPZ(z;x) +E
{

logPW (w | z;x) | z; y
}

.

from which by using the definition (6.231) of f and by denoting

D(x, y) = −E
{

logPW (w | z;x) | z; y
}

, (6.232)

we obtain
f(x) +D(x, y) = −E

{

logPW (w;x) | z; y
}

. (6.233)

We now make two observations:

(a) D(x, y) is a legitimate regularization function in that it satisfies the
critical condition

D(x, y) ≥ D(y, y), ∀ x, y,

[cf. Eq. (6.220)], which guarantees the cost improvement property (6.223).
This follows from a general property of probability distributions, known
as Gibbs’ inequality.†

† Gibbs’ inequality within our context states that given a probability distri-
bution p = (p1, . . . , pm) with positive components, the expression

F (q) = −

m
∑

i=1

pi log qi

is minimized uniquely over all probability distributions q = (q1, . . . , qm) by the
distribution p. The proof is obtained by noting that F is a strictly convex function
within the relative interior of the unit simplex, and by applying the optimality
conditions for convex programming of Section 5.3.

406 Convex Optimization Algorithms Chap. 6

(b) The regularized cost function f(x) +D(x, y) of Eq. (6.233) can be ex-
pressed in terms of the logarithm of the distribution PW (w;x). To see
this, we note the expression for the conditional distribution

PW (w | z; y) =

PW (w;y)
∑

{w|g(w)=z}
PW (w;y)

if g(w) = z,

0 if g(w) 6= z,

which can be used to write

f(x) +D(x, y) = −E
{

logPW (w;x) | z; y
}

= −

∑

{w|g(w)=z}
PW (w; y) logPW (w;x)

∑

{w|g(w)=z}
PW (w; y)

.

Since the denominator is positive and independent of x, we see that
the minimization of f(x) + D(x, y) over x for fixed y is equivalent to
minimization over x of the numerator

−
∑

{w|g(w)=z}

PW (w; y) logPW (w;x).

Changing minimization to maximization, we can now summarize the
EM algorithm. It is given by

xk+1 ∈ arg max
x∈ℜn

∑

{w|g(w)=z}

PW (w;xk) logPW (w;x),

and involves the logarithm of PW (·;x) rather than the logarithm of PZ(·;x).
It is equivalent to the generalized proximal algorithm with a regularization
term D(x, y) given by Eq. (6.232). There are a lot of questions regarding the
convergence of the algorithm, because there is no guarantee of convexity of
f , D, or the regularized cost function f(·) + D(·, y). These questions must
be addressed separately in the context of specific applications. A general
analysis is given in the paper by Tseng [Tse04], which we have followed in
this example.

6.9 INTERIOR POINT METHODS

In this section we will develop an approximation approach that is differ-
ent from the linearization and regularization approaches of the preceding
sections. This approach is based on approximating the indicator function
of the constraint set by an “interior” penalty, which is added to the cost
function. We focus on inequality-constrained problems of the form

minimize f(x)

subject to x ∈ X, gj(x) ≤ 0, j = 1, . . . , r,
(6.234)

Sec. 6.9 Interior Point Methods 407

where f and gj are real-valued convex functions, and X is a closed con-
vex set. The interior (relative to X) of the set defined by the inequality
constraints is

S =
{

x ∈ X | gj(x) < 0, j = 1, . . . , r
}

,

and is assumed to be nonempty.
In interior point methods, we add to the cost a function B(x) that is

defined in the interior set S. This function, called the barrier function, is
continuous and goes to ∞ as any one of the constraints gj(x) approaches 0
from negative values. The two most common examples of barrier functions
are:

B(x) = −
r
∑

j=1

ln
{

−gj(x)
}

, logarithmic,

B(x) = −
r
∑

j=1

1

gj(x)
, inverse.

Note that both of these barrier functions are convex since the constraint
functions gj are convex. Figure 6.9.1 illustrates the form of B(x).

S

Boundary of S Boundary of S

e B(x)

e' B(x)

e' < e

Boundary of SBoundary of S

S ǫ
′ < ǫ

ǫB(x)

) ǫ
′B(x)

) S

Figure 6.9.1 Form of a barrier function. The barrier term ǫB(x) goes to zero
for all interior points x ∈ S as ǫ → 0.

The barrier method is defined by introducing a parameter sequence
{ǫk} with

0 < ǫk+1 < ǫk, k = 0, 1, . . . , ǫk → 0.

It consists of finding

xk ∈ argmin
x∈S

{

f(x) + ǫkB(x)
}

, k = 0, 1, . . . (6.235)

408 Convex Optimization Algorithms Chap. 6

Since the barrier function is defined only on the interior set S, the successive
iterates of any method used for this minimization must be interior points.

If X = ℜn, one may use unconstrained methods such as Newton’s
method with the stepsize properly selected to ensure that all iterates lie in
S. Indeed, Newton’s method is often recommended for reasons that have
to do with ill-conditioning, a phenomenon that relates to the difficulty of
carrying out the minimization (6.235) (see Fig. 6.9.2 and sources such as
[Ber99] for a discussion). Note that the barrier term ǫkB(x) goes to zero
for all interior points x ∈ S as ǫk → 0. Thus the barrier term becomes
increasingly inconsequential as far as interior points are concerned, while
progressively allowing xk to get closer to the boundary of S (as it should
if the solutions of the original constrained problem lie on the boundary
of S). Figure 6.9.2 illustrates the convergence process, and the following
proposition gives the main convergence result.

Proposition 6.9.1: Every limit point of a sequence {xk} generated
by a barrier method is a global minimum of the original constrained
problem (6.234).

Proof: Let {x} be the limit of a subsequence {xk}k∈K . If x ∈ S, we have
limk→∞, k∈K ǫkB(xk) = 0, while if x lies on the boundary of S, we have
limk→∞, k∈K B(xk) = ∞. In either case we obtain

lim inf
k→∞

ǫkB(xk) ≥ 0,

which implies that

lim inf
k→∞, k∈K

{

f(xk) + ǫkB(xk)
}

= f(x) + lim inf
k→∞, k∈K

{

ǫkB(xk)
}

≥ f(x).

(6.236)
The vector x is a feasible point of the original problem (6.234), since xk ∈ S
and X is a closed set. If x were not a global minimum, there would exist
a feasible vector x∗ such that f(x∗) < f(x) and therefore also [since by
the Line Segment Principle (Prop. 1.3.1) x∗ can be approached arbitrarily
closely through the interior set S] an interior point x̃ ∈ S such that f(x̃) <
f(x). We now have by the definition of xk,

f(xk) + ǫkB(xk) ≤ f(x̃) + ǫkB(x̃), k = 0, 1, . . . ,

which by taking the limit as k → ∞ and k ∈ K, implies together with Eq.
(6.236), that f(x) ≤ f(x̃). This is a contradiction, thereby proving that x
is a global minimum of the original problem. Q.E.D.

The idea of using a barrier function as an approximation to con-
straints has been used in several different ways, in methods that generate

Sec. 6.9 Interior Point Methods 409

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

2.05 2.1 2.15 2.2 2.25
-1

-0.5

0

0.5

1

Figure 6.9.2. The convergence process of the barrier method for the two-dimensional
problem

minimize f(x) = 1
2

(

(x1)2 + (x2)2
)

subject to 2 ≤ x1,

with optimal solution x∗ = (2, 0). For the case of the logarithmic barrier function
B(x) = − ln (x1 − 2), we have

xk ∈ arg min
x1>2

{

1
2

(

(x1)2 + (x2)2
)

− ǫk ln (x1 − 2)
}

=

(

1 +
√

1 + ǫk , 0

)

,

so as ǫk is decreased, the unconstrained minimum xk approaches the constrained
minimum x∗ = (2, 0). The figure shows the equal cost surfaces of f(x)+ǫB(x) for
ǫ = 0.3 (left side) and ǫ = 0.03 (right side). As ǫk → 0, computing xk becomes
more difficult because of ill-conditioning (the equal cost surfaces become very
elongated near xk).

successive iterates lying in the interior of the constraint set. These methods
are generically referred to as interior point methods , and have been exten-
sively applied to linear, quadratic, and conic programming problems. The
logarithmic barrier function has been central in many of these methods. In
the next two sections we will discuss a few methods that are designed for
problems with special structure. In particular, in Section 6.9.1 we will dis-
cuss in some detail primal-dual methods for linear programming, currently

410 Convex Optimization Algorithms Chap. 6

one of the most popular methods for solving linear programs. In Section
6.9.2 we will address briefly interior point methods for conic programming
problems.

6.9.1 Primal-Dual Methods for Linear Programming

Let us consider the linear program

minimize c′x

subject to Ax = b, x ≥ 0,
(LP)

where c ∈ ℜn and b ∈ ℜm are given vectors, and A is an m × n matrix of
rank m. The dual problem, derived in Section 5.2, is given by

maximize b′λ

subject to A′λ ≤ c.
(DP)

As shown in Section 5.2, (LP) has an optimal solution if and only if (DP)
has an optimal solution. Furthermore, when optimal solutions to (LP) and
(DP) exist, the corresponding optimal values are equal.

Recall that the logarithmic barrier method involves finding for various
ǫ > 0,

x(ǫ) ∈ argmin
x∈S

Fǫ(x), (6.237)

where

Fǫ(x) = c′x− ǫ

n
∑

i=1

lnxi,

xi is the ith component of x and S is the interior set

S =
{

x | Ax = b, x > 0
}

.

We assume that S is nonempty and bounded.
Rather than directly minimizing Fǫ(x) for small values of ǫ [cf. Eq.

(6.237)], we will apply Newton’s method for solving the system of opti-
mality conditions for the problem of minimizing Fǫ(·) over S. The salient
features of this approach are:

(a) Only one Newton iteration is carried out for each value of ǫk.

(b) For every k, the pair (xk, λk) is such that xk is an interior point of
the positive orthant, that is, xk > 0, while λk is an interior point of
the dual feasible region, that is,

c−A′λk > 0.

(However, xk need not be primal-feasible, that is, it need not satisfy
the equation Ax = b.)

Sec. 6.9 Interior Point Methods 411

(c) Global convergence is enforced by ensuring that the expression

Pk = xk′zk + ‖Axk − b‖, (6.238)

is decreased to 0, where zk is the vector of slack variables

zk = c− A′λk.

The expression (6.238) may be viewed as a merit function, and con-
sists of two nonnegative terms: the first term is xk′zk, which is posi-
tive (since xk > 0 and zk > 0) and can be written as

xk′zk = xk′(c−A′λk) = c′xk − b′λk + (b −Axk)′λk.

Thus when xk is primal-feasible (Axk = b), xk′zk is equal to the dual-
ity gap, that is, the difference between the primal and the dual costs,
c′xk − b′λk. The second term is the norm of the primal constraint
violation ‖Axk − b‖. In the method to be described, neither of the
terms xk′zk and ‖Axk − b‖ may increase at each iteration, so that
Pk+1 ≤ Pk (and typically Pk+1 < Pk) for all k. If we can show that
Pk → 0, then asymptotically both the duality gap and the primal
constraint violation will be driven to zero. Thus every limit point of
{(xk, λk)} will be a pair of primal and dual optimal solutions, in view
of the duality relation

min
Ax=b, x≥0

c′x = max
A′λ≤c

b′λ,

shown in Section 5.2.

Let us write the necessary and sufficient conditions for (x, λ) to be a
primal and dual optimal solution pair for the problem of minimizing the
barrier function Fǫ(x) subject to Ax = b. They are

c− ǫx−1 − A′λ = 0, Ax = b, (6.239)

where x−1 denotes the vector with components (xi)−1. Let z be the vector
of slack variables

z = c−A′λ.

Note that λ is dual feasible if and only if z ≥ 0.
Using the vector z, we can write the first condition of Eq. (6.239) as

z − ǫx−1 = 0 or, equivalently, XZ = ǫe, where X and Z are the diagonal
matrices with the components of x and z, respectively, along the diagonal,
and e is the vector with unit components,

X =

x1 0 · · · 0
0 x2 · · · 0
· · · · · · · · · · · ·
0 0 · · · xn

, Z =

z1 0 · · · 0
0 z2 · · · 0
· · · · · · · · · · · ·
0 0 · · · zn

, e =

1
1
...
1

.

412 Convex Optimization Algorithms Chap. 6

Thus the optimality conditions (6.239) can be written in the equiva-
lent form

XZe = ǫe, (6.240)

Ax = b, (6.241)

z +A′λ = c. (6.242)

Given (x, λ, z) satisfying z + A′λ = c, and such that x > 0 and z > 0, a
Newton iteration for solving this system is

x(α, ǫ) = x+ α∆x, (6.243)

λ(α, ǫ) = λ+ α∆λ,

z(α, ǫ) = z + α∆z,

where α is a stepsize such that 0 < α ≤ 1 and

x(α, ǫ) > 0, z(α, ǫ) > 0,

and the Newton increment (∆x,∆λ,∆z) solves the linearized version of
the system (6.240)-(6.242)

X∆z + Z∆x = −v, (6.244)

A∆x = b−Ax, (6.245)

∆z +A′∆λ = 0, (6.246)

with v defined by

v = XZe− ǫe. (6.247)

After a straightforward calculation, the solution of the linearized sys-
tem (6.244)-(6.246) can be written as

∆λ =
(

AZ−1XA′
)−1(

AZ−1v + b−Ax
)

, (6.248)

∆z = −A′∆λ, (6.249)

∆x = −Z−1v − Z−1X∆z.

Note that λ(α, ǫ) is dual feasible, since from Eq. (6.246) and the condition
z + A′λ = c, we see that z(α, ǫ) + A′λ(α, ǫ) = c. Note also that if α = 1,
that is, a pure Newton step is used, x(α, ǫ) is primal feasible, since from
Eq. (6.245) we have A(x +∆x) = b.

Sec. 6.9 Interior Point Methods 413

Merit Function Improvement

We will now evaluate the changes in the constraint violation and the merit
function (6.238) induced by the Newton iteration.

By using Eqs. (6.243)and (6.245), the new constraint violation is given
by

Ax(α, ǫ)− b = Ax+ αA∆x − b = Ax+ α(b −Ax) − b = (1− α)(Ax − b).
(6.250)

Thus, since 0 < α ≤ 1, the new norm of constraint violation ‖Ax(α, ǫ)− b‖
is always no larger than the old one. Furthermore, if x is primal-feasible
(Ax = b), the new iterate x(α, ǫ) is also primal-feasible.

The inner product
g = x′z (6.251)

after the iteration becomes

g(α, ǫ) = x(α, ǫ)′z(α, ǫ)

= (x+ α∆x)′(z + α∆z)

= x′z + α(x′∆z + z′∆x) + α2∆x′∆z.

(6.252)

From Eqs. (6.245) and (6.249) we have

∆x′∆z = (Ax − b)′∆λ,

while by premultiplying Eq. (6.244) with e′ and using the definition (6.247)
for v, we obtain

x′∆z + z′∆x = −e′v = nǫ− x′z.

By substituting the last two relations in Eq. (6.252) and by using also the
expression (6.251) for g, we see that

g(α, ǫ) = g − α(g − nǫ) + α2(Ax − b)′∆λ. (6.253)

Let us now denote by P and P (α, ǫ) the value of the merit function
(6.238) before and after the iteration, respectively. We have by using the
expressions (6.250) and (6.253),

P (α, ǫ) = g(α, ǫ) + ‖Ax(α, ǫ)− b‖
= g − α(g − nǫ) + α2(Ax − b)′∆λ+ (1− α)‖Ax − b‖,

or
P (α, ǫ) = P − α

(

g − nǫ+ ‖Ax− b‖
)

+ α2(Ax− b)′∆λ.

Thus if ǫ is chosen to satisfy

ǫ <
g

n

and α is chosen to be small enough so that the second order term α2(Ax−
b)′∆λ is dominated by the first order term α(g − nǫ), the merit function
will be improved as a result of the iteration.

414 Convex Optimization Algorithms Chap. 6

A General Class of Primal-Dual Algorithms

Let us consider now the general class of algorithms of the form

xk+1 = x(αk, ǫk), λk+1 = λ(αk, ǫk), zk+1 = z(αk, ǫk),

where αk and ǫk are positive scalars such that

xk+1 > 0, zk+1 > 0, ǫk <
gk
n
,

where gk is the inner product

gk = xk ′zk + (Axk − b)′λk,

and αk is such that the merit function Pk is reduced. Initially we must have
x0 > 0, and z0 = c−A′λ0 > 0 (such a point can often be easily found; oth-
erwise an appropriate reformulation of the problem is necessary for which
we refer to the specialized literature). These methods are generally called
primal-dual , in view of the fact that they operate simultaneously on the
primal and dual variables.

It can be shown that it is possible to choose αk and ǫk so that the
merit function is not only reduced at each iteration, but also converges
to zero. Furthermore, with suitable choices of αk and ǫk, algorithms with
good theoretical properties, such as polynomial complexity and superlinear
convergence, can be derived.

Computational experience has shown that with properly chosen se-
quences αk and ǫk, and appropriate implementation, the practical perfor-
mance of the primal-dual methods is excellent. The choice

ǫk =
gk
n2
,

leading to the relation

gk+1 = (1 − αk + αk/n)gk

for feasible xk, has been suggested as a good practical rule. Usually, when
xk has already become feasible, αk is chosen as θα̃k, where θ is a factor very
close to 1 (say 0.999), and α̃k is the maximum stepsize α that guarantees
that x(α, ǫk) ≥ 0 and z(α, ǫk) ≥ 0

α̃k = min

{

min
i=1,...,n

{

xik
−∆xi

∣

∣

∣ ∆xi < 0

}

, min
i=1,...,n

{

zik
−∆zi

∣

∣

∣ ∆zi < 0

}}

.

When xk is not feasible, the choice of αk must also be such that the merit
function is improved. In some works, a different stepsize for the x update

Sec. 6.9 Interior Point Methods 415

than for the (λ, z) update has been suggested. The stepsize for the x
update is near the maximum stepsize α that guarantees x(α, ǫk) ≥ 0, and
the stepsize for the (λ, z) update is near the maximum stepsize α that
guarantees z(α, ǫk) ≥ 0.

There are a number of additional practical issues related to implemen-
tation, for which we refer to the specialized literature. There are also more
sophisticated implementations of the Newton/primal-dual idea. We refer
to the research monographs by Wright [Wri97] and Ye [Ye97], and to other
sources for a detailed discussion, as well as extensions to nonlinear/convex
programming problems, such as quadratic programming.

6.9.2 Interior Point Methods for Conic Programming

We now discuss briefly interior point methods for the conic programming
problems discussed in Section 6.1.2. Consider first the SOCP

minimize c′x

subject to Aix− bi ∈ Ci, i = 1, . . . ,m,
(6.254)

where x ∈ ℜn, c is a vector in ℜn, and for i = 1, . . . ,m, Ai is an ni × n
matrix, bi is a vector in ℜni , and Ci is the second order cone of ℜni [cf.
Eq. (6.24)]. We approximate this problem with

minimize c′x+ ǫk

m
∑

i=1

Bi(Aix− bi)

subject to x ∈ ℜn,

(6.255)

where Bi is a function defined in the interior of the second order cone Ci,
and given by

Bi(y) = − ln
(

y2ni − (y21 + · · ·+ y2ni−1)
)

, y ∈ int(Ci),

and {ǫk} is a positive sequence that converges to 0. Thus we have Bi(Aix−
bi) → ∞ as Aix− bi approaches the boundary of Ci.

Similar to Prop. 6.9.1, it can be shown that if xk is an optimal solution
of the approximating problem (6.255), then every limit point of {xk} is an
optimal solution of the original problem. For theoretical as well as practical
reasons, the approximating problem (6.255) should not be solved exactly.
In the most efficient methods, one or more Newton steps corresponding to
a given value ǫk are performed, and then the value of ǫk is appropriately
reduced. If the aim is to achieve a favorable polynomial complexity result,
a single Newton step should be performed between successive reductions
of ǫk, and the subsequent reduction of ǫk must be correspondingly small,
according to an appropriate formula, which is designed to enable a polyno-
mial complexity proof. An alternative, which is more efficient in practice, is

416 Convex Optimization Algorithms Chap. 6

to allow multiple Newton steps until an appropriate termination criterion
is satisfied, and then reduce ǫk substantially. When properly implemented,
methods of this type require in practice a consistently small total number
of Newton steps [a number typically no more than 50, regardless of dimen-
sion (!) is often reported]. This empirical observation is far more favorable
than what is predicted by the theoretical complexity analysis. We refer to
the book by Boyd and Vanderberghe [BoV04], and sources quoted there
for further details.

There is a similar interior point method for the dual SDP involving
the multiplier vector λ = (λ1, . . . , λm):

maximize b′λ

subject to C − (λ1A1 + · · ·+ λmAm) ∈ D,
(6.256)

where D is the cone of positive semidefinite matrices [cf. Eq. (6.30)]. It
consists of solving the problem

maximize b′λ+ ǫk ln
(

det(C − λ1A1 − · · · − λmAm)
)

subject to λ ∈ ℜm, C − λ1A1 − · · · − λmAm ∈ int(D),
(6.257)

where {ǫk} is a positive sequence that converges to 0. Here, we should use
a starting point such that C − λ1A1 − · · · − λmAm is positive definite, and
Newton’s method should ensure that the iterates keep C − λ1A1 − · · · −
λmAm within the positive definite cone int(D).

The properties of this method are similar to the ones of the preceding
SOCPmethod. In particular, if xk is an optimal solution of the approximat-
ing problem (6.257), then every limit point of {xk} is an optimal solution
of the original problem (6.256).

We finally note that there are primal-dual interior point methods for
conic programming problems, which bear similarity with the one given in
Section 6.9.1 for linear programming. Again, we refer to the specialized
literature for further details and a complexity analysis.

6.10 GRADIENT PROJECTION - OPTIMAL COMPLEXITY
ALGORITHMS

In this section we focus on problems of the form

minimize f(x)

subject to x ∈ X,

where f : ℜn 7→ ℜ is convex and X is a closed convex set. We will dis-
cuss algorithms that have good performance guarantees, in the sense that
they require a relatively small number of iterations to achieve a given op-
timal solution tolerance. These algorithms rely in part on differentiability
properties of f , and cost function descent ideas.

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 417

6.10.1 Gradient Projection Methods

Let f : ℜn 7→ ℜ be a differentiable convex function that we want to mini-
mize over a closed convex setX . We assume that f has Lipschitz continuous
gradient, i.e., for some constant L,

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ X, (6.258)

and that the optimal value f∗ = infx∈X f(x) is finite. We will consider the
gradient projection method

xk+1 = PX

(

xk − α∇f(xk)
)

, (6.259)

where α > 0 is a constant stepsize. This method, briefly discussed in
Section 6.2, is the specialization of the subgradient method of Section 6.3,
for the case where f is differentiable.

Let us introduce the linear approximation of f based on the gradient
at x, given by

ℓ(y;x) = f(x) +∇f(x)′(y − x), ∀ x, y ∈ ℜn, (6.260)

An interesting observation is that the gradient projection iterate can be
alternatively written in terms of ℓ(x;xk) as

xk+1 = PX

(

xk − α∇f(xk)
)

= argmin
x∈X

∥

∥x−
(

xk − α∇f(xk)
)∥

∥

2

= argmin
x∈X

{

‖x− xk‖2 + 2α∇f(xk)′(x− xk) + α2‖∇f(xk)‖2
}

= argmin
x∈X

{

f(xk) + 2α∇f(xk)′(x− xk) + ‖x− xk‖2
}

= argmin
x∈X

{

ℓ(x;xk) +
1

2α
‖x− xk‖2

}

.

(6.261)
Thus xk+1 can be viewed as the result of a proximal iteration on ℓ(x;xk),
and indeed the gradient projection method and the proximal algorithm
coincide when the cost function f is linear.

We will now show that the gradient projection method has the con-
vergence property f(xk) → f∗ for any starting point x0, provided α is
sufficiently small (this is a stronger property than what can be proved for
the subgradient method, which requires a diminishing stepsize for conver-
gence, cf. Section 6.3.1). To this end, we show the following proposition,
which will be used on several occasions in the analysis of this section.

418 Convex Optimization Algorithms Chap. 6

Proposition 6.10.1: Let f : ℜn 7→ ℜ be a continuously differentiable
function, with gradient satisfying the Lipschitz condition (6.258). Then
for all x, y ∈ X , we have

f(y) ≤ ℓ(y;x) +
L

2
‖y − x‖2, (6.262)

Proof: Let t be a scalar parameter and let g(t) = f
(

x + t(y − x)
)

. The

chain rule yields (dg/dt)(t) = ∇f
(

x+ t(y − x)
)′
(y − x). Thus, we have

f(y)− f(x) = g(1)− g(0)

=

∫ 1

0

dg

dt
(t) dt

=

∫ 1

0

(y − x)′∇f
(

x+ t(y − x)
)

dt

≤
∫ 1

0

(y − x)′∇f(x) dt+
∣

∣

∣

∣

∫ 1

0

(y − x)′
(

∇f
(

x+ t(y − x)
)

−∇f(x)
)

dt

∣

∣

∣

∣

≤
∫ 1

0

(y − x)′∇f(x) dt+
∫ 1

0

‖y − x‖ · ‖∇f
(

x+ t(y − x)
)

−∇f(x)‖dt

≤ (y − x)′∇f(x) + ‖y − x‖
∫ 1

0

Lt‖y − x‖ dt

= (y − x)′∇f(x) + L

2
‖y − x‖2

thereby proving Eq. (6.262). Q.E.D.

With the preceding proposition, we can show a basic cost improve-
ment inequality, which will be the key to the convergence analysis. From
the projection theorem and the definition (6.259) of xk+1, we have

(

xk − α∇f(xk)− xk+1

)′
(x− xk+1) ≤ 0, ∀ x ∈ X, (6.263)

so that by setting x = xk+1,

∇f(xk)′(xk+1 − xk) ≤ − 1

α

∥

∥xk+1 − xk
∥

∥

2
.

Using this relation together with Eq. (6.262), we obtain

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2

= f(xk) +∇f(xk)′(xk+1 − xk) +
L

2
‖xk+1 − xk‖2

≤ f(xk)−
(

1

α
− L

2

)

‖xk+1 − xk‖2,

(6.264)

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 419

so the gradient projection method (6.259) reduces the cost function value
at each iteration, provided the stepsize lies in the range α ∈

(

0, 2
L

)

.
Moreover, we can show that any limit point of {xk} is an optimal

solution. Indeed, if x̄ is the limit of a subsequence {xk}K, from Eq. (6.264),
we have f(xk) → f(x̄) and ‖xk+1 − xk‖ → 0, implying that {xk+1}K → x̄.
Taking the limit in Eq. (6.263), as k → ∞, k ∈ K, it follows that

(

x̄− α∇f(x̄)− x̄
)′
(x − x̄) ≤ 0, ∀ x ∈ X,

or

∇f(x̄)′(x− x̄) ≥ 0, ∀ x ∈ X.

This implies that x̄ minimizes f over X .
We now turn to estimating the number of iterations needed to attain

the optimal cost f∗ within a given tolerance. Let X∗ be the set of minima
of f over X , and denote

d(x) = inf
x∗∈X∗

‖x− x∗‖, x ∈ ℜn.

We first consider the case where the stepsize is α = 1/L at all iterations,
and then adapt the proof for a more practical stepsize selection method
that does not require knowledge of L.

Proposition 6.10.2: Let f : ℜn 7→ ℜ be a convex differentiable
function and X be a closed convex set. Assume that ∇f satisfies the
Lipschitz condition (6.258), and that the set of minima X∗ of f overX
is nonempty. Let {xk} be a sequence generated by the gradient projec-
tion method (6.259) with stepsize α = 1/L. Then limk→∞ d(xk) = 0,
and

f(xk)− f∗ ≤ Ld(x0)2

2k
, k = 1, 2, (6.265)

Proof: Using Eq. (6.262), we have

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2. (6.266)

From the result of Exercise 6.19(c), we have for all x ∈ X

ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2 ≤ ℓ(x;xk) +

L

2
‖x− xk‖2 −

L

2
‖x− xk+1‖2.

420 Convex Optimization Algorithms Chap. 6

Thus, letting x = x∗, where x∗ ∈ X∗ satisfies ‖x0−x∗‖ = d(x0), we obtain
using also Eq. (6.266),

f(xk+1) ≤ ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2

≤ ℓ(x∗;xk) +
L

2
‖x∗ − xk‖2 −

L

2
‖x∗ − xk+1‖2

≤ f(x∗) +
L

2
‖x∗ − xk‖2 −

L

2
‖x∗ − xk+1‖2,

so denoting ek = f(xk)− f∗, we have

L

2
‖x∗ − xk+1‖2 ≤ L

2
‖x∗ − xk‖2 − ek+1

≤ L

2
‖x∗ − x0‖2 − (e1 + · · ·+ ek+1)

≤ L

2
d(x0)2 − (k + 1)ek+1,

where the last inequality uses the fact e0 ≥ e1 ≥ · · · ≥ ek+1 [cf. Eq. (6.264)].
This proves Eq. (6.265). Also the preceding relation together with the fact
d(xk+1) ≤ ‖x∗ − xk+1‖ implies that d(xk) → 0. Q.E.D.

The preceding proposition shows that the gradient projection method
requires k iterations to achieve the optimal value within an O(1/k) toler-
ance [cf. Eq. (6.265)]. This was proved for the case where we can choose
the stepsize as α = 1/L, which is a little unrealistic since L is generally un-
known. However, there is a practical procedure for selecting and adjusting
α so that limk→∞ d(xk) = 0 and a similar O(1/k) error bound holds, even
if the value of L is unknown. The key is that α should be adjusted to a
value αk at iteration k, so that the following analog of Eq. (6.266) holds

f(xk+1) ≤ ℓ(xk+1;xk) +
1

2αk
‖xk+1 − xk‖2, (6.267)

which also implies that f(xk+1) ≤ f(xk).† In particular, we may use some
arbitrary initial stepsize α0 > 0, and generate iterates according to

xk+1 = PX

(

xk − αk∇f(xk)
)

, (6.268)

† To see this, note that Eqs. (6.260) and (6.267) imply that

f(xk+1) ≤ f(xk) +∇f(xk)
′(xk+1 − xk) +

1

2αk
‖xk+1 − xk‖

2 ≤ f(xk),

where the last inequality holds by Eq. (6.261).

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 421

as long as the condition (6.267) is satisfied. As soon as Eq. (6.267) is
violated at some iteration k, we reduce αk by a certain factor, and repeat
the iteration as many times as necessary for Eq. (6.267) to hold. Because
the condition (6.267) will be satisfied as soon as αk ≤ 1/L, if not earlier,
only a finite number of stepsize reductions will be needed during the entire
algorithm. It can be seen that with Eq. (6.267) in place of Eq. (6.266),
the proof of the preceding proposition carries through for the gradient
projection method (6.268) that uses the stepsize procedure just described
in place of the constant stepsize α = 1/L.

Iteration Complexity Issues

Let us now consider some general computational complexity issues relating
to the optimization problem

minimize f(x)

subject to x ∈ X,

where f : ℜn 7→ ℜ is convex and X is a closed convex set. We assume
that there exists an optimal solution. We will be interested in algorithms
that have good performance guarantees, in the sense that they require a
relatively low number of iterations (in the worst case) to achieve a given
optimal solution tolerance, and we will evaluate the performance of gradient
projection within this context.

Given some ǫ > 0, suppose we want to estimate the number of it-
erations required by a particular algorithm to obtain a solution with cost
that is within ǫ of the optimal. If we can show that any sequence {xk}
generated by a method has the property that for any ǫ > 0, we have

inf
k≤N(ǫ)

f(xk) ≤ f∗ + ǫ,

where N(ǫ) is a function that depends on ǫ, as well as the problem data
and the starting point x0, we say that the method has iteration complexity

O
(

N(ǫ)
)

.
It is generally thought that if N(ǫ) does not depend on the dimension

n of the problem, then the algorithm holds an advantage for problems of
large dimension. This view favors simple gradient/subgradient-like meth-
ods over sophisticated Newton-like methods whose overhead per iteration
increases fast with n.† In this section, we will focus on algorithms with iter-

† The reader should be warned that it may not be safe to speculate with

confidence on the relative advantages of the various gradient and subgradient

methods of this and the next section, and to compare them with Newton-like

methods, based on the complexity estimates that we provide. The reason is that

our analysis does not take into account the special structure that is typically

present in large-scale problems, while our complexity estimates involve unknown

constants, whose size may affect the comparisons between various methods.

422 Convex Optimization Algorithms Chap. 6

ation complexity that is independent of n, and all our subsequent references
to complexity estimates implicitly assume this.

As an example, we mention the subgradient method for which an
O(1/ǫ2) iteration complexity result can be shown (cf., the discussion fol-
lowing Prop. 6.3.3). On the other hand, Prop. 6.10.2, shows that the
gradient projection method has iteration complexity O(1/ǫ), when applied
to differentiable problems with Lipschitz continuous cost gradient. The
following example shows that this estimate cannot be improved.

Example 6.10.1:

Consider the unconstrained minimization of the scalar function f given by

f(x) =

{

c
2
|x|2 if |x| ≤ ǫ,

cǫ|x| − cǫ2

2
if |x| > ǫ,

with ǫ > 0 (cf. Fig. 6.10.1). Here the constant in the Lipschitz condition
(6.258) is L = c, and for any xk > ǫ, the gradient iteration with stepsize
α = 1/L takes the form

xk+1 = xk −
1

L
∇f(xk) = xk −

1

c
c ǫ = xk − ǫ.

Thus, the number of iterations to get within an ǫ-neighborhood of x∗ = 0 is
|x0|/ǫ. The number of iterations to get to within ǫ of the optimal cost f∗ = 0,
is also proportional to 1/ǫ.

f(x)

x0 ǫǫ − ǫ

Slope cǫ

Figure 6.10.1. The scalar cost function f of Example 6.10.1. It is quadratic for
|x| ≤ ǫ and linear for |x| > ǫ.

In the next section, we will discuss a variant of the gradient projec-
tion method that employs an intricate extrapolation device, and has the

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 423

improved iteration complexity of O
(

1/
√
ǫ
)

. It can be shown that O
(

1/
√
ǫ
)

is a sharp estimate, i.e., it is the best that we can expect across the class
of problems with convex cost functions with Lipschitz continuous gradient
(see the end-of-chapter references). This is what we mean by calling this
variant of gradient projection an “optimal” algorithm. On the other hand
this algorithm ignores any special problem structure, such as when f is the
sum of a large number of components, so for special classes of problems, it
may not be competitive with methods that exploit structure, such as the
incremental methods of the preceding section.

6.10.2 Gradient Projection with Extrapolation

We will now discuss a method for improving the iteration complexity of the
gradient projection method. A closer examination of the preceding Exam-
ple 6.10.1 suggests that while a stepsize less that 2/c is necessary within the
region where |x| ≤ ǫ to ensure that the method converges, a larger stepsize
outside this region would accelerate convergence. An acceleration scheme,
known as the heavy-ball method or gradient method with momentum, has
the form

xk+1 = xk − α∇f(xk) + β(xk − xk−1),

and adds the extrapolation term β(xk − xk−1) to the gradient increment,
where x−1 = x0 and β is a scalar with 0 < β < 1 (see the end-of-chapter
references). A variant of this scheme with similar properties separates the
extrapolation and the gradient steps as follows:

yk = xk + β(xk − xk−1), (extrapolation step),

xk+1 = yk − α∇f(yk), (gradient step).
(6.269)

When applied to the function of the preceding Example 6.10.1, the method
converges to the optimum, and reaches a neighborhood of the optimum
more quickly: it can be verified that for a starting point x0 >> 1 and
xk > ǫ, it has the form xk+1 = xk − ǫk, with ǫ ≤ ǫk < ǫ/(1− β). However,
the method still has an O(1/ǫ) iteration complexity, since for x0 >> 1, the
number of iterations needed to obtain xk < ǫ is O

(

(1− β)/ǫ
)

. This can be
seen by verifying that

xk+1 − xk = β(xk − xk−1)− ǫ,

so when x0 >> 1, we have approximately xk+1 − xk ≈ ǫ/(1− β).
It turns out that a better iteration complexity is possible with a sim-

ilar scheme that involves a reversal of the order of gradient iteration and
extrapolation, and more vigorous extrapolation. In this scheme the con-
stant extrapolation factor β is replaced with a variable factor βk that con-
verges to 1 at a properly selected rate. Unfortunately, it is very difficult
to obtain strong intuition about the mechanism by which this remarkable
phenomenon occurs.

424 Convex Optimization Algorithms Chap. 6

An Optimal Algorithm for Differentiable Cost

We will consider a constrained version of the gradient/extrapolationmethod
(6.269) for the problem

minimize f(x)

subject to x ∈ X,
(6.270)

where f : ℜn 7→ ℜ is convex and differentiable, and X is a closed convex
set. We assume that f has Lipschitz continuous gradient [cf. Eq. (6.258)],
and we denote

d(x) = inf
x∗∈X∗

‖x− x∗‖, x ∈ ℜn,

where X∗ is the set of minima of f over X .
The method has the form

yk = xk + βk(xk − xk−1), (extrapolation step),

xk+1 = PX

(

yk − α∇f(yk)
)

, (gradient projection step),
(6.271)

where PX(·) denotes projection on X , x−1 = x0, and βk ∈ (0, 1). The
following proposition shows that with proper choice of βk, the method has
iteration complexity O

(

1/
√
ǫ
)

. We will assume that

βk =
θk(1 − θk−1)

θk−1
, k = 0, 1, . . . (6.272)

where the sequence {θk} satisfies θ0 = θ1 ∈ (0, 1], and

1− θk+1

θ2k+1

≤ 1

θ2k
, θk ≤ 2

k + 2
, k = 0, 1, . . . (6.273)

One possible choice is

βk =

{

0 if k = 0,
k−1
k+2 if k = 1, 2, . . . , θk =

{

1 if k = −1,
2

k+2 if k = 0, 1, . . .

We will also assume a stepsize α = 1/L, and we will show later how the
proof can be extended for the case where the constant L is not known.

Proposition 6.10.3: Let f : ℜn 7→ ℜ be a convex differentiable
function and X be a closed convex set. Assume that ∇f satisfies the
Lipschitz condition (6.258), and that the set of minima X∗ of f over
X is nonempty. Let {xk} be a sequence generated by the algorithm
(6.271), where α = 1/L and βk satisfies Eqs. (6.272)-(6.273). Then
limk→∞ d(xk) = 0, and

f(xk)− f∗ ≤ 2L

(k + 1)2
d(x0)2, k = 1, 2,

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 425

Proof: We introduce the sequence

zk = xk−1 + θ−1
k−1(xk − xk−1), k = 0, 1, . . . , (6.274)

where x−1 = x0, so that z0 = x0. We note that by using Eqs. (6.271),
(6.272), zk can also be rewritten as

zk = xk + θ−1
k (yk − xk), k = 1, 2, . . . , (6.275)

Fix k ≥ 0 and x∗ ∈ X∗, and let

y∗ = (1− θk)xk + θkx∗.

Using Eq. (6.262), we have

f(xk+1) ≤ ℓ(xk+1; yk) +
L

2
‖xk+1 − yk‖2, (6.276)

where
ℓ(u;w) = f(w) +∇f(w)′(u− w), ∀ u,w ∈ ℜn,

[cf. Eq. (6.260)]. Since xk+1 is the projection of yk − (1/L)∇f(yk) on X ,
it minimizes

ℓ(y; yk) +
L

2
‖y − yk‖2

over y ∈ X [cf. Eq. (6.261)], so from the result of Exercise 6.19(c), we have

ℓ(xk+1; yk) +
L

2
‖xk+1 − yk‖2 ≤ ℓ(y∗; yk) +

L

2
‖y∗ − yk‖2 −

L

2
‖y∗ − xk+1‖2.

Combining this relation with Eq. (6.276), we obtain

f(xk+1) ≤ ℓ(y∗; yk) +
L

2
‖y∗ − yk‖2 −

L

2
‖y∗ − xk+1‖2

= ℓ
(

(1− θk)xk + θkx∗; yk
)

+
L

2
‖(1− θk)xk + θkx∗ − yk‖2

− L

2
‖(1− θk)xk + θkx∗ − xk+1‖2

= ℓ
(

(1− θk)xk + θkx∗; yk
)

+
θ2kL

2
‖x∗ + θ−1

k (xk − yk)− xk‖2

− θ2kL

2
‖x∗ + θ−1

k (xk − xk+1)− xk‖2

= ℓ
(

(1− θk)xk + θkx∗; yk
)

+
θ2kL

2
‖x∗ − zk‖2

− θ2kL

2
‖x∗ − zk+1‖2

≤ (1− θk)ℓ(xk; yk) + θkℓ(x∗; yk) +
θ2kL

2
‖x∗ − zk‖2

− θ2kL

2
‖x∗ − zk+1‖2,

426 Convex Optimization Algorithms Chap. 6

where the last equality follows from Eqs. (6.274) and (6.275), and the last
inequality follows from the convexity of ℓ(·; yk). Using the inequality

ℓ(xk; yk) ≤ f(xk),

we have

f(xk+1) ≤ (1− θk)f(xk)+ θkℓ(x∗; yk)+
θ2kL

2
‖x∗− zk‖2−

θ2kL

2
‖x∗− zk+1‖2.

Finally, by rearranging terms, we obtain

1

θ2k

(

f(xk+1)− f∗
)

+
L

2
‖x∗ − zk+1‖2

≤ 1− θk
θ2k

(

f(xk)− f∗
)

+
L

2
‖x∗ − zk‖2 −

f∗ − ℓ(x∗; yk)

θk
.

By adding this inequality for k = 0, 1, . . . , while using the inequality

1− θk+1

θ2k+1

≤ 1

θ2k
,

we obtain

1

θ2k

(

f(xk+1)− f∗
)

+

k
∑

i=0

f∗ − ℓ(x∗; yi)

θk
≤ L

2
‖x∗ − z0‖2.

Using the facts x0 = z0, f∗ − ℓ(x∗; yi) ≥ 0, and θk ≤ 2/(k+ 2), and taking
the minimum over all x∗ ∈ X∗, we obtain

f(xk+1)− f∗ ≤ 2L

(k + 2)2
d(x0)2,

from which the desired result follows. Q.E.D.

We note a variation of the algorithm that does not require knowledge
of L. Similar, to the case of the gradient projection method (without
extrapolation), this variant uses some arbitrary trial stepsize α > 0, as
long as the condition

f(xk+1) ≤ ℓ(xk+1; yk) +
1

2α
‖xk+1 − yk‖2, (6.277)

[cf. Eq. (6.276)] is satisfied. As soon as this condition is violated at some
iteration, α is reduced by a certain factor, and the iteration is repeated as
many times as necessary for Eq. (6.277) to hold. Once α is reduced below
the level 1/L, the test (6.277) will be passed, and no further reductions will
be necessary. The preceding proof can then be modified to show that the
variant has iteration complexity O

(√

L/ǫ
)

.

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 427

6.10.3 Nondifferentiable Cost – Smoothing

The preceding analysis applies to differentiable cost functions. However, it
can be applied to cases where f is real-valued and convex but nondiffer-
entiable by using a smoothing technique to convert the nondifferentiable
problem to a differentiable one. In this way an iteration complexity of
O(1/ǫ) can be attained, which is faster than the O(1/ǫ2) complexity of
the subgradient method. The idea is to replace a nondifferentiable con-
vex cost function by a smooth ǫ-approximation whose gradient is Lipschitz
continuous with constant L = O(1/ǫ). By applying the optimal method
given earlier, we obtain an ǫ-optimal solution with iteration complexity
O(
√

L/ǫ) = O(1/ǫ).
We will consider the smoothing technique for the special class of con-

vex functions f0 : ℜn 7→ ℜ of the form

f0(x) = max
u∈U

{

u′Ax− φ(u)
}

, (6.278)

where U is a convex and compact subset of ℜm, φ : U 7→ ℜ is convex and
continuous over U , and A is an m × n matrix. Note that f0 is just the
composition of the matrix A and the conjugate function of

φ̃(u) =

{

φ(u) if u ∈ U ,
∞ if u /∈ U ,

so the class of convex functions f0 of the form (6.278) is quite broad. We
introduce a function p : ℜm 7→ ℜ that is strictly convex and differentiable.
Let u0 be the unique minimum of p over U , i.e.,

u0 = argmin
u∈U

p(u)

We assume that p(u0) = 0 and that p is strongly convex over U with
modulus of strong convexity σ, i.e., that

p(u) ≥ σ

2
‖u− u0‖2

(cf. the Exercises of Chapter 1). An example is the quadratic function
p(u) = σ

2 ‖u − u0‖2, but there are also other functions of interest (see the
paper by Nesterov [Nes05] for some other examples, which also allow p to
be nondifferentiable and to be defined only on U).

For a parameter ǫ > 0, consider the function

fǫ(x) = max
u∈U

{

u′Ax − φ(u)− ǫp(u)
}

, x ∈ ℜn, (6.279)

and note that fǫ is a uniform approximation of f0 in the sense that

fǫ(x) ≤ f0(x) ≤ fǫ(x) + p∗ǫ, ∀ x ∈ ℜn, (6.280)

428 Convex Optimization Algorithms Chap. 6

where

p∗ = max
u∈U

p(u).

The following proposition shows that fǫ is also smooth and its gradient is
Lipschitz continuous with Lipschitz constant that is proportional to 1/ǫ.

Proposition 6.10.4: For all ǫ > 0, the function fǫ is convex and
differentiable over ℜn, with gradient given by

∇fǫ(x) = A′uǫ(x),

where uǫ(x) is the unique vector attaining the maximum in Eq. (6.279).
Furthermore, we have

∥

∥∇fǫ(x)−∇fǫ(y)
∥

∥ ≤ ‖A‖2
ǫσ

‖x− y‖, ∀ x, y ∈ ℜn.

Proof: We first note that the maximum in Eq. (6.279) is uniquely attained
in view of the strong convexity of p (which implies that p is strictly con-
vex). Furthermore, fǫ is equal to f⋆(A′x), where f⋆ is the conjugate of
the function φ(u) + ǫp(u) + δU (u), with δU being the indicator function of
U . It follows that fǫ is convex, and it is also differentiable with gradient
∇fǫ(x) = A′uǫ(x) by the Conjugate Subgradient Theorem (Prop. 5.4.3).

Consider any vectors x, y ∈ ℜn. From the subgradient inequality, we
have

φ(y)− φ(x) ≥ g′x
(

uǫ(y)− uǫ(x)
)

, φ(x) − φ(y) ≥ g′y
(

uǫ(x) − uǫ(y)
)

,

so by adding these two inequalities, we obtain

(gx − gy)′
(

uǫ(x)− uǫ(y)
)

≥ 0. (6.281)

By using the optimality condition for the maximization (6.279), we have

(

Ax − gx − ǫ∇p
(

uǫ(x)
)

)′
(

uǫ(y)− uǫ(x)
)

≤ 0,

(

Ay − gy − ǫ∇p
(

uǫ(y)
)

)′
(

uǫ(x) − uǫ(y)
)

≤ 0,

where gx and gy are subgradients of φ at uǫ(x) and uǫ(y), respectively.
Adding the two inequalities, and using the convexity of φ and the strong

Sec. 6.10 Gradient Projection - Optimal Complexity Algorithms 429

convexity of p, we obtain

(x− y)′A′
(

uǫ(x) − uǫ(y)
)

≥
(

gx − gy + ǫ
(

∇p
(

uǫ(x)
)

−∇p
(

uǫ(y)
)

)′

(

uǫ(x) − uǫ(y)
)

≥ ǫ
(

∇p
(

uǫ(x)
)

−∇p
(

uǫ(y)
)

)′
(

uǫ(x) − uǫ(y)
)

≥ ǫσ
∥

∥uǫ(x)− uǫ(y)
∥

∥

2
,

where for the second inequality we used Eq. (6.281), and for the third
inequality we used a standard property of strongly convex functions (see
the Exercises for Chapter 1). Thus,

∥

∥∇fǫ(x) −∇fǫ(y)
∥

∥

2
=
∥

∥A′
(

uǫ(x)− uǫ(y)
)∥

∥

2

≤ ‖A′‖2
∥

∥uǫ(x)− uǫ(y)
∥

∥

2

≤ ‖A′‖2
ǫσ

(x− y)′A′
(

uǫ(x) − uǫ(y)
)

≤ ‖A′‖2
ǫσ

‖x− y‖
∥

∥A′
(

uǫ(x) − uǫ(y)
)∥

∥

=
‖A‖2
ǫσ

‖x− y‖
∥

∥∇fǫ(x)−∇fǫ(y)
∥

∥,

from which the result follows. Q.E.D.

We now consider the minimization over a closed convex set X of the
function

f(x) = F (x) + f0(x),

where f0 is given by Eq. (6.278), and F : ℜn 7→ ℜ is convex and differen-
tiable, with gradient satisfying the Lipschitz condition

∥

∥∇F (x)−∇F (y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ X. (6.282)

We replace f with the smooth approximation

f̃(x) = F (x) + fǫ(x),

and note that f̃ uniformly differs from f by at most p∗ǫ [cf. Eq. (6.280)], and
has Lipschitz continuous gradient with Lipschitz constant L+Lǫ = O(1/ǫ).
Thus, by applying the algorithm (6.271) and by using Prop. 6.10.3, we see
that we can obtain a solution x̃ ∈ X such that f(x̃) ≤ f∗ + p∗ǫ with

O
(
√

(L+ ‖A‖2/ǫσ)/ǫ
)

= O(1/ǫ)

iterations.

430 Convex Optimization Algorithms Chap. 6

6.10.4 Proximal Gradient Methods

We will now discuss briefly a method that combines the gradient projection
and proximal algorithms, and contains both as special cases. The method
applies to the special class of problems given by

minimize f(x) + h(x)

subject to x ∈ X,
(6.283)

where f : ℜn 7→ ℜ and h : ℜn 7→ ℜ are convex functions, and X is a
closed convex set. In addition h is assumed differentiable and Lipschitz
continuous with Lipschitz constant L.

The proximal gradient method is given by

xk+1 ∈ argmin
x∈X

{

f(x) + ℓ(x;xk) +
1

2α
‖x− xk‖2

}

, (6.284)

where α is a positive scalar and ℓ(x;xk) is the linear approximation of h
at xk, given by

ℓ(x;xk) = h(xk) +∇h(xk)′(x− xk), ∀ x ∈ ℜn,

[cf. Eq. (6.260)]. It can be seen that if h(x) ≡ 0, the method reduces to the
proximal algorithm, while if f(x) ≡ 0, the method reduces to the gradient
projection method [cf. Eq. (6.261)].

A key fact about the proximal gradient method is that it improves the
cost function value at each iteration (unless the current iterate is optimal).
Indeed, by using the inequality

h(y) ≤ ℓ(y;x) +
L

2
‖y − x‖2, ∀ x, y ∈ X,

(cf. Prop. 6.10.1) we have for all α ∈ (0, 1/L],

f(xk+1) + h(xk+1) ≤ f(xk+1) + ℓ(xk+1;xk) +
L

2
‖xk+1 − xk‖2

≤ f(xk+1) + ℓ(xk+1;xk) +
1

2α
‖xk+1 − xk‖2

≤ f(xk) + ℓ(xk;xk)

= f(xk) + h(xk),

where the last inequality follows from the definition (6.284) of the algo-
rithm. Actually, by using the result of Exercise 6.19(b) we can show that

f(xk+1)+ℓ(xk+1;xk)+
1

2α
‖xk+1−xk‖2 ≤ f(xk)+ℓ(xk;xk)−

1

2α
‖x−xk+1‖2,

Sec. 6.11 Notes, Sources, and Exercises 431

so by strengthening the last inequality of the preceding calculation, we
obtain the stronger estimate

f(xk+1) + h(xk+1) ≤ f(xk) + h(xk)−
1

2α
‖xk − xk+1‖2.

The preceding cost reduction property is the key to the convergence anal-
ysis of the algorithm, see e.g., the papers by Beck and Teboulle [BeT09],
[BeT10], which also provide a survey of the applications of the algorithm,
and give extensive references to the relevant literature.

Note that the proximal gradient method can be written as

zk = xk − α∇h(xk),

xk+1 ∈ argmin
x∈X

{

f(x) +
1

2α
‖x− zk‖2

}

.

In this form the method bears a resemblance with one of the incremental
subgradient-proximal methods of Section 6.7.1, applied to the case of two
component functions [cf. Eqs. (6.200)-(6.201)]. However, there are some
important differences. The proximal gradient method critically relies of the
differentiability of h for its validity with a constant stepsize, and does not
readily extend to the case where the cost function is the sum of more than
two components. Still, however, the motivation for the proximal gradient
and the incremental subgradient-proximal methods is similar: they both
use linearization to facilitate the handling of components that complicate
the application of the proximal algorithm.

Finally, let us note that there are versions of the proximal gradient
algorithm that use extrapolation, similar to the one for the optimal algo-
rithm of Section 6.10.2, and have complexity that is comparable to the one
of that algorithm (see [BeT09], [BeT10]).

6.11 NOTES, SOURCES, AND EXERCISES

Subgradient methods were first introduced in the Soviet Union in the mid-
dle 60s by Shor; the works of Ermoliev and Poljak were also particularly
influential. Description of these works can be found in many sources, in-
cluding Shor [Sho85], Ermoliev [Erm83], and Polyak [Pol87]. An extensive
bibliography for the early period of the subject is given in the edited vol-
ume by Balinski and Wolfe [BaW75]. There are many works dealing with
analysis of subgradient methods. The convergence analysis of Section 6.3
is based on the paper by Nedić and Bertsekas [NeB01a]. There are several
variations of subgradient methods that aim to accelerate the convergence
of the basic method (see e.g., [CFM75], [Sho85], [Min86], [Str97], [LPS98],
[Sho98], [ZLW99], [GZL02]).

432 Convex Optimization Algorithms Chap. 6

One may view ǫ-subgradient methods in the context of subgradient
methods that involve errors in the calculation of the subgradient. Such
methods have a long history; see e.g., Ermoliev [Erm69], [Erm83], Nurmin-
skii [Nur74], Polyak [Pol87], and for more recent treatments, Correa and
Lemarechal [CoL94], Solodov and Zavriev [SoZ98], and Nedić and Bert-
sekas [NeB10]. The first proposal of an incremental subgradient method
was in the paper by Kibardin [Kib79], a work that remained unknown in
the Western literature until about 2005. Our material on incremental sub-
gradient methods is based on Nedić and Bertsekas [NeB01a], [NeB01b],
[BNO03], which also provided the first analysis of incremental subgradient
methods with randomization, and established the superiority of the ran-
domized over the cyclic selection rule for component selection. Reference
[NeB01b] provides additional convergence rate results for a constant step-
size, including a linear convergence rate to a neighborhood of the solution
set under a strong convexity condition.

Incremental gradient methods for differentiable cost functions have
a long history in the area of neural network training; see [BeT96] and
[Ber99] for textbook accounts of this methodology and references. For re-
lated works, some of which apply to differentiable problems only, see Davi-
don [Dav76], Luo [Luo91], Gaivoronski [Gai94], Grippo [Gri94], Luo and
Tseng [LuT94], Mangasarian and Solodov [MaS94], Bertsekas and Tsit-
siklis [BeT96], [BeT00], Bertsekas [Ber96], [Ber97], Kaskavelis and Cara-
manis [KaC98], Solodov [Sol98], Tseng [Tse98], Ben-Tal, Margalit, and
Nemirovski [BMN01], Zhao, Luh, and Wang [ZLW99], Rabbat and Nowak
[RaN05], Blatt, Hero, and Gauchman [BHG07].

A distributed asynchronous implementation of incremental subgradi-
ent methods, with and without randomization, was given by Nedić, Bert-
sekas, and Borkar [NBB01]. In the randomized distributed version, the
multiple processors, whenever they become available, select at random a
component fi, calculate the subgradient gi, and execute the corresponding
incremental subgradient step. The algorithm is asynchronous in that dif-
ferent processors use slightly differing copies of the current iterate xk; this
contributes to the efficiency of the method, because there is no waiting time
for processors to synchronize at the end of iterations. Despite the asynchro-
nism, convergence can be shown thanks to the use of a diminishing stepsize,
similar to related distributed asynchronous gradient method analyses for
differentiable optimization problems (see Bertsekas [Ber83], Tsitsiklis, Bert-
sekas, and Athans [TBA86], and Bertsekas and Tsitsiklis [BeT89]). This
analysis applies also to the incremental proximal algorithms of Section 6.7.

Cutting plane methods were introduced by Cheney and Goldstein
[ChG59], and by Kelley [Kel60]. For analysis of related methods, see
Ruszczynski [Rus89], Lemaréchal and Sagastizábal [LeS93], Mifflin [Mif96],
Burke and Qian [BuQ98], Mifflin, Sun, and Qi [MSQ98], and Bonnans et.
al. [BGL09]. Variants of cutting plane methods were introduced by Elzinga
and Moore [ElM75]. More recent proposals, some of which relate to interior

Sec. 6.11 Notes, Sources, and Exercises 433

point methods, are described in the textbook by Ye [Ye97], and the survey
by Goffin and Vial [GoV02]. The simplicial decomposition method was in-
troduced by Holloway [Hol74]; see also Hohenbalken [Hoh77], Hearn, Law-
phongpanich, and Ventura [HLV87], and Ventura and Hearn [VeH93]. Some
of these references describe applications to communication and transporta-
tion networks (see also the textbook [Ber99], Examples 2.1.3 and 2.1.4). A
simplicial decomposition method for minimizing a nondifferentiable convex
function over a polyhedral set, based on concepts of ergodic sequences of
subgradients and a conditional subgradient method, is given by Larsson,
Patriksson, and Stromberg (see [Str97], [LPS98]).

Extended monotropic programming and its duality theory were de-
veloped in Bertsekas [Ber06]. The corresponding material on generalized
simplicial decomposition (Section 6.4.4) and generalized polyhedral approx-
imation (Section 6.4.5) is new, and is based on joint research of the author
with H. Yu; see [BeY11], which contains a detailed convergence analysis.
The polyhedral approximation method for conical constraints of Section
6.4.6 is also new.

The proximal algorithmwas introduced by Martinet [Mar70], [Mar72].
The finite termination of the method when applied to linear programs
was shown independently by Polyak and Tretyakov [PoT74] and Bert-
sekas [Ber75a]. The rate of convergence analysis given here is due to Kort
and Bertsekas [KoB76], and has been extensively discussed in the book
[Ber82], for both quadratic and nonquadratic proximal terms. A general-
ization of the proximal algorithm, applying to a broader class of problems,
has been extensively developed by Rockafellar [Roc76a], [Roc76b], and to-
gether with its special cases, has been analyzed by many authors (see e.g.,
Luque [Luq84], Guler [Gul91], Eckstein and Bertsekas [EcB92], Pennanen
[Pen02]). For a textbook discussion, see Facchinei and Pang [FaP03].

Bundle methods are currently one of the principal classes of methods
for solving dual problems. Detailed presentations are given in the textbooks
by Hiriart-Urrutu and Lemarechal [HiR93], and Bonnans et. al. [BGL06],
which give many references; see also [FeK00], [MSQ98], [ZhL02]. The term
“bundle” has been used with a few different meanings in convex algorith-
mic optimization, with some confusion resulting. To our knowledge, it was
first introduced in the 1975 paper by Wolfe [Wol75] to describe a collection
of subgradients used for calculating a descent direction in the context of a
specific algorithm of the descent type - a context with no connection to cut-
ting planes or proximal minimization. It subsequently appeared in related
descent method contexts through the 1970’s and early 1980’s. Starting
in the middle 1980’s, the context of the term “bundle method” gradually
shifted, and it is now commonly associated with the stabilized proximal
cutting plane methods that we have described in Section 6.5.2.

The Augmented Lagrangian method was independently proposed in
the papers by Hestenes [Hes69], Powell [Pow69], and Haarhoff and Buys
[HaB70] in a nonlinear programming context where convexity played no

434 Convex Optimization Algorithms Chap. 6

apparent role. The papers contained little analysis, and did not suggest
any relation to duality and the proximal algorithm. These relations were
analyzed by Rockafellar [Roc73], [Roc76a]. An extensive development and
analysis of Augmented Lagrangian and related methods is given in the
author’s research monograph [Ber82], together with many references; see
also the survey papers [Ber76], [Roc76b], [Ius99]. The textbook [BeT89]
contains several applications of Augmented Lagrangians to classes of large-
scale problems with special structure.

The incremental subgradient-proximal algorithms of Section 6.7.1, in-
cluding the incremental constraint projection algorithm (6.212)-(6.214),
were first proposed and analyzed in Bertsekas [Ber10a], [Ber10b]. The
incremental Augmented Lagrangian scheme of Section 6.7 is new. The in-
cremental constraint projection algorithm of Section 6.7.2 was proposed
and analyzed by Wang and Bertsekas [WaB13]. Similar algorithms that in-
volve incremental constraint projections, but not incremental cost function
iterations, were proposed and analyzed earlier by Nedić [Ned11].

There are proximal-type algorithms that use nonquadratic proximal
terms, and find application in specialized contexts. They were introduced
by several authors, starting to our knowledge with the paper by Kort
and Bertsekas [KoB72], and the thesis by Kort [Kor75], in the context
of methods involving nonquadratic augmented Lagrangians (see also Kort
and Bertsekas [KoB76], and Bertsekas [Ber82]). The use of the Bregman
distance function has been the focus of much attention. There has been
much work in this area, directed at obtaining additional classes of meth-
ods, sharper convergence results, and an understanding of the properties
that enhance computational performance; see Censor and Zenios [CeZ92],
[CeZ97], Guler [Gul92], Chen and Teboulle [ChT93], [ChT94], Tseng and
Bertsekas [TsB93], Bertsekas and Tseng [BeT94], Eckstein [Eck93], [Eck98],
Iusem, Svaiter, and Teboulle [IST94], Iusem and Teboulle [IuT95], Auslen-
der, Cominetti, and Haddou [AHR97], Polyak and Teboulle [PoT97], Iusem
[Ius99], Facchinei and Pang [FaP03], Auslender and Teboulle [AuT03], Cruz
Neto et. al. [CFI07], and Yin et. al. [YOG08].

Interior point methods date to the work of Frisch in the middle 50’s
[Fri56]. They achieved a great deal of popularity in the early 80’s when
they were systematically applied to linear programming problems. The re-
search monographs by Wright [Wri97] and Ye [Ye97] are devoted to interior
point methods for linear, quadratic, and convex programming. More re-
cently interior point methods were adapted and analyzed for conic program-
ming, starting with the research monograph by Nesterov and Nemirovskii
[NeN94]. This development had a strong influence in convex optimization
practice, as conic programming became established as a field with a strong
algorithmic methodology and extensive applications, ranging from discrete
optimization, to control theory, communications, and machine learning.
The book by Wolkowicz, Saigal, and Vanderberghe [WSV00] contains a
collection of survey articles on semidefinite programming. The book by

Sec. 6.11 Notes, Sources, and Exercises 435

Boyd and Vanderberghe [BoV04] describes many applications, and con-
tains a lot of material and references.

The ideas of the iteration complexity analysis and algorithms of Sec-
tion 6.10.2 have a long history, beginning in the late 70’s. In this con-
nection, we mention the works of Nemirovskii and Yudin [NeY83], and
Nesterov [Nes83]. The focus on convergence rate analysis and optimal al-
gorithms is also characteristic of the work of Polyak (see e.g., the textbook
[Pol87]), who among others, proposed the heavy-ball method [Pol64]. The
optimal gradient projection/extrapolation method of this section stems
from the ideas of Nesterov [Nes83], [Nes04], [Nes05] (see also Beck and
Teboulle [BeT09], Lu, Monteiro, and Yuan [LMY08], and Tseng [Tse08]).
We follow the analysis of Tseng [Tse08], who proposed and analyzed more
general methods that also apply to important classes of nondifferentiable
cost functions.

Smoothing for nondifferentiable optimization was first suggested by
the author in [Ber75b], [Ber77], [Ber82], as an application of the Augmented
Lagrangian methodology (see Exercises 6.12-6.14). It has been discussed by
several other authors, including Polyak [Pol79], Papavassilopoulos [Pap81],
and Censor and Zenios [CeZ92]. The idea of using smoothing in conjunction
with a gradient method to construct optimal algorithms is due to Nesterov
[Nes05]. In his work he proves the Lipschitz property of Prop. 6.10.4 for
the more general case, where p is convex but not necessarily differentiable,
and analyzes several important special cases.

There have been several proposals of combinations of gradient and
proximal methods for minimizing the sum of two functions (or more gener-
ally, finding a zero of the sum of two nonlinear operators). These methods
have a long history, dating to the splitting algorithms of Lions and Mercier
[LiM79], Passty [Pas79], and Spingarn [Spi85], and have received renewed
attention more recently (see Beck and Teboulle [BeT09], [BeT10], and the
references they give to specialized algorithms).

E X E R C I S E S

6.1 (Minimizing the Sum or the Maximum of Norms [LVB98])

Consider the problems

minimize

p
∑

i=1

‖Fix+ gi‖

subject to x ∈ ℜn,

(6.285)

436 Convex Optimization Algorithms Chap. 6

and

minimize max
i=1,...,p

‖Fix+ gi‖

subject to x ∈ ℜn,

where Fi and gi are given matrices and vectors, respectively. Convert these
problems to second order cone form and derive the corresponding dual problems.

6.2 (Complex l1 and l∞ Approximation [LVB98])

Consider the complex l1 approximation problem

minimize ‖Ax− b‖1

subject to x ∈ Cn,

where Cn is the set of n-dimensional vectors whose components are complex
numbers. Show that it is a special case of problem (6.285) and derive the corre-
sponding dual problem. Repeat for the complex l∞ approximation problem

minimize ‖Ax− b‖∞

subject to x ∈ Cn.

6.3

The purpose of this exercise is to show that the SOCP can be viewed as a special
case of SDP.

(a) Show that a vector x ∈ ℜn belongs to the second order cone if and only if
the matrix

xnI + x1v1v
′
1 + · · ·+ xn−1vn−1v

′
n−1

is positive semidefinite, where vi is the vector of ℜn whose components are
all equal to 0 except for the (i+1)st component which is equal to 1. Hint :
We have that for any positive definite n× n matrix A, vector b ∈ ℜn, and
scalar d, the matrix

(

A b
b′ c

)

is positive definite if and only if c− b′A−1b > 0.

(b) Use part (a) to show that the primal SOCP can be written in the form of
the dual SDP.

Sec. 6.11 Notes, Sources, and Exercises 437

6.4 (Explicit Form of a Second Order Cone Problem)

Consider the SOCP (6.24).

(a) Partition the ni × (n+ 1) matrices (Ai bi) as

(Ai bi) =

(

Di di
p′i qi

)

, i = 1, . . . ,m,

where Di is an (ni − 1)×n matrix, di ∈ ℜni−1, pi ∈ ℜn, and qi ∈ ℜ. Show
that

Aix− bi ∈ Ci if and only if ‖Dix− di‖ ≤ p′ix− qi,

so we can write the SOCP (6.24) as

minimize c′x

subject to ‖Dix− di‖ ≤ p′ix− qi, i = 1, . . . ,m.

(b) Similarly partition λi as

λi =

(

µi

νi

)

, i = 1, . . . ,m,

where µi ∈ ℜni−1 and νi ∈ ℜ. Show that the dual problem (6.25) can be
written in the form

maximize

m
∑

i=1

(d′iµi + qiνi)

subject to

m
∑

i=1

(D′
iµi + νipi) = c, ‖µi‖ ≤ νi, i = 1, . . . ,m.

(6.286)

(c) Show that the primal and dual interior point conditions for strong duality
(Prop. 6.1.8) hold if there exist primal and dual feasible solutions x and
(µi, νi) such that

‖Dix− di‖ < p′ix− qi, i = 1, . . . , m,

and

‖µi‖ < νi, i = 1, . . . ,m,

respectively.

438 Convex Optimization Algorithms Chap. 6

6.5 (Monotropic-Conic Problems)

Consider the problem

minimize

m
∑

i=1

fi(xi)

subject to x ∈ S ∩ C,

where x = (x1, . . . , xm) with xi ∈ ℜni , i = 1, . . . ,m, and fi : ℜ
ni 7→ (−∞,∞] is

a proper convex function for each i, and S and C are a subspace and a cone of
ℜn1+···+nm , respectively. Show that a dual problem is

maximize

m
∑

i=1

qi(λi)

subject to λ ∈ Ĉ + S⊥,

where λ = (λ1, . . . , λm), Ĉ is the dual cone of C, and

qi(λi) = inf
zi∈ℜ

{

fi(zi)− λ′
izi
}

, i = 1, . . . ,m.

6.6

Let f : ℜn 7→ ℜ be a convex function, and let {fk} be a sequence of convex
functions fk : ℜn 7→ ℜ with the property that limk→∞ fk(xk) = f(x) for every
x ∈ ℜn and every sequence {xk} that converges to x. Then, for any x ∈ ℜn and
y ∈ ℜn, and any sequences {xk} and {yk} converging to x and y, respectively,
we have

lim sup
k→∞

f ′
k(xk; yk) ≤ f ′(x; y). (6.287)

Furthermore, if f is differentiable over ℜn, then it is continuously differentiable
over ℜn.

Solution: From the definition of directional derivative, it follows that for any
ǫ > 0, there exists an α > 0 such that

f(x+ αy)− f(x)

α
< f ′(x; y) + ǫ.

Hence, using also the equation

f ′(x; y) = inf
α>0

f(x+ αy)− f(x)

α
,

we have for all sufficiently large k,

f ′
k(xk; yk) ≤

fk(xk + αyk)− fk(xk)

α
< f ′(x; y) + ǫ,

Sec. 6.11 Notes, Sources, and Exercises 439

so by taking the limit as k → ∞,

lim sup
k→∞

f ′
k(xk; yk) ≤ f ′(x; y) + ǫ.

Since this is true for all ǫ > 0, we obtain lim supk→∞ f ′
k(xk; yk) ≤ f ′(x; y).

If f is differentiable at all x ∈ ℜn, then using the continuity of f and the
part of the proposition just proved, we have for every sequence {xk} converging
to x and every y ∈ ℜn,

lim sup
k→∞

∇f(xk)
′y = lim sup

k→∞

f ′(xk; y) ≤ f ′(x; y) = ∇f(x)′y.

By replacing y with −y in the preceding argument, we obtain

− lim inf
k→∞

∇f(xk)
′y = lim sup

k→∞

(

−∇f(xk)
′y
)

≤ −∇f(x)′y.

Therefore, we have∇f(xk)
′y → ∇f(x)′y for every y, which implies that∇f(xk) →

∇f(x). Hence, ∇f(·) is continuous.

6.7 (Danskin’s Theorem)

Let Z be a compact subset of ℜm, and let φ : ℜn × Z 7→ ℜ be continuous and
such that φ(·, z) : ℜn 7→ ℜ is convex for each z ∈ Z.

(a) The function f : ℜn 7→ ℜ given by

f(x) = max
z∈Z

φ(x, z) (6.288)

is convex and has directional derivative given by

f ′(x; y) = max
z∈Z(x)

φ′(x, z; y), (6.289)

where φ′(x, z; y) is the directional derivative of the function φ(·, z) at x in
the direction y, and Z(x) is the set of maximizing points in Eq. (6.288)

Z(x) =
{

z

∣

∣

∣
φ(x, z) = max

z∈Z
φ(x, z)

}

.

In particular, if Z(x) consists of a unique point z and φ(·, z) is differentiable
at x, then f is differentiable at x, and ∇f(x) = ∇xφ(x, z), where ∇xφ(x, z)
is the vector with components

∂φ(x, z)

∂xi
, i = 1, . . . , n.

(b) If φ(·, z) is differentiable for all z ∈ Z and ∇xφ(x, ·) is continuous on Z for
each x, then

∂f(x) = conv
{

∇xφ(x, z) | z ∈ Z(x)
}

, ∀ x ∈ ℜn.

440 Convex Optimization Algorithms Chap. 6

Solution: (a) We note that since φ is continuous and Z is compact, the set Z(x)
is nonempty by Weierstrass’ Theorem and f is finite. For any z ∈ Z(x), y ∈ ℜn,
and α > 0, we use the definition of f to obtain

f(x+ αy)− f(x)

α
≥
φ(x+ αy, z)− φ(x, z)

α
.

Taking the limit as α decreases to zero, we obtain f ′(x; y) ≥ φ′(x, z; y). Since
this is true for every z ∈ Z(x), we conclude that

f ′(x; y) ≥ sup
z∈Z(x)

φ′(x, z; y), ∀ y ∈ ℜn. (6.290)

To prove the reverse inequality and that the supremum in the right-hand
side of the above inequality is attained, consider a sequence {αk} of positive
scalars that converges to zero and let xk = x + αky. For each k, let zk be a
vector in Z(xk). Since {zk} belongs to the compact set Z, it has a subsequence
converging to some z ∈ Z. Without loss of generality, we assume that the entire
sequence {zk} converges to z. We have

φ(xk, zk) ≥ φ(xk, z), ∀ z ∈ Z,

so by taking the limit as k → ∞ and by using the continuity of φ, we obtain

φ(x, z) ≥ φ(x, z), ∀ z ∈ Z.

Therefore, z ∈ Z(x). We now have

f ′(x; y) ≤
f(x+ αky)− f(x)

αk

=
φ(x+ αky, zk)− φ(x, z)

αk

≤
φ(x+ αky, zk)− φ(x, zk)

αk

≤ −φ′(x+ αky, zk;−y)

≤ φ′(x+ αky, zk; y),

(6.291)

where the last inequality follows from the fact −f ′(x;−y) ≤ f ′(x; y). We apply
the result of Exercise 6.6 to the functions fk defined by fk(·) = φ(·, zk), and with
xk = x+ αky, to obtain

lim sup
k→∞

φ′(x+ αky, zk; y) ≤ φ′(x, z; y). (6.292)

We take the limit in inequality (6.291) as k → ∞, and we use inequality (6.292)
to conclude that

f ′(x; y) ≤ φ′(x, z; y).

This relation together with inequality (6.290) proves Eq. (6.289).

Sec. 6.11 Notes, Sources, and Exercises 441

For the last statement of part (a), if Z(x) consists of the unique point z,
Eq. (6.289) and the differentiability assumption on φ yield

f ′(x; y) = φ′(x, z; y) = y′∇xφ(x, z), ∀ y ∈ ℜn,

which implies that ∇f(x) = ∇xφ(x, z).

(b) By part (a), we have

f ′(x; y) = max
z∈Z(x)

∇xφ(x, z)
′y,

while by Prop. 5.4.8,

f ′(x; y) = max
z∈∂f(x)

d′y.

For all z ∈ Z(x) and y ∈ ℜn, we have

f(y) = max
z∈Z

φ(y, z)

≥ φ(y, z)

≥ φ(x, z) +∇xφ(x, z)
′(y − x)

= f(x) +∇xφ(x, z)
′(y − x).

Therefore, ∇xφ(x, z) is a subgradient of f at x, implying that

conv
{

∇xφ(x, z) | z ∈ Z(x)
}

⊂ ∂f(x).

To prove the reverse inclusion, we use a hyperplane separation argument. By the
continuity of ∇xφ(x, ·) and the compactness of Z, we see that Z(x) is compact,
and therefore also the set

{

∇xφ(x, z) | z ∈ Z(x)
}

is compact. By Prop. 1.2.2,

it follows that conv
{

∇xφ(x, z) | z ∈ Z(x)
}

is compact. If d ∈ ∂f(x) while

d /∈ conv
{

∇xφ(x, z) | z ∈ Z(x)
}

, by the Strict Separation Theorem (Prop.
1.5.3), there exists y 6= 0, and γ ∈ ℜ, such that

d′y > γ > ∇xφ(x, z)
′y, ∀ z ∈ Z(x).

Therefore, we have

d′y > max
z∈Z(x)

∇xφ(x, z)
′y = f ′(x; y),

contradicting Prop. 5.4.8. Therefore, ∂f(x) ⊂ conv
{

∇xφ(x, z) | z ∈ Z(x)
}

and
the proof is complete.

442 Convex Optimization Algorithms Chap. 6

6.8 (Failure of the Steepest Descent Method [Wol75])

Consider the minimization of the two-dimensional function

f(x1, x2) =

{

5(9x2
1 + 16x2

2)
1/2 if x1 > |x2|,

9x1 + 16|x2| if x1 ≤ |x2|,

using the steepest descent method, which moves from the current point in the
opposite direction of the minimum norm subgradient (or gradient in the case
where the function is differentiable at the point), with the stepsize determined
by cost minimization along that direction. Suppose that the algorithm starts
anywhere within the set

{

(x1, x2) | x1 > |x2| > (9/16)2|x1|
}

.

Verify computationally that it converges to the nonoptimal point (0, 0) (cf. Fig.
6.11.1). What happens if a subgradient method with a constant stepsize is used
instead? Check computationally.

z

x2

x1

-3

-2

-1

0

1

2

3

-3
-2

-1
0

1
2

3

60

-20

0

20

40

x1

x
2

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

Figure 6.11.1. Level sets and steepest descent path for the function of Exercise
6.8. The method converges to the nonoptimal point (0, 0).

6.9 (Growth Condition for Polyhedral Functions)

Let f : ℜn 7→ (−∞,∞] be a polyhedral function, and assume that X∗, the set of
minima of f , is nonempty. Show that there exists a scalar β > 0 such that

f∗ + βd(x) ≤ f(x), ∀ x /∈ X∗,

where d(x) = minx∗∈X∗ ‖x − x∗‖. Hint : Complete the details of the following
argument:

Sec. 6.11 Notes, Sources, and Exercises 443

Assume first that f is linear within dom(f). Then, there exists a ∈ ℜn

such that for all x, x̂ ∈ dom(f), we have

f(x)− f(x̂) = a′(x− x̂).

For any x ∈ X∗, let Sx be the cone of vectors d that are in the normal cone
NX∗(x) of X∗ at x, and are also feasible directions in the sense that x + αd ∈
dom(f) for a small enough α > 0. Since X∗ and dom(f) are polyhedral sets,
there exist only a finite number of possible cones Sx as x ranges over X∗. Thus,
there is a finite set of nonzero vectors {cj | j ∈ J}, such that for any x ∈ X∗, Sx

is either equal to {0}, or is the cone generated by a subset {cj | j ∈ Jx}, where
J = ∪x∈X∗Jx. In addition, for all x ∈ X∗ and d ∈ Sx with ‖d‖ = 1, we have

d =
∑

j∈Jx

γjcj ,

for some scalars γj ≥ 0 with
∑

j∈Jx
γj ≥ γ, where γ = 1/maxj∈J ‖cj‖. Also we

can show that for all j ∈ J , we have a′cj > 0, by using the fact cj ∈ Sx for some
x ∈ X∗.

For x ∈ dom(f) with x /∈ X∗, let x̂ be the projection of x on X∗. Then the
vector x− x̂ belongs to Sx̂, and we have

f(x)− f(x̂) = a′(x− x̂) = ‖x− x̂‖
a′(x− x̂)

‖x− x̂‖
≥ β‖x− x̂‖,

where
β = γmin

j∈J
a′cj .

Since J is finite, we have β > 0, and this implies the desired result for the case
where f is linear within dom(f).

Assume now that f is of the form

f(x) = max
i∈I

{a′ix+ bi}, ∀ x ∈ dom(f),

where I is a finite set, and ai and bi are some vectors and scalars, respectively.
Let

Y =
{

(x, z) | z ≥ f(x), x ∈ dom(f)
}

,

and consider the function

g(x, z) =
{

z if (x, z) ∈ Y ,
∞ otherwise.

Note that g is polyhedral and linear within dom(g), that its set of minima is

Y ∗ =
{

(x, z) | x ∈ X∗, z = f∗
}

,

and that its minimal value is f∗.

444 Convex Optimization Algorithms Chap. 6

Applying the result already shown to the function g, we have for some
β > 0

f∗ + βd̂(x, z) ≤ g(x, z), ∀ (x, z) /∈ Y ∗,

where

d̂(x, z) = min
(x∗,z∗)∈Y ∗

(

‖x−x∗‖2 + |z− z∗|2
)1/2

= min
x∗∈X∗

(

‖x− x∗‖2 + |z− f∗|2
)1/2

.

Since

d̂(x, z) ≥ min
x∈X∗

‖x− x∗‖ = d(x),

we have

f∗ + βd(x) ≤ g(x, z), ∀ (x, z) /∈ Y ∗,

and by taking the infimum of the right-hand side over z for any fixed x, we obtain

f∗ + βd(x) ≤ f(x), ∀ x /∈ X∗.

6.10 (Sublinear Convergence Rate in the Proximal Minimization
Algorithm)

Consider the proximal algorithm under the assumptions of Prop. 6.5.2. Assume
further that α > 2. Show that

lim sup
k→∞

d(xk+1)

d(xk)2/α
<∞

which is known as sublinear convergence. Hint : Show first that

f(xk+1)− f∗ ≤
d(xk)

2

2ck
, ∀ k.

6.11 (Partial Proximal Minimization Algorithm [BeT94])

For each c > 0, let φc be the real-valued convex function on ℜn defined by

φc(z) = min
x∈X

{

f(x) +
1

2c
‖x− z‖2

}

,

where f is a convex function over the closed convex set X. Let I be a subset of
the index set {1, . . . , n}. For any z ∈ ℜn, consider a vector z satisfying

z ∈ arg min
x∈X

{

f(x) +
1

2c

∑

i∈I

|xi − zi|
2

}

,

Sec. 6.11 Notes, Sources, and Exercises 445

and let z̃ be the vector with components

z̃i =
{

zi ∀ i ∈ I ,
zi ∀ i /∈ I .

(a) Show that

z̃ ∈ arg min
{x|xi=zi, i∈I}

φc(x),

z ∈ arg min
x∈X

{

f(x) +
1

2c
‖x− z̃‖2

}

.

(b) Interpret z as the result of a block coordinate descent step corresponding
to the components zi, i /∈ I , followed by a proximal minimization step, and
show that φc(z) ≤ f(z) ≤ φc(z) ≤ f(z).

6.12 (Smoothing of Nondifferentiabilities [Ber75b], [Ber77],
[Ber82], [Pap81], [Pol79])

A simple and effective technique to handle nondifferentiabilities in the cost or the
constraints of optimization problems is to replace them by smooth approxima-
tions and then use gradient-based algorithms. This exercise develops a general
technique for deriving such approximations. Let f : ℜn 7→ (−∞,∞] be a closed
proper convex function with conjugate convex function denoted by f⋆. For each
x ∈ ℜn, define

fc,λ(x) = inf
u∈ℜn

{

f(x− u) + λ′u+
c

2
‖u‖2

}

, (6.293)

where c is a positive scalar, and λ is a vector in ℜn. Use the Fenchel duality
theorem to show that

fc,λ(x) = sup
y∈ℜn

{

x′y − f⋆(y)−
1

2c
‖y − λ‖2

}

. (6.294)

Show also that fc,λ approximates f in the sense that

lim
c→∞

fc,λ(x) = f(x), ∀ x, λ ∈ ℜn.

Furthermore, fc,λ is convex and differentiable as a function of x for fixed c and
λ, and ∇fc,λ(x) can be obtained in two ways:

(i) As the vector λ+ cu, where u attains the infimum in Eq. (6.293).

(ii) As the vector y that attains the supremum in Eq. (6.294).

446 Convex Optimization Algorithms Chap. 6

6.13 (Smoothing and the Augmented Lagrangian Method I)

This exercise provides an application of the smoothing technique of the preced-
ing exercise. Let f : ℜn 7→ (−∞,∞] be a closed proper convex function with
conjugate convex function denoted by f⋆. Let F : ℜn 7→ ℜ be another convex
function, and let X be a closed convex set. Consider the problem

minimize F (x) + f(x)

subject to x ∈ X,

and the equivalent problem

minimize F (x) + f(x− u)

subject to x ∈ X, u = 0.

Apply the Augmented Lagrangian method to the latter problem, and show that
it takes the form

xk+1 ∈ arg min
x∈X

{

F (x) + fck,λk
(x)
}

,

where fc,λ is the smoothed function of the preceding exercise; the multiplier
update is obtained from the equations

uk+1 ∈ arg min
u∈ℜn

{

f(xk+1 − u) + λk
′u+

ck
2
‖u‖2

}

, λk+1 = λk + ckuk+1.

Alternatively, λk+1 is given by

λk+1 = arg max
y∈ℜn

{

x′
k+1y − f⋆(y)−

1

2ck
‖y − λk‖

2
}

= ∇fck,λk
(xk+1),

where f⋆ is the conjugate convex function of f .

6.14 (Smoothing and the Augmented Lagrangian Method II)

This exercise provides an alternative smoothing technique to the one of the pre-
ceding exercise. It applies to general convex/concave minimax problems. Let Z
be a nonempty convex subset of ℜm, respectively, and φ : ℜn ×Z 7→ ℜ is a func-
tion such that φ(·, z) : ℜn 7→ ℜ is convex for each z ∈ Z, and −φ(x, ·) : Z 7→ ℜ is
convex and closed for each x ∈ ℜn. Consider the problem

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X,

where X is a nonempty closed convex subset of ℜn. Consider also the equivalent
problem

minimize H(x, y)

subject to x ∈ X, y = 0,

Sec. 6.11 Notes, Sources, and Exercises 447

where H is the function

H(x, y) = sup
z∈Z

{

φ(x, z)− y′z
}

, x ∈ ℜn, y ∈ ℜm.

Apply the Augmented Lagrangian method to this problem, and show that it
takes the form

xk+1 ∈ arg min
x∈X

f⋆
ck,λk

(x),

where f⋆
c,λ : ℜn 7→ ℜ is the differentiable function given by

f⋆
c,λ(x) = min

y∈ℜm

{

H(x, y)− λ′y +
c

2
‖y‖2

}

, x ∈ ℜn.

The multiplier update is obtained from the equations

yk+1 ∈ arg min
y∈ℜm

{

H(xk+1, y)− λ′
ky +

ck
2
‖y‖2

}

, λk+1 = λk − ckyk+1.

6.15

Consider the scalar function f(x) = |x|. Show that for x ∈ ℜ and ǫ > 0, we have

∂ǫf(x) =

[

−1,−1− ǫ
x

]

for x < − ǫ
2
,

[−1, 1] for x ∈
[

− ǫ
2
, ǫ
2

]

,
[

1− ǫ
x
, 1
]

for x > ǫ
2
.

6.16 (Subgradient Methods with Low Level Errors [NeB10])

Consider the problem of minimizing a convex function f : ℜn → ℜ over a closed
convex set X, and assume that the optimal solution set, denotedX∗, is nonempty.
Consider the iteration

xk+1 = PX

(

xk − αk(gk + ek)
)

,

where for all k, gk is a subgradient of f at xk, and ek is an error such that for all
k, we have

‖ek‖ ≤ β, k = 0, 1, . . . ,

where β is some positive scalar. Assume that for some γ > 0, we have

f(x)− f∗ ≤ γ min
x∗∈X∗

‖x− x∗‖, ∀ x ∈ X,

where f∗ = minx∈X f(x), and that for some c > 0, we have

‖g‖ ≤ c, ∀ g ∈ ∂f(xk), k = 0, 1, . . .

448 Convex Optimization Algorithms Chap. 6

(these assumptions are satisfied if f is a polyhedral function). Assuming β < γ,
show that if αk is equal to some constant α for all k, then

lim inf
k→∞

f(xk) ≤ f∗ +
αγ(c+ β)2

2(γ − β)
, (6.295)

while if

αk → 0,

∞
∑

k=0

αk = ∞,

then lim infk→∞ f(xk) = f∗. Use the example of Exercise 6.15 to show that the
estimate (6.295) is sharp.

6.17 (Sharpness of the Error Tolerance Estimate)

Consider the unconstrained optimization of the two-dimensional function

f(x1, x2) =

M
∑

i=1

c0
(

|x1 + 1|+ 2|x1|+ |x1 − 1|+ |x2 + 1|+ 2|x2|+ |x2 − 1|
)

,

where c0 is a positive constant, by using the incremental subgradient method
with a constant stepsize α. Show that there exists a component processing order
such that when the method starts a cycle at the point x = (x1, x2), where x1 =
x2 = αMc0 with αMc0 ≤ 1, it returns to x at the end of the cycle. Use this
example to show that starting from x, we have

lim inf
k→∞

f(ψi,k) ≥ f∗ +
βαc2

2
, ∀ i = 1, . . . ,m,

for some constant β (independent of c0 and M), where c = mc0 and m = 8M
[cf. Eq. (6.74)].

Solution: Consider the incremental subgradient method with the stepsize α and
the starting point x = (αMC0, αMC0), and the following component processing
order:

M components of the form |x1| [endpoint is (0, αMC0)],

M components of the form |x1 + 1| [endpoint is (−αMC0, αMC0)],

M components of the form |x2| [endpoint is (−αMC0, 0)],

M components of the form |x2 + 1| [endpoint is (−αMC0,−αMC0)],

M components of the form |x1| [endpoint is (0,−αMC0)],

M components of the form |x1 − 1| [endpoint is (αMC0,−αMC0)],

M components of the form |x2| [endpoint is (αMC0, 0)], and

M components of the form |x2 − 1| [endpoint is (αMC0, αMC0)].

With this processing order, the method returns to x at the end of a cycle.
Furthermore, the smallest function value within the cycle is attained at points

Sec. 6.11 Notes, Sources, and Exercises 449

(±αMC0, 0) and (0,±αMC0), and is equal to 4MC0 + 2αM2C2
0 . The optimal

function value is f∗ = 4MC0, so that

lim inf
k→∞

f(ψi,k) ≥ f∗ + 2αM2C2
0 .

Since m = 8M and mC0 = C, we have M2C2
0 = C2/64, implying that

2αM2C2
0 =

1

16

αC2

2
,

and therefore

lim inf
k→∞

f(ψi,k) ≥ f∗ +
βαC2

2
,

with β = 1/16.

6.18 (Aggregate Subgradients)

Show that the aggregate subgradient of Eq. (6.164) in the bundle method can be
expressed as a convex combination of past subgradients gi, which are “active” in
the sense that

Fk(xk+1) = f(xi) + (xk+1 − xi)
′gi.

Hint : Use quadratic programming duality in conjunction with the proximal op-
timization problem that defines xk+1.

6.19 (Bregman Distance)

Let X be a closed convex subset of ℜn, and let φ : ℜn 7→ ℜ be a convex function
that is differentiable over an open set that contains X. Define the function

D(x, y) = φ(x)− φ(y)−∇φ(y)′(x− y), ∀ y ∈ X, x ∈ ℜn.

(a) Show that if φ is strongly convex in the sense that

(

∇φ(x)−∇φ(y)
)′
(x− y) ≥ ‖x− y‖2, ∀ x, y ∈ X.

then D has the property

D(x, y) ≥
1

2
‖x− y‖2, ∀ x, y ∈ X,

with equality holding in the case where

φ(x) =
1

2
‖x‖2.

Abbreviated proof : Add the relations

D(x, y) = φ(x)− φ(y)−∇φ(y)′(x− y),

450 Convex Optimization Algorithms Chap. 6

D(y, x) = φ(y)− φ(x)−∇φ(x)′(y − x),

and use the strong convexity property of D to show that

2D(x, y) = D(x, y) +D(y, x) ≥ ‖x− y‖2.

(b) Let F : X 7→ (−∞,∞] be a closed proper convex function, and for any
y ∈ X, define

y+ = arg min
x∈X

{

F (x) +D(x, y)
}

.

Show that

F (y+) +D(y+, y) +D(x, y+) ≤ F (x) +D(x, y), ∀ x, y ∈ X.

Abbreviated proof : Use the optimality condition of Prop. 5.4.7 to obtain

F (y+) ≤ F (x) +∇xD(y+, y)′(x− y+).

Then by writing ∇xD(y+, y) = ∇φ(y+)−∇φ(y) and rearranging terms,

F (y+)−∇φ(y)′(y+ − y)−∇φ(y+)′(x− y+) ≤ F (x)−∇φ(y)′(x− y).

Add φ(x)− φ(y) to both sides.

(c) Let f : ℜn 7→ ℜ be a convex differentiable function, and denote

ℓ(y;x) = f(x) +∇f(x)′(y − x), ∀ x, y ∈ ℜn,

[cf. Eq. (6.260)]. Use part (b) with

F (y) = α ℓ(y;xk), D(x, y) =
1

2
‖x− y‖2,

to show that for all x ∈ X, we have

ℓ(xk+1;xk) +
1

2α
‖xk+1 − xk‖

2 ≤ ℓ(x;xk) +
1

2α
‖x− xk‖

2 −
1

2α
‖x− xk+1‖

2,

where xk+1 is generated by the gradient projection iteration

xk+1 = PX

(

xk − α∇f(xk)
)

.

References

[AuT03] Auslender, A., and Teboulle, M., 2003. Asymptotic Cones and
Functions in Optimization and Variational Inequalities, Springer-Verlag,
New York, NY.

[BGL09] Bonnans, F., Gilbert, J. C., Lemaréchal, C., and Sagastizábal,
C. A., 2009. Numerical Optimization: Theoretical and Practical Aspects,
Springer, NY.

[BMN01] Ben-Tal, A., Margalit, T., and Nemirovski, A., 2001. “The Or-
dered Subsets Mirror Descent Optimization Method and its Use for the
Positron Emission Tomography Reconstruction,” in Inherently Parallel Al-
gorithms in Feasibility and Optimization and Their Applications, Eds.,
Butnariu, D., Censor, Y., and Reich, S., Elsevier Science, Amsterdam,
Netherlands.

[BNO03] Bertsekas, D. P., with Nedić, A., and Ozdaglar, A. E., 2003.
Convex Analysis and Optimization, Athena Scientific, Belmont, MA.

[BaW75] Balinski, M., and Wolfe, P., (Eds.), 1975. Nondifferentiable Opti-
mization, Math. Programming Study 3, North-Holland, Amsterdam.

[BeT89] Bertsekas, D. P., and Tsitsiklis, J. N., 1989. Parallel and Dis-
tributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs,
N. J; republished by Athena Scientific, Belmont, MA, 1997.

[BeT94] Bertsekas, D. P., and Tseng, P., 1994. “Partial Proximal Minimiza-
tion Algorithms for Convex Programming,” SIAM J. on Optimization, Vol.
4, pp. 551-572.

[BeT96] Bertsekas, D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Pro-
gramming, Athena Scientific, Belmont, MA.

[BeT00] Bertsekas, D. P., and Tsitsiklis, J. N., 2000. “Gradient Convergence
in Gradient Methods,” SIAM J. on Optimization, Vol. 10, pp. 627-642.

[BeT09] Beck, A., and Teboulle, M., 2009. “A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems, SIAM J. on Imaging
Sciences, Vol. 2, pp. 183-202.

451

452 References

[BeT10] Beck, A., and Teboulle, M., 2010. “Gradient-Based Algorithms
with Applications to Signal Recovery Problems, in Convex Optimization
in Signal Processing and Communications (Y. Eldar and D. Palomar, eds.),
Cambridge University Press, pp. 42-88.

[BeY11] Bertsekas, D. P., and Yu, H., 2011 “A Unifying Polyhedral Approx-
imation Framework for Convex Optimization,” SIAM J. on Optimization,
Vol. 21, pp. 333-360.

[Ber75a] Bertsekas, D. P., 1975. “Necessary and Sufficient Conditions for a
Penalty Method to be Exact,” Math. Programming, Vol. 9, pp. 87-99.

[Ber75b] Bertsekas, D. P., 1975. “Nondifferentiable Optimization Via Ap-
proximation,” Math. Programming Study 3, Balinski, M., and Wolfe, P.,
(Eds.), North-Holland, Amsterdam, pp. 1-25.

[Ber76] Bertsekas, D. P., 1976. “Multiplier Methods: A Survey,” Automat-
ica, Vol. 12, pp. 133-145.

[Ber77] Bertsekas, D. P., 1977. “Approximation Procedures Based on the
Method of Multipliers,” J. Opt. Th. and Appl., Vol. 23, pp. 487-510.

[Ber82] Bertsekas, D. P., 1982. Constrained Optimization and Lagrange
Multiplier Methods, Academic Press, N. Y; republished by Athena Scien-
tific, Belmont, MA, 1997.

[Ber83] Bertsekas, D. P., 1983. “Asynchronous Distributed Computation of
Fixed Points,” Math. Programming, Vol. 27, pp. 107-120.

[Ber96] Bertsekas, D. P., 1996. “Incremental Least Squares Methods and
the Extended Kalman Filter,” SIAM J. on Optimization, Vol. 6, pp. 807-
822.

[Ber97] Bertsekas, D. P., 1997. “A New Class of Incremental Gradient
Methods for Least Squares Problems,” SIAM J. on Optimization, Vol. 7,
pp. 913-926.

[Ber98] Bertsekas, D. P., 1998. Network Optimization: Continuous and
Discrete Models, Athena Scientific, Belmont, MA.

[Ber99] Bertsekas, D. P., 1999. Nonlinear Programming: 2nd Edition, Athe-
na Scientific, Belmont, MA.

[Ber06] Bertsekas, D. P., 2006. “Extended Monotropic Programming and
Duality,” Lab. for Information and Decision Systems Report 2692, MIT,
March 2006, corrected in Feb. 2010; a version appeared in JOTA, 2008,
Vol. 139, pp. 209-225.

[Ber10a] Bertsekas, D. P., 2010. “Incremental Proximal Methods for Large
Scale Convex Optimization,” Lab. for Information and Decision Systems
Report LIDS-P-2847, MIT, August 2010; Math. Programming, Vol. 129,
2011, pp. 163-195.

References 453

[Ber10b] Bertsekas, D. P., 2010. “Incremental Gradient, Subgradient, and
Proximal Methods for Convex Optimization: A Survey”, Lab. for Informa-
tion and Decision Systems Report LIDS-P-2848, MIT, August 2010.

[BuQ98] Burke, J. V., and Qian, M., 1998. “A Variable Metric Proximal
Point Algorithm for Monotone Operators,” SIAM J. on Control and Opti-
mization, Vol. 37, pp. 353-375.

[CFI07] Cruz Neto, J. X., Ferreira, A. N., Iusem, A. N., and Monteiro,
R. D. C., 2007. “Dual Convergence of the Proximal Point Method with
Bregman Distances for Linear Programming,” Optimization Methods and
Software, Vol. 22, pp. 339-360.

[CFM75] Camerini, P. M., Fratta, L., and Maffioli, F., 1975. “On Improving
Relaxation Methods by Modified Gradient Techniques,” Math. Program-
ming Studies, Vol. 3, pp. 26-34.

[CeZ92] Censor, Y., and Zenios, S. A., 1992. “The Proximal Minimization
Algorithm with D-Functions,” J. Opt. Theory and Appl., Vol. 73, pp. 451-
464.

[CeZ97] Censor, Y., and Zenios, S. A., 1997. Parallel Optimization: Theory,
Algorithms, and Applications, Oxford University Press, N. Y.

[ChG59] Cheney, E. W., and Goldstein, A. A., 1959. “Newton’s Method
for Convex Programming and Tchebycheff Approximation,” Numer. Math.,
Vol. I, pp. 253-268.

[ChT93] Chen, G., and Teboulle, M., 1993. “Convergence Analysis of a
Proximal-Like Minimization Algorithm Using Bregman Functions,” SIAM
J. on Optimization, Vol. 3, pp. 538-543.

[ChT94] Chen, G., and Teboulle, M., 1994. “A Proximal-Based Decompo-
sition Method for Convex Minimization Problems,” Math. Programming,
Vol. 64, pp. 81-101.

[CoL94] Correa, R., and Lemarechal, C., 1994. “Convergence of Some Al-
gorithms for Convex Minimization,” Math. Programming, Vol. 62, pp. 261-
276.

[Dav76] Davidon, W. C., 1976. “New Least Squares Algorithms,” J. Opt.
Theory and Appl., Vol. 18, pp. 187-197.

[EcB92] Eckstein, J., and Bertsekas, D. P., 1992. “On the Douglas-Rachford
Splitting Method and the Proximal Point Algorithm for Maximal Monotone
Operators,” Math. Programming, Vol. 55, pp. 293-318.

[Eck93] Eckstein, J., 1993. “Nonlinear Proximal Point Algorithms Using
Bregman Functions, with Applications to Convex Programming,” Math.
Operations Res., Vol. 18, pp. 202-226.

454 References

[Eck98] Eckstein, J., 1998. “Approximate Iterations in Bregman-Function-
Based Proximal Algorithms,” Math. Programming, Vol. 83, pp. 113-123.

[ElM75] Elzinga, J., and Moore, T. G., 1975. “A Central Cutting Plane
Algorithm for the Convex Programming Problem,” Math. Programming,
Vol. 8, pp. 134-145.

[Erm83] Ermoliev, Yu. M., 1983. “Stochastic Quasigradient Methods and
Their Application to System Optimization,” Stochastics, Vol. 9, pp. 1-36.

[FLT02] Fukushima, M., Luo, Z. Q., and Tseng, P., 2002. “Smoothing Func-
tions for Second-Order-Cone Complementarity Problems,” SIAM Journal
on Optimization, Vol. 12, pp. 436-460.

[FaP03] Facchinei, F., and Pang, J. S., 2003. Finite-Dimensional Variational
Inequalities and Complementarity Problems, Vol. II, Springer-Verlag, N. Y.

[FeK00] Feltenmark, S., and Kiwiel, K. C., 2000. “Dual Applications of
Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex
Problems.” SIAM J. Optimization, Vol. 10, 697-721.

[FlH95] Florian, M. S., and Hearn, D., 1995. “Network Equilibrium Models
and Algorithms,” Handbooks in OR and MS, Ball, M. O., Magnanti, T.
L., Monma, C. L., and Nemhauser, G. L., (Eds.), Vol. 8, North-Holland,
Amsterdam, pp. 485-550.

[Fri56] Frisch, M. R., 1956. “La Resolution des Problemes de Programme
Lineaire par la Methode du Potential Logarithmique,” Cahiers du Semi-
naire D’Econometrie, Vol. 4, pp. 7-20.

[GZL02] Guan, X. H., Zhai, Q. Z., and Lai, F., 2002. “New Lagrangian
Relaxation Based Algorithm for Resource Scheduling with Homogeneous
Subproblems,” J. Opt. Theory and Appl., Vol. 113, pp. 6582

[Gai94] Gaivoronski, A. A., 1994. “Convergence Analysis of Parallel Back-
propagation Algorithm for Neural Networks,” Optimization Methods and
Software, Vol. 4, pp. 117-134.

[GoV02] Goffin, J. L., and Vial, J. P., 2002. “Convex Nondifferentiable
Optimization: A Survey Focussed on the Analytic Center Cutting Plane
Method,” Optimization Methods and Software, Vol. 17, pp. 805-867.

[Gri94] Grippo, L., 1994. “A Class of Unconstrained Minimization Methods
for Neural Network Training,” Optimization Methods and Software, Vol.
4, pp. 135-150.

[Gul91] Guler, O., 1991. “On the Convergence of the Proximal Point Al-
gorithm for Convex Minimization,” SIAM J. Control Optim., Vol. 29, pp.
403-419.

[Gul92] Guler, O., 1992. “New Proximal Point Algorithms for Convex Min-
imization,” SIAM J. on Optimization, Vol. 2, pp. 649-664.

References 455

[HaB70] Haarhoff, P. C., and Buys, J. D, 1970. “A New Method for the
Optimization of a Nonlinear Function Subject to Nonlinear Constraints,”
Computer J., Vol. 13, pp. 178-184.

[HLV87] Hearn, D. W., Lawphongpanich, S., and Ventura, J. A., 1987. “Re-
stricted Simplicial Decomposition: Computation and Extensions,” Math.
Programming Studies, Vol. 31, pp. 119-136.

[Hes69] Hestenes, M. R., 1969. “Multiplier and Gradient Methods,” J. Opt.
Th. and Appl., Vol. 4, pp. 303-320.

[HiL93] Hiriart-Urruty, J.-B., and Lemarechal, C., 1993. Convex Analysis
and Minimization Algorithms, Vols. I and II, Springer-Verlag, Berlin and
N. Y.

[Hoh77] Hohenbalken, B. von, 1977. “Simplicial Decomposition in Nonlin-
ear Programming,” Math. Programming, Vol. 13, pp. 49-68.

[Hol74] Holloway, C. A., 1974. “An Extension of the Frank and Wolfe
Method of Feasible Directions,” Math. Programming, Vol. 6, pp. 14-27.

[IST94] Iusem, A. N., Svaiter, B., and Teboulle, M., 1994. “Entropy-Like
Proximal Methods in Convex Programming,” Math. Operations Res., Vol.
19, pp. 790-814.

[Ius99] Iusem, A. N., 1999. “Augmented Lagrangian Methods and Proximal
Point Methods for Convex Minimization,” Investigacion Operativa.

[KaC98] Kaskavelis, C. A., and Caramanis, M. C., 1998. “Efficient La-
grangian Relaxation Algorithms for Industry Size Job-Shop Scheduling
Problems,” IIE Transactions on Scheduling and Logistics, Vol. 30, pp.
1085–1097.

[Kel60] Kelley, J. E., 1960. “The Cutting-Plane Method for Solving Convex
Programs,” J. Soc. Indust. Appl. Math., Vol. 8, pp. 703-712.

[Kib79] Kibardin, V. M., 1979. “Decomposition into Functions in the Min-
imization Problem,” Automation and Remote Control, Vol. 40, pp. 1311-
1323.

[KoB72] Kort, B. W., and Bertsekas, D. P., 1972. “A New Penalty Function
Method for Constrained Minimization,” Proc. 1972 IEEE Confer. Decision
Control, New Orleans, LA, pp. 162-166.

[KoB76] Kort, B. W., and Bertsekas, D. P., 1976. “Combined Primal-Dual
and Penalty Methods for Convex Programming,” SIAM J. on Control and
Optimization, Vol. 14, pp. 268-294.

[Kor75] Kort, B. W., 1975. “Combined Primal-Dual and Penalty Function
Algorithms for Nonlinear Programming,” Ph.D. Thesis, Dept. of Enginee-
ring-Economic Systems, Stanford Univ., Stanford, Ca.

[LMY08] Lu, Z., Monteiro, R. D. C., and Yuan, M., 2008. “Convex Opti-

456 References

mization Methods for Dimension Reduction and Coefficient Estimation in
Multivariate Linear Regression,” Report, School of Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta.

[LPS98] Larsson, T., Patriksson, M., and Stromberg, A.-B., 1998. “Er-
godic Convergence in Subgradient Optimization,” Optimization Methods
and Software, Vol. 9, pp. 93-120.

[LVB98] Lobo, M. S., Vandenberghe, L., Boyd, S., and Lebret, H., 1998.
“Applications of Second-Order Cone Programming,” Linear Algebra and
Applications, Vol. 284, pp. 193-228.

[LaP99] Larsson, T., and Patricksson, M., 1999. “Side Constrained Traffic
Equilibrium Models - Analysis, Computation and Applications,” Trans-
portation Research, Vol. 33, pp. 233-264.

[LeS93] Lemaréchal, C., and Sagastizábal, C., 1993. “An Approach to Vari-
able Metric Bundle Methods,” in Systems Modelling and Optimization,
Proc. of the 16th IFIP-TC7 Conference, Compiègne, Henry, J., and Yvon,
J.-P., (Eds.), Lecture Notes in Control and Information Sciences 197, pp.
144-162.

[LiM79] Lions, P. L., and Mercier, B., 1979. “Splitting Algorithms for the
Sum of Two Nonlinear Operators,” SIAM J. on Numerical Analysis, Vol.
16, pp. 964-979.

[LuT94] Luo, Z. Q., and Tseng, P., 1994. “Analysis of an Approximate
Gradient Projection Method with Applications to the Backpropagation Al-
gorithm,” Optimization Methods and Software, Vol. 4, pp. 85-101.

[Luq84] Luque, F.J., 1984. “Asymptotic Convergence Analysis of the Prox-
imal Point Algorithm,” SIAM J. on Control and Optimization, Vol. 22, pp.
277-293.

[Luo91] Luo, Z. Q., 1991. “On the Convergence of the LMS Algorithm
with Adaptive Learning Rate for Linear Feedforward Networks,” Neural
Computation, Vol. 3, pp. 226-245.

[MSQ98] Mifflin, R., Sun, D., and Qi, L., 1998. “Quasi-Newton Bundle-
Type Methods for Nondifferentiable Convex Optimization, SIAM J. on
Optimization, Vol. 8, pp. 583-603.

[MaS94] Mangasarian, O. L., and Solodov, M. V., 1994. “Serial and Paral-
lel Backpropagation Convergence Via Nonmonotone Perturbed Minimiza-
tion,” Optimization Methods and Software, Vol. 4, pp. 103-116.

[Mar70] Martinet, B., 1970. “Regularisation d′ Inequations Variationelles
par Approximations Successives,” Rev. Francaise Inf. Rech. Oper., Vol. 4,
pp. 154-159.

[Mar72] Martinet, B., 1972. “Determination Approchee d’un Point Fixe
d’une Application Pseudocontractante,” C. R. Acad. Sci. Paris, Vol. 274A,

References 457

pp. 163-165.

[Mif96] Mifflin, R., 1996. “A Quasi-Second-Order Proximal Bundle Algo-
rithm,” Math. Programming, Vol. 73, pp. 51-72.

[Min86] Minoux, M., 1986. Mathematical Programming: Theory and Al-
gorithms, Wiley, N. Y.

[NBB01] Nedić, A., Bertsekas, D. P., and Borkar, V. S., 2001. “Distributed
Asynchronous Incremental Subgradient Methods,” in Inherently Parallel
Algorithms in Feasibility and Optimization and Their Applications, But-
nariu, D., Censor, Y., and Reich, S., (Eds.), Elsevier Science, Amsterdam,
Netherlands.

[NeB01a] Nedić, A., and Bertsekas, D. P., 2001. “Incremental Subgradient
Methods for Nondifferentiable Optimization,” SIAM J. on Optim., Vol. 12,
pp. 109-138.

[NeB01b] Nedić, A., and Bertsekas, D. P., 2001. “Convergence Rate of
Incremental Subgradient Algorithms,” in Stochastic Optimization: Algo-
rithms and Applications, Uryasev, S., and Pardalos, P. M., (Eds.), Kluwer
Academic Publishers, Dordrecht, Netherlands, pp. 223-264.

[NeB10] Nedić, A., and Bertsekas, D. P., 2010. “The Effect of Deterministic
Noise in Subgradient Methods,” Math. Programming, Ser. A, Vol. 125, pp.
75-99.

[NeN94] Nesterov, Y., and Nemirovskii, A., 1994. Interior Point Polynomial
Algorithms in Convex Programming, SIAM, Studies in Applied Mathemat-
ics 13, Phila., PA.

[NeW88] Nemhauser, G. L., and Wolsey, L. A., 1988. Integer and Combi-
natorial Optimization, Wiley, N. Y.

[NeY83] Nemirovsky, A., and Yudin, D. B., 1983. Problem Complexity and
Method Efficiency, Wiley, N. Y.

[Ned11] Nedić, A., 2011. “Random algorithms for convex minimization
problems,” Mathematical Programming, Ser. B, Vol. 129, pp. 225-253.

[Nes83] Nesterov, Y., 1983. “A Method for Unconstrained Convex Min-
imization Problem with the Rate of Convergence O(1/k2), Doklady AN
SSSR 269, pp. 543-547; translated as Soviet Math. Dokl.

[Nes04] Nesterov, Y., 2004. Introductory Lectures on Convex Optimization,
Kluwer Academic Publisher, Dordrecht, The Netherlands.

[Nes05] Nesterov, Y., 2005. “Smooth Minimization of Nonsmooth Func-
tions,” Math. Programming, Vol. 103 pp. 127-152.

[Nur74] Nurminskii, E. A., 1974. “Minimization of Nondifferentiable Func-
tions in Presence of Noise,” Kibernetika, Vol. 10, pp. 59-61.

458 References

[OrR70] Ortega, J. M., and Rheinboldt, W. C., 1970. Iterative Solution of
Nonlinear Equations in Several Variables, Academic Press, N. Y.

[Pap81] Papavassilopoulos, G., 1981. “Algorithms for a Class of Nondiffer-
entiable Problems,” J. Opt. Th. and Appl., Vol. 34, pp. 41-82.

[Pas79] Passty, G. B., 1979. “Ergodic Convergence to a Zero of the Sum of
Monotone Operators in Hilbert Space,” J. Math. Anal. Appl., Vol. 72, pp.
383-390.

[Pen02] Pennanen, T., 2002. “Local Convergence of the Proximal Point
Algorithm and Multiplier Methods without Monotonicity,” Mathematics
of Operations Research, Vol. 27, pp. 170-191.

[PoT74] Poljak, B. T., and Tretjakov, N. V., 1974. “An Iterative Method
for Linear Programming and its Economic Interpretation,” Matecon, Vol.
10, pp. 81-100.

[PoT97] Polyak, R., and Teboulle, M., 1997. “Nonlinear Rescaling and
Proximal-Like Methods in Convex Optimization,” Math. Programming,
Vol. 76, pp. 265-284.

[Pol64] Poljak, B. T., 1964. “SomeMethods of Speeding up the Convergence
of Iteration Methods,” Z. VyC̆isl. Mat. i Mat. Fiz., Vol. 4, pp. 1-17.

[Pol79] Poljak, B. T., 1979. “On Bertsekas’ Method for Minimization of
Composite Functions,” Internat. Symp. Systems Opt. Analysis, Benoussan,
A., and Lions, J. L., (Eds.), pp. 179-186, Springer-Verlag, Berlin and N. Y.

[Pol87] Polyak B. T., Introduction to Optimization, Optimization Software
Inc., N.Y., 1987.

[Roc73b] Rockafellar, R. T., 1973. “The Multiplier Method of Hestenes and
Powell Applied to Convex Programming,” J. Opt. Th. and Appl., Vol. 12,
pp. 555-562.

[Pow69] Powell, M. J. D., 1969. “A Method for Nonlinear Constraints
in Minimizing Problems,” in Optimization, Fletcher, R., (Ed.), Academic
Press, N. Y, pp. 283-298.

[RaN05] Rabbat M. G. and Nowak R. D., “Quantized incremental algo-
rithms for distributed optimization,” IEEE Journal on Select Areas in
Communications, Vol. 23, No. 4, 2005, pp. 798–808.

[Roc73] Rockafellar, R. T., 1973. “A Dual Approach to Solving Nonlinear
Programming Problems by Unconstrained Optimization,” Math. Program-
ming, pp. 354-373.

[Roc76a] Rockafellar, R. T., 1976. “Monotone Operators and the Proximal
Point Algorithm,” SIAM J. on Control and Optimization, Vol. 14, pp. 877-
898.

References 459

[Roc76b] Rockafellar, R. T., 1976. “Solving a Nonlinear Programming Prob-
lem by Way of a Dual Problem,” Symp. Matematica, Vol. 27, pp. 135-160.

[Roc84] Rockafellar, R. T., 1984. Network Flows and Monotropic Opti-
mization, Wiley, N. Y.; republished by Athena Scientific, Belmont, MA,
1998.

[Rus89] Ruszczynski, A., 1989. “An Augmented Lagrangian Decomposition
Method for Block Diagonal Linear Programming Problems,” Operations
Res. Letters, Vol. 8, pp. 287-294.

[Sho85] Shor, N. Z., 1985. Minimization Methods for Nondifferentiable
Functions, Springer-Verlag, Berlin.

[Sho98] Shor, N. Z., 1998. Nondifferentiable Optimization and Polynomial
Problems, Kluwer Academic Publishers, Dordrecht, Netherlands.

[SoZ98] Solodov, M. V., and Zavriev, S. K., 1998. “Error Stability Proper-
ties of Generalized Gradient-Type Algorithms,” J. Opt. Theory and Appl.,
Vol. 98, pp. 663–680.

[Sol98] Solodov, M. V., 1998. “Incremental Gradient Algorithms with Step-
sizes Bounded Away from Zero,” Computational Optimization and Appli-
cations, Vol. 11, pp. 23-35.

[Spi85] Spingarn, J. E., 1985. “Applications of the Method of Partial In-
verses to Convex Programming: Decomposition,” Math. Programming,
Vol. 32, pp. 199-223.

[Str97] Stromberg, A-B., 1997. Conditional Subgradient Methods and Er-
godic Convergence in Nonsmooth Optimization, Ph.D. Thesis, Univ. of
Linkoping, Sweden.

[TBA86] Tsitsiklis, J. N., Bertsekas, D. P., and Athans, M., 1986. “Dis-
tributed Asynchronous Deterministic and Stochastic Gradient Optimiza-
tion Algorithms,” IEEE Trans. on Aut. Control, Vol. AC-31, pp. 803-812.

[TsB93] Tseng, P., and Bertsekas, D. P., 1993. “On the Convergence of
the Exponential Multiplier Method for Convex Programming,” Math. Pro-
gramming, Vol. 60, pp. 1-19.

[TsB00] Tseng, P., and Bertsekas, D. P., 2000. “An Epsilon-Relaxation
Method for Separable Convex Cost Generalized Network Flow Problems,”
Math. Progamming, Vol. 88, pp. 85-104.

[Tse98] Tseng, P., 1998. “Incremental Gradient(-Projection) Method with
Momentum Term and Adaptive Stepsize Rule,” SIAM J. on Optimization,
Vol. 8, pp. 506-531.

[Tse01] Tseng, P., 2001. “An Epsilon Out-of-Kilter Method for Monotropic
Programming,” Math. Oper. Res., Vol. 26, pp. 221-233.

[Tse04] Tseng, P., 2004. “An Analysis of the EM Algorithm and Entropy-

460 References

Like Proximal Point Methods,” Math. Operations Research, Vol. 29, pp.
27-44.

[Tse08] Tseng, P., 2008. “On Accelerated Proximal Gradient Methods for
Convex-Concave Optimization,” Report, Math. Dept., Univ. of Washing-
ton.

[Tse09] Tseng, P., 2009. “Some Convex ProgramsWithout a Duality Gap,”
Math. Programming, Vol. 116, pp. 553-578.

[VeH93] Ventura, J. A., and Hearn, D. W., 1993. “Restricted Simplicial
Decomposition for Convex Constrained Problems,” Math. Programming,
Vol. 59, pp. 71-85.

[WSV00] Wolkowicz, H., Saigal, R., and Vanderberghe, L., (eds), 2000.
Handbook of Semidefinite Programming, Kluwer, Boston.

[WaB12] Wang, M., and Bertsekas, D. P., 2012. “Incremental Constraint
Projection Methods for Variational Inequalities”, Lab. for Information and
Decision Systems Report LIDS-P-2898, MIT.

[WaB13] Wang, M., and Bertsekas, D. P., 2013. “Incremental Constraint
Projection-Proximal Methods for Nonsmooth Convex Optimization,” Lab.
for Information and Decision Systems Report LIDS-P-2907, MIT.

[Wol75] Wolfe, P., 1975. “A Method of Conjugate Subgradients for Mini-
mizing Nondifferentiable Functions,” Math. Programming Study 3, Balin-
ski, M., and Wolfe, P., (Eds.), North-Holland, Amsterdam, pp. 145-173.

[Wri97] Wright, S. J., 1997. Primal-Dual Interior Point Methods, SIAM,
Phila., PA.

[YOG08] Yin, W., Osher, S., Goldfarb, D., and Darbon, J., 2008. “Bregman
Iterative Algorithms for ℓ1-Minimization with Applications to Compressed
Sensing,” SIAM J. Imaging Sciences, Vol. 1, pp. 143-168.

[Ye97] Ye, Y., 1997. Interior Point Algorithms: Theory and Analysis, Wiley
Interscience, N. Y.

[ZLW99] Zhao, X., Luh, P. B., and Wang, J., 1999. “Surrogate Gradient
Algorithm for Lagrangian Relaxation,” J. Opt. Theory and Appl., Vol. 100,
pp. 699-712.

[ZhL02] Zhao, X., and Luh, P. B., 2002. “New Bundle Methods for Solving
Lagrangian Relaxation Dual Problems,” J. Opt. Theory and Appl., Vol.
113, pp. 373-397.

