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In this book we are primarily interested in optimization algorithms, as op-
posed to “modeling,” i.e., the formulation of real-world problems as math-
ematical optimization problems, or “theory,” i.e., conditions for strong du-
ality, optimality conditions, etc. In our treatment, we will mostly focus on
guaranteeing convergence of algorithms to desired solutions, and the asso-
ciated rate of convergence and complexity analysis. We will also discuss
special characteristics of algorithms that make them suitable for particular
types of large scale problem structures, and distributed (possibly asyn-
chronous) computation. In this chapter we provide an overview of some
broad classes of optimization algorithms, their underlying ideas, and their
performance characteristics.

Iterative algorithms for minimizing a function f : ℜn 7→ ℜ over a set
X generate a sequence {xk}, which will hopefully converge to an optimal
solution. In this book we focus on iterative algorithms for the case where X
is convex, and f is either convex or is nonconvex but differentiable. Most
of these algorithms involve one or both of the following two ideas, which
will be discussed in Sections 2.1 and 2.2, respectively:

(a) Iterative descent , whereby the generated sequence {xk} is feasible,
i.e., {xk} ⊂ X , and satisfies

φ(xk+1) < φ(xk) if and only if xk is not optimal,

where φ is a merit function, that measures the progress of the algo-
rithm towards optimality, and is minimized only at optimal points,
i.e.,

argmin
x∈X

φ(x) = argmin
x∈X

f(x).

Examples are φ(x) = f(x) and φ(x) = infx∗∈X∗ ‖x−x∗‖, where X∗ is
the set of optimal points, assumed nonempty. In some cases, iterative
descent may be the primary idea, but modifications or approximations
are introduced for a variety of reasons. For example one may modify
an iterative descent method to make it suitable for distributed asyn-
chronous computation, or to deal with random or nonrandom errors,
but in the process lose the iterative descent property. In this case,
the analysis is appropriately modified, but often maintains important
aspects of its original descent-based character.

(b) Approximation, whereby the generated sequence {xk} need not be
feasible, and is obtained by solving at each k an approximation to the
original optimization problem, i.e.,

xk+1 ∈ arg min
x∈Xk

Fk(x),

where Fk is a function that approximates f and Xk is a set that
approximates X . These may depend on the prior iterates x0, . . . , xk,
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as well as other parameters. Key ideas here are that minimization
of Fk over Xk should be easier than minimization of f over X , and
that xk should be a good starting point for obtaining xk+1 via some
(possibly special purpose) method. Of course, the approximation of
f by Fk and/or X by Xk should improve as k increases, and there
should be some convergence guarantees as k → ∞. We will summarize
the main approximation ideas of this book in Section 2.2.

A major class of problems that we aim to solve is dual problems,
which by their nature involve nondifferentiable optimization. The funda-
mental reason is that the negative of a dual function is typically a conjugate
function, which is closed and convex, but need not be differentiable. More-
over nondifferentiable cost functions naturally arise in other contexts, such
as exact penalty functions, and machine learning with ℓ1 regularization.
Accordingly many of the algorithms that we discuss in this book do not
require cost function differentiability for their application.

Still, however, differentiability plays a major role in problem formula-
tions and algorithms, so it is important to maintain a close connection be-
tween differentiable and nondifferentiable optimization approaches. More-
over, nondifferentiable problems can often be converted to differentiable
ones by using a smoothing scheme (see Section 2.2.5). We consequently
summarize in Section 2.1 some of the main ideas of iterative algorithms
that rely on differentiability, such as gradient and Newton methods, and
their incremental variants. We return to some of these ideas in Sections
6.1-6.3, but for most of the remainder of the book we focus primarily on
convex possibly nondifferentiable cost functions.

Since the present chapter has an overview character, our discussion
will not be supplemented by complete proofs; in many cases we will provide
just intuitive explanations and refer to the literature for a more detailed
analysis. In subsequent chapters we will treat various types of algorithms in
greater detail. In particular, in Chapter 3, we discuss descent-type iterative
methods that use subgradients. In Chapters 4 and 5, we discuss primarily
the approximation approach, focusing on two types of algorithms and their
combinations: polyhedral approximation and proximal, respectively. In
Chapter 6, we discuss a number of additional methods, which extend and
combine the ideas of the preceding chapters.

2.1 ITERATIVE DESCENT ALGORITHMS

Iterative algorithms generate sequences {xk} according to

xk+1 = Gk(xk),

where Gk : ℜn 7→ ℜn is some function that may depend on k, and x0
is some starting point. In a more general context, Gk may depend on
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some preceding iterates xk−1, xk−2, . . .. We are typically interested in the
convergence of the generated sequence {xk} to some desirable point. We
are also interested in questions of rate of convergence, such as for example
the number of iterations needed to bring a measure of error to within a
given tolerance, or asymptotic bounds on some measure of error as the
number of iterations increases.

A stationary iterative algorithm is obtained when Gk does not depend
on k, i.e.,

xk+1 = G(xk).

This algorithm aims to solve a fixed point problem: finding a solution of
the equation x = G(x). A classical optimization example is the gradient
iteration

xk+1 = xk − α∇f(xk), (2.1)

which aims at satisfying the optimality condition ∇f(x) = 0 for an uncon-
strained minimum of a differentiable function f : ℜn 7→ ℜ. Here α is a
positive stepsize parameter that is used to ensure that the iteration makes
progress towards the solution set of the corresponding problem. Another
example is the iteration

xk+1 = xk − α(Qxk − b) = (I − αQ)xk + αb, (2.2)

which aims at solution of the linear system Qx = b, where Q is a matrix
that has eigenvalues with positive real parts (so that the matrix I − αQ
has eigenvalues within the unit circle for sufficiently small α > 0, and the
iteration is convergent to the unique solution). If f is the quadratic function
f(x) = 1

2x
′Qx− b′x, where Q is positive definite symmetric, then we have

∇f(xk) = Qxk − b and the gradient iteration (2.1) can be written in the
form (2.2).

Convergence of the stationary iteration xk+1 = G(xk) can be ascer-
tained in a number of ways. The most common is to verify that G is a
contraction mapping with respect to some norm, i.e., for some ρ < 1, and
some norm ‖ · ‖ (not necessarily the Euclidean norm), we have

∥

∥G(x) −G(y)
∥

∥ ≤ ρ‖x− y‖, ∀ x, y ∈ ℜn.

Then it can be shown that G has a unique fixed point x∗, and xk → x∗,
starting from any x0 ∈ ℜn; this is the well-known Banach Fixed Point The-
orem (see Prop. A.4.1 in Section A.4 of Appendix A, where the contraction
and other approaches for convergence analysis are discussed). An example
is the mapping

G(x) = (I − αQ)x+ αb

of the linear iteration (2.2), when the eigenvalues of I − αQ lie strictly
within the unit circle.



Sec. 2.1 Iterative Descent Algorithms 57

The case where G is a contraction mapping provides an example of
convergence analysis based on a descent approach: at each iteration we
have

‖xk+1 − x∗‖ ≤ ρ‖xk − x∗‖, (2.3)

so the distance ‖x− x∗‖ is decreased with each iteration at a nonsolution
point x. Moreover, in this case we obtain an estimate of the convergence
rate: ‖xk − x∗‖ is decreased at least as fast as the geometric progression
{

ρk‖x0 − x∗‖
}

; this is called linear or geometric convergence.†
Many optimization algorithms involve a contraction mapping as de-

scribed above. There are also other types of convergent fixed point itera-
tions, which do not require that G is a contraction mapping. In particular,
there are cases where G is a nonexpansive mapping [ρ = 1 in Eq. (2.3)],
and there is sufficient structure in G to ensure a form of improvement of an
appropriate figure of merit at each iteration; the proximal algorithm, intro-
duced in Section 2.2.3 and discussed in detail in Chapter 5, is an important
example of this type.

There are also many cases of nonstationary iterations of the form

xk+1 = Gk(xk),

whose convergence analysis is difficult or impossible with a contraction or
nonexpansive mapping approach. An example is unconstrained minimiza-
tion of a differentiable function f with a gradient method of the form

xk+1 = xk − αk∇f(xk), (2.4)

where the stepsize αk is not constant. Still many of these algorithms admit
a convergence analysis based on a descent approach, whereby we introduce
a function φ that measures the progress of the algorithm towards optimality,
and show that

φ(xk+1) < φ(xk) if and only if xk is not optimal.

Two common cases are when φ(x) = f(x) or φ(x) = dist(x,X∗), the Eu-
clidean minimum distance of x from the setX∗ of minima of f . For example
convergence of the gradient algorithm (2.4) is often analyzed by showing
that for all k,

f(xk+1) ≤ f(xk)− γk
∥

∥∇f(xk)
∥

∥

2
,

where γk is a positive scalar that depends on αk and some characteristics
of f , and is such that

∑∞
k=0 γk = ∞; this brings to bear the convergence

† Generally, we say that a nonnegative scalar sequence {βk} converges (at

least) linearly or geometrically if there exist scalars γ > 0 and ρ ∈ (0, 1) such

that βk ≤ γρk for all k. For a discussion of different definitions of linear and

other types of convergence rate, see [OrR70], [Ber82a], and [Ber99].
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methodology of Section A.4 in Appendix A and guarantees that either
∇f(xk) → 0 or f(xk) → −∞.

In what follows in this section we will provide an overview of iterative
optimization algorithms that rely on some form of descent for their validity,
we discuss some of their underlying motivation, and we raise various issues
that will be discussed later. We will also provide in the exercises a sampling
of some related convergence analysis, while deferring to subsequent chapters
a more detailed theoretical development. Moreover, in the present section
we focus in greater detail on the differentiable cost function case and the
potential benefits of differentiability. Our focus in subsequent chapters will
be primarily on nondifferentiable problems.

2.1.1 Differentiable Cost Function Descent – Unconstrained
Problems

A natural iterative descent approach to minimizing a real-valued function
f : ℜn 7→ ℜ over a set X is based on cost improvement: starting with a
point x0 ∈ X , construct a sequence {xk} ⊂ X such that

f(xk+1) < f(xk), k = 0, 1, . . . ,

unless xk is optimal for some k, at which time the method stops.
In this context it is useful to consider the directional derivative of f

at a point x in a direction d. For a differentiable f , it is given by

f ′(x; d) = lim
α↓0

f(x+ αd) − f(x)

α
= ∇f(x)′d, (2.5)

(cf. Section A.3 of Appendix A). From this formula it follows that if dk is
a descent direction at xk, in the sense that

f ′(xk; dk) < 0,

we may reduce the cost by moving from xk along dk with a small enough
positive stepsize α. In the unconstrained case where X = ℜn, this leads to
an algorithm of the form

xk+1 = xk + αkdk, (2.6)

where dk is a descent direction at xk and αk is a positive scalar stepsize. If
no descent direction can be found at xk, i.e., f ′(xk; d) ≥ 0, for all d ∈ ℜn,
from Eq. (2.5) it follows that xk must satisfy the necessary condition for
optimality

∇f(xk) = 0.
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Gradient Methods for Differentiable Unconstrained Minimization

For the case where f is differentiable and X = ℜn, there are many popular
descent algorithms of the form (2.6). An important example is the classical
gradient method, where we use dk = −∇f(xk) in Eq. (2.6):

xk+1 = xk − αk∇f(xk).

Since for differentiable f we have

f ′(xk; d) = ∇f(xk)′d,

it follows that

−
∇f(xk)

‖∇f(xk)‖
= arg min

‖d‖≤1
f ′(xk; d)

[assuming ∇f(xk) 6= 0]. Thus the gradient method is the descent algorithm
of the form (2.6) that uses the direction that yields the greatest rate of
cost improvement. For this reason it is also called the method of steepest
descent .

Let us now discuss the convergence rate of the steepest descent method,
assuming that f is twice continuously differentiable. With proper step-
size choice, it can be shown that the method has a linear rate, assuming
that it generates a sequence {xk} that converges to a vector x∗ such that
∇f(x∗) = 0 and ∇2f(x∗) is positive definite. For example, if αk is a
sufficiently small constant α > 0, the corresponding iteration

xk+1 = xk − α∇f(xk), (2.7)

can be shown to be contractive within a sphere centered at x∗, so it con-
verges linearly.

To get a sense of this, assume for convenience that f is quadratic,†
so by adding a suitable constant to f , we have

f(x) = 1
2 (x− x∗)′Q(x− x∗), ∇f(x) = Q(x− x∗),

† Convergence analysis using a quadratic model is commonly used in nonlin-
ear programming. The rationale is that behavior of an algorithm for a positive
definite quadratic cost function is typically a correct predictor of its behavior for
a twice differentiable cost function in the neighborhood of a minimum where the
Hessian matrix is positive definite. Since the gradient is zero at that minimum,
the positive definite quadratic term dominates the other terms in the Taylor se-
ries expansion, and the asymptotic behavior of the method does not depend on
terms of order higher than two.

This time-honored line of analysis underlies some of the most widely used

unconstrained optimization methods, such as Newton, quasi-Newton, and conju-

gate direction methods, which will be briefly discussed later. However, the ratio-

nale for these methods is weakened when the Hessian is singular at the minimum,

since in this case third order terms may become significant. For this reason, when

considering algorithmic options for a given differentiable optimization problem,

it is important to consider (in addition to its cost function structure) whether

the problem is “singular or “nonsingular.”
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whereQ is the positive definite symmetric Hessian of f . Then for a constant
stepsize α, the steepest descent iteration (2.7) can be written as

xk+1 − x∗ = (I − αQ)(xk − x∗).

For α < 2/λmax, where λmax is the largest eigenvalue of Q, the matrix
I − αQ has eigenvalues strictly within the unit circle, and is a contraction
with respect to the Euclidean norm. It can be shown (cf. Exercise 2.1)
that the optimal modulus of contraction can be achieved with the stepsize
choice

α∗ =
2

M +m
,

where M and m are the minimum and maximum eigenvalues of Q. With
this stepsize, we obtain the linear convergence rate estimate

‖xk+1 − x∗‖ ≤

(

M
m − 1
M
m + 1

)

‖xk − x∗‖. (2.8)

Thus the convergence rate of steepest descent may be estimated in terms of
the condition number of Q, the ratioM/m of largest to smallest eigenvalue.
As the condition number increases to ∞ (i.e., the problem is increasingly
“ill-conditioned”) the modulus of contraction approaches 1, and the conver-
gence can be very slow. This is the dominant characteristic of the behavior
of gradient methods for the class of twice differentiable problems with pos-
itive definite Hessian. This class of problems is very broad, so condition
number issues often become the principal consideration when implementing
gradient methods in practice.

Choosing an appropriate constant stepsize may require some prelim-
inary experimentation. Another possibility is the line minimization rule,
which uses some specialized line search algorithm to determine

αk ∈ argmin
α≥0

f
(

xk − α∇f(xk)
)

.

With this rule, when the steepest descent method converges to a vector x∗

such that ∇f(x∗) = 0 and ∇2f(x∗) is positive definite, its convergence rate
is also linear, but not faster than the one of Eq. (2.8), which is associated
with an optimally chosen constant stepsize (see [Ber99], Section 1.3).

If the method converges to an optimal point x∗ where the Hessian
matrix ∇2f(x∗) is singular or does not exist, the convergence rate that we
can guarantee is typically slower than linear. For example, with a properly
chosen constant stepsize, and under some reasonable conditions (Lipschitz
continuity of ∇f), we can show that

f(xk)− f∗ ≤
c(x0)

k
, k = 1, 2, . . . , (2.9)
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where f∗ is the optimal value of f and c(x0) is a constant that depends on
the initial point x0 (see Section 6.1).

For problems where ∇f is continuous but cannot be assumed Lips-
chitz continuous at or near the minimum, it is necessary to use a stepsize
rule that can produce time-varying stepsizes. For example in the scalar case
where f(x) = |x|3/2, the steepest descent method with any constant step-
size oscillates around the minimum x∗ = 0, because the gradient grows too
fast around x∗. However, the line minimization rule as well as other rules,
such as the Armijo rule to be discussed shortly, guarantee a satisfactory
form of convergence (see the end-of-chapter exercises and the discussion of
Section 6.1).

On the other hand, with additional assumptions on the structure of
f , we can obtain a faster convergence than the O(1/k) estimate on the
cost function error of Eq. (2.9). In particular, the rate of convergence to
a singular minimum depends on the order of growth of the cost function
near that minimum; see [Dun81], which shows that if f is convex, has a
unique minimum x∗, and satisfies the growth condition

β‖x− x∗‖γ ≤ f(x)− f(x∗), ∀ x such that f(x) ≤ f(x0),

for some scalars β > 0 and γ > 2, then for the method of steepest descent
with the Armijo rule and other related rules we have

f(xk)− f(x∗) = O

(

1

k
γ

γ−2

)

. (2.10)

Thus for example, with a quartic order of growth of f (γ = 4), an O(1/k2)
estimate is obtained for the cost function error after k iterations. The paper
[Dun81] provides a more comprehensive analysis of the convergence rate of
gradient-type methods based on order of growth conditions, including cases
where the convergence rate is linear and faster than linear.

Scaling

To improve the convergence rate of the steepest descent method one may
“scale” the gradient ∇f(xk) by multiplication with a positive definite sym-
metric matrix Dk, i.e., use a direction dk = −Dk∇f(xk), leading to the
algorithm

xk+1 = xk − αkDk∇f(xk); (2.11)

cf. Fig. 2.1.1. Since for ∇f(xk) 6= 0 we have

f ′(xk; dk) = −∇f(xk)′Dk∇f(xk) < 0,

it follows that we still have a cost descent method, as long as the positive
stepsize αk is sufficiently small so that f(xk+1) < f(xk).
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xk − α∇f(xk)

xk

α∇f(xk)

X <
π

2

Level sets of f

) xk−αDk∇f(xk)

Figure 2.1.1. Illustration of descent directions. Any direction of the form

dk = −Dk∇f(xk),

where Dk is a positive definite matrix, is a descent direction because d′k∇f(xk) =
−d′kDkdk < 0. In this case dk makes an angle less than π/2 with −∇f(xk).

Scaling is a major concept in the algorithmic theory of nonlinear pro-
gramming. It is motivated by the idea of modifying the “effective condition
number” of the problem through a linear change of variables of the form

x = D
1/2
k y. In particular, the iteration (2.11) may be viewed as a steepest

descent iteration

yk+1 = yk − α∇hk(yk)

for the equivalent problem of minimizing the function hk(y) = f
(

D
1/2
k y

)

.
For a quadratic problem, where f(x) = 1

2x
′Qx− b′x, the condition number

of hk is the ratio of largest to smallest eigenvalue of the matrix D
1/2
k QD

1/2
k

(rather than Q).
Much of unconstrained nonlinear programming methodology deals

with ways to compute “good” scaling matrices Dk, i.e., matrices that result
in fast convergence rate. The “best” scaling in this sense is attained with

Dk =
(

∇2f(xk)
)−1

,

assuming that the inverse above exists and is positive definite, which asymp-
totically leads to an “effective condition number” of 1. This is Newton’s
method, which will be discussed shortly. A simpler alternative is to use a
diagonal approximation to the Hessian matrix ∇2f(xk), i.e., the diagonal
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matrix Dk that has the inverse second partial derivatives

(

∂2f(xk)

(∂xi)2

)−1

, i = 1, . . . , n,

along the diagonal. This often improves the performance of the classical
gradient method dramatically, by providing automatic scaling of the units
in which the components xi of x are measured, and also facilitates the choice
of stepsize – good values of αk are often chose to 1 (see the subsequent
discussion of Newton’s method and sources such as [Ber99], Section 1.3).

The nonlinear programming methodology also prominently includes
quasi-Newton methods, which construct scaling matrices iteratively, using
gradient information collected during the algorithmic process (see nonlin-
ear programming textbooks such as [Pol71], [GMW81], [Lue84], [DeS96],
[Ber99], [Fle00], [NoW06], [LuY08]). Some of these methods approximate
the full inverse Hessian of f , and eventually attain the fast convergence
rate of Newton’s method. Other methods use a limited number of gradient
vectors from previous iterations (have “limited memory”) to construct a
relatively crude but still effective approximation to the Hessian of f , and
attain a convergence rate that is considerably faster than the one of the
unscaled gradient method; see [Noc80], [NoW06].

Gradient Methods with Extrapolation

A variant of the gradient method, known as gradient method with mo-
mentum, involves extrapolation along the direction of the difference of the
preceding two iterates:

xk+1 = xk − αk∇f(xk) + βk(xk − xk−1), (2.12)

where βk is a scalar in [0, 1), and we define x−1 = x0. When αk and βk are
chosen to be constant scalars α and β, respectively, the method is known as
the heavy ball method [Pol64]; see Fig. 2.1.2. This is a sound method with
guaranteed convergence under a Lipschitz continuity assumption on ∇f . It
can be shown to have faster convergence rate than the corresponding gradi-
ent method where αk is constant and βk ≡ 0 (see [Pol87], Section 3.2.1, or
[Ber99], Section 1.3). In particular, for a positive definite quadratic prob-
lem, and with optimal choices of the constants α and β, the convergence
rate of the heavy ball method is linear, and is governed by the formula (2.8)
but with

√

M/m in place ofM/m. This is a substantial improvement over
the steepest descent method, although the method can still be very slow.
Simple examples also suggest that with a momentum term, the steepest
descent method is less prone to getting trapped at “shallow” local minima,
and deals better with cost functions that are alternately very flat and very
steep along the path of the algorithm.
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xk

xk−1

αk∇f(xk)

Gradient Step Extrapolation Step

Gradient Step Extrapolation Step
xk+1 = xk − α∇f(xk)

xk+1 = xk−α∇f(xk)+β(xk−xk−1)

Figure 2.1.2. Illustration of the heavy ball method (2.12), where αk ≡ α and
βk ≡ β.

A method with similar structure as (2.12), proposed in [Nes83], has
received a lot of attention because it has optimal iteration complexity prop-
erties under certain conditions, including Lipschitz continuity of ∇f . As
we will see in Section 6.2, it improves on the O(1/k) error estimate (2.9)
of the gradient method by a factor of 1/k. The iteration of this method,
when applied to unconstrained minimization of a differentiable function f
is commonly described in two steps: first an extrapolation step, to compute

yk = xk + βk(xk − xk−1)

with βk chosen in a special way so that βk → 1, and then a gradient step
with constant stepsize α, and gradient calculated at yk,

xk+1 = yk − α∇f(yk).

Compared to the method (2.12), it reverses the order of gradient calculation
and extrapolation, and uses ∇f(yk) in place of ∇f(xk).

Conjugate Gradient Methods

There is an interesting connection between the extrapolation method (2.12)
and the conjugate gradient method for unconstrained differentiable opti-
mization. This is a classical method, with an extensive theory, and the dis-
tinctive property that it minimizes an n-dimensional convex quadratic cost
function in at most n iterations, each involving a single line minimization.
Fast progress is often obtained in much less than n iterations, depending
on the eigenvalue structure of the quadratic cost [see e.g., [Ber82a] (Section
1.3.4), or [Lue84] (Chapter 8)]. The method can be implemented in several
different ways, for which we refer to textbooks such as [Lue84], [Ber99].
It is a member of the more general class of conjugate direction methods ,
which involve a sequence of exact line searches along directions that are
orthogonal with respect to some generalized inner product.
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It turns out that if the parameters αk and βk in iteration (2.12) are
chosen optimally for each k so that

(αk, βk) ∈ arg min
α∈ℜ, β∈ℜ

f
(

xk − α∇f(xk) + β(xk − xk−1)
)

, k = 0, 1, . . . ,

(2.13)
with x−1 = x0, the resulting method is an implementation of the conjugate
gradient method (see e.g., [Ber99], Section 1.6). By this we mean that if f
is a convex quadratic function, the method (2.12) with the stepsize choice
(2.13) generates exactly the same iterates as the conjugate gradient method ,
and hence minimizes f in at most n iterations. Finding the optimal pa-
rameters according to Eq. (2.13) requires solution of a two-dimensional
optimization problem in α and β, which may be impractical in the absence
of special structure. However, this optimization is facilitated in some im-
portant special cases, which also favor the use of other types of conjugate
direction methods.†

There are several other ways to implement the conjugate gradient
method, all of which generate identical iterates for quadratic cost functions,
but may differ substantially in their behavior for nonquadratic ones. One of
them, which resembles the preceding extrapolation methods, is the method
of parallel tangents or PARTAN, first proposed in the paper [SBK64]. In
particular, each iteration of PARTAN involves extrapolation and two one-
dimensional line minimizations . At the typical iteration, given xk, we
obtain xk+1 as follows:

(1) We find a vector yk that minimizes f over the line

{

y = xk − γ∇f(xk) | γ ≥ 0
}

.

(2) We generate xk+1 by minimizing f over the line that passes through
xk−1 and yk.

† Examples of favorably structured problems for conjugate direction methods

include cost functions of the form f(x) = h(Ax), where A is a matrix such that

the calculation of the vector y = Ax for a given x is far more expensive than the

calculation of h(y) and its gradient and Hessian (assuming it exists). Several of

the applications described in Sections 1.3 and 1.4 are of this type; see also the

papers [NaZ05] and [GoS10], where the application of the subspace minimization

method (2.13) and PARTAN are discussed. For such problems, calculation of a

stepsize by line minimization along a direction d, as in various types of conjugate

direction methods, is relatively inexpensive. In particular, calculation of values,

first, and second derivatives of the function g(α) ≡ f(x + αd) = h(Ax + αAd)

requires just two expensive operations: the one-time calculation of the matrix-

vector products Ax and Ad. Similarly, minimization over a subspace that passes

through x and is spanned by m directions d1, . . . , dm, requires the one-time cal-

culation of the matrix-vector products Ax and Ad1, . . . , Adm.
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, xk+1 = yk + βk(yk − xk−1),

Figure 2.1.3. Illustration of the two-step method

yk = xk − γk∇f(xk), xk+1 = yk + βk(yk − xk−1).

By writing the method equivalently as

xk+1 = xk − γk(1 + βk)∇f(xk) + βk(xk − xk−1),

we see that the heavy ball method (2.12) with constant parameters α and β is
obtained when γk ≡ α/(1 + β) and βk ≡ β. The PARTAN method is obtained
when γk and βk are chosen by line minimization, in which case the corresponding
parameter αk of iteration (2.12) is αk = γk(1 + βk).

This iteration is a special case of the gradient method with momentum
(2.12), corresponding to special choices of αk and βk. To see this, observe
that we can write iteration (2.12) as a two-step method:

yk = xk − γk∇f(xk), xk+1 = yk + βk(yk − xk−1),

where
γk =

αk
1 + βk

.

Thus starting from xk, the parameter βk is determined by the second
line search of PARTAN as the optimal stepsize along the line that passes
through xk−1 and yk, and then αk is determined as γk(1 + βk), where γk
is the optimal stepsize along the line

{

xk − γ∇f(xk) | γ ≥ 0
}

(cf. Fig. 2.1.3).
The salient property of PARTAN is that when f is convex quadratic

it is mathematically equivalent to the conjugate gradient method (it gen-
erates exactly the same iterates and terminates in at most n iterations).
For this it is essential that the line minimizations are exact, which may
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be difficult to guarantee in practice. However, PARTAN seems to be quite
resilient to line minimization errors relative to other conjugate gradient
implementations. Note that PARTAN ensures at least as large cost re-
duction at each iteration, as the steepest descent method, since the latter
method omits the second line minimization. Thus even for nonquadratic
cost functions it tends to perform faster than steepest descent, and often
considerably so. We refer to [Lue84], [Pol87], and [Ber99], Section 1.6, for
further discussion. These books also address additional issues for the con-
jugate gradient and other conjugate direction methods, such as alternative
implementations, scaling (also called preconditioning), one-dimensional line
search algorithms, and rate of convergence.

Newton’s Method

In Newton’s method the descent direction is

dk = −
(

∇2f(xk)
)−1

∇f(xk),

provided ∇2f(xk) exists and is positive definite, so the iteration takes the
form

xk+1 = xk − αk
(

∇2f(xk)
)−1

∇f(xk).

If ∇2f(xk) is not positive definite, some modification is necessary. There
are several possible modifications of this type, for which the reader may
consult nonlinear programming textbooks. The simplest one is to add to
∇2f(xk) a small positive multiple of the identity. Generally, when f is
convex, ∇2f(xk) is positive semidefinite (Prop. 1.1.10 in Appendix B), and
this facilitates the implementation of reliable Newton-type algorithms.

The idea in Newton’s method is to minimize at each iteration the
quadratic approximation of f around the current point xk given by

f̃k(x) = f(xk) +∇f(xk)′(x− xk) +
1
2 (x− xk)′∇2f(xk)(x − xk).

By setting the gradient of f̃k(x) to zero,

∇f(xk) +∇2f(xk)(x − xk) = 0,

and solving for x, we obtain as next iterate the minimizing point

xk+1 = xk −
(

∇2f(xk)
)−1

∇f(xk). (2.14)

This is the Newton iteration corresponding to a stepsize αk = 1. It follows
that, assuming αk = 1, Newton’s method finds the global minimum of a
positive definite quadratic function in a single iteration.

Newton’s method typically converges very fast asymptotically, assum-
ing that it converges to a vector x∗ such that ∇f(x∗) = 0 and ∇2f(x∗)
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is positive definite, and that a stepsize αk = 1 is used, at least after some
iteration. For a simple argument, we may use Taylor’s theorem to write

0 = ∇f(x∗) = ∇f(xk) +∇2f(xk)′(x∗ − xk) + o
(

‖xk − x∗‖
)

.

By multiplying this relation with
(

∇2f(xk)
)−1

we have

xk − x∗ −
(

∇2f(xk)
)−1

∇f(xk) = o
(

‖xk − x∗‖
)

,

so for the Newton iteration with stepsize αk = 1 we obtain

xk+1 − x∗ = o
(

‖xk − x∗‖
)

,

or, for xk 6= x∗,

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖
= lim

k→∞

o
(

‖xk − x∗‖
)

‖xk − x∗‖
= 0,

implying convergence that is faster than linear (also called superlinear).
This argument can also be used to show local convergence to x∗ with αk ≡ 1,
that is, convergence assuming that x0 is sufficiently close to x∗.

In implementations of Newton’s method, some stepsize rule is often
used to ensure cost reduction, but the rule is typically designed so that
near convergence we have αk = 1, to ensure that a superlinear convergence
rate is attained [assuming ∇2f(x∗) is positive definite at the limit x∗].
Methods that approximate Newton’s method also use a stepsize close to
1, and modify the stepsize based on the results of the computation (see
sources on nonlinear programming, such as [Ber99], Section 1.4).

The price for the fast convergence of Newton’s method is the overhead
required to calculate the Hessian matrix, and to solve the linear system of
equations

∇2f(xk)dk = −∇f(xk)

in order to find the Newton direction. There are many iterative algorithms
that are patterned after Newton’s method, and aim to strike a balance be-
tween fast convergence and high overhead (e.g., quasi-Newton, conjugate
direction, and others, extensive discussions of which may be found in non-
linear programming textbooks such as [GMW81], [DeS96], [Ber99], [Fle00],
[BSS06], [NoW06], [LuY08]).

We finally note that for some problems the special structure of the
Hessian matrix can be exploited to facilitate the implementation of New-
ton’s method. For example the Hessian matrix of the dual function of the
separable convex programming problem of Section 1.1, when it exists, has
particularly favorable structure; see [Ber99], Section 6.1. The same is true
for optimal control problems that involve a discrete-time dynamic system
and a cost function that is additive over time; see [Ber99], Section 1.9.
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Stepsize Rules

There are several methods to choose the stepsize αk in the scaled gradient
iteration (2.11). For example, αk may be chosen by line minimization:

αk ∈ argmin
α≥0

f
(

xk − αDk∇f(xk)
)

.

This can typically be implemented only approximately, with some iterative
one-dimensional optimization algorithm; there are several such algorithms
(see nonlinear programming textbooks such as [GMW81], [Ber99], [BSS06],
[NoW06], [LuY08]).

Our analysis in subsequent chapters of this book will mostly focus on
two cases: when αk is chosen to be constant ,

αk = α, k = 0, 1, . . . ,

and when αk is chosen to be diminishing to 0, while satisfying the condi-
tions†

∞
∑

k=0

αk = ∞,
∞
∑

k=0

α2
k <∞. (2.15)

A convergence analysis for these two stepsize rules is given in the end-
of-chapter exercises, and also in Chapter 3, in the context of subgradient
methods, as well as in Section 6.1.

We emphasize the constant and diminishing stepsize rules because
they are the ones that most readily generalize to nondifferentiable cost
functions. However, other stepsize rules, briefly discussed in this chap-
ter, are also important, particularly for differentiable problems, and are
used widely. One possibility is the line minimization rule discussed earlier.
There are also other rules, which are simple and are based on successive
reduction of αk, until a form of descent is achieved that guarantees con-
vergence. One of these, the Armijo rule (first proposed in [Arm66], and
sometimes called backtracking rule), is popular in unconstrained minimiza-
tion algorithm implementations. It is given by

αk = βmksk,

where mk is the first nonnegative integer m for which

f(xk)− f
(

xk − βmskDk∇f(xk)
)

≥ σβmsk∇f(xk)′Dk∇f(xk),

† The condition
∑∞

k=0
αk = ∞ is needed so that the method can approach

the minimum from arbitrarily far, and the condition
∑∞

k=0
α2
k <∞ is needed so

that αk → 0 and also for technical reasons relating to the convergence analysis

(see Section 3.2). If f is a positive definite quadratic, the steepest descent method

with a diminishing stepsize αk satisfying
∑∞

k=0
αk = ∞ can be shown to converge

to the optimal solution, but at a rate that is slower than linear.
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Figure 2.1.4. Illustration of the successive points tested by the Armijo rule along
the descent direction dk = −Dk∇f(xk). In this figure, αk is obtained as β2sk
after two unsuccessful trials. Because σ ∈ (0, 1), the set of acceptable stepsizes
begins with a nontrivial interval interval when dk 6= 0. This implies that if dk = 0,
the Armijo rule will find an acceptable stepsize with a finite number of stepsize
reductions.

where β ∈ (0, 1) and σ ∈ (0, 1) are some constants, and sk > 0 is positive
initial stepsize, chosen to be either constant or through some simplified
search or polynomial interpolation. In other words, starting with an initial
trial sk, the stepsizes βmsk, m = 0, 1, . . ., are tried successively until the
above inequality is satisfied for m = mk; see Fig. 2.1.4. We will explore
the convergence properties of this rule in the exercises.

Aside from guaranteeing cost function descent, successive reduction
rules have the additional benefit of adapting the size of the stepsize αk to
the search direction −Dk∇f(xk), particularly when the initial stepsize sk
is chosen by some simplified search process. We refer to nonlinear program-
ming sources for detailed discussions.

Note that the diminishing stepsize rule does not guarantee cost func-
tion descent at each iteration, although it reduces the cost function value
once the stepsize becomes sufficiently small. There are also some other
rules, often called nonmonotonic, which do not explicitly try to enforce
cost function descent and have achieved some success, but are based on
ideas that we will not discuss in this book; see [GLL86], [BaB88], [Ray93],
[Ray97], [BMR00], [DHS06]. An alternative approach to enforce descent
without explicitly using stepsizes is based on the trust region methodol-
ogy for which we refer to book sources such as [Ber99], [CGT00], [Fle00],
[NoW06].
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2.1.2 Constrained Problems – Feasible Direction Methods

Let us now consider minimizing a differentiable cost function f over a closed
convex subset X of ℜn. In a natural form of the cost function descent
approach, we may consider generating a feasible sequence {xk} ⊂ X with
an iteration of the form

xk+1 = xk + αkdk, (2.16)

while enforcing cost improvement. However, this is now more complicated
because it is not enough for dk to be a descent direction at xk. It must
also be a feasible direction in the sense that xk+αdk must belong to X for
small enough α > 0, in order for the new iterate xk+1 to belong to X with
suitably small choice of αk. By multiplying dk with a positive constant if
necessary, this essentially restricts dk to be of the form x̄k − xk for some
x̄k ∈ X with x̄k 6= xk. Thus, if f is differentiable, for a feasible descent
direction, it is sufficient that

dk = x̄k − xk, for some x̄k ∈ X with ∇f(xk)′(x̄k − xk) < 0.

Methods of the form (2.16), where dk is a feasible descent direction
were introduced in the 60s (see e.g., the books [Zou60], [Zan69], [Pol71],
[Zou76]), and have been used extensively in applications. We refer to them
as feasible direction methods , and we give examples of some of the most
popular ones.

Conditional Gradient Method

The simplest feasible direction method is to find at iteration k,

x̄k ∈ argmin
x∈X

∇f(xk)′(x− xk), (2.17)

and set
dk = x̄k − xk

in Eq. (2.16); see Fig. 2.1.5. Clearly ∇f(xk)′(x̄k − xk) ≤ 0, with equality
holding only if ∇f(xk)′(x − xk) ≥ 0 for all x ∈ X , which is a necessary
condition for optimality of xk.

This is the conditional gradient method (also known as the Frank-
Wolfe algorithm) proposed in [FrW56] for convex programming problems
with linear constraints, and for more general problems in [LeP65]. The
method has been used widely in many contexts, as it is theoretically sound,
quite simple, and often convenient. In particular, when X is a polyhedral
set, computation of x̄k requires the solution of a linear program. In some
important cases, this linear program has special structure, which results in
great simplifications, e.g., in the multicommodity flow problem of Example
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) x̄k

Figure 2.1.5. Illustration of the condi-
tional gradient iteration at xk. We find
x̄k, a point of X that lies farthest along
the negative gradient direction −∇f(xk).
We then set

xk+1 = xk + αk(x̄k − xk),

where αk is a stepsize from (0, 1] (the fig-
ure illustrates the case where αk is cho-
sen by line minimization).

1.4.5 (see the book [BeG92], or the surveys [FlH95], [Pat01]). There has
been intensified interest in the conditional gradient method, thanks to ap-
plications in machine learning; see e.g., [Cla10], [Jag13], [LuT13], [RSW13],
[FrG14], [HJN14], and the references quoted there.

However, the conditional gradient method often tends to converge
very slowly relative to its competitors (its asymptotic convergence rate
can be slower than linear even for positive definite quadratic programming
problems); see [CaC68], [Dun79], [Dun80]. For this reason, other methods
with better practical convergence rate properties are often preferred.

One of these methods, is the simplicial decomposition algorithm (first
proposed independently in [CaG74] and [Hol74]), which will be discussed
in detail in Chapter 4. This method is not a feasible direction method of
the form (2.16), but instead it is based on multidimensional optimizations
over approximations of the constraint set by convex hulls of finite numbers
of points. When X is a polyhedral set, it converges in a finite number of
iterations, and while this number can potentially be very large, the method
often attains practical convergence in very few iterations. Generally, simpli-
cial decomposition can provide an attractive alternative to the conditional
gradient method because it tends to be well-suited for the same type of
problems [it also requires solution of linear cost subproblems of the form
(2.17); see the discussion of Section 4.2].

Somewhat peculiarly, the practical performance of the conditional
gradient method tends to improve in highly constrained problems. An
explanation for this is given in the papers [Dun79], [DuS83], where it is
shown among others that the convergence rate of the method is linear when
the cost function is positive definite quadratic, and the constraint set is not
polyhedral but rather has a “positive curvature” property (for example it is
a sphere). When there are many linear constraints, the constraint set tends
to have very many closely spaced extreme points, and has this “positive
curvature” property in an approximate sense.
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Figure 2.1.6. Illustration of the gradi-
ent projection iteration at xk. We move
from xk along the direction−∇f(xk) and

project xk−αk∇f(xk) onto X to obtain
xk+1. We have

∇f(xk)
′(xk+1 − xk) ≤ 0,

and unless xk+1 = xk, in which case
xk minimizes f over X, the angle be-
tween ∇f(xk) and (xk+1−xk) is strictly
greater than 90 degrees, and we have

∇f(xk)
′(xk+1 − xk) < 0.

Gradient Projection Method

Another major feasible direction method, which generally achieves a faster
convergence rate than the conditional gradient method, is the gradient
projection method (originally proposed in [Gol64], [LeP65]), which has the
form

xk+1 = PX
(

xk − αk∇f(xk)
)

, (2.18)

where αk > 0 is a stepsize and PX(·) denotes projection on X (the projec-
tion is well defined since X is closed and convex; see Fig. 2.1.6).

To get a sense of the validity of the method, note that from the
Projection Theorem (Prop. 1.1.9 in Appendix B), we have

∇f(xk)′(xk+1 − xk) ≤ 0,

and by the optimality condition for convex functions (cf. Prop. 1.1.8 in
Appendix B), the inequality is strict unless xk is optimal. Thus xk+1 − xk
defines a feasible descent direction at xk, and based on this fact, we can
show the descent property f(xk+1) < f(xk) when αk is sufficiently small.

The stepsize αk is chosen similar to the unconstrained gradient me-
thod, i.e., constant, diminishing, or through some kind of reduction rule
to ensure cost function descent and guarantee convergence to the opti-
mum; see the convergence analysis of Section 6.1, and [Ber99], Section 2.3,
for a detailed discussion and references. Moreover the convergence rate
estimates given earlier for unconstrained steepest descent in the positive
definite quadratic cost case [cf. Eq. (2.8)] and in the singular case [cf. Eqs.
(2.9) and (2.10)] generalize to the gradient projection method under vari-
ous stepsize rules (see Exercise 2.1 for the former case and [Dun81] for the
latter case).
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Two-Metric Projection Methods

Despite its simplicity, the gradient projection method has some significant
drawbacks:

(a) Its rate of convergence is similar to the one of steepest descent, and
is often slow. It is possible to overcome this potential drawback by
a form of scaling. This can be accomplished with an iteration of the
form

xk+1 ∈ argmin
x∈X

{

∇f(xk)′(x− xk) +
1

2αk
(x − xk)′Hk(x − xk)

}

,

(2.19)
where Hk is a positive definite symmetric matrix and αk is a positive
stepsize. When Hk is the identity, it can be seen that this itera-
tion gives the same iterate xk+1 as the unscaled gradient projection
iteration (2.18). When Hk = ∇2f(xk) and αk = 1, we obtain a
constrained form of Newton’s method (see nonlinear programming
sources for analysis; e.g., [Ber99]).

(b) Depending on the nature of X , the projection operation may involve
substantial overhead. The projection is simple whenHk is the identity
(or more generally, is diagonal), andX consists of simple lower and/or
upper bounds on the components of x:

X =
{

(x1, . . . , xn) | bi ≤ xi ≤ b̄i, i = 1, . . . , n
}

. (2.20)

This is an important special case where the use of gradient projection
is convenient. Then the projection decomposes to n scalar projec-
tions, one for each i = 1, . . . , n: the ith component of xk+1 is obtained
by projection of the ith component of xk − αk∇f(xk),

(

xk − αk∇f(xk)
)i
,

onto the interval of corresponding bounds [bi, b̄i], and is very simple.
However, for general nondiagonal scaling the overhead for solving the
quadratic programming problem (2.19) is substantial even if X has a
simple bound structure of Eq. (2.20).

To overcome the difficulty with the projection overhead, a scaled pro-
jection method known as two-metric projection method has been proposed
for the case of the bound constraints (2.20) in [Ber82a], [Ber82b]. It has a
similar form to the scaled gradient method (2.11), and it is given by

xk+1 = PX
(

xk − αkDk∇f(xk)
)

. (2.21)

It is thus a natural and simple adaptation of unconstrained Newton-like
methods to bound-constrained optimization, including quasi-Newton meth-
ods. The main difficulty here is that an arbitrary positive definite matrix
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Dk will not necessarily yield a descent direction. However, it turns out that
if some of the off-diagonal terms of Dk that correspond to components of
xk that are at their boundary are set to zero, one can obtain descent (see
Exercise 2.8). Furthermore, one can select Dk as the inverse of a partially
diagonalized version of the Hessian matrix ∇2f(xk) and attain the fast
convergence rate of Newton’s method (see [Ber82a], [Ber82b], [GaB84]).

The idea of simple two-metric projection with partial diagonaliza-
tion may be generalized to more complex constraint sets, and it has been
adapted in [Ber82b], and subsequent papers such as [GaB84], [Dun91],
[LuT93b], to problems of the form

minimize f(x)

subject to b ≤ x ≤ b̄, Ax = c,

where A is anm×nmatrix, and b, b̄ ∈ ℜn and c ∈ ℜm are given vectors. For
example the algorithm (2.21) can be easily modified when the constraint
set involves bounds on the components of x together with a few linear
constraints, e.g., problems involving a simplex constraint such as

minimize f(x)

subject to 0 ≤ x, a′x = c,

where a ∈ ℜn and c ∈ ℜ, or a Cartesian product of simplexes. For an
example of a Newton algorithm of this type, applied to the multicommodity
flow problem of Example 1.4.5, see [BeG83]. For representative applications
in related large-scale contexts we refer to the papers [Dun91], [LuT93b],
[FJS98], [Pyt98], [GeM05], [OJW05], [TaP13], [WSK14].

The advantage that the two-metric projection approach can offer is to
identify quickly the constraints that are active at an optimal solution. After
this happens, the method reduces essentially to an unconstrained scaled
gradient method (possibly Newton method, if Dk is a partially diagonalized
Hessian matrix), and attains a fast convergence rate. This property has
also motivated variants of the two-metric projection method for problems
involving ℓ1-regularization, such as the ones of Example 1.3.2; see [SFR09],
[Sch10], [GKX10], [SKS12], [Lan14].

Block Coordinate Descent

The preceding methods require the computation of the gradient and possi-
bly the Hessian of the cost function at each iterate. An alternative descent
approach that does not require derivatives or other direction calculations
is the classical block coordinate descent method, which we will briefly de-
scribe here and consider further in Section 6.5. The method applies to the
problem

minimize f(x)

subject to x ∈ X,
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where f : ℜn 7→ ℜ is a differentiable function, and X is a Cartesian product
of closed convex sets X1, . . . , Xm:

X = X1 ×X2 × · · · ×Xm.

The vector x is partitioned as

x = (x1, x2, . . . , xm),

where each xi belongs to ℜni , so the constraint x ∈ X is equivalent to

xi ∈ Xi, i = 1, . . . ,m.

The most common case is when ni = 1 for all i, so the components xi

are scalars. The method involves minimization with respect to a single
component xi at each iteration, with all other components kept fixed.

In an example of such a method, given the current iterate xk =
(x1k, . . . , x

m
k ), we generate the next iterate xk+1 = (x1k+1, . . . , x

m
k+1), ac-

cording to the “cyclic” iteration

xik+1 ∈ arg min
ξ∈Xi

f(x1k+1, . . . , x
i−1
k+1, ξ, x

i+1
k , . . . , xmk ), i = 1, . . . ,m. (2.22)

Thus, at each iteration, the cost is minimized with respect to each of the
“block coordinate” vectors xi, taken one-at-a-time in cyclic order.

Naturally, the method makes practical sense only if it is possible to
perform this minimization fairly easily. This is frequently so when each xi

is a scalar, but there are also other cases of interest, where xi is a multi-
dimensional vector. Moreover, the method can take advantage of special
structure of f ; an example of such structure is a form of “sparsity,” where
f is the sum of component functions, and for each i, only a relatively small
number of the component functions depend on xi, thereby simplifying the
minimization (2.22). The following is an example of a classical algorithm
that can be viewed as a special case of block coordinate descent.

Example 2.1.1 (Parallel Projections Algorithm)

We are given m closed convex sets X1, . . . , Xm in ℜn, and we want to find a
point in their intersection. This problem can equivalently be written as

minimize

m
∑

i=1

‖yi − x‖2

subject to x ∈ ℜn, yi ∈ Xi, i = 1, . . . ,m,

where the variables of the optimization are x, y1, . . . , ym (the optimal solu-
tions of this problem are the points in the intersection ∩m

i=1Xi, if this inter-
section is nonempty). A block coordinate descent algorithm iterates on each
of the vectors y1, . . . , ym in parallel according to

yik+1 = PXi(xk), i = 1, . . . ,m,
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and then iterates with respect to x according to

xk+1 =
y1k+1 + · · ·+ ymk+1

m
,

which minimizes the cost function with respect to x when each yi is fixed at
yik+1.

Here is another example where the coordinate descent method
takes advantage of decomposable structure.

Example 2.1.2 (Hierarchical Decomposition)

Consider an optimization problem of the form

minimize

m
∑

i=1

(

hi(y
i) + fi(x, y

i)
)

subject to x ∈ X, yi ∈ Yi, i = 1, . . . ,m,

where X and Yi, i = 1, . . . ,m, are closed, convex subsets of corresponding
Euclidean spaces, and hi, fi are given functions, assumed differentiable. This
problem is associated with a paradigm of optimization of a system consisting
of m subsystems, with a cost function hi + fi associated with the operations
of the ith subsystem. Here yi is viewed as a vector of local decision variables
that influences the cost of the ith subsystem only, and x is viewed as a vector
of global or coordinating decision variables that affects the operation of all
the subsystems.

The block coordinate descent method has the form

yik+1 ∈ arg min
yi∈Yi

{

hi(y
i) + fi(xk, y

i)
}

, i = 1, . . . ,m,

xk+1 ∈ argmin
x∈X

m
∑

i=1

fi(x, y
i
k+1).

The method has a natural real-life interpretation: at each iteration, each
subsystem optimizes its own cost, viewing the global variables as fixed at
their current values, and then the coordinator optimizes the overall cost for
the current values of the local variables (without having to know the “local”
cost functions hi of the subsystems).

In the absence of special structure of f , differentiability is essential
for the validity of the coordinate descent method; this can be verified with
simple examples. In our convergence analysis of Chapter 6, we will also
require a form of strict convexity of f along each block component, as first
suggested in the book [Zan69] (subtle examples of nonconvergence have
been constructed in the absence of a property of this kind [Pow73]). We
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note, however, there are some interesting cases where nondifferentiabilities
with special structure can be dealt with; see Section 6.5.

There are several variants of the method, which incorporate various
descent algorithms in the solution of the block minimizations (2.22). An-
other type of variant is one where the block components are iterated in an
irregular order instead of a fixed cyclic order. In fact there is a substan-
tial theory of asynchronous distributed versions of coordinate descent, for
which we refer to the parallel and distributed algorithms book [BeT89a],
and the sources quoted there; see also the discussion in Sections 2.1.6 and
6.5.2.

2.1.3 Nondifferentiable Problems – Subgradient Methods

We will now briefly consider the minimization of a convex nondifferentiable
cost function f : ℜn 7→ ℜ (optimization of a nonconvex and nondifferen-
tiable function is a far more complicated subject, which we will not address
in this book). It is possible to generalize the steepest descent approach so
that when f is nondifferentiable at xk, we use a direction dk that minimizes
the directional derivative f ′(xk; d) subject to ‖d‖ ≤ 1,

dk ∈ arg min
‖d‖≤1

f ′(xk; d).

Unfortunately, this minimization (or more generally finding a descent
direction) may involve a nontrivial computation. Moreover, there is a wor-
risome theoretical difficulty: the method may get stuck far from the opti-
mum, depending on the stepsize rule. An example is given in Fig. 2.1.7,
where the stepsize is chosen using the minimization rule

αk ∈ argmin
α≥0

f(xk + αdk).

In this example, the algorithm fails even though it never encounters a point
where f is nondifferentiable, which suggests that convergence questions in
convex optimization are delicate and should not be treated lightly. The
problem here is a lack of continuity: the steepest descent direction may
undergo a large/discontinuous change close to the convergence limit. By
contrast, this would not happen if f were continuously differentiable at
the limit, and in fact the steepest descent method with the minimization
stepsize rule has sound convergence properties when used for differentiable
functions.

Because the implementation of cost function descent has the limita-
tions outlined above, a different kind of descent approach, based on the
notion of subgradient, is often used when f is nondifferentiable. The the-
ory of subgradients of extended real-valued functions is outlined in Section
5.4 of Appendix B, as developed in the textbook [Ber09]. The properties of
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Figure 2.1.7. An example of failure of the steepest descent method with the line
minimization stepsize rule for a convex nondifferentiable cost function [Wol75].
Here we have the two-dimensional cost function

f(x1, x2) =

{

5(9x21 + 16x22)
1/2 if x1 > |x2|,

9x1 + 16|x2| if x1 ≤ |x2|,

shown in the figure. Consider the method that moves in the direction of steepest
descent from the current point, with the stepsize determined by cost minimization
along that direction (this can be done analytically). Suppose that the algorithm
starts anywhere within the set

{

(x1, x2) | x1 > |x2| > (9/16)2 |x1|
}

.

The generated iterates are shown in the figure, and it can be verified that they
converge to the nonoptimal point (0, 0).

subgradients of real-valued convex functions will also be discussed in detail
in Section 3.1.

In the most common subgradient method (first proposed and analyzed
in the mid 60s by Shor in a series of papers, and later in the books [Sho85],
[Sho98]), an arbitrary subgradient gk of f at xk is used in an iteration of
the form

xk+1 = xk − αkgk, (2.23)

where αk is a positive stepsize. The method, together with its many vari-
ations, will be discussed extensively in this book, starting with Chapter 3.
We will see that while it may not yield a cost reduction for any value of αk
it has another descent property, which enhances the convergence process:
at any nonoptimal point xk, it satisfies

dist(xk+1, X∗) < dist(xk, X∗)

for a sufficiently small stepsize αk, where dist(x,X∗) denotes the Euclidean
minimum distance of x from the optimal solution set X∗.
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Stepsize Rules and Convergence Rate

There are several methods to choose the stepsize αk in the subgradient
iteration (2.23), some of which will be discussed in more detail in Chapter
3. Among these are:
(a) αk is chosen to be a positive constant ,

αk = α, k = 0, 1, . . . .

In this case only approximate convergence can be guaranteed, i.e.,
convergence to a neighborhood of the optimum whose size depends
on α. Moreover the convergence rate may be slow. However, there is
an important case where some favorable results can be shown. This is
when a so called sharp minimum condition holds, i.e., for some β > 0,

f∗ + β min
x∗∈X∗

‖x− x∗‖ ≤ f(x), ∀ x ∈ X, (2.24)

where f∗ is the optimal value (see Exercise 3.10). We will prove in
Prop. 5.1.6 that this condition holds when f and X are polyhedral,
as for example in dual problems arising in integer programming.

(b) αk is chosen to be diminishing to 0, while satisfying the conditions

∞
∑

k=0

αk = ∞,
∞
∑

k=0

α2
k <∞.

Then exact convergence can be guaranteed, but the convergence rate
is sublinear, even for polyhedral problems, and typically very slow.

There are also more sophisticated stepsize rules, which are based on
estimation of f∗ (see Section 3.2, and [BNO03] for a detailed account).
Still, unless the condition (2.24) holds, the convergence rate can be very
slow relative to other methods. On the other hand in the presence of
special structure, such as in additive cost problems, incremental versions
of subgradient methods (see Section 2.1.5) may perform satisfactorily.

2.1.4 Alternative Descent Methods

Aside from methods that are based on gradients or subgradients, like the
ones of the preceding sections, there are some other approaches to effect
cost function descent. A major approach, which applies to any convex cost
function is the proximal algorithm, to be discussed in detail in Chapter 5.
This algorithm embodies both the cost improvement and the approximation
ideas. In its basic form, it approximates the minimization of a closed
proper convex function f : ℜn 7→ (−∞,∞] with another minimization that
involves a quadratic term. It is given by

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

, (2.25)
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‖x − xk‖2

f(x)

X xxk+1xk x
∗

f(xk)

Figure 2.1.8. Illustration of the proximal algorithm (2.25) and its descent prop-
erty. The minimum of f(x)+ 1

2ck
‖x−xk‖

2 is attained at the unique point xk+1 at

which the graph of the quadratic function − 1
2ck

‖x− xk‖
2, raised by the amount

γk = f(xk+1) +
1

2ck
‖xk+1 − xk‖

2,

just touches the graph of f . Since γk < f(xk), it follows that f(xk+1) < f(xk),
unless xk minimizes f , which happens if and only if xk+1 = xk.

where x0 is an arbitrary starting point and ck is a positive scalar param-
eter (see Fig. 2.1.8). One of the motivations for the algorithm is that it
“regularizes” the minimization of f : the quadratic term in Eq. (2.25) when
added to f makes it strictly convex with compact level sets, so it has a
unique minimum (cf. Prop. 3.1.1 and Prop. 3.2.1 in Appendix B).

The algorithm has an inherent descent character, which facilitates its
combination with other algorithmic schemes. To see this note that since
x = xk+1 gives a lower value of f(x) + 1

2ck
‖x− xk‖2 than x = xk, we have

f(xk+1) +
1

2ck
‖xk+1 − xk‖2 ≤ f(xk).

It follows that
{

f(xk)
}

is monotonically nonincreasing; see also Fig. 2.1.8.
There are several variations of the proximal algorithm, which will be

discussed in Chapters 5 and 6. Some of these variations involve modification
of the proximal minimization problem of Eq. (2.25), motivated by the need
for a convenient solution of this problem. Here are some examples:

(a) The use of a nonquadratic proximal term Dk(x;xk) in Eq. (2.25), in
place of (1/2ck)‖x− xk‖2, i.e., the iteration

xk+1 ∈ arg min
x∈ℜn

{

f(x) +Dk(x;xk)
}

. (2.26)
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This approach may be useful whenDk has a special form that matches
the structure of f .

(b) Linear approximation of f using its gradient at xk

f(x) ≈ f(xk) +∇f(xk)′(x− xk),

assuming that f is differentiable. Then, in place of Eq. (2.26), we
obtain the iteration

xk+1 ∈ arg min
x∈ℜn

{

f(xk) +∇f(xk)′(x− xk) +Dk(x;xk)
}

.

When the proximal term Dk(x;xk) is the quadratic (1/2ck)‖x−xk‖2,
this iteration can be seen to be equivalent to the gradient projection
iteration (2.18):

xk+1 = PX
(

xk − ck∇f(xk)
)

,

but there are other choices of Dk that lead to interesting methods,
known as mirror descent algorithms .

(c) The proximal gradient algorithm, which applies to the problem

minimize f(x) + h(x)

subject to x ∈ ℜn,

where f : ℜn 7→ ℜ is a differentiable convex function, and h : ℜn 7→
(−∞,∞] is a closed proper convex function. This algorithm com-
bines ideas from the gradient projection method and the proximal
method. It replaces f with a linear approximation in the proximal
minimization, i.e.,

xk+1 ∈ arg min
x∈ℜn

{

∇f(xk)′(x− xk) + h(x) +
1

2αk
‖x− xk‖2

}

,

(2.27)
where αk > 0 is a parameter. Thus when f is a linear function,
we obtain the proximal algorithm for minimizing f + h. When h is
the indicator function of a closed convex set, we obtain the gradient
projection method. Note that there is an alternative/equivalent way
to write the algorithm (2.27):

zk = xk − αk∇f(xk), xk+1 ∈ arg min
x∈ℜn

{

h(x) +
1

2αk
‖x− zk‖2

}

,

(2.28)
as can be verified by expanding the quadratic

‖x− zk‖2 =
∥

∥x− xk + αk∇f(xk)
∥

∥

2
.
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Thus the method alternates gradient steps on f with proximal steps
on h. The advantage that this method may have over the proximal
algorithm is that the proximal step in Eq. (2.28) is executed with
h rather than with f + h, and this may be significant if h has sim-
ple/favorable structure (e.g., h is the ℓ1 norm or a distance function
to a simple constraint set), while f has unfavorable structure. Under
relatively mild assumptions, it can be shown that the method has a
cost function descent property, provided the stepsize α is sufficiently
small (see Section 6.3).

In Section 6.7, we will also discuss another descent approach, called
ǫ-descent , which aims to avoid the difficulties due to the discontinuity of
the steepest descent direction (cf. Fig. 2.1.7). This is done by obtaining
a descent direction via projection of the origin on an ǫ-subdifferential, an
enlarged version of the subdifferential. The method is theoretically interest-
ing and will be used to establish conditions for strong duality in extended
monotropic programming, an important class of problems with partially
separable structure, to be discussed in Section 4.4.

Finally, we note that there are a few types of descent methods that
we will not discuss at all, either because they are based on ideas that do
not connect well with convexity, or because they are not well suited for the
type of large-scale problems that we emphasize in this book. Included are
direct search methods that do not use derivatives, such as the Nelder-Mead
simplex algorithm [DeT91], [Tse95], [LRW98], [NaT02], feasible direction
methods such as reduced gradient and gradient projection methods based
on manifold suboptimization [GiM74], [GMW81], [MoT89], and sequen-
tial quadratic programming methods [Ber82a], [Ber99], [NoW06]. Some of
these methods have extensive literature and applications, but are beyond
our scope.

2.1.5 Incremental Algorithms

An interesting form of approximate gradient, or more generally subgradient
method, is an incremental variant, which applies to minimization over a
closed convex set X of an additive cost function of the form

f(x) =
m
∑

i=1

fi(x),

where the functions fi : ℜn 7→ ℜ are either differentiable or convex and
nondifferentiable. We mentioned several contexts where cost functions of
this type arise in Section 1.3. The idea of the incremental approach is to
sequentially take steps along the subgradients of the component functions
fi, with intermediate adjustment of x after processing each fi.

Incremental methods are interesting when m is very large, so a full
subgradient step is very costly. For such problems one hopes to make
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progress with approximate but much cheaper incremental steps. Incre-
mental methods are also well-suited for problems where m is large and
the component functions fi become known sequentially, over time. Then
one may be able to operate on each component as it reveals itself, with-
out waiting for the other components to become known, i.e., in an on-line
fashion.

In a common type of incremental subgradient method, an iteration is
viewed as a cycle of m subiterations . If xk is the vector obtained after k
cycles, the vector xk+1 obtained after one more cycle is

xk+1 = ψm,k, (2.29)

where starting with

ψ0,k = xk,

we obtain ψm,k after the m steps

ψi,k = PX(ψi−1,k − αkgi,k), i = 1, . . . ,m, (2.30)

with gi,k being a subgradient of fi at ψi−1,k [or the gradient ∇fi(ψi−1,k)
in the differentiable case].

In a randomized version of the method, given xk at iteration k, an
index ik is chosen from the set {1, . . . ,m} randomly, and the next iterate
xk+1 is generated by

xk+1 = PX(xk − αkgik), i = 1, . . . ,m, (2.31)

where gik is a subgradient of fik at xk. Here it is important that all
indexes are chosen with equal probability. It turns out that there is a rate
of convergence advantage for this and other types of randomization, as we
will discuss in Section 6.4.2. We will ignore for the moment the possibility
of randomizing the component selection, and assume cyclic selection as in
Eqs. (2.29)-(2.30).

In the present section we will explain the ideas underlying incremental
methods by focusing primarily on the case where the component functions
fi are differentiable. We will thus consider methods that compute at each
step a component gradient ∇fi and possibly Hessian matrix ∇2fi. We will
discuss the case where fi may be nondifferentiable in Section 6.4, after the
analysis of nonincremental subgradient methods to be given in Section 3.2.

Incremental Gradient Method

Assume that the component functions fi are differentiable. We refer to the
method

xk+1 = ψm,k, (2.32)
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where starting with ψ0,k = xk, we generate ψm,k after the m steps

ψi,k = PX
(

ψi−1,k − αk∇fi(ψi−1,k)
)

, i = 1, . . . ,m, (2.33)

[cf. (2.29)-(2.30)], as the incremental gradient method . A well known and
important example of such a method is the following. Together with its
many variations, it is widely used in computerized imaging; see e.g., the
book [Her09].

Example 2.1.3: (Kaczmarz Method)

Let

fi(x) =
1

2‖ci‖2
(c′ix− bi)

2, i = 1, . . . ,m,

where ci are given nonzero vectors in ℜn and bi are given scalars, so we have
a linear least squares problem. The constant term 1/(2‖ci‖2) multiplying
each of the squared functions (c′ix − bi)

2 serves a scaling purpose: with its
inclusion, all the components fi have a Hessian matrix

∇2fi(x) =
1

‖ci‖2
cic

′
i

with trace equal to 1. This type of scaling is often used in least squares
problems (see [Ber99] for explanations). The incremental gradient method
(2.32)-(2.33) takes the form xk+1 = ψm,k, where ψm,k is obtained after the
m steps

ψi,k = ψi−1,k − αk

‖ci‖2
(c′iψi−1,k − bi)ci, i = 1, . . . ,m, (2.34)

starting with ψ0,k = xk (see Fig. 2.1.9).
The stepsize αk may be chosen in a number of different ways, but if αk is

chosen identically equal to 1, αk ≡ 1, we obtain the Kaczmarz method, which
dates to 1937 [Kac37]; see Fig. 2.1.9(a). The interpretation of the iteration
(2.34) in this case is very simple: ψi,k is obtained by projecting ψi,k−1 onto
the hyperplane defined by the single equation c′ix = bi. Indeed from Eq. (2.34)
with αk = 1, it is easily verified that c′iψi,k = bi and that ψi,k − ψi,k−1 is
orthogonal to the hyperplane, since it is proportional to its normal ci. (There
are also other related methods involving alternating projections on subspaces
or other convex sets, one of them attributed to von Neumann from 1933; see
Section 6.4.4.)

If the system of equations c′ix = bi, i = 1, . . . ,m, is consistent, i.e.,
has a unique solution x∗, then the unique minimum of

∑m

i=1
fi(x) is x∗. In

this case it turns out that for a constant stepsize αk ≡ α, with 0 < α < 2,
the method converges to x∗. The convergence process is illustrated in Fig.
2.1.9(b) for the case αk ≡ 1: the distance ‖ψi,k − x∗‖ is guaranteed not to
increase for any i within cycle k, and to strictly decrease for at least one i, so
xk+1 will be closer to x∗ than xk (assuming xk 6= x∗). Generally, the order
in which the equations are taken up for iteration can affect significantly the
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(a) . (b) The convergence process for the case where the

Figure 2.1.9. Illustration of the Kaczmarz method (2.34) with unit stepsize
αk ≡ 1: (a) ψi,k is obtained by projecting ψi−1,k onto the hyperplane defined

by the single equation c′ix = bi. (b) The convergence process for the case
where the system of equations c′ix = bi, i = 1, . . . , m, is consistent and has
a unique solution x∗. Here m = 3, and xk is the vector obtained after k
cycles through the equations. Each incremental iteration decreases the dis-
tance to x∗, unless the current iterate lies on the hyperplane defined by the
corresponding equation.

performance. In particular, faster convergence can be shown if the order is
randomized in a special way; see [StV09].

If the system of equations

c′ix = bi, i = 1, . . . ,m,

is inconsistent, the method does not converge with a constant stepsize; see
Fig. 2.1.10. In this case a diminishing stepsize αk is necessary for convergence
to an optimal solution. These convergence properties will be discussed further
later in this section, and in Chapters 3 and 6.

Convergence Properties of Incremental Methods

The motivation for the incremental approach is faster convergence. In par-
ticular, we hope that far from the solution, a single cycle of the incremental
gradient method will be as effective as several (as many as m) iterations
of the ordinary gradient method (think of the case where the components
fi are similar in structure). Near a solution, however, the incremental
method may not be as effective. Still, the frequent superiority of the incre-
mental method when far from convergence can be a decisive advantage for
problems where solution accuracy is not of paramount importance.

To be more specific, we note that there are two complementary per-
formance issues to consider in comparing incremental and nonincremental
methods:
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Figure 2.1.10. Illustration of the Kacz-
marz method (2.34) with αk ≡ 1 for the
case where the system of equations c′ix =
bi, i = 1, . . . ,m, is inconsistent. In this
figure there are three equations with cor-
responding hyperplanes as shown. The
method approaches a neighborhood of the
optimal solution, and then oscillates. A
similar behavior would occur if the step-
size αk were a constant α ∈ (0, 1), except
that the size of the oscillation would di-
minish with α.

(a) Progress when far from convergence. Here the incremental method
can be much faster. For an extreme case let X = ℜn (no constraints),
and take m large and all components fi identical to each other. Then
an incremental iteration requires m times less computation than a
classical gradient iteration, but gives exactly the same result, when
the stepsize is appropriately scaled to be m times larger. While this
is an extreme example, it reflects the essential mechanism by which
incremental methods can be much superior: far from the minimum
a single component gradient will point to “more or less” the right
direction, at least most of the time.

(b) Progress when close to convergence. Here the incremental method
can be inferior. As a case in point, assume that all components fi
are differentiable functions. Then the nonincremental gradient pro-
jection method can be shown to converge with a constant stepsize
under reasonable assumptions, as we will see in Section 6.1. How-
ever, the incremental method requires a diminishing stepsize, and its
ultimate rate of convergence can be much slower. When the compo-
nent functions fi are nondifferentiable, both the nonincremental and
the incremental subgradient methods require a diminishing stepsize.
The nonincremental method tends to require a smaller number of it-
erations, but each of the iterations involves all the components fi and
thus larger computation overhead, so that on balance, in terms of
computation time, the incremental method tends to perform better.

As an illustration consider the following example.

Example 2.1.4:

Consider a scalar linear least squares problem where the components fi have
the form

fi(x) =
1
2
(cix− bi)

2, x ∈ ℜ,
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where ci and bi are given scalars with ci 6= 0 for all i. The minimum of each
of the components fi is

x∗
i =

bi
ci
,

while the minimum of the least squares cost function f =
∑m

i=1
fi is

x∗ =

∑m

i=1
cibi

∑m

i=1
c2i

.

It can be seen that x∗ lies within the range of the component minima

R =
[

min
i
x∗
i , max

i
x∗
i

]

,

and that for all x outside the region R, the gradient

∇fi(x) = (cix− bi)ci

has the same sign as ∇f(x) (see Fig. 2.1.11). As a result, when outside the
region R, the incremental gradient method

ψi = ψi−1 − αk(ciψi−1 − bi)ci

approaches x∗ at each step, provided the stepsize αk is small enough. In fact
it is sufficient that

αk ≤ min
i

1

c2i
.

However, for x inside the region R, the ith step of a cycle of the in-
cremental gradient method need not make progress. It will approach x∗ (for
small enough stepsize αk) only if the current point ψi−1 does not lie in the
interval connecting x∗

i and x∗. This induces an oscillatory behavior within R,
and as a result, the incremental gradient method will typically not converge
to x∗ unless αk → 0.

Let us now compare the incremental gradient method with the nonin-
cremental version, which takes the form

xk+1 = xk − αk

m
∑

i=1

(cixk − bi)ci.

It can be shown that this method converges to x∗ for any constant stepsize
αk ≡ α satisfying

0 < α ≤ 1
∑m

i=1
c2i
.

On the other hand, for x outside the region R, an iteration of the nonin-
cremental method need not make more progress towards the solution than
a single step of the incremental method. In other words, with comparably
intelligent stepsize choices, far from the solution (outside R), a single cy-
cle through the entire set of component functions by the incremental method
is roughly as effective as m iterations by the nonincremental method, which
require m times as many component gradient calculations.
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Figure 2.1.11. Illustrating the advantage of incrementalism when far from
the optimal solution. The region of component minima

R =

[

min
i
x∗i , max

i
x∗i

]

,

is labeled as the “region of confusion.” It is the region where the method
does not have a clear direction towards the optimum. The ith step in an
incremental gradient cycle is a gradient step for minimizing (cix − bi)

2, so

if x lies outside the region of component minima R =
[

mini x∗i , maxi x∗i

]

,

(labeled as the “farout region”) and the stepsize is small enough, progress
towards the solution x∗ is made.

Example 2.1.5:

The preceding example assumes that each component function fi has a min-
imum, so that the range of component minima is defined. In cases where
the components fi have no minima, a similar phenomenon may occur. As an
example consider the case where f is the sum of increasing and decreasing
convex exponentials, i.e.,

fi(x) = aie
bix, x ∈ ℜ,

where ai and bi are scalars with ai > 0 and bi 6= 0. Let

I+ = {i | bi > 0}, I− = {i | bi < 0},

and assume that I+ and I− have roughly equal numbers of components. Let
also x∗ be the minimum of

∑m

i=1
fi.

Consider the incremental gradient method that given the current point,
call it xk, chooses some component fik and iterates according to the incre-
mental iteration

xk+1 = xk − αk∇fik (xk).
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Then it can be seen that if xk >> x∗, xk+1 will be substantially closer to x∗ if
i ∈ I+, and negligibly further away than x∗ if i ∈ I−. The net effect, averaged
over many incremental iterations, is that if xk >> x∗, an incremental gradient
iteration makes roughly one half the progress of a full gradient iteration, with
m times less overhead for calculating gradients. The same is true if xk << x∗.
On the other hand as xk gets closer to x∗ the advantage of incrementalism is
reduced, similar to the preceding example. In fact in order for the incremental
method to converge, a diminishing stepsize is necessary, which will ultimately
make the convergence slower than the one of the nonincremental gradient
method with a constant stepsize.

The preceding examples rely on x being one-dimensional, but in many
multidimensional problems the same qualitative behavior can be observed.
In particular, the incremental gradient method, by processing the ith com-
ponent fi, can make progress towards the solution in the region where the
component function gradient ∇fi(ψi−1) makes an angle less than 90 de-
grees with the full cost function gradient ∇f(ψi−1). If the components fi
are not “too dissimilar,” this is likely to happen in a region of points that
are not too close to the optimal solution set.

Stepsize Selection

The choice of the stepsize αk plays an important role in the performance
of incremental gradient methods. On close examination, it turns out that
the iterate differential xk − xk+1 corresponding to a full cycle of the in-
cremental gradient method, and the corresponding vector αk∇f(xk) of its
nonincremental counterpart differ by an error that is proportional to the
stepsize (see the discussion in Exercises 2.6 and 2.10). For this reason a
diminishing stepsize is essential for convergence to a minimizing point of
f . However, it turns out that a peculiar form of convergence also typically
occurs for the incremental gradient method if the stepsize αk is a constant
but sufficiently small α. In this case, the iterates converge to a “limit cy-
cle,” whereby the ith iterates ψi within the cycles converge to a different
limit than the jth iterates ψj for i 6= j. The sequence {xk} of the iterates
obtained at the end of cycles converges, except that the limit obtained need
not be optimal even if f is convex. The limit tends to be close to an optimal
point when the constant stepsize is small [for analysis of the case where the
components fi are quadratic, see Exercise 2.13(a), [BeT96] (Section 3.2),
and [Ber99] (Section 1.5), where a linear convergence rate is also shown].

In practice, it is common to use a constant stepsize for a (possibly
prespecified) number of iterations, then decrease the stepsize by a certain
factor, and repeat, up to the point where the stepsize reaches a prespecified
minimum. An alternative possibility is to use a stepsize αk that diminishes
to 0 at an appropriate rate [cf. Eq. (2.15)]. In this case convergence can be
shown under reasonable conditions; see Exercise 2.10.
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Still another possibility is to use an adaptive stepsize rule, whereby
the stepsize is reduced (or increased) when the progress of the method indi-
cates that the algorithm is oscillating because it operates within (or outside,
respectively) the region of confusion. There are formal ways to implement
such stepsize rules with sound convergence properties (see [Gri94], [Tse98],
[MYF03]). One of the ideas is to look at a batch of incremental updates
ψi, . . . , ψi+M , for some relatively large M ≤ m, and compare ‖ψi −ψi+M‖

with
∑M

ℓ=1 ‖ψ1+ℓ−1 − ψi+ℓ‖. If the ratio of these two numbers is “small”
this suggests that the method is oscillating.

Incremental gradient and subgradient methods have a rich theory,
which includes convergence and rate of convergence analysis, optimization
and randomization issues of the component order selection, and distributed
computation aspects. Moreover they admit interesting combinations with
other methods, such as the proximal algorithm. We will more fully discuss
their properties and extensions in Chapter 6, Section 6.4.

Aggregated Gradient Methods

Another variant of incremental gradient is the incremental aggregated gra-
dient method , which has the form

xk+1 = PX

(

xk − αk

m−1
∑

ℓ=0

∇fik−ℓ
(xk−ℓ)

)

, (2.35)

where fik is the new component function selected for iteration k. Here,
the component indexes ik may either be selected in a cyclic order [ik =
(k modulo m) + 1], or according to some randomization scheme, consis-
tently with Eq. (2.31). Also for k < m, the summation should go up to
ℓ = k, and α should be replaced by a corresponding larger value, such
as αk = mα/(k + 1). This method, first proposed in [BHG08], computes
the gradient incrementally, one component per iteration, but in place of
the single component gradient, it uses an approximation to the total cost
gradient ∇f(xk), which is the sum of the component gradients computed
in the past m iterations.

There is analytical and experimental evidence that by aggregating
the component gradients one may be able to attain a faster asymptotic
convergence rate, by ameliorating the effect of approximating the full gra-
dient with component gradients; see the original paper [BHG08], which
provides an analysis for quadratic problems, the paper [SLB13], which pro-
vides a more general convergence and convergence rate analysis, and ex-
tensive computational results, and the papers [Mai13], [Mai14], [DCD14],
which describe related methods. The expectation of faster convergence
should be tempered, however, because in order for the effect of aggregat-
ing the component gradients to fully manifest itself, at least one pass (and
possibly quite a few more) through the components must be made, which
may be too long if m is very large.
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A drawback of this aggregated gradient method is that it requires that
the most recent component gradients be kept in memory, so that when a
component gradient is reevaluated at a new point, the preceding gradient
of the same component is discarded from the sum of gradients of Eq. (2.35).
There have been alternative implementations of the incremental aggregated
gradient method idea that ameliorate this memory issue, by recalculating
the full gradient periodically and replacing an old component gradient by
a new one, once it becomes available; see [JoZ13], [ZMJ13], [XiZ14]. For
an example, instead of the gradient sum

sk =
m−1
∑

ℓ=0

∇fik−ℓ
(xk−ℓ),

in Eq. (2.35), such a method may use s̃k, updated according to

s̃k = ∇fik (xk)−∇fik (x̃k) + s̃k−1,

where s̃0 is the full gradient computed at the start of the current cycle,
and x̃k is the point at which this full gradient has been calculated. Thus
to obtain s̃k one only needs to compute the difference of the two gradients

∇fik(xk)−∇fik(x̃k)

and add it to the current approximation of the full gradient s̃k−1. This by-
passes the need for extensive memory storage, and with proper implemen-
tation, typically leads to small degradation in performance. In particular,
convergence with a sufficiently small constant stepsize, with an attendant
superior convergence rate over the incremental gradient method, has been
shown.

Incremental Gradient Method with Momentum

There is an incremental version of the gradient method with momentum
or heavy ball method, discussed in Section 2.1.1 [cf. Eq. (2.12)]. It is given
by

xk+1 = xk − αk∇fik (xk) + βk(xk − xk−1), (2.36)

where fik is the component function selected for iteration k, βk is a scalar
in [0, 1), and we define x−1 = x0; see e.g., [MaS94], [Tse98]. As noted
earlier, special nonincremental methods with similarities to the one above
have optimal iteration complexity properties under certain conditions; cf.
Section 6.2. However, there have been no proposals of incremental versions
of these optimal complexity methods.

The heavy ball method (2.36) is related with the aggregated gradient
method (2.35) when βk ≈ 1. In particular, when αk ≡ α and βk ≡ β, the
sequence generated by Eq. (2.36) satisfies

xk+1 = xk − α

k
∑

ℓ=0

βℓ∇fik−ℓ
(xk−ℓ) (2.37)
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[both iterations (2.35) and (2.37) involve different types of diminishing de-
pendence on past gradient components]. Thus, the heavy ball iteration
(2.36) provides an approximate implementation of the incremental aggre-
gated gradient method (2.35), while it does not have the memory storage
issue of the latter.

A further way to intertwine the ideas of the aggregated gradient
method (2.35) and the heavy ball method (2.36) for the unconstrained
case (X = ℜn) is to form an infinite sequence of components

f1, f2, . . . , fm, f1, f2, . . . , fm, f1, f2, . . . , (2.38)

and group together blocks of successive components into batches. One way
to implement this idea is to add p preceding gradients (with 1 < p < m) to
the current component gradient in iteration (2.36), thus iterating according
to

xk+1 = xk − αk

p
∑

ℓ=0

∇fik−ℓ
(xk−ℓ) + βk(xk − xk−1). (2.39)

Here fik is the component function selected for iteration k using the order of
the sequence (2.38). This essentially amounts to reformulating the problem
by redefining the components as sums of p+ 1 successive components and
applying an approximation of the incremental heavy ball method (2.36).
The advantage of the method (2.39) over the aggregated gradient method
is that it requires keeping in memory only p previous component gradients,
and p can be chosen according to the memory limitations of the given
computational environment. Generally in incremental methods, grouping
together several components fi, a process sometimes called batching, tends
to reduce the size of the region of confusion (cf. Fig. 2.1.11), and with
a small region of confusion, the incentive for aggregating the component
gradients diminishes (see [Ber97] and [FrS12], for different implementations
and analysis of this idea). The process of batching can also be implemented
adaptively, based on some form of heuristic detection that the method has
entered the region of confusion.

Stochastic Subgradient Methods

Incremental subgradient methods are related to methods that aim to min-
imize an expected value

f(x) = E
{

F (x,w)
}

,

where w is a random variable, and F (·, w) : ℜn 7→ ℜ is a convex function for
each possible value of w. The stochastic subgradient method for minimizing
f over a closed convex set X is given by

xk+1 = PX
(

xk − αkg(xk, wk)
)

, (2.40)
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where wk is a sample of w and g(xk, wk) is a subgradient of F (·, wk) at
xk. This method has a rich theory and a long history, particularly for
the case where F (·, w) is differentiable for each value of w (for representa-
tive references, see [PoT73], [Lju77], [KuC78], [TBA86], [Pol87], [BeT89a],
[BeT96], [Pfl96], [LBB98], [BeT00], [KuY03], [Bot05], [BeL07], [Mey07],
[Bor08], [BBG09], [Ben09], [NJL09], [Bot10], [BaM11], [DHS11], [ShZ12],
[FrG13], [NSW14]). It is strongly related to the classical algorithmic field
of stochastic approximation; see the books [KuC78], [BeT96], [KuY03],
[Spa03], [Mey07], [Bor08], [BPP13].

If we view the expected value cost E
{

F (x,w)
}

as a weighted sum of
cost function components, we see that the stochastic subgradient method
(2.40) is related to the incremental subgradient method

xk+1 = PX(xk − αkgi,k) (2.41)

for minimizing a finite sum
∑m
i=1 fi, when randomization is used for com-

ponent selection [cf. Eq. (2.31)]. An important difference is that the former
method involves sequential sampling of cost components F (x,w) from an
infinite population under some statistical assumptions, while in the latter
the set of cost components fi is predetermined and finite. However, it is
possible to view the incremental subgradient method (2.41), with uniform
randomized selection of the component function fi (i.e., with ik chosen
to be any one of the indexes 1, . . . ,m, with equal probability 1/m, and
independently of preceding choices), as a stochastic subgradient method.

Despite the apparent similarity of the incremental and the stochastic
subgradient methods, the view that the problem

minimize f(x) =

m
∑

i=1

fi(x)

subject to x ∈ X,

(2.42)

can simply be treated as a special case of the problem

minimize f(x) = E
{

F (x,w)
}

subject to x ∈ X,

is questionable.
One reason is that once we convert the finite sum problem to a

stochastic problem, we preclude the use of methods that exploit the finite
sum structure, such as the aggregated gradient methods we discussed ear-
lier. Under certain conditions, these methods offer more attractive conver-
gence rate guarantees than incremental and stochastic gradient methods,
and can be very effective for many problems, as we have noted.

Another reason is that the finite-component problem (2.42) is often
genuinely deterministic, and to view it as a stochastic problem at the outset
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may mask some of its important characteristics, such as the number m of
cost components, or the sequence in which the components are ordered
and processed. These characteristics may potentially be algorithmically
exploited. For example, with insight into the problem’s structure, one
may be able to discover a special deterministic or partially randomized
order of processing the component functions that is superior to a uniform
randomized order.

Example 2.1.6:

Consider the one-dimensional problem

minimize f(x) =
1

2

m
∑

i=1

(x− wi)
2

subject to x ∈ ℜ,

where the scalars wi are given by

wi =
{

1 if i: odd,
−1 if i: even.

Assuming that m is an even number, the optimal solution is x∗ = 0.
An incremental gradient method with the commonly used diminishing

stepsize αk = 1/(k + 1) chooses a component index ik at iteration k, and
updates xk according to

xk+1 = xk − 1

k + 1
(xk − wik

),

starting with some initial iterate x0. It is then easily verified by induction
that

xk =
x0

k
+
wi0 + · · ·+ wik−1

k
, k = 1, 2, . . . .

Thus the iteration error, which is xk (since x∗ = 0), consists of two terms. The
first is the error term x0/k, which is independent of the method of selecting
ik, and the second is the error term

ek =
wi0 + · · ·+ wik−1

k
,

which depends on the selection method for ik.
If ik is chosen by independently randomizing with equal probability 1/2

over the odd and even cost components, then ek will be a random variable
whose variance can be calculated to be 1/2k. Thus the standard deviation of
the error xk will be of order O(1/

√
k). If on the other hand ik is chosen by the

deterministic order, which alternates between the odd and even components,
we will have ek = 1/k for the odd iterations and ek = 0 for the even iterations,
so the error xk will be of order O(1/k), much smaller than the one for the
randomized order. Of course, this is a favorable deterministic order, and we
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may obtain much worse results with an unfavorable deterministic order (such
as selecting first all the odd components and then all the even components).
However, the point here is that if we take the view that we are minimizing
an expected value, we are disregarding at the outset information about the
problem’s structure that could be algorithmically useful.

A related experimental observation is that by suitably mixing the
deterministic and the stochastic order selection methods we may produce
better practical results. As an example, a popular technique for incremental
methods, called random reshuffling, is to process the component functions
fi in cycles, with each component selected once in each cycle, and to re-
order randomly the components after each cycle. This alternative order
selection scheme has the nice property of allocating exactly one computa-
tion slot to each component in an m-slot cycle (m incremental iterations).
By comparison, choosing components by uniform sampling allocates one
computation slot to each component on the average, but some components
may not get a slot while others may get more than one. A nonzero variance
in the number of slots that any fixed component gets within a cycle, may
be detrimental to performance, and suggests that reshuffling randomly the
order of the component functions after each cycle works better. While it
seems difficult to establish this fact analytically, a justification is suggested
by the view of the incremental gradient method as a gradient method with
error in the computation of the gradient (see Exercise 2.10). The error has
apparently greater variance in the uniform sampling method than in the
random reshuffling method. Heuristically, if the variance of the error is
larger, the direction of descent deteriorates, suggesting slower convergence.
For some experimental evidence, see [Bot09], [ReR13].

Let us also note that in Section 6.4 we will compare more formally
various component selection orders in incremental methods. Our analysis
will indicate that in the absence of problem-specific knowledge that can
be exploited to select a favorable deterministic order, a uniform random-
ized order (each component fi chosen with equal probability 1/m at each
iteration, independently of preceding choices) has superior worst-case com-
plexity.

Our conclusion is that in incremental methods, it may be beneficial
to search for a favorable order for processing the component functions fi,
exploiting whatever problem-specific information may be available, rather
than ignore all prior information and apply a uniform randomized order
of the type commonly used in stochastic gradient methods. However, if
a favorable order cannot be found, a randomized order is usually better
than a fixed deterministic order, although there is no guarantee that this
will be so for a given practical problem; for example a fixed deterministic
order has been reported to be considerably faster on some benchmark test
problems without any attempt to order the components favorably [Bot09].
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Incremental Newton Methods

We will now consider an incremental version of Newton’s method for un-
constrained minimization of an additive cost function of the form

f(x) =
m
∑

i=1

fi(x),

where the functions fi : ℜn 7→ ℜ are convex and twice continuously dif-
ferentiable. Consider the quadratic approximation f̃ i of a function fi at a
vector ψ ∈ ℜn, i.e., the second order Taylor expansion of fi at ψ:

f̃ i(x;ψ) = ∇fi(ψ)′(x− ψ) + 1
2 (x− ψ)′∇2fi(ψ)(x− ψ), ∀ x, ψ ∈ ℜn.

Similar to Newton’s method, which minimizes a quadratic approxima-
tion at the current point of the cost function [cf. Eq. (2.14)], the incremental
form of Newton’s method minimizes a sum of quadratic approximations of
components. Similar to the incremental gradient method, we view an it-
eration as a cycle of m subiterations, each involving a single additional
component fi, and its gradient and Hessian at the current point within the
cycle. In particular, if xk is the vector obtained after k cycles, the vector
xk+1 obtained after one more cycle is

xk+1 = ψm,k,

where starting with ψ0,k = xk, we obtain ψm,k after the m steps

ψi,k ∈ arg min
x∈ℜn

i
∑

ℓ=1

f̃ ℓ(x;ψℓ−1,k), i = 1, . . . ,m. (2.43)

If all the functions fi are quadratic, it can be seen that the method finds
the solution in a single cycle.† The reason is that when fi is quadratic,
each fi(x) differs from f̃ i(x;ψ) by a constant, which does not depend on
x. Thus the difference

m
∑

i=1

fi(x)−

m
∑

i=1

f̃ i(x;ψi−1,k)

† Here we assume that them quadratic minimizations (2.43) to generate ψm,k

have a solution. For this it is sufficient that the first Hessian matrix ∇2f1(x0) be

positive definite, in which case there is a unique solution at every iteration. A

simple possibility to deal with this requirement is to add to f1 a small positive

definite quadratic term, such as ǫ
2
‖x − x0‖2. Another possibility is to lump

together several of the component functions (enough to ensure that the sum of

their quadratic approximations at x0 is positive definite), and to use them in

place of f1. This is generally a good idea and leads to smoother initialization, as

it ensures a relatively stable behavior of the algorithm for the initial iterations.
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x0 = ψ0,0

0 ψ1,0

ψ2,0

ψ3,0 = x
∗

Figure 2.1.12. Illustration of the incremental Newton method for the case of a
two-dimensional linear least squares problem with m = 3 cost function compo-
nents (compare with the Kaczmarz method, cf. Fig. 2.1.10).

is a constant that is independent of x, and minimization of either sum in
the above expression gives the same result.

As an example, consider a linear least squares problem, where

fi(x) =
1
2 (c

′
ix− bi)2, i = 1, . . . ,m.

Then the ith subiteration within a cycle minimizes

i
∑

ℓ=1

fℓ(x),

and when i = m, the solution of the problem is obtained (see Fig. 2.1.12).
This convergence behavior should be compared with the one for the Kacz-
marz method (cf. Fig. 2.1.10).

It is important to note that the quadratic minimizations of Eq. (2.43)
can be carried out efficiently. For simplicity, let as assume that f̃1(x;ψ)
is a positive definite quadratic, so that for all i, ψi,k is well defined as the
unique solution of the minimization problem in Eq. (2.43). We will show
that the incremental Newton method (2.43) can be implemented in terms
of the incremental update formula

ψi,k = ψi−1,k −Di,k∇fi(ψi−1,k), (2.44)

where Di,k is given by

Di,k =

(

i
∑

ℓ=1

∇2fℓ(ψℓ−1,k)

)−1

, (2.45)

and is generated iteratively as

Di,k =
(

D−1
i−1,k +∇2fi(ψi,k)

)−1

. (2.46)
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Indeed, from the definition of the method (2.43), the quadratic function
∑i−1

ℓ=1 f̃ ℓ(x;ψℓ−1,k) is minimized by ψi−1,k and its Hessian matrix is D−1
i−1,k,

so we have

i−1
∑

ℓ=1

f̃ ℓ(x;ψℓ−1,k) =
1
2 (x − ψℓ−1,k)′D

−1
i−1,k(x − ψℓ−1,k) + constant.

Thus, by adding f̃ i(x;ψi−1,k) to both sides of this expression, we obtain

i
∑

ℓ=1

f̃ ℓ(x;ψℓ−1,k) =
1
2 (x− ψℓ−1,k)′D

−1
i−1,k(x− ψℓ−1,k) + constant

+ 1
2 (x− ψi−1,k)′∇2fi(ψi−1,k)(x− ψi−1,k) +∇fi(ψi−1,k)′(x− ψi−1,k).

Since by definition ψi,k minimizes this function, we obtain Eqs. (2.44)-
(2.46).

The update formula (2.46) for the matrix Di,k can often be efficiently
implemented by using convenient formulas for the inverse of the sum of two
matrices. In particular, if fi is given by

fi(x) = hi(a′ix− bi),

for some twice differentiable convex function hi : ℜ 7→ ℜ, vector ai, and
scalar bi, we have

∇2fi(ψi−1,k) = ∇2hi(ψi−1,k) aia′i,

and the update formula (2.46) can be written as

Di,k = Di−1,k −
Di−1,kaia′iDi−1,k

∇2hi(ψi−1,k)−1 + a′iDi−1,kai
;

this is the well-known Sherman-Morrison formula for the inverse of the sum
of an invertible matrix and a rank-one matrix (see the matrix inversion
formula in Section A.1 of Appendix A).

We have considered so far a single cycle of the incremental Newton
method. One algorithmic possibility for cycling through the component
functions multiple times, is to simply create a larger set of components by
concatenating multiple copies of the original set, that is, by forming what
we refer to as the extended set of components

f1, f2, . . . , fm, f1, f2, . . . , fm, f1, f2, . . . .

The incremental Newton method, when applied to the extended set, asymp-
totically resembles a scaled incremental gradient method with diminishing
stepsize of the type described earlier. Indeed, from Eq. (2.45)], the matrix
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Di,k diminishes roughly in proportion to 1/k. From this it follows that
the asymptotic convergence properties of the incremental Newton method
are similar to those of an incremental gradient method with diminishing
stepsize of order O(1/k). Thus its convergence rate is slower than linear.

To accelerate the convergence of the method one may employ a form
of restart, so that Di,k does not converge to 0. For example Di,k may
be reinitialized and increased in size at the beginning of each cycle. For
problems where f has a unique nonsingular minimum x∗ [one for which
∇2f(x∗) is nonsingular], one may design incremental Newton schemes with
restart that converge linearly to within a neighborhood of x∗ (and even
superlinearly if x∗ is also a minimum of all the functions fi, so there is
no region of confusion). Alternatively, the update formula (2.46) may be
modified to

Di,k =
(

λkD
−1
i−1,k +∇2fℓ(ψi,k)

)−1

, (2.47)

by introducing a fading factor λk ∈ (0, 1), which can be used to accelerate
the practical convergence rate of the method (see [Ber96] for an analysis
of schemes where λk → 1; in cases where λk is some constant λ < 1, linear
convergence to within a neighborhood of the optimum may be shown).

The following example provides some insight regarding the behavior
of the method when the cost function f has a very large number of cost
components, as is the case when f is defined as the average of a very large
number of random samples.

Example 2.1.7: (Infinite Number of Cost Components)

Consider the problem

minimize f(x)
def
= lim

m→∞

1

m

m
∑

i=1

F (x,wi)

subject to x ∈ ℜn,

where {wk} is a given sequence from some set, and each function F (·, wi) :
ℜn 7→ ℜ is positive semidefinite quadratic. We assume that f is well-defined
(i.e., the limit above exists for each x ∈ ℜn), and is a positive definite
quadratic. This type of problem arises in linear regression models (cf. Ex-
ample 1.3.1) involving an infinite amount of data that is obtained through
random sampling.

The natural extension of the incremental Newton’s method, applied to
the infinite set of components F (·, w1), F (·, w2), . . . , generates the sequence
{x∗

k} where

x∗
k ∈ arg min

x∈ℜn
fk(x)

def
=

1

k

k
∑

i=1

F (x,wi).

Since f is positive definite and the same is true for fk, when k is large enough,
we have x∗

k → x∗, where x∗ is the minimum of f . The rate of convergence
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is determined strictly by the rate at which the vectors x∗
k approach x∗, or

equivalently by the rate at which fk approaches f . It is impossible to achieve
a faster rate of convergence with an algorithm that is nonanticipative in the
sense that it uses just the first k cost components in the first k iterations.

By contrast, if we were to apply the natural extension of the incremental
gradient method to this problem, the convergence rate could be much worse.
There would be an error due to the difference (x∗

k−x∗), but also an additional
error due to the difference (x∗

k − xk) between x∗
k and the kth iterate xk of

the incremental gradient method, which is generally diminishing quite slowly,
possibly more slowly than (x∗

k − x∗). The same is true for other gradient-
type methods based on incremental computations, including the aggregated
gradient methods discussed earlier.

Incremental Newton Method with Diagonal Approximation

Generally, with proper implementation, the incremental Newton method is
often substantially faster than the incremental gradient method, in terms
of numbers of iterations (there are theoretical results suggesting this prop-
erty for stochastic versions of the two methods; see the end-of-chapter ref-
erences). However, in addition to computation of second derivatives, the
incremental Newton method involves greater overhead per iteration due to
matrix-vector calculations in Eqs. (2.44), (2.46), and (2.47), so it is suitable
only for problems where n, the dimension of x, is relatively small.

One way to remedy in part this difficulty is to approximate∇2fi(ψi,k)
by a diagonal matrix, and recursively update a diagonal approximation
of Di,k using Eqs. (2.46) or (2.47). One possibility, inspired by similar
diagonal scaling schemes for nonincremental gradient methods, is to set to 0
the off-diagonal components of ∇2fi(ψi,k). In this case, the iteration (2.44)
becomes a diagonally scaled version of the incremental gradient method,
and involves comparable overhead per iteration (assuming the required
diagonal second derivatives are easily computed). As an additional option,
one may multiply the diagonal components with a stepsize parameter that
is close to 1 and add a small positive constant (to bound them away from 0).
Ordinarily, for the convex problems considered here, this method should
require little experimentation with stepsize selection.

Incremental Newton Methods with Constraints

The incremental Newton method can also be adapted to constrained prob-
lems of the form

minimize

m
∑

i=1

fi(x)

subject to x ∈ X,

where fi : ℜn 7→ ℜ are convex, twice continuously differentiable convex
functions. If X has a relatively simple form, such as upper and lower
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bounds on the variables, one may use a two-metric implementation, such as
the ones discussed earlier, whereby the matrixDi,k is partially diagonalized
before it is applied to the iteration

ψi,k = PX
(

ψi−1,k −Di,k∇fi(ψi−1,k)
)

,

[cf. Eqs. (2.21) and (2.44)].
For more complicated constraint sets of the form

X = ∩mi=1Xi,

where each Xi is a relatively simple component constraint set (such as a
halfspace), there is another possibility. This is to apply an incremental pro-
jected Newton iteration, with projection on a single individual component
Xi, i.e., an iteration of the form

ψi,k ∈ arg min
ψ∈Xi

{

∇fi(ψi−1,k)′(ψ−ψi−1,k)+
1
2 (ψ−ψi−1,k)′Hi,k(ψ−ψi−1,k)

}

,

where

Hi,k =

i
∑

ℓ=1

∇2fℓ(ψℓ−1,k).

Note that each component Xi can be relatively simple, in which case the
quadratic optimization problem above may be simple despite the fact that
Hi,k is nondiagonal. Depending on the problem’s special structure, one
may also use efficient methods that pass information from the solution of
one quadratic subproblem to the next.

A similar method may also be used for problems of the form

minimize R(x) +
m
∑

i=1

fi(x)

subject to x ∈ X = ∩mi=1Xi,

where R(x) is a regularization function that is a multiple of either the ℓ1 or
the ℓ2 norm. Then the incremental projected Newton iteration takes the
form

ψi,k ∈ arg min
ψ∈Xi

{

R(ψ) +∇fi(ψi−1,k)′(ψ − ψi−1,k)

+ 1
2 (ψ − ψi−1,k)′Hi,k(ψ − ψi−1,k)

}

.

When Xi is a polyhedral set, this problem is a quadratic program.
The idea of incremental projection on constraint set components is

complementary to the idea of using gradient and possibly Hessian infor-
mation from single cost function components at each iteration, and will
be discussed in more detail in Section 6.4.4, in the context of incremental
subgradient and incremental proximal methods. Several variations are pos-
sible, whereby the cost function component and constraint set component
selected at each iteration may be chosen according to special deterministic
or randomized rules. We refer to the papers [Ned11], [Ber11], [WaB13a]
for a discussion of these incremental methods, their variations, and their
convergence analysis.
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Incremental Gauss-Newton Method – The Extended Kalman
Filter

We will next consider an algorithm that operates similar to the incremental
Newton method, but is specialized for the nonlinear least squares problem

minimize

m
∑

i=1

∥

∥gi(x)
∥

∥

2

subject to x ∈ ℜn,

where gi : ℜn 7→ ℜni are some possibly nonlinear functions (cf. Example
1.3.1). As noted in Section 1.3, this is a common problem in practice.

We introduce a function g̃i that represents a linear approximation of
gi at a vector ψ ∈ ℜn:

g̃i(x;ψ) = ∇gi(ψ)′(x− ψ) + gi(ψ), ∀ x, ψ ∈ ℜn,

where ∇gi(ψ) is the n×ni gradient matrix of gi evaluated at ψ. Similar to
the incremental gradient and Newton methods, we view an iteration as a
cycle of m subiterations, each requiring linearization of a single additional
component at the current point within the cycle. In particular, if xk is
the vector obtained after k cycles, the vector xk+1 obtained after one more
cycle is

xk+1 = ψm,k, (2.48)

where starting with ψ0,k = xk, we obtain ψm,k after the m steps

ψi,k ∈ arg min
x∈ℜn

i
∑

ℓ=1

∥

∥g̃ℓ(x;ψℓ−1,k)
∥

∥

2
, i = 1, . . . ,m. (2.49)

If all the functions gi are linear, we have g̃i(x;ψ) = gi(x), and the method
solves the problem exactly in a single cycle. It then becomes identical to
the incremental Newton method.

When the functions gi are nonlinear the algorithm differs from the
incremental Newton method because it does not involve second deriva-
tives of gi. It may be viewed instead as an incremental version of the
Gauss-Newton method, a classical nonincremental scaled gradient method
for solving nonlinear least squares problems (see e.g., [Ber99], Section 1.5).
It is also known as the extended Kalman filter , and has found extensive ap-
plication in state estimation and control of dynamic systems, where it was
introduced in the mid-60s (it was also independently proposed in [Dav76]).

The implementation issues of the extended Kalman filter are simi-
lar to the ones of the incremental Newton method. This is because both
methods solve similar linear least squares problems at each iteration [cf.
Eqs. (2.43) and (2.49)]. The convergence behaviors of the two methods are
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also similar: they asymptotically operate as scaled forms of incremental
gradient methods with diminishing stepsize. Both methods are primarily
well-suited for problems where the dimension of x is much smaller than the
number of components in the additive cost function, so that the associated
matrix-vector operations are not overly costly. Moreover their practical
convergence rate can be accelerated by introducing a fading factor [cf. Eq.
(2.47)]. We refer to [Ber96], [MYF03] for convergence analysis, variations,
and computational experimentation.

2.1.6 Distributed Asynchronous Iterative Algorithms

We will now consider briefly distributed asynchronous counterparts of some
of the algorithms discussed earlier in this section. We have in mind a
situation where an iterative algorithm, such as a gradient method or a
coordinate descent method, is parallelized by separating it into several
local algorithms operating concurrently at different processors. The main
characteristic of an asynchronous algorithm is that the local algorithms do
not have to wait at predetermined points for predetermined information to
become available. We thus allow some processors to execute more iterations
than others, we allow some processors to communicate more frequently
than others, and we allow the communication delays to be substantial and
unpredictable.

Let us consider for simplicity the problem of unconstrained mini-
mization of a differentiable function f : ℜn 7→ ℜ. Out of the iterative
algorithms of Sections 2.1.1-2.1.3, there are three types that are suitable
for asynchronous distributed computation. Their asynchronous versions
are as follows:

(a) Gradient methods , where we assume that the ith coordinate xi is
updated at a subset of times Ri ⊂ {0, 1, . . .}, according to

xik+1 =







xik if k /∈ Ri,

xik − αk
∂f

(

x1
τi1(k)

,...,xn
τin(k)

)

∂xi
if k ∈ Ri,

i = 1, . . . , n,

where αk is a positive stepsize. Here τij(k) is the time at which the
jth coordinate used in this update was computed, and the difference
k − τij(k) is commonly called the communication delay from j to i
at time k. In a distributed setting, each coordinate xi (or block of
coordinates) may be updated by a separate processor, on the basis of
values of coordinates made available by other processors, with some
delay.

(b) Coordinate descent methods , where for simplicity we consider a block
size of one; cf. Eq. (2.22). We assume that the ith scalar coordinate
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is updated at a subset of times Ri ⊂ {0, 1, . . .}, according to

xik+1 ∈ argmin
ξ∈ℜ

f
(

x1τi1(k), . . . , x
i−1
τi,i−1(k)

, ξ, xi+1
τi,i+1(k)

, . . . , xnτin(k)

)

,

and is left unchanged (xik+1 = xik) if k /∈ Ri. The meanings of the
subsets of updating times Ri and indexes τij(k) are the same as in the
case of gradient methods. Also the distributed environment where the
method can be applied is similar to the case of the gradient method.
Another practical setting that may be modeled well by this iteration
is when all computation takes place at a single computer, but any
number of coordinates may be simultaneously updated at a time,
with the order of coordinate selection possibly being random.

(c) Incremental gradient methods for the case where

f(x) =

m
∑

i=1

fi(x).

Here the ith component is used to update x at a subset of times Ri:

xk+1 = xk − αk∇fi
(

x1τi1(k), . . . , x
n
τin(k)

)

, k ∈ Ri,

where we assume that a single component gradient∇fi is used at each
time (i.e., Ri ∩Rj = Ø for i 6= j). The meaning of τij(k) is the same
as in the preceding cases, and the gradient ∇fi can be replaced by a
subgradient in the case of nondifferentiable fi. Here the entire vector
x is updated at a central computer, based on component gradients∇fi
that are computed at other computers and are communicated with
some delay to the central computer. For validity of these methods, it
is essential that all the components fi are used in the iteration with
the same asymptotic frequency, 1/m (see [NBB01]). For this type of
asynchronous implementation to make sense, the computation of ∇fi
must be substantially more time-consuming than the update of xk
using the preceding incremental iteration.

An interesting fact is that some asynchronous algorithms, called to-
tally asynchronous, can tolerate arbitrarily large delays k − τij(k), while
other algorithms, called partially asynchronous, are not guaranteed to work
unless there is an upper bound on these delays. The convergence mecha-
nisms at work in each of these two cases are genuinely different and so are
their analyses (see [BeT89a], where totally and partially asynchronous algo-
rithms, and various special cases including gradient and coordinate descent
methods, are discussed in Chapters 6 and 7, respectively).

The totally asynchronous algorithms are valid only under special con-
ditions, which guarantee that any progress in the computation of the indi-
vidual processors, is consistent with progress in the collective computation.
For example to show convergence of the (synchronous) stationary iteration

xk+1 = G(xk)
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it is sufficient to show that G is a contraction mapping with respect to
some norm (see Section A.4 of Appendix A), but for asynchronous con-
vergence it turns out that one needs the contraction to be with respect to
the sup-norm ‖x‖∞ = maxi=1,...,n |xi| or a weighted sup-norm (see Sec-
tion 6.5.2). To guarantee totally asynchronous convergence of a gradient
method with a constant and sufficiently small stepsize αk ≡ α, a diagonal
dominance condition is required; see the paper [Ber83]. In the special case
of a quadratic cost function

f(x) = 1
2x

′Qx+ b′x

this condition is that the Hessian matrix Q is diagonally dominant, i.e.,
has components qij such that

qii >

n
∑

j 6=i

|qij |, i = 1, . . . , n.

Without this diagonal dominance condition, totally asynchronous conver-
gence is unlikely to be guaranteed (for examples see [BeT89a], Section
6.3.2).

The partially asynchronous algorithms do not need a weighted sup-
norm contraction structure, but typically require either a diminishing or
a stepsize that is small and inversely proportional to the size of the de-
lays. The idea is that when the delays are bounded and the stepsize is
small enough, the asynchronous algorithm resembles its synchronous coun-
terpart sufficiently closely, so that the convergence properties of the latter
are maintained (see [BeT89a], particularly Sections 7.1 and 7.5; also the
convergence analysis of gradient methods with errors in the exercises). This
mechanism for convergence is similar to the one for incremental methods.
For this reason, incremental gradient, gradient projection, and coordinate
descent methods are natural candidates for partially asynchronous imple-
mentation; see [BeT89a], Chapter 7, [BeT91], and [NBB01].

For further discussion of the implementation and convergence analysis
of asynchronous algorithms, we refer to the survey [BeT91], the papers
[TBA86], [SaB96], the books [BeT89a] (Chapters 6 and 7) and [Bor08]
for deterministic and stochastic gradient, and coordinate descent methods,
and the paper [NBB01] for incremental gradient and subgradient methods.
For recent related work on distributed partially asynchronous algorithms
of the gradient and coordinate descent type, see [NeO09a], [RRW11], and
for partially asynchronous implementations of the Kaczmarz method, see
[LWS14].

2.2 APPROXIMATION METHODS

Approximation methods for minimizing a convex function f : ℜn 7→ ℜ over
a convex set X , are based on replacing f and X with approximations Fk
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and Xk, respectively, at each iteration k, and finding

xk+1 ∈ arg min
x∈Xk

Fk(x).

At the next iteration, Fk+1 and Xk+1 are generated by refining the approx-
imation, based on the new point xk+1, and possibly on the earlier points
xk, . . . , x0. Of course such a method makes sense only if the approximat-
ing problems are simpler than the original. There is a great variety of
approximation methods, with different aims, and suitable for different cir-
cumstances. The present section provides a brief overview and orientation,
while Chapters 4-6 provide a detailed analysis.

2.2.1 Polyhedral Approximation

In polyhedral approximation methods, Fk is a polyhedral function that
approximates f and Xk is a polyhedral set that approximates X . The
idea is that the approximate problem is polyhedral, so it may be easier
to solve than the original problem. The methods include mechanisms for
progressively refining the approximation, thereby obtaining a solution of
the original problem in the limit. In some cases, only one of f and X is
polyhedrally approximated.

In Chapter 4, we will discuss the two main approaches for polyhedral
approximation: outer linearization (also called the cutting plane approach)
and inner linearization (also called the simplicial decomposition approach).
As the name suggests, outer linearization approximates epi(f) and X from
without, Fk(x) ≤ f(x) for all x, and Xk ⊃ X , using intersections of finite
numbers of halfspaces. By contrast, inner linearization approximates epi(f)
and X from within, Fk(x) ≥ f(x) for all x, and Xk ⊂ X , using convex hulls
of finite numbers of halflines or points. Figure 2.2.1 illustrates outer and
inner linearization of convex sets and functions.

We will show in Sections 4.3 and 4.4 that these two approaches are
intimately connected by conjugacy and duality: the dual of an outer ap-
proximating problem is an inner approximating problem involving the con-
jugates of Fk and the indicator function of Xk, and reversely. In fact, using
this duality, outer and inner approximations may be combined in the same
algorithm.

One of the major applications of the cutting plane approach is in
Dantzig-Wolfe decomposition, an important method for solving large scale
problems with special structure, including the separable problems of Sec-
tion 1.1.1 (see e.g., [BeT97], [Ber99]). Simplicial decomposition also finds
many important applications in problems with special structure; e.g., in
high-dimensional problems with a constraint set X such that minimization
of a linear function over X is relatively simple. This is exactly the same
structure that favors the use of the conditional gradient method discussed
in Section 2.1.2 (see Chapter 4). A prominent example is the multicom-
modity flow problem of Example 1.4.5.
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X x X x

X , using intersections of finiteX , using intersections of finite

epi(f) epi(f)

Figure 2.2.1. Illustration of outer and inner linearization of a convex function f
and a convex set X using hyperplanes and convex hulls.

2.2.2 Penalty, Augmented Lagrangian, and Interior Point
Methods

Generally in optimization problems, the presence of constraints complicates
the algorithmic solution, and limits the range of available algorithms. For
this reason it is natural to try to eliminate constraints by using approxima-
tion of the corresponding indicator functions. In particular, we may replace
constraints by penalty functions that prescribe a high cost for their vio-
lation. We discussed in Section 1.5 such an approximation scheme, which
uses exact nondifferentiable penalty functions. In this section we focus on
differentiable penalty functions that are not necessarily exact.

To illustrate this approach, let us consider the equality constrained
problem

minimize f(x)

subject to x ∈ X, a′ix = bi, i = 1, . . . ,m.
(2.50)

We replace this problem with a penalized version

minimize f(x) + ck

m
∑

i=1

P (a′ix− bi)

subject to x ∈ X,

(2.51)
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where P (·) is a scalar penalty function satisfying

P (u) = 0 if u = 0,

and
P (u) > 0 if u 6= 0.

The scalar ck is a positive penalty parameter, so by increasing ck to ∞,
the solution xk of the penalized problem tends to decrease the constraint
violation, thereby providing an increasingly accurate approximation to the
original problem. An important practical point here is that ck should
be increased gradually, using the optimal solution of each approximating
problem to start the algorithm that solves the next approximating problem.
Otherwise serious numerical problems occur due to “ill-conditioning.”

A common choice for P is the quadratic penalty function

P (u) = 1
2u

2,

in which case the penalized problem (2.51) takes the form

minimize f(x) +
ck
2
‖Ax− b‖2

subject to x ∈ X,
(2.52)

where Ax = b is a vector representation of the system of equations a′ix = bi,
i = 1, . . . ,m.

An important enhancement of the penalty function approach is the
augmented Lagrangian methodology, where we add a linear term to P (u),
involving a multiplier vector λk ∈ ℜm. Then in place of problem (2.52),
we solve the problem

minimize f(x) + λ′k(Ax− b) +
ck
2
‖Ax− b‖2

subject to x ∈ X.
(2.53)

After a minimizing vector xk is obtained, the multiplier vector λk is up-
dated by some formula that aims to approximate an optimal dual solution.
A common choice that we will discuss in Chapter 5 is

λk+1 = λk + ck(Axk − b). (2.54)

This is also known as the first order augmented Lagrangian method (also
called first order method of multipliers). It is a major general purpose,
highly reliable, constrained optimization method, which applies to non-
convex problems as well. It has a rich theory, with a strong connection
to duality, and many variations that are aimed at increased efficiency, in-
volving for example second order multiplier updates and inexact minimiza-
tion of the augmented Lagrangian. In the convex programming setting of
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this book, augmented Lagrangian methods embody additional favorable
structure. Among others, convergence is guaranteed for any nondecreasing
sequence {ck} (for nonconvex problems, ck must exceed a certain positive
threshold). Moreover there is no requirement that ck → ∞, which is needed
for penalty methods that do not involve multiplier updates, and is often
the cause of numerical problems.

Generally, penalty and augmented Lagrangian methods can be used
for inequality as well as equality constraints. The penalty function is mod-
ified to reflect penalization for violation of inequalities. For example the
inequality constraint analog of the quadratic penalty P (u) = 1

2u
2 is

P (u) = 1
2

(

max{0, u}
)2
.

We will consider these possibilities in greater detail in Section 5.2.1.
The penalty methods just discussed are known as exterior penalty

methods : they approximate the indicator function of the constraint set from
without. Another type of algorithm involves approximation from within,
which leads to the so called interior point methods . These are important
methods that find application in a broad variety of problems, including
linear programming. They will be discussed in Section 6.8.

2.2.3 Proximal Algorithm, Bundle Methods, and Tikhonov
Regularization

The proximal algorithm, briefly discussed in Section 2.1.4, aims to minimize
a closed proper convex function f : ℜn 7→ (−∞,∞], and is given by

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x− xk‖2

}

, (2.55)

[cf. Eq. (2.25)], where x0 is an arbitrary starting point and ck is a positive
scalar parameter. As the parameter ck tends to ∞, the quadratic regular-
ization term becomes insignificant and the proximal minimization (2.55)
approximates more closely the minimization of f , hence the connection of
the proximal algorithm with the approximation approach.

We will discuss the proximal algorithm in much more detail in Chap-
ter 5, including dual and polyhedral approximation versions. Among oth-
ers, we will show that when f is the dual function of the constrained opti-
mization problem (2.50), the proximal algorithm, via Fenchel duality, be-
comes equivalent to the multiplier iteration of the augmented Lagrangian
method [cf. Eq. (2.54)]. Since any closed proper convex function can be
viewed as the dual function of an appropriate convex constrained optimiza-
tion problem, it follows that the proximal algorithm (2.55) is essentially
equivalent to the augmented Lagrangian method : the two algorithms are
dual sides of the same coin.
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There are also variants of the proximal algorithm where f in Eq.
(2.55) is approximated by a polyhedral or other function. One possibil-
ity is bundle methods , which involve a combination of the proximal and
polyhedral approximation ideas. The motivation here is to simplify the
proximal minimization subproblem (2.25), replacing it for example with a
quadratic programming problem. Some of these methods may be viewed
as regularized versions of Dantzig-Wolfe decomposition (see Section 4.3).

Another approximation approach that bears similarity to the prox-
imal algorithm is Tikhonov regularization, which approximates the mini-
mization of f with the minimization

xk+1 ∈ arg min
x∈ℜn

{

f(x) +
1

2ck
‖x‖2

}

. (2.56)

The quadratic regularization term makes the cost function of the preced-
ing problem strictly convex, and guarantees that it has a unique minimum.
Sometimes the quadratic term in Eq. (2.56) is scaled and a term ‖Sx‖2

is used instead, where S is a suitable scaling matrix. The difference with
the proximal algorithm (2.55) is that xk does not enter directly the min-
imization to determine xk+1, so the method relies for its convergence on
increasing ck to ∞. By contrast this is not necessary for the proximal al-
gorithm, which is generally convergent even when ck is left constant (as
we will see in Section 5.1), and is typically much faster. Similar to the
proximal algorithm, there is a dual and essentially equivalent algorithm
to Tikhonov regularization. This is the penalty method that consists of
sequential minimization of the quadratically penalized cost function (2.52)
for a sequence {ck} with ck → ∞.

2.2.4 Alternating Direction Method of Multipliers

The proximal algorithm embodies fundamental ideas that lead to a vari-
ety of other interesting methods. In particular, when properly generalized
(see Section 5.1.4), it contains as a special case the alternating direction
method of multipliers (ADMM for short), a method that resembles the aug-
mented Lagrangian method, but is well-suited for some important classes
of problems with special structure.

The starting point for the ADMM is the minimization problem of the
Fenchel duality context:

minimize f1(x) + f2(Ax)

subject to x ∈ ℜn,
(2.57)

where A is an m× n matrix, f1 : ℜn 7→ (−∞,∞] and f2 : ℜm 7→ (−∞,∞]
are closed proper convex functions. We convert this problem to the equiv-
alent constrained minimization problem

minimize f1(x) + f2(z)

subject to x ∈ ℜn, z ∈ ℜm, Ax = z,
(2.58)
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and we introduce its augmented Lagrangian function

Lc(x, z, λ) = f1(x) + f2(z) + λ′(Ax− z) +
c

2
‖Ax− z‖2,

where c is a positive parameter.
The ADMM, given the current iterates (xk, zk, λk) ∈ ℜn×ℜm×ℜm,

generates a new iterate (xk+1, zk+1, λk+1) by first minimizing the aug-
mented Lagrangian with respect to x, then with respect to z, and finally
performing a multiplier update:

xk+1 ∈ arg min
x∈ℜn

Lc(x, zk, λk), (2.59)

zk+1 ∈ arg min
z∈ℜm

Lc(xk+1, z, λk), (2.60)

λk+1 = λk + c(Axk+1 − zk+1). (2.61)

The important advantage that the ADMM may offer over the aug-
mented Lagrangian method, is that it does not involve a joint minimization
with respect to x and z. Thus the complications resulting from the coupling
of x and z in the penalty term ‖Ax − z‖2 of the augmented Lagrangian
are eliminated. This property can be exploited in special applications, for
which the ADMM is structurally well suited, as we will discuss in Sec-
tion 5.4. On the other hand the ADMM may converge more slowly than
the augmented Lagrangian method, so the flexibility it provides must be
weighted against this potential drawback.

In Chapter 5, we will see that the proximal algorithm for minimiza-
tion can be viewed as a special case of a generalized proximal algorithm for
finding a solution of an equation involving a multivalued monotone opera-
tor. While we will not fully develop the range of algorithms that are based
on this generalization, we will show that both the augmented Lagrangian
method and the ADMM are special cases of the generalized proximal al-
gorithm, corresponding to two different multivalued monotone operators.
Because of the differences of these two operators, some of the properties of
the two methods are quite different. For example, contrary to the case of
the augmented Lagrangian method (where ck is often taken to be increasing
with k in order to accelerate convergence), there seems to be no generally
good way to adjust c in ADMM from one iteration to the next. Moreover,
even when both methods have a linear convergence rate, the performance of
the two methods may differ markedly in practice. Still there is more than a
superficial connection between the two methods, which can be understood
within the context of their common proximal algorithm ancestry.

In Section 6.3, we will also see another connection of ADMM with
proximal-related methods, and particularly the proximal gradient method,
which we briefly discussed in Section 2.1.4 [cf. Eq. (2.27)]. It turns out
that both the ADMM and the proximal gradient method can be viewed
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as instances of splitting algorithms for finding a zero of the sum of two
monotone operators. The idea is to decouple the two operators within an
iteration: one operator is treated by a proximal-type algorithm, while the
other is treated by a proximal-type or a gradient algorithm. In so doing, the
complications that arise from coupling of the two operators are mitigated.

2.2.5 Smoothing of Nondifferentiable Problems

Generally speaking, differentiable cost functions are preferable to nondiffer-
entiable ones, because algorithms for the former are better developed and
are more effective than algorithms for the latter. Thus there is an incentive
to eliminate nondifferentiabilities by “smoothing” their corners. It turns
out that penalty functions and smoothing are closely related, reflecting the
fact that constraints and nondifferentiabilities are also closely related. As
an example of this connection, the unconstrained minimax problem

minimize max
{

f1(x), . . . , fm(x)
}

subject to x ∈ ℜn,
(2.62)

where f1, . . . , fm are differentiable functions can be converted to the dif-
ferentiable constrained problem

minimize z

subject to fj(x) ≤ z, j = 1, . . . ,m,
(2.63)

where z is an artificial scalar variable. When a penalty or augmented
Lagrangian method is applied to the constrained problem (2.63), we will
show that a smoothing method is obtained for the minimax problem (2.62).

We will now describe a technique (first given in [Ber75b], and gen-
eralized in [Ber77]) to obtain smoothing approximations. Let f : ℜn 7→
(−∞,∞] be a closed proper convex function with conjugate denoted by
f⋆. For fixed c > 0 and λ ∈ ℜn, define

fc,λ(x) = inf
u∈ℜn

{

f(x− u) + λ′u+
c

2
‖u‖2

}

, x ∈ ℜn. (2.64)

The conjugates of φ1(u) = f(x− u) and φ2(u) = λ′u+ c
2‖u‖

2 are φ⋆1(y) =
f⋆(−y) + y′x and φ⋆2(y) = 1

2c‖y − λ‖2, so by using the Fenchel duality
formula infu∈ℜn

{

φ1(u) + φ2(u)
}

= supy∈ℜn

{

− φ⋆1(−y)− φ⋆2(y)
}

, we have

fc,λ(x) = sup
y∈ℜn

{

y′x− f⋆(y)−
1

2c
‖y − λ‖2

}

, x ∈ ℜn. (2.65)

It can be seen that fc,λ approximates f in the sense that

lim
c→∞

fc,λ(x) = f⋆⋆(x) = f(x), ∀ x, λ ∈ ℜn;
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(1− λ)2
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−

λ
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x fX y 0 x f

x f(x) = max{0, x} } fc,λ(x)

Figure 2.2.2. Illustration of smoothing of the function f(x) = max{0, x}. Note
that as c→ ∞, we have fc,λ(x) → f(x) for all x ∈ ℜ, regardless of the value of λ.

the double conjugate f⋆⋆ is equal to f by the Conjugacy Theorem (Prop.
1.6.1 in Appendix B). Furthermore, it can be shown using the optimality
conditions of the Fenchel Duality Theorem Prop. 1.2.1(c) (see also [Ber77])
that fc,λ is convex and differentiable as a function of x for fixed c and λ,
and that the gradient ∇fc,λ(x) at any x ∈ ℜn can be obtained in two ways:

(i) As the vector λ + cu, where u is the unique vector attaining the
infimum in Eq. (2.64).

(ii) As the unique vector y that attains the supremum in Eq. (2.65).

The smoothing approach consists of replacing unsmoothed functions f
with their smooth approximations fc,λ, wherever they occur within the cost
and constraint functions of a given problem. Note that there may be several
functions f that are being smoothed simultaneously, and each occurrence of
f may use different λ and c. In this way we obtain a differentiable problem
that approximates the original.

An an example consider a common source of nondifferentiability:

f(x) = max{0, x}, x ∈ ℜ.

It can be verified using Eqs. (2.64) and (2.65) that

fc,λ(x) =























x−
(1 − λ)2

2c
if 1−λ

c ≤ x,

λx +
c

2
x2 if −λ

c ≤ x ≤ 1−λ
c ,

−
λ2

2c
if x ≤ −λ

c ;

see Fig. 2.2.2. The function f(x) = max{0, x} may also be used as a
building block to construct more complicated nondifferentiable functions,
such as for example

max{x1, x2} = x1 +max{0, x1 − x2};

see [Ber82a], Ch. 3.
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Smoothing and Augmented Lagrangians

The smoothing technique just described can also be combined with the
augmented Lagrangian method. As an example, let f : ℜn 7→ (−∞,∞]
be a closed proper convex function with conjugate denoted by f⋆. Let
F : ℜn 7→ ℜ be another convex function, and let X be a closed convex set.
Consider the problem

minimize F (x) + f(x)

subject to x ∈ X,

and the equivalent problem

minimize F (x) + f(x− u)

subject to x ∈ X, u = 0.

Applying the augmented Lagrangian method (2.53)-(2.54) to the latter
problem leads to minimizations of the form

(xk+1, uk+1) ∈ arg min
x∈X,u∈ℜn

{

F (x) + f(x− u) + λ′ku+
ck
2
‖u‖2

}

.

By first minimizing over u ∈ ℜn, these minimizations yield

xk+1 ∈ argmin
x∈X

{

F (x) + fck,λk(x)
}

,

where fck,λk is the smoothed function

fck,λk(x) = inf
u∈ℜn

{

f(x− u) + λ′ku+
ck
2
‖u‖2

}

,

[cf. Eq. (2.64)]. The corresponding multiplier update (2.54) is

λk+1 = λk + ckuk+1,

where
uk+1 ∈ arg min

u∈ℜn

{

f(xk+1 − u) + λk
′u+

ck
2
‖u‖2

}

.

The preceding technique can be extended so that it applies to general
convex/concave minimax problems. Let Z be a nonempty convex subset
of ℜm, respectively, and φ : ℜn × Z 7→ ℜ is a function such that φ(·, z) :
ℜn 7→ ℜ is convex for each z ∈ Z, and −φ(x, ·) : Z 7→ ℜ is convex and
closed for each x ∈ ℜn. Consider the problem

minimize sup
z∈Z

φ(x, z)

subject to x ∈ X,
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where X is a nonempty closed convex subset of ℜn. Consider also the
equivalent problem

minimize f(x, y)

subject to x ∈ X, y = 0,

where f is the function

f(x, y) = sup
z∈Z

{

φ(x, z) − y′z
}

, x ∈ ℜn, y ∈ ℜm,

which is closed and convex, being the supremum of closed and convex
functions. The augmented Lagrangian minimization (2.53) for this problem
takes the form

xk+1 ∈ argmin
x∈X

fck,λk(x),

where fc,λ : ℜn 7→ ℜ is the differentiable function given by

fc,λ(x) = min
y∈ℜm

{

f(x, y) + λ′y +
c

2
‖y‖2

}

, x ∈ ℜn.

The corresponding multiplier update (2.54) is

λk+1 = λk + ckyk+1,

where
yk+1 ∈ arg min

y∈ℜm

{

f(xk+1, y) + λ′ky +
ck
2
‖y‖2

}

.

This method of course makes sense only in the case where the function f
has a convenient form that facilitates the preceding minimization.

For further discussion of the relations and combination of smoothing
with the augmented Lagrangian method, see [Ber75b], [Ber77], [Pap81],
and for a detailed textbook analysis, [Ber82a], Ch. 3. There have also been
many variations of smoothing ideas and applications in different contexts;
see [Ber73], [Geo77], [Pol79], [Pol88], [BeT89b], [PiZ94], [Nes05], [Che07],
[OvG14]. In Section 6.2, we will also see an application of smoothing as an
analytical device, in the context of complexity analysis.

Exponential Smoothing

We have used so far a quadratic penalty function as the basis for smooth-
ing. It is also possible to use other types of penalty functions. A simple
penalty function, which often leads to convenient formulas is the exponen-
tial, which will also be discussed further in Section 6.6. The advantage of
the exponential function over the quadratic is that it produces twice differ-
entiable approximating functions. This may be significant when Newton’s
method is used to solve the smoothed problem.
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As an example, a smooth approximation of the function

f(x) = max
{

f1(x), . . . , fm(x)
}

is given by

fc,λ(x) =
1

c
ln

{

m
∑

i=1

λiecfi(x)

}

, (2.66)

where c > 0, and λ = (λ1, . . . , λm) is a vector with

m
∑

i=1

λi = 1, λi > 0, ∀ i = 1, . . . ,m.

There is an augmented Lagrangian method associated with the ap-
proximation (2.66). It involves minimizing over x ∈ ℜn the function
fck,λk(x) for a given ck and λk to obtain an approximation xk to the min-
imum of f . This approximation is refined by setting ck+1 ≥ ck and

λik+1 =
λike

ckfi(xk)

∑m
j=1 λ

j
ke
ckfj(xk)

, i = 1, . . . ,m, (2.67)

and by repeating the process.† The generated sequence {xk} can be shown
to converge to the minimum of f under mild assumptions, based on gen-
eral convergence properties of augmented Lagrangian methods that use
nonquadratic penalty functions; see [Ber82a], Ch. 5, for a detailed devel-
opment.

Example 2.2.1: (Smoothed ℓ1 Regularization)

Consider the ℓ1-regularized least squares problem

minimize γ

n
∑

j=1

|xj |+ 1

2

m
∑

i=1

(a′ix− bi)
2

subject to x ∈ ℜn,

† Sometimes the use of the exponential in Eq. (2.67) and other related formu-
las, such as (2.66), may lead to very large numbers and computer overflow. In this
case one may use a translation device to avoid such numbers, e.g., multiplying
numerator and denominator in Eq. (2.67) by e−βk where

βk = max
i=1,...,m

{

ckfi(xk)
}

.

A similar idea works for Eq. (2.66).
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X y 0 x f
f Slope = 2λ− 1

} Rc,λ(x)

|x|

Figure 2.2.3. Illustration of the exponentially smoothed version

Rc,λ(x) =
1

c
ln
{

λecx + (1 − λ)e−cx
}

of the absolute value function |x|. The approximation becomes asymptotically
exact as c → ∞ for any fixed value of the multiplier λ ∈ (0, 1). Also by adjust-
ing the multiplier λ within the range (0, 1), we can attain better approximation
for x positive or negative. As λ → 1 (or λ → 0) the approximation becomes
asymptotically exact for x ≥ 0 (or x ≤ 0, respectively).

where ai and bi are given vectors and scalars, respectively (cf. Example 1.3.1).
The nondifferentiable ℓ1 penalty may be smoothed by writing each term |xj |
as max{xj ,−xj} and by smoothing it using Eq. (2.66), i.e., replacing it by

Rc,λj (x
j) =

1

c
ln
{

λjecx
j
+ (1− λj)e−cxj

}

,

where c and λj are scalars satisfying c > 0 and λj ∈ (0, 1) (see Fig. 2.2.3).
We may then consider an exponential type of augmented Lagrangian method,
whereby we minimize over ℜn the twice differentiable function

γ

n
∑

j=1

R
ck,λ

j
k

(xj) +
1

2

m
∑

i=1

(a′ix− bi)
2, (2.68)

to obtain an approximation xk to the optimal solution. This approximation
is refined by setting ck+1 ≥ ck and

λj
k+1 =

λj
ke

ckx
j
k

λj
ke

ckx
j
k + (1− λj

k)e
−ckx

j
k

, j = 1, . . . , n, (2.69)

[cf. Eq. (2.67)], and by repeating the process. Note that the minimization of
the exponentially smoothed cost function (2.68) can be carried out efficiently
by incremental methods, such as the incremental gradient and Newton meth-
ods of Section 2.1.5.

As Fig. 2.2.3 suggests, the adjustment of the multiplier λj can selec-
tively reduce the error

|xj | −Rc,λj (x
j)
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depending on whether good approximation for positive or negative xj is de-
sired. For this reason it is not necessary to increase ck to infinity ; the multi-
plier iteration (2.69) is sufficient for convergence even with ck kept constant
at some positive value (see [Ber82a], Ch. 5).

2.3 NOTES, SOURCES, AND EXERCISES

Section 2.1: Textbooks on nonlinear programming with a substan-
tial algorithmic content are good sources for the overview material on
unconstrained and constrained differentiable optimization in this chap-
ter, e.g., Zangwill [Zan69], Polak [Pol71], Hestenes [Hes75], Zoutendijk
[Zou76], Shapiro [Sha79], Gill, Murray, and Wright [GMW81], Luen-
berger [Lue84], Poljak [Pol87], Dennis and Schnabel [DeS96], Bertsekas
[Ber99], Kelley [Kel99], Fletcher [Fle00], Nesterov [Nes04], Bazaraa,
Shetty, and Sherali [BSS06], Nocedal and Wright [NoW06], Ruszczynski
[Rus06], Griva, Nash, and Sofer [GNS08], Luenberger and Ye [LuY08].
References for specific algorithmic nondifferentiable optimization topics
will be given in subsequent chapters.

Incremental gradient methods have a long history, particularly for
the unconstrained case (X = ℜn), starting with the Widrow-Hoff least
mean squares (LMS) method [WiH60], which stimulated much subse-
quent research. They have also been used widely, under the generic
name “backpropagationmethods,” for training of neural networks, which
involves nonquadratic/nonconvex differentiable cost components. There
is an extensive literature on this subject, and for some representative
works, we refer to the papers by Rumelhart, Hinton, and Williams
[RHW86], [RHW88], Becker and LeCun [BeL88], Vogl et al. [VMR88],
and Saarinen, Bramley, and Cybenko [SBC91], and the books by Bishop
[Bis95], Bertsekas and Tsitsiklis [BeT96], and Haykin [Hay08]. Some of
this literature overlaps with the literature on stochastic gradient meth-
ods, which we noted in Section 2.1.5.

Deterministic convergence analyses of several variants of incremen-
tal gradient methods were given in the 90s under various assumptions
and for a variety of stepsize rules; see Luo [Luo91], Grippo [Gri94],
[Gri00], Luo and Tseng [LuT94a], Mangasarian and Solodov [MaS94],
Bertsekas [Ber97], Solodov [Sol98], Tseng [Tse98], and Bertsekas and
Tsitsiklis [BeT00]. Recent theoretical work on incremental gradient
methods has focused, among others, on the aggregated gradient meth-
ods discussed in Section 2.1.5, on extensions to nondifferentiable and
constrained problems, on combinations with the proximal algorithm,
and on constrained versions where the constraints are treated by incre-
mental projection (see Section 6.4 and the references cited there).

The incremental Newton and related methods have been consid-
ered by several authors in a stochastic approximation framework; e.g.,
by Sakrison [Sak66], Venter [Ven67], Fabian [Fab73], Poljak and Tsyp-
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kin [PoT80], [PoT81], and more recently by Bottou and LeCun [BoL05],
and Bhatnagar, Prasad, and Prashanth [BPP13]. Among others, these
references quantify the convergence rate advantage that stochastic New-
ton methods have over stochastic gradient methods. Deterministic
incremental Newton methods have received little attention (for a re-
cent work see Gurbuzbalaban, Ozdaglar, and Parrilo [GOP14]). How-
ever, they admit an analysis that is similar to a deterministic analysis
of the extended Kalman filter, the incremental version of the Gauss-
Newton method (see Bertsekas [Ber96], and Moriyama, Yamashita, and
Fukushima [MYF03]). There are also many stochastic analyses of the
extended Kalman filter in the literature of estimation and control of
dynamic systems.

Let us also note another approach to accelerate the theoretical
convergence rate of incremental gradient methods, which involves using
a larger than O(1/k) stepsize and averaging the iterates (for analysis of
the corresponding stochastic gradient methods, see Ruppert [Rup85],
and Poljak and Juditsky [PoJ92], and for a textbook account, Kushner
and Yin [KuY03]).

Section 2.2: The nonlinear programming textbooks cited earlier con-
tain a lot of material on approximation methods. In particular, the lit-
erature on polyhedral approximation is extensive. It dates to the early
days of nonlinear and convex programming, and it involves applications
in data communication and transportation networks, and large-scale
resource allocation. This literature will be reviewed in Chapter 4.

The research monographs by Fiacco and MacCormick [FiM68],
and Bertsekas [Ber82a] focus on penalty and augmented Lagrangian
methods, respectively. The latter book also contains a lot of mate-
rial on smoothing methods and the proximal algorithm, including cases
where nonquadratic regularization is involved, leading in turn to non-
quadratic penalty terms in the augmented Lagrangian (e.g., logarithmic
regularization and exponential penalty).

The proximal algorithm was proposed in the early 70s by Martinet
[Mar70], [Mar72]. The literature on the algorithm and its extensions,
spurred by the influential paper by Rockafellar [Roc76a], is voluminous,
and reflects the central importance of proximal ideas in convex optimiza-
tion and other problems. The ADMM, an important special case of the
proximal context, was proposed by Glowinskii and Morocco [GIM75],
and Gabay and Mercier [GaM76], and was further developed by Gabay
[Gab79], [Gab83]. We refer to Section 5.4 for a detailed discussion of this
algorithm, its applications, and its connections to more general operator
splitting methods. Recent work involving proximal ideas has focused on
combinations with other algorithms, such as gradient, subgradient, and
coordinate descent methods. Some of these combined methods will be
discussed in detail in Chapters 5 and 6.
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E X E R C I S E S

2.1 (Convergence Rate of Steepest Descent and Gradient
Projection for a Quadratic Cost Function)

Let f be the quadratic cost function,

f(x) = 1
2
x′Qx− b′x,

where Q is a symmetric positive definite matrix, and let m and M be the
minimum and maximum eigenvalues of Q, respectively. Consider the mini-
mization of f over a closed convex set X and the gradient projection mapping

G(x) = PX

(

x− α∇f(x)
)

with constant stepsize α < 2/M .

(a) Show that G is a contraction mapping and we have

∥

∥G(x)−G(y)
∥

∥ ≤ max
{

|1− αm|, |1− αM |
}

‖x− y‖, ∀ x, y ∈ ℜn,

and its unique fixed point is the unique minimum x∗ of f over X.
Solution: First note the nonexpansive property of the projection

∥

∥PX(x)− PX(y)
∥

∥ ≤ ‖x− y‖, ∀ x, y ∈ ℜn;

(use a Euclidean geometric argument, or see Section 3.2 for a proof).
Use this property and the gradient formula ∇f(x) = Qx− b to write

∥

∥G(x)−G(y)
∥

∥ =
∥

∥PX

(

x− α∇f(x)
)

− PX

(

y − α∇f(y)
)
∥

∥

≤
∥

∥

(

x− α∇f(x)
)

−
(

y − α∇f(y)
)
∥

∥

=
∥

∥(I − αQ)(x− y)
∥

∥

≤ max
{

|1− αm|, |1− αM |
}

‖x− y‖,

where m and M are the minimum and maximum eigenvalues of Q.
Clearly x∗ is a fixed point of G if and only if x∗ = PX

(

x∗ − α∇f(x∗)
)

,
which by the projection theorem, is true if and only if the necessary and
sufficient condition for optimality ∇f(x∗)′(x − x∗) ≥ 0 for all x ∈ X
is satisfied. Note: In a generalization of this convergence rate estimate
to the case of a nonquadratic strongly convex differentiable function f ,
the maximum eigenvalueM is replaced by the Lipschitz constant of ∇f
and the minimum eigenvalue m is replaced by the modulus of strong
convexity of f ; see Section 6.1.
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(b) Show that the value of α that minimizes the bound of part (a) is

α∗ =
2

M +m
,

in which case

∥

∥G(x)−G(y)
∥

∥ ≤
(

M/m− 1

M/m+ 1

)

‖x− y‖.

Note: The linear convergence rate estimate,

‖xk+1 − x∗‖ ≤
(

M/m− 1

M/m+ 1

)

‖xk − x∗‖,

that this contraction property implies for steepest descent with con-
stant stepsize is sharp, in the sense that there exist starting points x0

for which the preceding inequality holds as an equation for all k (see
[Ber99], Section 2.3).

2.2 (Descent Inequality)

This exercise deals with an inequality that is fundamental for the convergence
analysis of gradient methods. Let X be a convex set, and let f : ℜn 7→ ℜ be
a differentiable function such that for some constant L > 0, we have

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L‖x− y‖, ∀ x, y ∈ X.

Show that

f(y) ≤ f(x) +∇f(x)′(y − x) +
L

2
‖y − x‖2, ∀ x, y ∈ X. (2.70)

Proof : Let t be a scalar parameter and let g(t) = f
(

x+ t(y− x)
)

. The chain

rule yields (dg/dt)(t) = ∇f
(

x+ t(y − x)
)′
(y − x). Thus, we have

f(y)− f(x) = g(1)− g(0)

=

∫ 1

0

dg

dt
(t) dt

=

∫ 1

0

(y − x)′∇f
(

x+ t(y − x)
)

dt

≤
∫ 1

0

(y − x)′∇f(x) dt+
∣

∣

∣

∣

∫ 1

0

(y − x)′
(

∇f
(

x+ t(y − x)
)

−∇f(x)
)

dt

∣

∣

∣

∣

≤
∫ 1

0

(y − x)′∇f(x) dt+
∫ 1

0

‖y − x‖ · ‖∇f
(

x+ t(y − x)
)

−∇f(x)‖dt

≤ (y − x)′∇f(x) + ‖y − x‖
∫ 1

0

Lt‖y − x‖ dt

= (y − x)′∇f(x) + L

2
‖y − x‖2.
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2.3 (Convergence of Steepest Descent with Constant
Stepsize)

Let f : ℜn 7→ ℜ be a differentiable function such that for some constant
L > 0, we have

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L‖x − y‖, ∀ x, y ∈ ℜn. (2.71)

Consider the sequence {xk} generated by the steepest descent iteration

xk+1 = xk − α∇f(xk),

where 0 < α < 2
L
. Show that if {xk} has a limit point, then ∇f(xk) → 0, and

every limit point x of {xk} satisfies ∇f(x) = 0. Proof : We use the descent
inequality (2.70) to show that the cost function is reduced at each iteration
according to

f(xk+1) = f
(

xk − α∇f(xk)
)

≤ f(xk) +∇f(xk)
′
(

− α∇f(xk)
)

+
α2L

2
‖∇f(xk)‖2

= f(xk)− α
(

1− αL

2

)

‖∇f(xk)‖2.

Thus if there exists a limit point x of {xk}, we have f(xk) → f(x) and
∇f(xk) → 0. This implies that ∇f(x) = 0, since ∇f(·) is continuous by Eq.
(2.71).

2.4 (Armijo/Backtracking Stepsize Rule)

Consider minimization of a continuously differentiable function f : ℜn 7→ ℜ,
using the iteration

xk+1 = xk + αkdk,

where dk is a descent direction. Given fixed scalars β, and σ, with 0 < β < 1,
0 < σ < 1, and sk with infk≥0 sk > 0, the stepsize αk is determined as follows:
we set αk = βmksk, where mk is the first nonnegative integer m for which

f(xk)− f(xk + βmskdk) ≥ −σβmsk∇f(xk)
′dk.

Assume that there exist positive scalars c1, c2 such that for all k we have

c1
∥

∥∇f(xk)
∥

∥

2 ≤ −∇f(xk)
′dk, ‖dk‖2 ≤ c2

∥

∥∇f(xk)
∥

∥

2
. (2.72)

(a) Show that the stepsize αk is well-defined, i.e., that it will be determined
after a finite number of reductions if ∇f(xk) 6= 0. Proof : We have for
all s > 0

f(xk + sdk)− f(xk) = s∇f(xk)
′dk + o(s).
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Thus the test for acceptance of a stepsize s > 0 is written as

s∇f(xk)
′dk + o(s) ≤ σs∇f(xk)

′dk,

or using Eq. (2.72),

o(s)

s
≤ (1− σ)c1

∥

∥∇f(xk)
∥

∥

2
,

which is satisfied for s in some interval (0, s̄k]. Thus the test will be
passed for all m for which βmsk ≤ s̄k.

(b) Show that every limit point x of the generated sequence {xk} satisfies
∇f(x) = 0. Proof : Assume, to arrive at a contradiction, that there
is a subsequence {xk}K that converges to some x with ∇f(x) 6= 0.
Since {f(xk)} is monotonically nonincreasing, {f(xk)} either converges
to a finite value or diverges to −∞. Since f is continuous, f(x) is a
limit point of {f(xk)}, so it follows that the entire sequence {f(xk)}
converges to f(x). Hence,

f(xk)− f(xk+1) → 0.

By the definition of the Armijo rule and the descent property∇f(xk)
′dk ≤

0 of the direction dk, we have

f(xk)− f(xk+1) ≥ −σαk∇f(xk)
′dk ≥ 0,

so by combining the preceding two relations,

αk∇f(xk)
′dk → 0. (2.73)

From the left side of Eq. (2.72) and the hypothesis ∇f(x) 6= 0, it follows
that

lim sup
k→∞
k∈K

∇f(xk)
′dk < 0, (2.74)

which together with Eq. (2.73) implies that

{αk}K → 0.

Since sk, the initial trial value for αk, is bounded away from 0, sk will be
reduced at least once for all k ∈ K that are greater than some iteration
index k. Thus we must have for all k ∈ K with k > k,

f(xk)− f
(

xk + (αk/β)dk
)

< −σ(αk/β)∇f(xk)
′dk. (2.75)

From the right side of Eq. (2.72), {dk}K is bounded, and it follows that
there exists a subsequence {dk}K of {dk}K such that

{dk}K → d,
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where d is some vector. From Eq. (2.75), we have

f(xk)− f(xk + αkdk)

αk
< −σ∇f(xk)

′dk, ∀ k ∈ K, k ≥ k,

where αk = αk/β. By using the mean value theorem, this relation is
written as

−∇f(xk + α̃kdk)
′dk < −σ∇f(xk)

′dk, ∀ k ∈ K, k ≥ k,

where α̃k is a scalar in the interval [0, αk]. Taking limits in the preceding
relation we obtain

−∇f(x)′d ≤ −σ∇f(x)′d,

or
0 ≤ (1− σ)∇f(x)′d.

Since σ < 1, it follows that

0 ≤ ∇f(x)′d,

a contradiction of Eq. (2.74).

2.5 (Convergence of Steepest Descent to a Single Limit
[BGI95])

Let f : ℜn 7→ ℜ be a differentiable convex function, and assume that for some
L > 0, we have

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L ‖x− y‖, ∀ x, y ∈ ℜn.

Let X∗ be the set of minima of f , and assume that X∗ is nonempty. Consider
the steepest descent method

xk+1 = xk − αk∇f(xk).

Show that {xk} converges to a minimizing point of f under each of the fol-
lowing two stepsize rule conditions:

(i) For some ǫ > 0, we have

ǫ ≤ αk ≤ 2(1− ǫ)

L
, ∀ k.

(ii) αk → 0 and
∑∞

k=0
αk = ∞.

Notes: The original source [BGI95] also shows convergence to a single limit
for a variant of the Armijo rule. This should be contrasted with a result of
[Gon00], which shows that the steepest descent method with the exact line



126 Optimization Algorithms: An Overview Chap. 2

minimization rule may produce a sequence with multiple limit points (all of
which are of course optimal), even for a convex cost function. There is also
a “local capture” theorem that applies to gradient methods for nonconvex
continuously differentiable cost functions f and an isolated local minimum of
f (a local minimum x∗ that is unique within a neighborhood of x∗). Under
mild conditions it asserts that there is an open sphere Sx∗ centered at x∗

such that once the generated sequence {xk} enters Sx∗ , it converges to x∗

(see [Ber82a], Prop. 1.12, or [Ber99], Prop. 1.2.5 and the references given
there). Abbreviated Proof : Consider the stepsize rule (i). From the descent
inequality (Exercise 2.2), we have for all k

f(xk+1) ≤ f(xk)− αk

(

1− αkL

2

)

∥

∥∇f(xk)
∥

∥

2 ≤ f(xk)− ǫ2
∥

∥∇f(xk)
∥

∥

2
,

so
{

f(xk)
}

is monotonically nonincreasing and converges. Adding the pre-
ceding relation for all values of k and taking the limit as k → ∞, we obtain
for all x∗ ∈ X∗,

f(x∗) ≤ f(x0)− ǫ2
∞
∑

k=0

∥

∥∇f(xk)
∥

∥

2
.

It follows that
∑∞

k=0

∥

∥∇f(xk)
∥

∥

2
<∞ and ∇f(xk) → 0, and also

∞
∑

k=0

‖xk+1 − xk‖2 <∞, (2.76)

since ∇f(xk) = (xk −xk+1)/αk. Moreover any limit point of {xk} belongs to
X∗, since ∇f(xk) → 0 and f is convex.

Using the convexity of f , we have for all x∗ ∈ X∗,

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 − ‖xk+1 − xk‖2 = −2(x∗ − xk)
′(xk+1 − xk)

= 2αk(x
∗ − xk)

′∇f(xk)

≤ 2αk

(

f(x∗)− f(xk)
)

≤ 0,

so that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + ‖xk+1 − xk‖2, ∀ x∗ ∈ X∗. (2.77)

We now use Eqs. (2.76) and (2.77), and the Fejér Convergence Theorem
(Prop. A.4.6 in Appendix A). From part (a) of that theorem it follows that
{xk} is bounded, and hence it has a limit point x, which must belong to X∗

as shown earlier. Using this fact and part (b) of the theorem, it follows that
{xk} converges to x.

The proof for the case of the stepsize rule (ii) is similar. Using the
assumptions αk → 0 and

∑∞

k=0
αk = ∞, and the descent inequality, we show

that ∇f(xk) → 0, that
{

f(xk)
}

converges, and that Eq. (2.76) holds. From
this point, the preceding proof applies.
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2.6 (Convergence of Gradient Method with Errors [BeT00])

Consider the problem of unconstrained minimization of a differentiable func-
tion f : ℜn 7→ ℜ. Let {xk} be a sequence generated by the method

xk+1 = xk − αk

(

∇f(xk) + wk

)

,

where αk is a positive stepsize, and wk is an error vector satisfying for some
positive scalars p and q,

‖wk‖ ≤ αk

(

q + p‖∇f(xk)‖
)

, k = 0, 1, . . . . (2.78)

Assume that for some constant L > 0, we have

∥

∥∇f(x)−∇f(y)
∥

∥ ≤ L‖x − y‖, ∀ x, y ∈ ℜn,

and that
∞
∑

k=0

αk = ∞,

∞
∑

k=0

α2
k <∞. (2.79)

Show that either f(xk) → −∞ or else f(xk) converges to a finite value
and limk→∞ ∇f(xk) = 0. Furthermore, every limit point x of {xk} satis-
fies ∇f(x) = 0. Abbreviated Proof : The descent inequality (2.70) yields

f(xk+1) ≤ f(xk)− αk∇f(xk)
′
(

∇f(xk) + wk

)

+
α2
kL

2

∥

∥∇f(xk) + wk

∥

∥

2
.

Using Eq. (2.78), we have

−∇f(xk)
′
(

∇f(xk) + wk

)

≤ −
∥

∥∇f(xk)
∥

∥

2
+
∥

∥∇f(xk)
∥

∥ ‖wk‖

≤ −
∥

∥∇f(xk)
∥

∥

2
+ αkq

∥

∥∇f(xk)
∥

∥+ αkp
∥

∥∇f(xk)
∥

∥

2
,

and

1

2

∥

∥∇f(xk) + wk

∥

∥

2 ≤
∥

∥∇f(xk)
∥

∥

2
+ ‖wk‖2

≤
∥

∥∇f(xk)
∥

∥

2
+ α2

k

(

q2 + 2pq
∥

∥∇f(xk)
∥

∥ + p2
∥

∥∇f(xk)
∥

∥

2)

.

Combining the preceding three relations and collecting terms, it follows that

f(xk+1) ≤ f(xk)− αk(1− αkL− αkp− α3
kp

2L)
∥

∥∇f(xk)
∥

∥

2

+ α2
k(q + 2α2

kpqL)
∥

∥∇f(xk)
∥

∥+ α4
kq

2L.

Since αk → 0, we have for some positive constants c and d, and all k suffi-
ciently large

f(xk+1) ≤ f(xk)− αkc
∥

∥∇f(xk)
∥

∥

2
+ α2

kd
∥

∥∇f(xk)
∥

∥+ α4
kq

2L.
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Using the inequality
∥

∥∇f(xk)
∥

∥ ≤ 1 +
∥

∥∇f(xk)
∥

∥

2
, the above relation yields

for all k sufficiently large

f(xk+1) ≤ f(xk)− αk(c− αkd)
∥

∥∇f(xk)
∥

∥

2
+ α2

kd+ α4
kq

2L.

By applying the Supermartingale Convergence Theorem (Prop. A.4.4 in Ap-
pendix A), using also the assumption (2.79), it follows that either f(xk) →
−∞ or else f(xk) converges to a finite value and

∑∞

k=0
αk

∥

∥∇f(xk)
∥

∥

2
< ∞.

In the latter case, in view of the assumption
∑∞

k=0
αk = ∞, we must have

lim infk→∞ ‖∇f(xk)‖ = 0. This implies that ∇f(xk) → 0; for a detailed proof
of this last step see [BeT00]. This reference also provides a stochastic version
of the result of this exercise. This result, however, requires a different line
proof, which does not rely on supermartingale convergence arguments.

2.7 (Steepest Descent Direction for Nondifferentiable
Cost Functions [BeM71])

Let f : ℜn 7→ ℜ be a convex function, and let us view the steepest descent
direction at x as the solution of the problem

minimize f ′(x; d)

subject to ‖d‖ ≤ 1.
(2.80)

Show that this direction is −g∗, where g∗ is the vector of minimum norm in
∂f(x). Abbreviated Solution: From Prop. 5.4.8 in Appendix B, f ′(x; ·) is the
support function of the nonempty and compact subdifferential ∂f(x), i.e.,

f ′(x;d) = max
g∈∂f(x)

d′g, ∀ x, d ∈ ℜn.

Since the sets
{

d | ‖d‖ ≤ 1
}

and ∂f(x) are convex and compact, and the
function d′g is linear in each variable when the other variable is fixed, by the
Saddle Point Theorem of Prop. 5.5.3 in Appendix B, it follows that

min
‖d‖≤1

max
g∈∂f(x)

d′g = max
g∈∂f(x)

min
‖d‖≤1

d′g,

and that a saddle point exists. For any saddle point (d∗, g∗), g∗ maximizes
the function min‖d‖≤1 d

′g = −‖g‖ over ∂f(x), so g∗ is the unique vector of
minimum norm in ∂f(x). Moreover, d∗ minimizes maxg∈∂f(x) d

′g or equiva-
lently f ′(x;d) [by Eq. (2.80)] subject to ‖d‖ ≤ 1 (so it is a direction of steepest
descent), and minimizes d′g∗ subject to ‖d‖ ≤ 1, so it has the form

d∗ = − g∗

‖g∗‖

[except if 0 ∈ ∂f(x), in which case d∗ = 0].



Sec. 2.3 Notes, Sources, and Exercises 129

2.8 (Two-Metric Projection Methods for Bound Constraints
[Ber82a], [Ber82b])

Consider the minimization of a continuously differentiable function f : ℜn 7→
ℜ over the set

X =
{

(x1, . . . , xn) | bi ≤ xi ≤ b̄i, i = 1, . . . , n
}

,

where bi and b̄i, i = 1, . . . , n, are given scalars. The two-metric projection
method for this problem has the form

xk+1 = PX

(

xk − αkDk∇f(xk)
)

,

where Dk is a positive definite symmetric matrix.

(a) Construct an example of f and Dk, where xk does not minimize f over
X and f(xk+1) > f(xk) for all αk > 0.

(b) For given xk ∈ X, let Ik = {i | xi
k = bi with ∂f(xk)/∂x

i > 0 or xi
k =

b̄i with ∂f(xk)/∂x
i < 0}. Assume that Dk is diagonal with respect to

Ik in the sense that (Dk)ij = (Dk)ji = 0 for all i ∈ Ik and j = 1, . . . , n,
with j 6= i. Show that if xk is not optimal, there exists ᾱk > 0 such
that f(xk+1) < f(xk) for all αk ∈ (0, ᾱk].

(c) Assume that the nondiagonal portion of Dk is the inverse of the corre-
sponding portion of ∇2f(xk). Argue informally that the method can
be reasonably expected to have superlinear convergence rate.

2.9 (Incremental Methods – Computational Exercise)

This exercise deals with the (perhaps approximate) solution of a system of
linear inequalities c′ix ≤ bi, i = 1, . . . , m, where ci ∈ ℜn and bi ∈ ℜ are given.

(a) Consider a variation of the Kaczmarz algorithm that operates in cycles
as follows. At the end of cycle k, we set xk+1 = ψm,k, where ψm,k is
obtained after the m steps

ψi,k = ψi−1,k − αk

‖ci‖2
max

{

0, c′iψi−1,k − bi
}

ci, i = 1, . . . ,m,

starting with ψ0,k = xk. Show that the algorithm can be viewed as an
incremental gradient method for a suitable differentiable cost function.

(b) Implement the algorithm of (a) for two examples where n = 2 and
m = 100. In the first example, the vectors ci have the form ci = (ξi, ζi),
where ξi, ζi, as well as bi, are chosen randomly and independently
from [−100, 100] according to a uniform distribution. In the second
example, the vectors ci have the form ci = (ξi, ζi), where ξi, ζi are
chosen randomly and independently within [−10, 10] according to a
uniform distribution, while bi is chosen randomly and independently
within [0, 1000] according to a uniform distribution. Experiment with
different starting points and stepsize choices, and deterministic and
randomized orders of selection of the indexes i for iteration. Explain
your experimental results in terms of the theoretical behavior described
in Section 2.1.
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2.10 (Convergence of the Incremental Gradient Method)

Consider the minimization of a cost function

f(x) =

m
∑

i=1

fi(x),

where fi : ℜn 7→ ℜ are continuously differentiable, and let {xk} be a se-
quence generated by the incremental gradient method. Assume that for some
constants L,C,D, and all i = 1, . . . ,m, we have

∥

∥∇fi(x)−∇fi(y)
∥

∥ ≤ L‖x− y‖, ∀ x, y ∈ ℜn,

and
∥

∥∇fi(x)
∥

∥ ≤ C +D
∥

∥∇f(x)
∥

∥, ∀ x ∈ ℜn.

Assume also that

∞
∑

k=0

αk = ∞,

∞
∑

k=0

α2
k <∞.

Show that either f(xk) → −∞ or else f(xk) converges to a finite value
and limk→∞ ∇f(xk) = 0. Furthermore, every limit point x of {xk} satis-
fies ∇f(x) = 0. Abbreviated Solution: The idea is to view the incremental
gradient method as a gradient method with errors, so that the result of Ex-
ercise 2.6 can be used. For simplicity we assume that m = 2. The proof is
similar when m > 2. We have

ψ1 = xk − αk∇f1(xk), xk+1 = ψ1 − αk∇f2(ψ1).

By adding these two relations, we obtain

xk+1 = xk + αk

(

−∇f(xk) + wk

)

,

where

wk = ∇f2(xk)−∇f2(ψ1).

We have

‖wk‖ ≤ L‖xk − ψ1‖ = αkL
∥

∥∇f1(xk)
∥

∥ ≤ αk

(

LC + LD
∥

∥∇f(xk)
∥

∥

)

.

Thus Exercise 2.6 applies and the result follows.
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2.11 (Convergence Rate of the Kaczmarz Algorithm with
Random Projection [StV09])

Consider a consistent system of linear equations c′ix = bi, i = 1, . . . , m, and
assume for convenience that the vectors ci have been scaled so that ‖ci‖ = 1
for all i. A randomized version of the Kaczmarz method is given by

xk+1 = xk − (c′ikx− bik )cik ,

where ik is an index randomly chosen from the set {1, . . . ,m} with equal
probabilities 1/m, independently of previous choices. Let P (x) denote the
Euclidean projection of a vector x ∈ ℜn onto the set of solutions of the
system, and let C be the matrix whose rows are c1, . . . , cm. Show that

E
{

‖xk+1 − P (xk+1)‖2
}

≤
(

1− λmin

m

)

E
{

‖xk − P (xk)‖2
}

,

where λmin is the minimum eigenvalue of the matrix C′C. Hint: Show that

∥

∥xk+1 − P (xk+1)
∥

∥

2 ≤
∥

∥xk+1 − P (xk)
∥

∥

2
=
∥

∥xk − P (xk)
∥

∥

2 − (c′ikxik
− bik )

2,

and take conditional expectation of both sides to show that

E
{

‖xk+1 − P (xk+1)‖2 | xk

}

≤
∥

∥xk − P (xk)
∥

∥

2 − 1

m
‖Cxk − b‖2

≤
(

1− λmin

m

)

∥

∥xk − P (xk)
∥

∥

2
.

2.12 (Limit Cycle of Incremental Gradient Method [Luo91])

Consider the scalar least squares problem

minimize 1
2

(

(b1 − x)2 + (b2 − x)2
)

subject to x ∈ ℜ,

where b1 and b2 are given scalars, and the incremental gradient algorithm
that generates xk+1 from xk according to

xk+1 = ψk − α(ψk − b2),

where
ψk = xk − α(xk − b1),

and α is a positive stepsize. Assuming that α < 1, show that {xk} and {ψk}
converge to limits x(α) and ψ(α), respectively. However, unless b1 = b2,
x(α) and ψ(α) are neither equal to each other, nor equal to the least squares
solution x∗ = (b1 + b2)/2. Verify that

lim
α→0

x(α) = lim
α→0

ψ(α) = x∗.
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2.13 (Convergence of Incremental Gradient Method for
Linear Least Squares Problems)

Consider the linear least squares problem of minimizing

f(x) = 1
2

∑m

i=1
‖zi −Cix‖2

over x ∈ ℜn, where the vectors zi and the matrices Ci are given. Let xk be
the vector at the start of cycle k of the incremental gradient method that
operates in cycles where components are selected according to a fixed order.
Thus we have

xk+1 = xk + αk

m
∑

i=1

C′
i(zi − Ciψi−1),

where ψ0 = xk and

ψi = ψi−1 + αkC
′
i(zi −Ciψi−1), i = 1, . . . ,m.

Assume that
∑m

i=1
C′

iCi is a positive definite matrix and let x∗ be the optimal
solution. Then:

(a) There exists α > 0 such that if αk is equal to some constant α ∈ (0, α]
for all k, {xk} converges to some vector x(α). Furthermore, the error
‖xk−x(α)‖ converges to 0 linearly. In addition, we have limα→0 x(α) =
x∗. Hint: Show that the mapping that produces xk+1 starting from xk

is a contraction mapping for α sufficiently small.

(b) If αk > 0 for all k, and

αk → 0,

∞
∑

k=0

αk = ∞,

then {xk} converges to x∗. Hint: Use Prop. A.4.3 of Appendix A.

Note: The ideas of this exercise are due to [Luo91]. For a complete solution,
see [BeT96], Section 3.2, or [Ber99], Section 1.5.

2.14 (Linear Convergence Rate of Incremental Gradient
Method [Ber99], [NeB00])

This exercise quantifies the rate of convergence of the incremental gradient
method to the “region of confusion” (cf. Fig. 2.1.11), for any order of process-
ing the additive cost components, assuming these components are positive
definite quadratic. Consider the incremental gradient method

xk+1 = xk − α∇fk(xk) k = 0, 1, . . . ,

where f0, f1, . . . , are quadratic functions with eigenvalues lying within some
interval [γ,Γ], where γ > 0. Suppose that for a given ǫ > 0, there is a vector
x∗ such that

∥

∥∇fk(x∗)
∥

∥ ≤ ǫ, ∀ k = 0, 1, . . . .
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Show that for all α with 0 < α ≤ 2/(γ + Γ), the generated sequence {xk}
converges to a 2ǫ/γ-neighborhood of x∗, i.e.,

lim sup
k→∞

‖xk − x∗‖ ≤ 2ǫ

γ
.

Moreover the rate of convergence to this neighborhood is linear, in the sense
that

‖xk − x∗‖ > 2ǫ

γ
⇒ ‖xk+1 − x∗‖ <

(

1− αγ

2

)

‖xk − x∗‖,

while

‖xk − x∗‖ ≤ 2ǫ

γ
⇒ ‖xk+1 − x∗‖ ≤ 2ǫ

γ
.

Hint : Let fk(x) = 1
2
x′Qkx − b′kx, where Qk is positive definite symmetric,

and write

xk+1 − x∗ = (I − αQk)(xk − x∗)− α∇fk(x∗).

For other related convergence rate results, see [NeB00] and [Sch14a].

2.15 (Proximal Gradient Method, ℓ1-Regularization, and the
Shrinkage Operation)

The proximal gradient iteration (2.27) is well suited for problems involving a
nondifferentiable function component that is convenient for a proximal iter-
ation. This exercise considers the important case of the ℓ1 norm. Consider
the problem

minimize f(x) + γ‖x‖1
subject to x ∈ ℜn,

where f : ℜn 7→ ℜ is a differentiable convex function, ‖ · ‖1 is the ℓ1 norm,
and γ > 0. The proximal gradient iteration is given by the gradient step

zk = xk − α∇f(xk),

followed by the proximal step

xk+1 ∈ arg min
x∈ℜn

{

γ‖x‖1 +
1

2α
‖x− zk‖2

}

;

[cf. Eq. (2.28)]. Show that the proximal step can be performed separately for
each coordinate xi of x, and is given by the so-called shrinkage operation:

xi
k+1 =

{

zik − αγ if zik > αγ,
0 if |zik| ≤ αγ,
zik + αγ if zik < −αγ,

i = 1, . . . , n.

Note: Since the shrinkage operation tends to set many coordinates xi
k+1 to

0, it tends to produce “sparse” iterates.
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2.16 (Determining Feasibility of Nonlinear Inequalities by
Exponential Smoothing, [Ber82a], p. 314, [Sch82])

Consider the problem of finding a solution of a system of inequality constraints

gi(x) ≤ 0, i = 1, . . . ,m,

where gi : ℜn 7→ ℜ are convex functions. A smoothing method based on the
exponential penalty function is to minimize instead

fc,λ(x) =
1

c
ln

m
∑

i=1

λie
cgi(x),

where c > 0 is some scalar, and the scalars λi, i = 1, . . . ,m, are such that

λi > 0, i = 1, . . . ,m,

m
∑

i=1

λi = 1.

(a) Show that if the system is feasible (or strictly feasible) the optimal
value is nonpositive (or strictly negative, respectively). If the system is
infeasible, then

lim
c→∞

inf
x∈ℜn

fc,λ(x) = inf
x∈ℜn

max
{

g1(x), . . . , gm(x)
}

.

(b) (Computational Exercise) Apply the incremental gradient method and
the incremental Newton method for minimizing

∑m

i=1
ecgi(x) [which is

equivalent to minimizing fc,λ(x) with λi ≡ 1/m], for the case

gi(x) = c′ix− bi, i = 1, . . . ,m,

where (ci, bi) are randomly generated as in the two problems of Exercise
2.9(b). Experiment with different starting points and stepsize choices,
and deterministic and randomized orders of selection of the indexes i
for iteration.

(c) Repeat part (b) where the problem is instead to minimize f(x) =
maxi=1,...,m gi(x) and the exponential smoothing method of Section
2.2.5 is used, possibly with the augmented Lagrangian update (2.67)
of λ. Compare three methods of operation: (1) c is kept constant and
λ is updated, (2) c is increased to ∞ and λ is kept constant, and (3) c
is increased to ∞ and λ is updated.


