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In this chapter, we discuss variants of some of the models of the preceding
chapters, where there are restrictions on the set of policies. In particular,
policies may be selected from a strict subset M of the set of functions
µ : X 7! U with µ(x) 2 U(x) for all x 2 X. One potential use of such a
restriction arises when M consists of specially structured policies that re-
sult in convenient characterization and computation. Classical examples of
situations of this type are linear policies in linear-quadratic optimal control
problems, (s, S) policies in inventory control, and various threshold policies
in queueing and scheduling problems (see e.g., [Ber05a], [Ber12a], [Put94]).
In this context, the main focus of the analysis is to show that attention
can be confined to the policies µ 2 M and their associated mappings Tµ.
If this can be shown, then the analytical solution of Bellman’s equation
may be enhanced, and the computational solution using for example policy
iteration that is restricted within M may be facilitated (cf. Section 4.4.3,
which deals with linear-quadratic optimal control).

Another major use arises in mathematically rigorous probabilistic
treatments of stochastic optimal control problems, and relates to the need
for µ to be measurable in an appropriate sense. We take this as the starting
point and motivation for the development of a general theory of restricted
models in the next section, and we develop this theory in subsequent sec-
tions for finite horizon and for contractive models. In the last section of
this chapter, we return to the treatment of measurability issues using the
theory developed in the earlier sections.

5.1 A FRAMEWORK FOR RESTRICTED POLICIES

As a motivating example, let us consider the mapping H of the stochastic
optimal control Example 1.2.1,

H(x, u, J) = E
�
g(x, u,w) + ↵J

�
f(x, u,w)

� 
. (5.1)

We have considered so far the case where w is a discrete random variable,
taking a finite or a countably infinite set of values, so that the mapping
Tµ is defined for all µ 2M in terms of a summation. In the general case,
however, where w is a continuous random variable, H is well-defined only
if the expected value over w is well-defined. For this it is necessary to
introduce an appropriate probability space for w, and for g and f to be
appropriately measurable.

Most importantly, we cannot simply take J to belong to E(X), the
space of extended real-valued functions over X. We must restrict J to a
subset E(X) ⇢ E(X), consisting of appropriately measurable functions. In
addition, to define Tµ as a function from E(X) to E(X) by

(TµJ)(x) = H
�
x, µ(x), J

�
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or equivalently

(TµJ)(x) = E
�
g(x, µ(x), w) + ↵J

�
f(x, µ(x), w)

� 
,

µ must belong to a subclass M of appropriately measurable functions from
M. Appendix C provides a further illustration of the measurability is-
sues through a simple two-stage example, and also introduces some of the
terminology and background on measure theoretic issues, based on Borel
measurability, which we will use in this chapter (the monograph [BeS78]
contains an extensive account of this material).

The preceding discussion indicates that to define a restricted policies
model, we need at least two basic subsets of functions and policies:

(a) A restricted set of functions E(X) ⇢ E(X).

(b) A restricted set of policies M ⇢M, such that

TµJ 2 E(X), 8 J 2 E(X), µ 2M,

where Tµ is given by

(TµJ)(x) = H
�
x, µ(x), J

�
, 8 x 2 X.

To conduct an analysis similar to the one of earlier chapters, we also
need to concern ourselves with the corresponding mapping T . To this end,
we assume, without loss of generality, that

U(x) =
�
µ(x) | µ 2M

 
, 8 x 2 X,

so that the mapping T can be interchangeably defined as

(TJ)(x) = inf
µ2M

(TµJ)(x), 8 J 2 E(X), x 2 X,

or as
(TJ)(x) = inf

u2U(x)
H(x, u, J), 8 J 2 E(X), x 2 X. (5.2)

An issue to contend with here is whether the infimum in the definition of
TJ is attained, exactly or within a small tolerance ✏ > 0, by a policy in
M (simultaneously for all x), i.e., whether there exists µ 2 M such that
(TµJ)(x) is close to (TJ)(x) uniformly for all x 2 X. This issue turns out
to be quite delicate in the context of stochastic optimal control problems,
as we will discuss shortly. We first consider the case where the infimum is
exactly attained, and then address the more complex case where it is not.
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Models Admitting Exact Selection

Let us assume that E(X) and M have been defined as described above.
Consider the case where there exists µ 2M such that the infimum in Eq.
(5.2) is attained at µ(x) for all x 2 X, i.e., for all J 2 E(X) there exists a
µ 2M such that

TµJ = TJ. (5.3)

Otherwise stated, for all J 2 E(X), the minimization in Eq. (5.2) admits
an exact selector µ from within M. Then assuming also that T and Tµ,
µ 2M, preserve membership in E(X), i.e.,

TµJ 2 E(X), TJ 2 E(X), 8 J 2 E(X), µ 2M, (5.4)

a large portion of the analysis of the preceding chapters carries through
verbatim, and much of the remainder can be extended with minimal mod-
ifications.

In particular, in the finite horizon problems of Chapter 4, under this
condition, the condition J̄ 2 E(X), and the monotonicity assumption

H(x, u, J)  H(x, u, J 0), 8 J, J 0 2 E(X), x 2 X, u 2 U(x), (5.5)

we have J*
N = TN J̄ and that there exists an N -stage optimal policy. Such

a policy can be obtained via the DP algorithm that starts with the ter-
minal cost function J̄ , and sequentially computes T J̄, T 2J̄ , . . . , TN J̄ , and
corresponding µ⇤N�1, µ

⇤
N�2, . . . , µ

⇤
0 2M such that

Tµ⇤
k
TN�k�1J̄ = TN�kJ̄ , k = 0, . . . , N � 1, (5.6)

(cf. the discussion in the early part of Section 4.2).
To extend the analysis of the contractive models of Chapter 2, under

Eqs. (5.3) and (5.4), we need to assume that E(X) is a closed subset of
B(X), the space of functions J : X 7! < that are bounded with respect to
a weighted sup-norm. This is necessary so that the fixed point theorems
of Appendix B apply. We also need to assume that the mappings Tµ are
contractions for all µ 2M with respect to a common weighted sup-norm.
Then the relevant portion of the analysis of Chapter 2 carries through with
hardly any change. The analysis of the semicontractive and infinite horizon
noncontractive models of Chapters 3 and 4, also admit a similar treatment,
under the exact selection assumption (5.3) and Eq. (5.4).

Generally, when the exact selection property (5.3) holds in the con-
text of the stochastic optimal control example where H is defined by Eq.
(5.1), there are few complications in providing a rigorous mathematical
treatment, even when w is a continuous random variable. Typically X,
U , and W are taken to be Borel spaces, E(X) and M are chosen to be
the spaces of Borel measurable functions from X to <*, and from X to U ,
respectively. Also g, f , and the probability space of w must satisfy certain
Borel measurability conditions (see Appendix C).
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Models Without Exact Selection

When the exact selection property (5.3) may not hold, to conduct any kind
of meaningful analysis, it is necessary to adopt a restriction framework for
policies and functions, which guarantees that TJ can be approximated
by TµJ , with appropriate choice of µ. To this end, a seemingly natural
assumption would be that given J 2 E(X) and ✏ > 0, there exists an
✏-optimal selector , that is, a µ✏ 2M such that

(Tµ✏J)(x) 
(

(TJ)(x) + ✏ if (TJ)(x) > �1,
�(1/✏) if (TJ)(x) = �1,

8 x 2 X. (5.7)

However, in the Borel space model noted earlier and described in Ap-
pendix C, there is a serious di�culty: if E(X) and M are the spaces of
Borel measurable functions from X to <*, and from X to U , respectively,
there need not exist an ✏-optimal selector . For this reason, Borel measura-
bility of cost functions and policies is not the most appropriate probabilistic
framework for stochastic optimal control problems. † Instead, in the most
general framework for bypassing this di�culty, it is necessary to consider
a di↵erent kind of measurability, which is described in Appendix C. In this
framework:

(a) E(X) is taken to be the class of universally measurable functions from
X to <*.

(b) M is taken to be the class of universally measurable functions from
X to U .

(c) g, f , and the probability space of w must satisfy certain Borel mea-
surability conditions.

A key fact is that an ✏-selection property holds, whereby there exists a
µ✏ 2M such that

(Tµ✏J)(x) 
(

(TJ)(x) + ✏ if (TJ)(x) > �1,
�(1/✏) if (TJ)(x) = �1,

8 x 2 X, (5.8)

† There have been e↵orts to address the lack of an ✏-optimal selector within
the Borel measurability framework using the concept of a “p-✏-optimal selector,”
whereby the concept of ✏-optimal selection is modified to hold over a set for
states that has p-measure 1, with p being any chosen probability measure over X
(see [Str66], [Str75], [DyY79]). This leads to a theory based on p-✏-optimal and
p-optimal policies, i.e., policies that depend on the choice of p and are optimal
only for states in a subset of X that has p-measure 1 (rather than over all states
as in our case). It seems di�cult to extend the abstract framework of this book
based on this inherently probabilistic viewpoint. For a related discussion and a
comparison of the p-✏-optimal approach with ours, we refer to [BeS78].
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for each J in the class Ê(X) of lower semianalytic functions from X to <*;
this is a strict subset of E(X), the set of universally measurable functions
(see Appendix C).

Because of the di�culty with ✏-selection within a Borel measurabil-
ity framework, to construct a more generally applicable restricted policies
model, it is necessary to introduce the set of lower semianalytic functions
Ê(X) within the Borel space framework, as a third subset , additional to
E(X) and M. In summary:

(a) We take E(X) to be the class of universally measurable functions from
X to <*, and M to be the class of universally measurable functions
from X to U . Then, TµJ 2 E(X) for all µ 2 M and J 2 E(X), so
the cost function of a policy lies in E(X).

(b) We take Ê(X) to be the set of lower semianalytic functions from X to
<*. Then we have TJ 2 Ê(X) for all J 2 Ê(X), and the ✏-selection
property (5.8) holds. As a result, the VI algorithm produces functions
in Ê(X), if started within in Ê(X), and J* can be proved to lie in
Ê(X).

Motivated by the preceding discussion, we will now introduce a model
that involves a set of policies M, and two sets of functions E(X) and Ê(X)
with properties that are analogous to the ones just discussed for Borel space
models for stochastic optimal control, along with some additional technical
assumptions. We will use this model for the analysis of abstract finite and
infinite horizon problems, and we will review later its use within the Borel
measurability framework.

5.1.1 General Assumptions

As in Section 4.1, we have the sets X and U , and we introduce a set M
of functions µ : X 7! U , which we view as a restricted set of stationary
policies. We define

U(x) =
�
µ(x) | µ 2M

 
, 8 x 2 X, (5.9)

and we assume that U(x) is nonempty for all x 2 X. The corresponding
set of (nonstationary) policies ⇡ = {µ0, µ1, . . .} with µk 2M, k = 0, 1, . . . ,
is denoted by ⇧. We introduce two subsets Ê(X) and E(X) of E(X) (the
set of extended real-valued functions on X), such that

Ê(X) ⇢ E(X),

and the following assumption is satisfied.
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Assumption 5.1.1:

(a) For each sequence {Jm} ⇢ E(X) with Jm ! J , we have J 2
E(X), and for each sequence {Jm} ⇢ Ê(X) with Jm ! J , we
have J 2 Ê(X).

(b) For all r 2 <, we have

J 2 E(X) ) J + r e 2 E(X),

and
J 2 Ê(X) ) J + r e 2 Ê(X),

where e is the unit function, e(x) ⌘ 1.

We also introduce a mapping H : X ⇥U ⇥E(X) 7! <* satisfying the
monotonicity assumption.

Assumption 5.1.2: (Monotonicity) If J, J 0 2 E(X) and J  J 0,
then

H(x, u, J)  H(x, u, J 0), 8 x 2 X, u 2 U(x).

We define the mapping T : E(X) 7! <* by

(TJ)(x) = inf
u2U(x)

H(x, u, J), 8 x 2 X, J 2 E(X),

and for each µ 2M, the mapping Tµ : E(X) 7! <* by

(TµJ)(x) = H
�
x, µ(x), J

�
, 8 x 2 X, J 2 E(X).

Note that in view of the definition (5.9) of U(x), we also have

(TJ)(x) = inf
µ2M

(TµJ)(x), 8 x 2 X, J 2 E(X),

or in shorthand
TJ = inf

µ2M
TµJ.

The sets M, E(X), and Ê(X), and the mappings Tµ and T are
assumed to satisfy the following.
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Assumption 5.1.3:

(a) For all µ 2M, we have

J 2 E(X) ) TµJ 2 E(X).

(b) We have
J 2 Ê(X) ) TJ 2 Ê(X).

Finally, we require that Ê(X) has the following critical ✏-selection
property.

Assumption 5.1.4: (✏-Selection) For each J 2 Ê(X) and ✏ > 0,
there exists a µ✏ 2M such that

(Tµ✏J)(x) 
(

(TJ)(x) + ✏ if (TJ)(x) > �1,
�(1/✏) if (TJ)(x) = �1,

8 x 2 X. (5.10)

The relevant selection theorem, which guarantees that the Assump-
tion 5.1.4 holds in the stochastic optimal control context is given as Prop.
C.5 in Appendix C. Note that Assumption 5.1.3 does not guarantee that
TµJ 2 Ê(X) for J 2 Ê(X). As a result, the function Tµ✏J of Assumption
5.1.4 is only guaranteed to belong to the larger set E(X).

Problem Formulation

We are given a function J̄ 2 Ê(X) satisfying

J̄(x) > �1, 8 x 2 X, (5.11)

and we consider for every policy ⇡ = {µ0, µ1, . . .} 2 ⇧ and positive integer
N the function JN,⇡ 2 E(X) defined by

JN,⇡(x) = (Tµ0 · · ·TµN�1 J̄)(x), 8 x 2 X,

and the function J⇡ defined by

J⇡(x) = lim sup
k!1

(Tµ0 · · ·Tµk J̄)(x), 8 x 2 X.

For a stationary policy ⇡ = {µ, µ, . . .} we also write Jµ in place of J⇡.
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As earlier, we consider the N -stage optimization problem

minimize JN,⇡(x)

subject to ⇡ 2 ⇧,
(5.12)

and its infinite horizon version

minimize J⇡(x)

subject to ⇡ 2 ⇧.
(5.13)

For a fixed x 2 X, we denote by J*
N (x) and J*(x) the optimal costs

for these problems, i.e.,

J*
N (x) = inf

⇡2⇧
JN,⇡(x), J*(x) = inf

⇡2⇧
J⇡(x), 8 x 2 X.

We say that a policy ⇡⇤ 2 ⇧ is N-stage optimal if

JN,⇡⇤(x) = J*
N (x), 8 x 2 X,

and (infinite horizon) optimal if

J⇡⇤(x) = J*(x), 8 x 2 X.

For a given ✏ > 0, we say that ⇡✏ 2 ⇧ is N-stage ✏-optimal if

J⇡✏(x) 

8<
:

J*
N (x) + ✏ if J*

N (x) > �1,

�(1/✏) if J*
N (x) = �1,

and we say that ⇡✏ is (infinite horizon) ✏-optimal if

J⇡✏(x) 

8<
:

J*(x) + ✏ if J*(x) > �1,

�(1/✏) if J*(x) = �1.

Note that since J̄ 2 Ê(X), the function T kJ̄ belongs to Ê(X) for all k
[cf. Assumption 5.1.3(b)]. Similar to Chapter 4, we will aim to show under
various assumptions that J*

N = TN J̄ , and that J* 2 Ê(X) and J* = TJ*.
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5.2 FINITE HORIZON PROBLEMS

To show that J*
N = TN J̄ , we use an analysis that is similar to the one of

Section 4.2. In particular, we introduce the following assumption, which is
analogous to Assumption 4.2.1.

Assumption 5.2.1: For each sequence {Jm} ⇢ E(X) with Jm # J
for some J 2 E(X), we have

lim
m!1

H(x, u, Jm)  H(x, u, J), 8 x 2 X, u 2 U(x). (5.14)

Note that Assumption 5.1.1 implies that if {Jm} ⇢ E(X) and Jm #
J 2 E(X), we have

J = lim
m!1

Jm = inf
m=0,1,...

Jm 2 E(X),

so for all µ 2M, by Assumption 5.2.1,

inf
m

(TµJm) = Tµ

⇣
inf
m

Jm

⌘
.

This inequality can be extended for any µ1, . . . , µk 2M as follows:

inf
m

(Tµ1 · · ·TµkJm) = Tµ1

⇣
inf
m

(Tµ1 · · ·TµkJm)
⌘

= · · ·

= Tµ1 · · ·Tµk

⇣
inf
m

Jm

⌘
.

(5.15)

We have the following proposition, which extends Prop. 4.2.3 to the re-
stricted policies framework.

Proposition 5.2.1: Let Assumptions 5.1.1-5.1.4 and 5.2.1 hold. Then

J*
N = TN J̄ .

Proof: We select for each k = 0, . . . , N � 1, a sequence {µm
k } ⇢M such

that
lim

m!1
Tµm

k
(TN�k�1J̄) # TN�kJ̄ .
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This is possible in view of the ✏-selection property of Assumption 5.1.4,
since TN�kJ̄ 2 Ê(X) [cf. Assumption 5.1.3(b)]. Using Eq. (5.15), we have

J⇤N  inf
m0

· · · inf
mN�1

Tµ
m0
0

· · ·T
µ

mN�1
N�1

J̄

= inf
m0

· · · inf
mN�2

Tµ
m0
0

· · ·T
µ

mN�2
N�2

✓
inf

mN�1
T

µ
mN�1
N�1

J̄

◆

= inf
m0

· · · inf
mN�2

Tµ
m0
0

· · ·T
µ

mN�2
N�2

T J̄

= · · ·
= TN J̄ ,

where the last equality is obtained by repeating the process used to obtain
the previous equalities. On the other hand, it is clear from the definitions
that TN J̄  JN,⇡ for all N and ⇡ 2 ⇧, so that TN J̄  J*

N . Thus, J*
N =

TN J̄ . Q.E.D.

We also introduce the following alternative assumption, which paral-
lels Assumption 4.2.2.

Assumption 5.2.2: The k-stages optimal cost function J*
k satisfies

J*
k (x) > �1, 8 x 2 X, k = 1, . . . , N.

Moreover, there exists a scalar ↵ 2 (0,1) such that for all scalars
r 2 (0,1) and functions J 2 E(X), we have

H(x, u, J)  H(x, u, J+r e)  H(x, u, J)+↵ r, 8 x 2 X, u 2 U(x).
(5.16)

We have the following proposition whose statement and proof parallel
the ones of Prop. 4.2.4.

Proposition 5.2.2: Let Assumptions 5.1.1-5.1.4, and 5.2.2 hold. Then
J*

N = TN J̄ , and for every ✏ > 0, there exists an ✏-optimal policy.

Proof: Note that since by assumption, J*
N (x) > �1 for all x 2 X, an

N -stage ✏-optimal policy ⇡✏ 2 ⇧ is one for which

J*
N  JN,⇡✏  J*

N + ✏ e.

We use induction. The result clearly holds for N = 1. Assume that
it holds for N = k, i.e., J*

k = T kJ̄ 2 Ê(X) and for a given ✏ > 0, there is a
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⇡e 2 ⇧ with Jk,⇡✏  J*
k + ✏ e. Using Eq. (5.16), we have for all µ 2M,

J*
k+1  TµJk,⇡✏  TµJ*

k + ↵✏ e.

Taking the infimum over µ and then the limit as ✏ ! 0, we obtain J*
k+1 

TJ*
k . By using the induction hypothesis, it follows that J*

k+1  T k+1J̄ . On
the other hand, we have clearly T k+1J̄  J*

k+1, and hence T k+1J̄ = J*
k+1.

Using the assumption J*
k (x) > �1 for all x 2 X, for any ✏ > 0, we

can choose ⇡ = {µ0, µ1, . . .} 2 ⇧ such that

Jk,⇡  J*
k +

✏

2↵
e,

and µ 2M such that
TµJ*

k  TJ*
k +

✏

2
e.

Let ⇡✏ = {µ, µ0, µ1, . . .}. Then

Jk+1,⇡✏
= TµJk,⇡  TµJ*

k +
✏

2
e  TJ*

k + ✏ e = J*
k+1 + ✏ e,

where the first inequality is obtained by using Eq. (5.16). The induction is
complete. Q.E.D.

5.3 CONTRACTIVE MODELS

In this section, we will discuss briefly the infinite horizon problem

minimize J⇡(x)

subject to ⇡ 2 ⇧,
(5.17)

where for a policy {µ0, µ1, . . .} 2 ⇧, J⇡ 2 E(X) is defined by

J⇡(x) = lim sup
k!1

(Tµ0 · · ·Tµk J̄)(x), 8 x 2 X.

We analyze this problem under a contraction assumption, similar to
Chapter 2. To this end, we introduce a function v : X 7! < with

v(x) > 0, 8 x 2 X,

and we consider the weighted sup-norm

kJk = sup
x2X

��J(x)
��

v(x)
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on B(X), the space of real-valued functions J on X such that J(x)/v(x)
is bounded over x 2 X.

In addition to the Assumptions 5.1.1-5.1.4, we assume the following.

Assumption 5.3.1: (Contraction)

(a) The sets E(X) and Ê(X) are closed subsets of B(X).

(b) For some ↵ 2 (0, 1), we have

kTµJ�TµJ 0k  ↵kJ�J 0k, 8 J, J 0 2 E(X), µ 2M. (5.18)

The analysis of Chapter 2 carries through with few modifications. In
particular the following analog of the major analytical result of Chapter 2,
can be proved with an essentially identical proof. The key fact here is that
E(X) and Ê(X) are closed subsets of B(X), so the Contraction Mapping
Theorem (Prop. B.1) applies.

Proposition 5.3.1: Let Assumptions 5.1.1-5.1.4 and the contraction
Assumption 5.3.1 hold. Then:

(a) For all µ 2 M, the mapping Tµ is a contraction mapping with
modulus ↵ over E(X), and its unique fixed point within E(X)
is Jµ.

(b) The mapping T is a contraction mapping with modulus ↵ over
Ê(X), and its unique fixed point within Ê(X) is equal to J*.

(c) For any J 2 E(X) and µ 2M, we have

lim
k!1

T k
µ J = Jµ.

(d) For any J 2 Ê(X), we have

lim
k!1

T kJ = J*.

(e) We have TµJ* = TJ* if and only if Jµ = J*.

(f) For every ✏ > 0 there exists an ✏-optimal policy within M.

Proof: As in Section 1.2, Tµ is a contraction with modulus ↵ over E(X).
Similarly, T is a contraction with modulus ↵ over Ê(X). Parts (a), (b),
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(c), and (d) follow from Prop. B.1 of Appendix B.
To show part (e), note that if TµJ* = TJ*, then in view of TJ* = J*,

we have TµJ* = J*, which implies that J* = Jµ, since Jµ is the unique
fixed point of Tµ. Conversely, if Jµ = J*, we have

TµJ* = TµJµ = Jµ = J* = TJ*.

Part (f) follows similarly, using the proof of Prop. 2.1.2. Q.E.D.

5.4 BOREL SPACE MODELS

We will now apply the preceding analysis to models where the set of policies
is restricted in order to address measurability issues. The Borel space
model is the most general such model, and we will focus on it. Appendix
C provides a motivation and an outline of the model for finite horizon
problems, including the associated mathematical definitions, some basic
results, and a two-stage example. In this section we will provide a brief
discussion of an infinite horizon contractive model.

We consider the mapping H defined by

H(x, u, J) = g(x, u) + ↵

Z
J(y) p(dy | x, u). (5.19)

Here X and U are Borel spaces, ↵ is a scalar in (0, 1], J is an extended real-
valued functions on X, and p(dy | x, u) is a transition probability measure
for each x and u 2 U(x). To make mathematical sense of the expression
in the right-hand side of Eq. (5.19), J must satisfy certain measurability
restrictions, so we assume that g is Borel measurable and that p(dy | x, u)
is a Borel measurable stochastic kernel. We let

E(X) = the subset of universally measurable functions from E(X).

Then the integral in Eq. (5.19) is well-defined as an extended real number
for every (x, u) for all J 2 E(X) (recall that in our integration framework
we allow the sum 1�1 to appear and interpret it as 1).

A requirement of the framework of this chapter is that TµJ must be-
long to E(X) for each J 2 E(X). For this it is su�cient that g be Borel
measurable as a function of (x, u), and the policy µ be a universally mea-
surable function of x. However, as noted earlier, universal measurability
of H [as a function of (x, u) for fixed J ] is insu�cient to guarantee that
TJ 2 E(X). We thus let

Ê(X) = the subset of lower semianalytic functions from E(X).
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Then assuming that J 2 Ê(X), that g(x, u) and p(dy | x, u) are Borel
measurable, and that the set

�
(x, u) | u 2 U(x)

 

is Borel measurable, we have that the function H(·, ·, J) is lower semiana-
lytic and TJ 2 Ê(X), as discussed in Appendix C (cf. Prop. C.4).

Note that our framework requires that ✏-optimal selection is possible,
i.e., that for every ✏ > 0, there exists a universally measurable µ such that
the conditions of Assumption 5.1.4 are satisfied. This is ensured under our
assumptions by the selection theorem of Prop. C.5 in Appendix C.

We now consider a contractive infinite horizon problem, which is
based on the mapping H defined by Eq. (5.19), where ↵ 2 (0, 1) is a dis-
count factor, and the preceding conditions hold. In addition g is assumed
to be not only Borel measurable, but also bounded above and below, in
which case we obtain a contractive model in the space of bounded functions
B(X) with respect to the unweighted sup-norm. It is important to note
that E(X) and Ê(X) are closed subsets of B(X), since the pointwise limit
of universally measurable and lower semianalytic functions are universally
measurable and lower semianalytic, respectively (see [BeS78]).

Thus Prop. 5.3.1 applies and provides the basic analytical results for
contractive Borel space models, which are:

(a) J* is the unique fixed point of T within Ê(X).

(b) For every J 2 Ê(X), T kJ 2 Ê(X) for all k, and we have T kJ ! J*.

(c) There exists a universally measurable optimal policy if and only if the
infimum of H(x, u, J*) over u is attained for each x 2 X.

(d) For any ✏ > 0, there exists an ✏-optimal universally measurable policy.

For a detailed discussion and proofs of these results, we refer to [BeS78].

5.5 NOTES, SOURCES, AND EXERCISES

The restricted model framework of this chapter was treated briefly in the
book [BeS78] (Chapter 6). This book focused far more extensively on the
classical type of stochastic optimal control problems (cf. Example 1.2.1),
rather than the more general abstract restricted model case.

The restricted policies framework may also be applied to the so-called
semicontinuous models similar to how it was applied to Borel models in Sec-
tion 5.4. The semicontinuous models provide more powerful results regard-
ing the character of the cost functions, but require additional assumptions,
which may be restrictive, namely that the cost function g and the stochastic
kernel p in Eq. (5.19) have certain upper or lower semicontinuity properties.
The relevant mathematical background is given in Section 7.5 of [BeS78],
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and the critical selection theorems (with Borel measurable selection) are
given in Props. 7.33 and 7.34 of that reference. Detailed related references
to the literature may also be found in [BeS78].


