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In this chapter, we consider abstract DP models that are similar to the
ones of the earlier chapters, but we do not assume any contraction-like
property. We discuss both finite and infinite horizon models, and introduce
just enough assumptions (including monotonicity) to obtain some minimal
results, which we will strengthen as we go along.

In Section 4.2, we consider a general type of finite horizon problem.
Under some reasonable assumptions, we show the standard results that one
may expect in an abstract setting.

In Section 4.3, we discuss an infinite horizon problem that is moti-
vated by the well-known positive and negative DP models (see [Ber12a],
Chapter 4). These are the special cases of the infinite horizon stochastic
optimal control problem of Example 1.2.1, where the cost per stage g is
uniformly nonpositive or uniformly nonnegative. For these models there is
interesting theory (the validity of Bellman’s equation and the availability of
optimality conditions in a DP context), which we discuss in Section 4.3.1.
There are also interesting computational methods, patterned after the VI
and PI algorithms, which we discuss in Sections 4.3.2 and 4.3.3. How-
ever, the performance guarantees for these methods are not as powerful as
in the contractive case, and their validity hinges upon certain additional
assumptions.

In Section 4.4, we extend the notion of regularity of Section 3.2 so that
it applies more broadly, including situations where nonstationary policies
need to be considered. The mathematical reason for considering nonsta-
tionary policies is that for some of the noncontractive models of Section
4.3, stationary policies are insufficient in the sense that there may not exist
ǫ-optimal policies that are stationary. In this section, we also discuss some
applications, including some general types of optimal control problems with
nonnegative cost per stage. Principal results here are that J* is the unique
solution of Bellman’s equation within a certain class of functions, and re-
lated results regarding the convergence of the VI algorithm.

In Section 4.5, we discuss a nonnegative cost deterministic optimal
control problem, which combines elements of the noncontractive models
of Section 4.3 and the semicontractive models of Chapter 3 and Section
4.4. Within this setting we explore the structure and the multiplicity of
solutions of Bellman’s equation. We draw inspiration from the analysis of
Section 4.4, but we also use a perturbation-based line of analysis, similar
to the one of Section 3.4. In particular, our starting point is a perturbed
version of the mapping Tµ that defines the “stable” policies, in place of a
subset S that defines the S-regular policies. Still with a proper definition
of S, the “stable” policies are S-regular.

Finally, in Section 4.6, we extend the ideas of Section 4.5 to stochastic
optimal control problems, by generalizing the notion of a proper policy to
the case of infinite state and control spaces.
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4.1 NONCONTRACTIVE MODELS - PROBLEM FORMULATION

Throughout this chapter we will continue to use the model of Section 3.2,
which involves the set of extended real numbers ℜ∗ = ℜ ∪ {∞,−∞}. To
repeat some of the basic definitions, we denote by E(X) the set of all
extended real-valued functions J : X 7→ ℜ∗, by R(X) the set of real-
valued functions J : X 7→ ℜ, and by B(X) the set of real-valued functions
J : X 7→ ℜ that are bounded with respect to a given weighted sup-norm.

We have a set X of states and a set U of controls, and for each x ∈ X ,
the nonempty control constraint set U(x) ⊂ U . We denote by M the set
of all functions µ : X 7→ U with µ(x) ∈ U(x), for all x ∈ X , and by Π the
set of “nonstationary policies” π = {µ0, µ1, . . .}, with µk ∈ M for all k.
We refer to a stationary policy {µ, µ, . . .} simply as µ.

We introduce a mapping H : X ×U ×E(X) 7→ ℜ∗, and we define the
mapping T : E(X) 7→ E(X) by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X),

and for each µ ∈ M the mapping Tµ : E(X) 7→ E(X) by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X, J ∈ E(X).

We continue to use the following assumption throughout this chapter, with-
out mentioning it explicitly in various propositions.

Assumption 4.1.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

A fact that we will be using frequently is that for each J ∈ E(X) and
scalar ǫ > 0, there exists a µǫ ∈ M such that for all x ∈ X ,

(TµǫJ)(x) ≤





(TJ)(x) + ǫ if (TJ)(x) > −∞,

−(1/ǫ) if (TJ)(x) = −∞.

In particular, if J is such that

(TJ)(x) > −∞, ∀ x ∈ X,

then for each ǫ > 0, there exists a µǫ ∈ M such that

(TµǫJ)(x) ≤ (TJ)(x) + ǫ, ∀ x ∈ X.
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We will often use in our analysis the unit function e, defined by e(x) ≡ 1,
so for example, we will write the above relation in shorthand as

TµǫJ ≤ TJ + ǫ e.

We define cost functions for policies consistently with Chapters 2 and
3. In particular, we are given a function J̄ ∈ E(X), and we consider for
every policy π = {µ0, µ1, . . .} ∈ Π and positive integer N the function
JN,π ∈ E(X) defined by

JN,π(x) = (Tµ0 · · ·TµN−1 J̄)(x), ∀ x ∈ X,

and the function Jπ ∈ E(X) defined by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

We refer to JN,π as the N -stage cost function of π and to Jπ as the infinite
horizon cost function of π (or just “cost function” if the length of the
horizon is clearly implied by the context). For a stationary policy π =
{µ, µ, . . .} we also write Jπ as Jµ.

In Section 4.2, we consider the N -stage optimization problem

minimize JN,π(x)

subject to π ∈ Π,
(4.1)

while in Sections 4.3 and 4.4 we discuss its infinite horizon version

minimize Jπ(x)

subject to π ∈ Π.
(4.2)

For a fixed x ∈ X , we denote by J*
N (x) and J*(x) the optimal costs

for these problems, i.e.,

J*
N (x) = inf

π∈Π
JN,π(x), J*(x) = inf

π∈Π
Jπ(x), ∀ x ∈ X.

We say that a policy π∗ ∈ Π is N -stage optimal if

JN,π∗(x) = J*
N (x), ∀ x ∈ X,

and (infinite horizon) optimal if

Jπ∗(x) = J*(x), ∀ x ∈ X.

For a given ǫ > 0, we say that πǫ is N -stage ǫ-optimal if

Jπǫ(x) ≤





J*
N (x) + ǫ if J*

N (x) > −∞,

−(1/ǫ) if J*
N (x) = −∞,

and we say that πǫ is ǫ-optimal if

Jπǫ(x) ≤





J*(x) + ǫ if J*(x) > −∞,

−(1/ǫ) if J*(x) = −∞.
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4.2 FINITE HORIZON PROBLEMS

Consider the N -stage problem (4.1), where the cost function JN,π is defined
by

JN,π(x) = (Tµ0 · · ·TµN−1 J̄)(x), ∀ x ∈ X.

Based on the theory of finite horizon DP, we expect that (at least under
some conditions) the optimal cost function J*

N is obtained by N successive
applications of the DP mapping T on the initial function J̄ , i.e.,

J*
N = inf

π∈Π
JN,π = TN J̄ .

This is the analog of Bellman’s equation for the finite horizon problem in
a DP context.

The Case Where Uniformly N-Stage Optimal Policies Exist

A favorable case where the analysis is simplified and we can easily show that
J*
N = TN J̄ is when the finite horizon DP algorithm yields an optimal policy

during its execution. By this we mean that the algorithm that starts with
J̄ , and sequentially computes T J̄, T 2J̄ , . . . , TN J̄ , also yields corresponding
µ∗
N−1, µ

∗
N−2, . . . , µ

∗
0 ∈ M such that

Tµ∗
k
TN−k−1J̄ = TN−kJ̄ , k = 0, . . . , N − 1. (4.3)

While µ∗
N−1, . . . , µ

∗
0 ∈ M satisfying this relation need not exist (because

the corresponding infimum in the definition of T is not attained), if they
do exist, they both form an optimal policy and also guarantee that

J*
N = TN J̄ .

The proof is simple: we have for every π = {µ0, µ1, . . .} ∈ Π

JN,π = Tµ0 · · ·TµN−1 J̄ ≥ TN J̄ = Tµ∗
0
· · ·Tµ∗

N−1
J̄ , (4.4)

where the inequality follows from the monotonicity assumption and the def-
inition of T , and the last equality follows from Eq. (4.3). Thus {µ∗

0, µ
∗
1, . . .}

has no worse N -stage cost function than every other policy, so it is N -stage
optimal and J*

N = Tµ∗
0
· · ·Tµ∗

N−1
J̄ . By taking the infimum of the left-hand

side over π ∈ Π in Eq. (4.4), we obtain J*
N = TN J̄ .

The preceding argument can also be used to show that {µ∗
k, µ

∗
k+1, . . .}

is (N − k)-stage optimal for all k = 0, . . . , N − 1. Such a policy is called
uniformly N -stage optimal . The fact that the finite horizon DP algorithm
provides an optimal solution of all the k-stage problems for k = 1, . . . , N ,
rather than just the last one, is a manifestation of the classical principle
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of optimality, expounded by Bellman in the early days of DP (the tail
portion of an optimal policy obtained by DP minimizes the corresponding
tail portion of the finite horizon cost). Note, however, that there may exist
an N -stage optimal policy that is not k-stage optimal for some k < N .

We state the result just derived as a proposition.

Proposition 4.2.1: Suppose that a policy {µ∗
0, µ

∗
1, . . .} satisfies the

condition (4.3). Then this policy is uniformly N -stage optimal, and
we have J*

N = TN J̄ .

While the preceding result is theoretically limited, it is very useful in
practice, because the existence of a policy satisfying the condition (4.3) can
often be established with a simple analysis. For example, this condition is
trivially satisfied if the control space is finite. The following proposition
provides a generalization.

Proposition 4.2.2: Let the control space U be a metric space, and
assume that for each x ∈ X , λ ∈ ℜ, and k = 0, 1, . . . , N − 1, the set

Uk(x, λ) =
{
u ∈ U(x) | H(x, u, T kJ̄) ≤ λ

}

is compact. Then there exists a uniformly N -stage optimal policy.

Proof: We will show that the infimum in the relation

(T k+1J̄)(x) = inf
u∈U(x)

H
(
x, u, T kJ̄

)

is attained for all x ∈ X and k. Indeed if H
(
x, u, T kJ̄

)
= ∞ for all

u ∈ U(x), then every u ∈ U(x) attains the infimum. If for a given x ∈ X ,

inf
u∈U(x)

H
(
x, u, T kJ̄

)
< ∞,

the corresponding part of the proof of Lemma 3.3.1 applies and shows that
the above infimum is attained. The result now follows from Prop. 4.2.1.
Q.E.D.

The General Case

We now consider the case where there may not exist a uniformly N -stage
optimal policy. By using the definitions of J∗

N and TN J̄ , the equation
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J∗
N = TN J̄ can be equivalently written as

inf
µ0,...,µN−1∈M

Tµ0 · · ·TµN−1
J̄ = inf

µ0∈M
Tµ0

(
inf

µ1∈M
Tµ1

(
· · · inf

µN−1∈M
TµN−1

J̄

))
.

Thus we have J∗
N = TN J̄ if the operations inf and Tµ can be interchanged

in the preceding equation. We will introduce two alternative assumptions,
which guarantee that this interchange is valid. Our first assumption is a
form of continuity from above of H with respect to J .

Assumption 4.2.1: For each sequence {Jm} ⊂ E(X) with Jm ↓ J
and H(x, u, J0) < ∞ for all x ∈ X and u ∈ U(x), we have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x). (4.5)

Note that if {Jm} is monotonically nonincreasing, the same is true
for {TµJm}. It follows that

inf
m

Jm = lim
m→∞

Jm, inf
m

(TµJm) = lim
m→∞

(TµJm),

so for all µ ∈ M, Eq. (4.5) implies that

inf
m

(TµJm) = lim
m→∞

(TµJm) = Tµ

(
lim

m→∞
Jm
)
= Tµ

(
inf
m

Jm
)
.

This equality can be extended for any µ1, . . . , µk ∈ M as follows:

inf
m

(Tµ1 · · ·Tµk
Jm) = Tµ1

(
inf
m

(Tµ1 · · ·Tµk
Jm)

)

= · · ·

= Tµ1Tµ1 · · ·Tµk−1

(
inf
m

(Tµk
Jm)

)

= Tµ1 · · ·Tµk

(
inf
m

Jm
)
.

(4.6)

We use this relation to prove the following proposition.

Proposition 4.2.3: Let Assumption 4.2.1 hold, and assume further
that Jk,π(x) < ∞, for all x ∈ X , π ∈ Π, and k ≥ 1. Then J*

N = TN J̄ .

Proof: We select for each k = 0, . . . , N − 1, a sequence {µm
k } ⊂ M such

that
lim

m→∞
Tµm

k
(TN−k−1J̄) ↓ TN−kJ̄ .
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Since J∗
N ≤ Tµ0 · · ·TµN−1 J̄ for all µ0, . . . , µN−1 ∈ M, we have using also

Eq. (4.6) and the assumption Jk,π(x) < ∞, for all k, π, and x,

J∗
N ≤ inf

m0
· · · inf

mN−1

T
µ
m0
0

· · ·T
µ
mN−1
N−1

J̄

= inf
m0

· · · inf
mN−2

T
µ
m0
0

· · ·T
µ
mN−2
N−2

(
inf

mN−1

T
µ
mN−1
N−1

J̄

)

= inf
m0

· · · inf
mN−2

T
µ
m0
0

· · ·T
µ
mN−2
N−2

T J̄

...

= inf
m0

T
µ
m0
0

(TN−1J̄)

= TN J̄ .

On the other hand, it is clear from the definitions that TN J̄ ≤ JN,π for all
N and π ∈ Π, so that TN J̄ ≤ J*

N . Thus, J*
N = TN J̄ . Q.E.D.

We now introduce an alternative assumption, which in addition to
J*
N = TN J̄ , guarantees the existence of an ǫ-optimal policy.

Assumption 4.2.2: We have

J*
k (x) > −∞, ∀ x ∈ X, k = 1, . . . , N.

Moreover, there exists a scalar α ∈ (0,∞) such that for all scalars
r ∈ (0,∞) and functions J ∈ E(X), we have

H(x, u, J + r e) ≤ H(x, u, J) + α r, ∀ x ∈ X, u ∈ U(x). (4.7)

Proposition 4.2.4: Let Assumption 4.2.2 hold. Then J*
N = TN J̄ ,

and for every ǫ > 0, there exists an ǫ-optimal policy.

Proof: Note that since by assumption, J*
N (x) > −∞ for all x ∈ X , an

N -stage ǫ-optimal policy πǫ ∈ Π is one for which

J*
N ≤ JN,πǫ ≤ J*

N + ǫ e.

We use induction. The result clearly holds for N = 1. Assume that
it holds for N = k, i.e., J*

k = T kJ̄ and for a given ǫ > 0, there is a πǫ ∈ Π
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with Jk,πǫ ≤ J*
k + ǫ e. Using Eq. (4.7), we have for all µ ∈ M,

J*
k+1 ≤ TµJk,πǫ ≤ TµJ*

k + αǫ e.

Taking the infimum over µ and then the limit as ǫ → 0, we obtain J*
k+1 ≤

TJ*
k . By using the induction hypothesis J*

k = T kJ̄ , it follows that J*
k+1 ≤

T k+1J̄ . On the other hand, we have clearly T k+1J̄ ≤ Jk+1,π for all π ∈ Π,
so that T k+1J̄ ≤ J*

k+1, and hence T k+1J̄ = J*
k+1.

We now turn to the existence of an ǫ-optimal policy part of the in-
duction argument. Using the assumption J*

k (x) > −∞ for all x ∈ x ∈ X ,
for any ǫ > 0, we can choose π = {µ0, µ1, . . .} such that

Jk,π ≤ J*
k +

ǫ

2α
e, (4.8)

and µ ∈ M such that

TµJ*
k ≤ TJ*

k +
ǫ

2
e.

Let πǫ = {µ, µ0, µ1, . . .}. Then

Jk+1,πǫ
= TµJk,π ≤ TµJ

*
k +

ǫ

2
e ≤ TJ*

k + ǫ e = J*
k+1 + ǫ e,

where the first inequality is obtained by applying Tµ to Eq. (4.8) and using
Eq. (4.7). The induction is complete. Q.E.D.

We now provide some counterexamples showing that the conditions
of the preceding propositions are necessary, and that for exceptional (but
otherwise very simple) problems, the Bellman equation J*

N = TN J̄ may
not hold and/or there may not exist an ǫ-optimal policy.

Example 4.2.1 (Counterexample to Bellman’s Equation I)

Let

X = {0}, U(0) = (−1, 0], J̄(0) = 0,

H(0, u, J) =

{
u if −1 < J(0),
J(0) + u if J(0) ≤ −1.

Then

(Tµ0 · · ·TµN−1
J̄)(0) = µ0(0),

and J∗
N (0) = −1, while (TN J̄)(0) = −N for every N . Here Assumption 4.2.1,

and the condition (4.7) (cf. Assumption 4.2.2) are violated, even though the
condition J∗

k (x) > −∞ for all x ∈ X (cf. Assumption 4.2.2) is satisfied.
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Example 4.2.2 (Counterexample to Bellman’s Equation II)

Let

X = {0, 1}, U(0) = U(1) = (−∞, 0], J̄(0) = J̄(1) = 0,

H(0, u, J) =

{
u if J(1) = −∞,
0 if J(1) > −∞,

H(1, u, J) = u.

Then

(Tµ0 · · ·TµN−1
J̄)(0) = 0, (Tµ0 · · ·TµN−1

J̄)(1) = µ0(1), ∀ N ≥ 1.

It can be seen that for N ≥ 2, we have J∗
N (0) = 0 and J∗

N (1) = −∞, but
(TN J̄)(0) = (TN J̄)(1) = −∞. Here Assumption 4.2.1, and the condition
J∗
k (x) > −∞ for all x ∈ X (cf. Assumption 4.2.2) are violated, even though

the condition (4.7) of Assumption 4.2.2 is satisfied.

In the preceding two examples, the anomalies are due to discontinu-
ity of the mapping H with respect to J . In classical finite horizon DP, the
mapping H is generally continuous when it takes finite values, but coun-
terexamples arise in unusual problems where infinite values occur. The
next example is a simple stochastic optimal control problem, which involves
some infinite expected values of random variables and we have J*

2 6= T 2J̄ .

Example 4.2.3 (Counterexample to Bellman’s Equation III)

Let
X = {0, 1}, U(0) = U(1) = ℜ, J̄(0) = J̄(1) = 0,

let w be a real-valued random variable with E{w} = ∞, and let

H(x, u, J) =

{
E
{
w + J(1)

}
if x = 0,

u+ J(1) if x = 1,
∀ x ∈ X, u ∈ U(x).

Then if Jm is real-valued for all m, and Jm(1) ↓ J(1) = −∞, we have

lim
m→∞

H(0, u, Jm) = lim
m→∞

E
{
w + Jm(1)

}
= ∞,

while

H
(
0, u, lim

m→∞
Jm

)
= E

{
w + J(1)

}
= −∞,

so Assumption 4.2.1 is violated. Indeed, the reader may verify with a straight-
forward calculation that J∗

2 (0) = ∞, J∗
2 (1) = −∞, while (T 2J̄)(0) = −∞,

(T 2J̄)(1) = −∞, so J∗
2 6= T 2J̄ . Note that Assumption 4.2.2 is also violated

because J∗
2 (1) = −∞.

In the next counterexample, Bellman’s equation holds, but there is
no ǫ-optimal policy. This is an undiscounted deterministic optimal control
problem of the type discussed in Section 1.1, where J∗

k (x) = −∞ for some
x and k, so Assumption 4.2.2 is violated. We use the notation introduced
there.
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Example 4.2.4 (Counterexample to Existence of an
ǫ-Optimal Policy)

Let α = 1 and

N = 2, X = {0, 1, . . .}, U(x) = (0,∞), J̄(x) = 0, ∀ x ∈ X,

f(x, u) = 0, ∀ x ∈ X, u ∈ U(x),

g(x, u) =
{
−u if x = 0,
x if x 6= 0,

∀ u ∈ U(x),

so that
H(x, u, J) = g(x, u) + J(0).

Then for π ∈ Π and x 6= 0, we have J2,π(x) = x−µ1(0), so that J∗
2 (x) = −∞

for all x 6= 0. Clearly, we also have J∗
2 (0) = −∞. Here Assumption 4.2.1,

as well as Eq. (4.7) (cf. Assumption 4.2.2) are satisfied, and indeed we have
J∗
2 (x) = (T 2J̄)(x) = −∞ for all x ∈ X. However, the condition J∗

k (x) > −∞
for all x and k (cf. Assumption 4.2.2) is violated, and it is seen that there
does not exist a two-stage ǫ-optimal policy for any ǫ > 0. The reason is that
an ǫ-optimal policy π = {µ0, µ1} must satisfy

J2,π(x) = x− µ1(0) ≤ −
1

ǫ
, ∀ x ∈ X,

[in view of J∗
2 (x) = −∞ for all x ∈ X], which is impossible since the left-hand

side above can become positive for x sufficiently large.

4.3 INFINITE HORIZON PROBLEMS

We now turn to the infinite horizon problem (4.2), where the cost function
of a policy π = {µ0, µ1, . . .} is

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

In this section one of the following two assumptions will be in effect.

Assumption I: (Monotone Increase)

(a) We have

−∞ < J̄(x) ≤ H(x, u, J̄), ∀ x ∈ X, u ∈ U(x).

(b) For each sequence {Jm} ⊂ E(X) with Jm ↑ J and J̄ ≤ Jm for all
m ≥ 0, we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).
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(c) There exists a scalar α ∈ (0,∞) such that for all scalars r ∈
(0,∞) and functions J ∈ E(X) with J̄ ≤ J , we have

H(x, u, J + r e) ≤ H(x, u, J) + α r, ∀ x ∈ X, u ∈ U(x).

Assumption D: (Monotone Decrease)

(a) We have

J̄(x) ≥ H(x, u, J̄), ∀ x ∈ X, u ∈ U(x).

(b) For each sequence {Jm} ⊂ E(X) with Jm ↓ J and Jm ≤ J̄ for all
m ≥ 0, we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

Assumptions I and D apply to the positive and negative cost DP
models, respectively (see [Ber12a], Chapter 4). These are the special cases
of the infinite horizon stochastic optimal control problem of Example 1.2.1,
where J̄(x) ≡ 0 and the cost per stage g is uniformly nonnegative or uni-
formly nonpositive, respectively. The latter occurs often when we want to
maximize positive rewards.

It is important to note that Assumptions I and D allow Jπ to be
defined as a limit rather than as a lim sup. In particular, part (a) of the
assumptions and the monotonicity of H imply that

J̄ ≤ Tµ0 J̄ ≤ Tµ0Tµ1 J̄ ≤ · · · ≤ Tµ0 · · ·Tµk
J̄ ≤ · · ·

under Assumption I, and

J̄ ≥ Tµ0 J̄ ≥ Tµ0Tµ1 J̄ ≥ · · · ≥ Tµ0 · · ·Tµk
J̄ ≥ · · ·

under Assumption D. Thus we have

Jπ(x) = lim
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X,

with the limit being a real number or ∞ or −∞.
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J TJ

= 0 TµJ

JµJ̄
J̄ J TJ

= 0 TµJ

Jµ

Figure 4.3.1. Illustration of the consequences of lack of continuity of Tµ from
below or from above [cf. part (b) of Assumption I or D, respectively]. In the
figure on the left, we have J̄ ≤ TµJ̄ but Tµ is discontinuous from below at Jµ, so
Assumption I does not hold, and Jµ is not a fixed point of Tµ. In the figure on the
right, we have J̄ ≥ TµJ̄ but Tµ is discontinuous from above at Jµ, so Assumption
D does not hold, and Jµ is not a fixed point of Tµ.

The conditions of part (b) of Assumptions I and D are continuity as-
sumptions designed to preclude some of the pathologies of the type encoun-
tered also in Chapter 3, and addressed with the use of S-regular policies.
In particular, these conditions are essential for making a connection with
fixed point theory: they ensure that Jµ is a fixed point of Tµ, as shown in
the following proposition.

Proposition 4.3.1: Let Assumption I or Assumption D hold. Then
for every policy µ ∈ M, we have

Jµ = TµJµ.

Proof: Let Assumption I hold. Then for all k ≥ 0,

(T k+1
µ J̄)(x) = H

(
x, µ(x), T k

µ J̄
)
, x ∈ X,

and by taking the limit as k → ∞, and using part (b) of Assumption I,
and the fact T k

µ J̄ ↑ Jµ, we have for all x ∈ X ,

Jµ(x) = lim
k→∞

H
(
x, µ(x), T k

µ J̄
)
= H

(
x, µ(x), lim

k→∞
T k
µ J̄
)
= H

(
x, µ(x), Jµ

)
,

or equivalently Jµ = TµJµ. The proof for the case of Assumption D is
similar. Q.E.D.
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Figure 4.3.1 illustrates how Jµ may fail to be a fixed point of Tµ if
part (b) of Assumption I or D is violated. Note also that continuity of Tµ

does not imply continuity of T , and for example, under Assumption I, T
may be discontinuous from below. We will see later that as a result, the
value iteration sequence {T kJ̄} may fail to converge to J* in the absence
of additional conditions (see Section 4.3.2). Part (c) of Assumption I is a
technical condition that facilitates the analysis, and assures the existence
of ǫ-optimal policies.

Despite the similarities between Assumptions I and D, the corre-
sponding results that one may obtain involve some substantial differences.
An important fact, which breaks the symmetry between the two cases, is
that J* is approached by T kJ̄ from below in the case of Assumption I and
from above in the case of Assumption D. Another important fact is that
since the condition J̄(x) > −∞ for all x ∈ X is part of Assumption I, all
the functions J encountered in the analysis under this assumption (such as
T kJ̄ , Jπ , and J*) also satisfy J(x) > −∞, for all x ∈ X. In particular, if
J ≥ J̄ , we have

(TJ)(x) ≥ (T J̄)(x) > −∞, ∀ x ∈ X,

and for every ǫ > 0 there exists µǫ ∈ M such that

TµǫJ ≤ TJ + ǫ e.

This property is critical for the existence of an ǫ-optimal policy under As-
sumption I (see the next proposition) and is not available under Assumption
D. It accounts in part for the different character of the results that can be
obtained under the two assumptions.

4.3.1 Fixed Point Properties and Optimality Conditions

We first consider the question whether the optimal cost function J* is a
fixed point of T . This is indeed true, but the lines of proof are different
under the Assumptions I and D. We begin with the proof under Assumption
I, and as a preliminary step we show the existence of an ǫ-optimal policy,
something that is of independent theoretical interest.

Proposition 4.3.2: Let Assumption I hold. Then given any ǫ > 0,
there exists a policy πǫ ∈ Π such that

J* ≤ Jπǫ ≤ J* + ǫ e.

Furthermore, if the scalar α in part (c) of Assumption I satisfies α < 1,
the policy πǫ can be taken to be stationary.
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Proof: Let {ǫk} be a sequence such that ǫk > 0 for all k and

∞∑

k=0

αkǫk = ǫ. (4.9)

For each x ∈ X , consider a sequence of policies
{
πk[x]

}
⊂ Π of the form

πk[x] =
{
µk
0 [x], µ

k
1 [x], . . .

}
, (4.10)

such that for k = 0, 1, . . . ,

Jπk[x]
(x) ≤ J*(x) + ǫk. (4.11)

Such a sequence exists, since we have assumed that J̄(x) > −∞, and
therefore J*(x) > −∞, for all x ∈ X .

The preceding notation should be interpreted as follows. The policy
πk[x] of Eq. (4.10) is associated with x. Thus µk

i [x] denotes for each x and
k, a function in M, while µk

i [x](z) denotes the value of µ
k
i [x] at an element

z ∈ X . In particular, µk
i [x](x) denotes the value of µk

i [x] at x ∈ X .
Consider the functions µk defined by

µk(x) = µk
0 [x](x), ∀ x ∈ X, (4.12)

and the functions J̄k defined by

J̄k(x) = H
(
x, µk(x), lim

m→∞
Tµk

1
[x] · · ·Tµk

m[x]J̄
)
, ∀ x ∈ X, k = 0, 1, . . . .

(4.13)
By using Eqs. (4.11), (4.12), and part (b) of Assumption I, we obtain for
all x ∈ X and k = 0, 1, . . .

J̄k(x) = lim
m→∞

(
Tµk

0
[x] · · ·Tµk

m[x]J̄
)
(x)

= Jπk[x]
(x)

≤ J*(x) + ǫk.

(4.14)

From Eqs. (4.13), (4.14), and part (c) of Assumption I, we have for all
x ∈ X and k = 1, 2, . . .,

(Tµk−1
J̄k)(x) = H

(
x, µk−1(x), J̄k

)

≤ H
(
x, µk−1(x), J

* + ǫk e
)

≤ H
(
x, µk−1(x), J

*
)
+ αǫk

≤ H
(
x, µk−1(x), lim

m→∞
T
µ
k−1
1

[x]
· · ·T

µ
k−1
m [x]

J̄
)
+ αǫk

= J̄k−1(x) + αǫk,
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and finally

Tµk−1
J̄k ≤ J̄k−1 + αǫk e, k = 1, 2, . . . .

Using this inequality and part (c) of Assumption I, we obtain

Tµk−2
Tµk−1

J̄k ≤ Tµk−2
(J̄k−1 + αǫk e)

≤ Tµk−2
J̄k−1 + α2ǫk e

≤ J̄k−2 + (αǫk−1 + α2ǫk) e.

Continuing in the same manner, we have for k = 1, 2, . . . ,

Tµ0
· · ·Tµk−1

J̄k ≤ J̄0 + (αǫ1 + · · ·+ αkǫk) e ≤ J* +

(
k∑

i=0

αiǫi

)
e.

Since J̄ ≤ J̄k, it follows that

Tµ0
· · ·Tµk−1

J̄ ≤ J* +

(
k∑

i=0

αiǫi

)
e.

Denote πǫ = {µ0, µ1, . . .}. Then by taking the limit in the preceding in-
equality and using Eq. (4.9), we obtain

Jπǫ ≤ J* + ǫ e.

If α < 1, we take ǫk = ǫ(1−α) for all k, and πk[x] =
{
µ0[x], µ1[x], . . .

}

in Eq. (4.11). The stationary policy πǫ = {µ, µ, . . .}, where µ(x) = µ0[x](x)
for all x ∈ X , satisfies Jπǫ ≤ J* + ǫ e. Q.E.D.

Note that the assumption α < 1 is essential in order to be able to take
πǫ stationary in the preceding proposition. As an example, let X = {0},
U(0) = (0,∞), J̄(0) = 0, H(0, u, J) = u + J(0). Then J*(0) = 0, but for
any µ ∈ M, we have Jµ(0) = ∞.

By using Prop. 4.3.2 we can prove the following.

Proposition 4.3.3: Let Assumption I hold. Then

J* = TJ*.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≥ J̄ and J ′ ≥ TJ ′, then
J ′ ≥ J*.
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Proof: For every π = {µ0, µ1, . . .} ∈ Π and x ∈ X , we have using part (b)
of Assumption I,

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J̄)(x)

= Tµ0

(
lim
k→∞

Tµ1 · · ·Tµk
J̄

)
(x)

≥ (Tµ0J
*)(x)

≥ (TJ*)(x).

By taking the infimum of the left-hand side over π ∈ Π, we obtain

J* ≥ TJ*.

To prove the reverse inequality, let ǫ1 and ǫ2 be any positive scalars,
and let π = {µ0, µ1, . . .} be such that

Tµ0
J* ≤ TJ* + ǫ1 e, Jπ1 ≤ J* + ǫ2 e,

where π1 = {µ1, µ2, . . .} (such a policy exists by Prop. 4.3.2). The sequence
{Tµ1

· · ·Tµk
J̄} is monotonically nondecreasing, so by using the preceding

relations and part (c) of Assumption I, we have

Tµ0
Tµ1

· · ·Tµk
J̄ ≤ Tµ0

(
lim
k→∞

Tµ1
· · ·Tµk

J̄

)

= Tµ0
Jπ1

≤ Tµ0
J* + αǫ2 e

≤ TJ* + (ǫ1 + αǫ2) e.

Taking the limit as k → ∞, we obtain

J* ≤ Jπ = lim
k→∞

Tµ0
Tµ1

· · ·Tµk
J̄ ≤ TJ* + (ǫ1 + αǫ2) e.

Since ǫ1 and ǫ2 can be taken arbitrarily small, it follows that

J* ≤ TJ*.

Hence J* = TJ*.
Assume that J ′ ∈ E(X) satisfies J ′ ≥ J̄ and J ′ ≥ TJ ′. Let {ǫk} be

any sequence with ǫk > 0 for all k, and consider a policy π = {µ0, µ1, . . .} ∈
Π such that

Tµk
J ′ ≤ TJ ′ + ǫk e, k = 0, 1, . . . .



232 Noncontractive Models Chap. 4

We have from part (c) of Assumption I

J* = inf
π∈Π

lim
k→∞

Tµ0 · · ·Tµk
J̄

≤ inf
π∈Π

lim inf
k→∞

Tµ0 · · ·Tµk
J ′

≤ lim inf
k→∞

Tµ0
· · ·Tµk

J ′

≤ lim inf
k→∞

Tµ0
· · ·Tµk−1

(TJ ′ + ǫk e)

≤ lim inf
k→∞

Tµ0
· · ·Tµk−1

(J ′ + ǫk e)

≤ lim inf
k→∞

(Tµ0
· · ·Tµk−1

J ′ + αkǫk e)

...

≤ lim
k→∞

(
TJ ′ +

(
k∑

i=0

αiǫi

)
e

)

≤ J ′ +

(
k∑

i=0

αiǫi

)
e.

Since we may choose
∑k

i=0 α
iǫi as small as desired, it follows that J* ≤ J ′.

Q.E.D.

The following counterexamples show that parts (b) and (c) of As-
sumption I are essential for the preceding proposition to hold.

Example 4.3.1 (Counterexample to Bellman’s Equation I)

Let

X = {0, 1}, U(0) = U(1) = (−1, 0], J̄(0) = J̄(1) = −1,

H(0, u, J) =

{
u if J(1) ≤ −1,
0 if J(1) > −1,

H(1, u, J) = u.

Then for N ≥ 1,

(Tµ0 · · · TµN−1
J̄)(0) = 0, (Tµ0 · · ·TµN−1

J̄)(1) = µ0(1).

Thus

J∗(0) = 0, J∗(1) = −1, (TJ∗)(0) = −1, (TJ∗)(1) = −1,

and hence J∗ 6= TJ∗. Notice also that J̄ is a fixed point of T , while J̄ ≤ J∗

and J̄ 6= J∗, so the second part of Prop. 4.3.3 fails when J̄ = J ′. Here
parts (a) and (b) of Assumption I are satisfied, but part (c) is violated, since
H(0, u, ·) is discontinuous at J = −1 when u < 0.
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Example 4.3.2 (Counterexample to Bellman’s Equation II)

Let

X = {0, 1}, U(0) = U(1) = {0}, J̄(0) = J̄(1) = 0,

H(0, 0, J) =

{
0 if J(1) < ∞,
∞ if J(1) = ∞,

H(1, 0, J) = J(1) + 1.

Here there is only one policy, which we denote by µ. For all N ≥ 1, we have

(TN
µ J̄)(0) = 0, (TN

µ J̄)(1) = N,

so J∗(0) = 0, J∗(1) = ∞. On the other hand, we have (TJ∗)(0) = (TJ∗)(1) =
∞ and J∗ 6= TJ∗. Here parts (a) and (c) of Assumption I are satisfied, but
part (b) is violated.

As a corollary to Prop. 4.3.3 we obtain the following.

Proposition 4.3.4: Let Assumption I hold. Then for every µ ∈ M,
we have

Jµ = TµJµ.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≥ J̄ and J ′ ≥ TµJ ′, then
J ′ ≥ Jµ.

Proof: Consider the variant of the infinite horizon problem where the
control constraint set is Uµ(x) =

{
µ(x)

}
rather than U(x) for all x ∈ X .

Application of Prop. 4.3.3 yields the result. Q.E.D.

We now provide the counterpart of Prop. 4.3.3 under Assumption D.
We first prove a preliminary result regarding the convergence of the value
iteration method, which is of independent interest (we will see later that
this result need not hold under Assumption I).

Proposition 4.3.5: Let Assumption D hold. Then TN J̄ = J*
N ,

where J*
N is the optimal cost function for the N -stage problem. More-

over
J* = lim

N→∞
J*
N .

Proof: By repeating the proof of Prop. 4.2.3, we have TN J̄ = J*
N [part (b)

of Assumption D is essentially identical to the assumption of that propo-
sition]. Clearly we have J* ≤ J*

N for all N , and hence J* ≤ limN→∞ J*
N .
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Also for all π = {µ0, µ1, . . .} ∈ Π, we have

Tµ0 · · ·TµN−1 J̄ ≥ J*
N ,

so by taking the limit of both sides asN → ∞, we obtain Jπ ≥ limN→∞ J*
N ,

and by taking infimum over π, J* ≥ limN→∞ J*
N . Thus J* = limN→∞ J*

N .
Q.E.D.

Proposition 4.3.6: Let Assumption D hold. Then

J* = TJ*.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≤ J̄ and J ′ ≤ TJ ′, then
J ′ ≤ J*.

Proof: For any π = {µ0, µ1, . . .} ∈ Π, we have

Jπ = lim
k→∞

Tµ0Tµ1 · · ·Tµk
J̄ ≥ lim

k→∞
Tµ0T

kJ̄ ≥ Tµ0J
*,

where the last inequality follows from the fact T kJ̄ ↓ J* (cf. Prop. 4.3.5).
Taking the infimum of both sides over π ∈ Π, we obtain J* ≥ TJ*.

To prove the reverse inequality, we select any µ ∈ M, and we apply
Tµ to both sides of the equation J* = limN→∞ TN J̄ (cf. Prop. 4.3.5). By
using part (b) of assumption D, we obtain

TµJ* = Tµ

(
lim

N→∞
TN J̄

)
= lim

N→∞
TµTN J̄ ≥ lim

N→∞
TN+1J̄ = J*.

Taking the infimum of the left-hand side over µ ∈ M, we obtain TJ* ≥ J*,
showing that TJ* = J*.

To complete the proof, let J ′ ∈ E(X) be such that J ′ ≤ J̄ and
J ′ ≤ TJ ′. Then we have

J* = inf
π∈Π

lim
N→∞

Tµ0 · · ·TµN−1 J̄

≥ lim
N→∞

inf
π∈Π

Tµ0 · · ·TµN−1 J̄

≥ lim
N→∞

inf
π∈Π

Tµ0 · · ·TµN−1J
′

≥ lim
N→∞

TNJ ′

≥ J ′,

where the last inequality follows from the hypothesis J ′ ≤ TJ ′. Thus
J* ≥ J ′. Q.E.D.
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Counterexamples to Bellman’s equation can be readily constructed if
part (b) of Assumption D (continuity from above) is violated. In particular,
in Examples 4.2.1 and 4.2.2, part (a) of Assumption D is satisfied but part
(b) is not. In both cases we have J* 6= TJ*, as the reader can verify with
a straightforward calculation.

Similar to Prop. 4.3.4, we obtain the following.

Proposition 4.3.7: Let Assumption D hold. Then for every µ ∈ M,
we have

Jµ = TµJµ.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≤ J̄ and J ′ ≤ TµJ ′, then
J ′ ≤ Jµ.

Proof: Consider the variation of our problem where the control constraint
set is Uµ(x) =

{
µ(x)

}
rather than U(x) for all x ∈ X . Application of Prop.

4.3.6 yields the result. Q.E.D.

An examination of the proof of Prop. 4.3.6 shows that the only point
where we need part (b) of Assumption D was in establishing the relations

lim
N→∞

TJ*
N = T

(
lim

N→∞
J*
N

)

and

J*
N = TN J̄ .

If these relations can be established independently, then the result of Prop.
4.3.6 follows. In this manner we obtain the following proposition.

Proposition 4.3.8: Let part (a) of Assumption D hold, assume that
X is a finite set, and that J*(x) > −∞ for all x ∈ X . Assume further
that there exists a scalar α ∈ (0,∞) such that for all scalars r ∈ (0,∞)
and functions J ∈ E(X) with J ≤ J̄ , we have

H(x, u, J)− α r ≤ H(x, u, J − r e), ∀ x ∈ X, u ∈ U(x). (4.15)

Then
J* = TJ*.

Furthermore, if J ′ ∈ E(X) is such that J ′ ≤ J̄ and J ′ ≤ TJ ′, then
J ′ ≤ J*.
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Proof: A nearly verbatim repetition of Prop. 4.2.4 shows that under our
assumptions we have J*

N = TN J̄ for all N . We will show that

lim
N→∞

H(x, u, J*
N ) ≤ H

(
x, u, lim

N→∞
J*
N

)
, ∀ x ∈ X, u ∈ U(x).

Then the result follows as in the proof of Prop. 4.3.6.
Assume the contrary, i.e., that for some x̃ ∈ X , ũ ∈ U(x̃), and ǫ > 0,

there holds

H(x̃, ũ, J*
k )− ǫ > H

(
x̃, ũ, lim

N→∞
J*
N

)
, k = 1, 2, . . . .

From the finiteness of X and the fact

J*(x) = lim
N→∞

J*
N (x) > −∞, ∀ x ∈ X,

it follows that for some integer k > 0

J*
k − (ǫ/α)e ≤ lim

N→∞
J*
N , ∀ k ≥ k.

By using the condition (4.15), we obtain for all k ≥ k

H(x̃, ũ, J*
k )− ǫ ≤ H

(
x̃, ũ, J*

k − (ǫ/α) e
)
≤ H

(
x̃, ũ, lim

N→∞
J*
N

)
,

which contradicts the earlier inequality. Q.E.D.

Characterization of Optimal Policies

We now provide necessary and sufficient conditions for optimality of a sta-
tionary policy. These conditions are markedly different under Assumptions
I and D.

Proposition 4.3.9: Let Assumption I hold. Then a stationary policy
µ is optimal if and only if

TµJ* = TJ*.

Proof: If µ is optimal, then Jµ = J* so that the equation J* = TJ* (cf.
Prop. 4.3.3) implies that Jµ = TJµ. Since Jµ = TµJµ (cf. Prop. 4.3.4), it
follows that TµJ* = TJ*.
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Conversely, if TµJ* = TJ*, then since J* = TJ*, it follows that
TµJ* = J*. By Prop. 4.3.4, it follows that Jµ ≤ J*, so µ is optimal.
Q.E.D.

Proposition 4.3.10: Let Assumption D hold. Then a stationary
policy µ is optimal if and only if

TµJµ = TJµ.

Proof: If µ is optimal, then Jµ = J*, so that the equation J* = TJ*

(cf. Prop. 4.3.6) can be written as Jµ = TJµ. Since Jµ = TµJµ (cf. Prop.
4.3.4), it follows that TµJµ = TJµ.

Conversely, if TµJµ = TJµ, then since Jµ = TµJµ, it follows that
Jµ = TJµ. By Prop. 4.3.7, it follows that Jµ ≤ J*, so µ is optimal.
Q.E.D.

An example showing that under Assumption I, the condition TµJµ =
TJµ does not guarantee optimality of µ is given in Exercise 4.3. Under
Assumption D, we note that by Prop. 4.3.1, we have Jµ = TµJµ for all µ,
so if µ is a stationary optimal policy, the fixed point equation

J*(x) = inf
u∈U(x)

H(x, u, J*), ∀ x ∈ X, (4.16)

and the optimality condition of Prop. 4.3.10, yield

TJ* = J* = Jµ = TµJµ = TµJ*.

Thus under D, a stationary optimal policy attains the infimum in the fixed
point Eq. (4.16) for all x. However, there may exist nonoptimal stationary
policies also attaining the infimum for all x; an example is the shortest path
problem of Section 3.1.1 for the case where a = 0 and b = 1. Moreover,
it is possible that this infimum is attained but no optimal policy exists, as
shown by Fig. 4.3.2.

Proposition 4.3.9 shows that under Assumption I, there exists a sta-
tionary optimal policy if and only if the infimum in the optimality equation

J*(x) = inf
u∈U(x)

H(x, u, J*)

is attained for every x ∈ X . When the infimum is not attained for some x ∈
X , this optimality equation can still be used to yield an ǫ-optimal policy,
which can be taken to be stationary whenever the scalar α in Assumption
I(c) is strictly less than 1. This is shown in the following proposition.
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J TJ= 0 J̄ = 0Jµ

J̄ T k
µ J̄

J∗
= TJ∗

Jµ

TµJ T

J TµJ

Figure 4.3.2. An example where nonstationary policies are dominant under As-
sumption D. Here there is only one state and S = ℜ. There are two stationary
policies µ and µ with cost functions Jµ and Jµ as shown. However, by considering
a nonstationary policy of the form πk = {µ, . . . , µ, µ, µ, . . .}, with a number k of
policies µ, we can obtain a sequence {Jπk

} that converges to the value J∗ shown.
Note that here there is no optimal policy, stationary or not.

Proposition 4.3.11: Let Assumption I hold. Then:

(a) If ǫ > 0, the sequence {ǫk} satisfies
∑∞

k=0 α
kǫk = ǫ, and ǫk > 0

for all k, and the policy π∗ = {µ∗
0, µ

∗
1, . . .} ∈ Π is such that

Tµ∗
k
J* ≤ TJ* + ǫk e, ∀ k = 0, 1, . . . ,

then
J* ≤ Jπ∗ ≤ J* + ǫ e.

(b) If ǫ > 0, the scalar α in part (c) of Assumption I is strictly less
than 1, and µ∗ ∈ M is such that

Tµ∗J* ≤ TJ* + ǫ(1− α) e,

then
J* ≤ Jµ∗ ≤ J* + ǫ e.



Sec. 4.3 Infinite Horizon Problems 239

Proof: (a) Since TJ* = J*, we have

Tµ∗
k
J* ≤ J* + ǫk e,

and applying Tµ∗
k−1

to both sides, we obtain

Tµ∗
k−1

Tµ∗
k
J* ≤ Tµ∗

k−1
J* + αǫk e ≤ J* + (ǫk−1 + αǫk) e.

Applying Tµ∗
k−2

throughout and repeating the process, we obtain for every

k = 1, 2, . . .,

Tµ∗
0
· · ·Tµ∗

k
J* ≤ J* +

(
k∑

i=0

αiǫi

)
e, k = 1, 2, . . . .

Since J̄ ≤ J*, it follows that

Tµ∗
0
· · ·Tµ∗

k
J̄ ≤ J* +

(
k∑

i=0

αiǫi

)
e, k = 1, 2, . . . .

By taking the limit as k → ∞, we obtain Jπ∗ ≤ J* + ǫ e.

(b) This part is proved by taking ǫk = ǫ(1 − α) and µ∗
k = µ∗ for all k in

the preceding argument. Q.E.D.

Under Assumption D, the existence of an ǫ-optimal policy is harder
to establish, and requires some restrictive conditions.

Proposition 4.3.12: Let Assumption D hold, and let the additional
assumptions of Prop. 4.3.8 hold. Then for any ǫ > 0, there exists an
ǫ-optimal policy.

Proof: For each N , denote

ǫN =
ǫ

2(1 + α+ · · ·+ αN−1)
,

and let

πN = {µN
0 , µN

1 , . . . , µN
N−1, µ, µ . . .}

be such that µ ∈ M, and for k = 0, . . . , N − 1, µN
k ∈ M and

TµN
k
TN−k−1J̄ = TN−kJ̄ + ǫN e.
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We have TN
µN−1 J̄ ≤ T J̄+ǫN e, and applying TN

µN−2 to both sides, we obtain

TN
µN−2T

N
µN−1 J̄ ≤ TN

µN−2T J̄ + αǫN e ≤ T 2J̄ + (1 + α)ǫN e.

Continuing in the same manner, we have

TN
µ0 · · ·T

N
µN−1 J̄ ≤ TN J̄ + (1 + α+ · · ·+ αN−1)ǫN e,

from which we obtain for N = 0, 1, . . .,

JπN
≤ TN J̄ + (ǫ/2) e.

By Prop. 4.3.5, we have J* = limN→∞ TN J̄ , so let N̄ be such that

T N̄ J̄ ≤ J* + (ǫ/2) e

[such a N̄ exists using the assumptions of finiteness of X and J*(x) > −∞
for all x ∈ X ]. Then we obtain JπN̄

≤ J* + ǫ e, and πN̄ is the desired
policy. Q.E.D.

4.3.2 Value Iteration

We will now discuss algorithms for abstract DP under Assumptions I and
and D. We first consider the VI algorithm, which consists of successively
generating T J̄, T 2J̄ , . . .. Note that because T need not be a contraction,
it may have multiple fixed points J all of which satisfy J ≥ J* under
Assumption I (cf. Prop. 4.3.3) or J ≤ J* under Assumption D (cf. Prop.
4.3.6). Thus, in the absence of additional conditions (to be discussed in
Sections 4.4 and 4.5), it is essential to start VI with J̄ or an initial J0 such
that J̄ ≤ J0 ≤ J* under Assumption I or J̄ ≥ J0 ≥ J* under Assumption
D. In the next two propositions, we show that for such initial conditions, we
have convergence of VI to J* under Assumption D, and with an additional
compactness condition, under Assumption I.

Proposition 4.3.13: Let Assumption D hold, and assume that J0 ∈
E(X) is such that J̄ ≥ J0 ≥ J*. Then

lim
k→∞

T kJ0 = J*.

Proof: The condition J̄ ≥ J0 ≥ J* implies that T kJ̄ ≥ T kJ0 ≥ J* for all
k. By Prop. 4.3.5, T kJ̄ → J*, and the result follows. Q.E.D.
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The convergence of VI under I requires an additional compactness
condition, which is satisfied in particular if U(x) is a finite set for all x ∈ X .

Proposition 4.3.14: Let Assumption I hold, let U be a metric space,
and assume that the sets

Uk(x, λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

(4.17)

are compact for every x ∈ X , λ ∈ ℜ, and for all k greater than some
integer k. Assume that J0 ∈ E(X) is such that J̄ ≤ J0 ≤ J*. Then

lim
k→∞

T kJ0 = J*.

Furthermore, there exists a stationary optimal policy.

Proof: Similar to the proof of Prop. 4.3.13, it will suffice to show that
T kJ̄ → J*. Since J̄ ≤ J*, we have T kJ̄ ≤ T kJ* = J*, so that

J̄ ≤ T J̄ ≤ · · · ≤ T kJ̄ ≤ · · · ≤ J*.

Thus we have T kJ̄ ↑ J∞ for some J∞ ∈ E(X) satisfying T kJ̄ ≤ J∞ ≤ J*

for all k. Applying T to this relation, we obtain

(T k+1J̄)(x) = min
u∈U(x)

H(x, u, T kJ̄) ≤ (TJ∞)(x),

and by taking the limit as k → ∞, it follows that

J∞ ≤ TJ∞.

Assume to arrive at a contradiction that there exists a state x̃ ∈ X such
that

J∞(x̃) < (TJ∞)(x̃). (4.18)

Similar to Lemma 3.3.1, there exists a point uk attaining the minimum in

(T k+1J̄)(x̃) = inf
u∈U(x̃)

H(x̃, u, T kJ̄);

i.e., uk is such that

(T k+1J̄)(x̃) = H(x̃, uk, T kJ̄).

Clearly, by Eq. (4.18), we must have J∞(x̃) < ∞. For every k, consider
the set

Uk

(
x̃, J∞(x̃)

)
=
{
u ∈ U(x̃)

∣∣ H(x̃, uk, T kJ̄) ≤ J∞(x̃)
}
,
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and the sequence {ui}∞i=k. Since T kJ̄ ↑ J∞, it follows that for all i ≥ k,

H(x̃, ui, T kJ̄) ≤ H(x̃, ui, T iJ̄) ≤ J∞(x̃).

Therefore {ui}∞i=k ⊂ Uk

(
x̃, J∞(x̃)

)
, and since Uk

(
x̃, J∞(x̃)

)
is compact, all

the limit points of {ui}∞i=k belong to Uk

(
x̃, J∞(x̃)

)
and at least one such

limit point exists. Hence the same is true of the limit points of the whole
sequence {ui}. It follows that if ũ is a limit point of {ui} then

ũ ∈ ∩∞
k=0Uk

(
x̃, J∞(x̃)

)
.

By Eq. (4.17), this implies that for all k ≥ k

J∞(x̃) ≥ H(x̃, ũ, T kJ̄) ≥ (T k+1J̄)(x̃).

Taking the limit as k → ∞, and using part (b) of Assumption I, we obtain

J∞(x̃) ≥ H(x̃, ũ, J∞) ≥ (TJ∞)(x̃), (4.19)

which contradicts Eq. (4.18). Hence J∞ = TJ∞, which implies that J∞ ≥
J* in view of Prop. 4.3.3. Combined with the inequality J∞ ≤ J*, which
was shown earlier, we have J∞ = J*.

To show that there exists an optimal stationary policy, observe that
the relation J* = J∞ = TJ∞ and Eq. (4.19) [whose proof is valid for all
x̃ ∈ X such that J*(x̃) < ∞] imply that ũ attains the infimum in

J*(x̃) = inf
u∈U(x̃)

H(x̃, u, J*)

for all x̃ ∈ X with J*(x̃) < ∞. For x̃ ∈ X such that J*(x̃) = ∞, every
u ∈ U(x̃) attains the preceding minimum. Hence by Prop. 4.3.9 an optimal
stationary policy exists. Q.E.D.

The reader may verify by inspection of the preceding proof that if
µk(x̃), k = 0, 1, . . ., attains the infimum in the relation

(T k+1J̄)(x̃) = inf
u∈U(x)

H(x̃, u, T kJ̄),

and µ∗(x̃) is a limit point of {µk(x̃)}, for every x̃ ∈ X , then the stationary
policy µ∗ is optimal. Furthermore, {µk(x̃)} has at least one limit point
for every x̃ ∈ X for which J*(x̃) < ∞. Thus the VI algorithm under the

assumption of Prop. 4.3.14 yields in the limit not only the optimal cost

function J* but also an optimal stationary policy.
On the other hand, under Assumption I but in the absence of the

compactness condition (4.17), T kJ̄ need not converge to J*. What is hap-
pening here is that while the mappings Tµ are continuous from below as
required by Assumption I(b), T may not be, and a phenomenon like the
one illustrated in the left-hand side of Fig. 4.3.1 may occur, whereby

lim
k→∞

T kJ̄ ≤ T

(
lim
k→∞

T kJ̄

)
,

with strict inequality for some x ∈ X . This can happen even in simple
deterministic optimal control problems, as shown by the following example.
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Example 4.3.3 (Counterexample to Convergence of VI)

Let

X = [0,∞), U(x) = (0,∞), J̄(x) = 0, ∀ x ∈ X,

and

H(x, u, J) = min
{
1, x+ J(2x+ u)

}
, ∀ x ∈ X, u ∈ U(x).

Then it can be verified that for all x ∈ X and policies µ, we have Jµ(x) = 1,
as well as J∗(x) = 1, while it can be seen by induction that starting with J̄ ,
the VI algorithm yields

(T kJ̄)(x) = min
{
1, (1 + 2k−1)x

}
, ∀ x ∈ X, k = 1, 2 . . . .

Thus we have 0 = limk→∞ (T kJ̄)(0) 6= J∗(0) = 1.

The range of convergence of VI may be expanded under additional as-
sumptions. In particular, in Chapter 3, under various conditions involving
the existence of optimal S-regular policies, we showed that VI converges to
J* assuming that the initial condition J0 satisfies J0 ≥ J*. Thus if the as-
sumptions of Prop. 4.3.14 hold in addition, we are guaranteed convergence
of VI starting from any J satisfying J ≥ J̄ . Results of this type will be
obtained in Sections 4.4 and 4.5, where semicontractive models satisfying
Assumption I will be discussed.

Asynchronous Value Iteration

The concepts of asynchronous VI that we developed in Section 2.6.1 apply
also under the Assumptions I and D of this section. Under Assumption I,
if J* is real-valued, we may apply Prop. 2.6.1 with the sets S(k) defined by

S(k) = {J | T kJ̄ ≤ J ≤ J*}, k = 0, 1, . . . .

Assuming that T kJ̄ → J* (cf. Prop. 4.3.14), it follows that the asyn-
chronous form of VI converges pointwise to J* starting from any func-
tion in S(0). This result can also be shown for the case where J* is not
real-valued, by using a simple extension of Prop. 2.6.1, where the set of
real-valued functions R(X) is replaced by the set of all J ∈ E(X) with
J̄ ≤ J ≤ J*.

Under Assumption D similar conclusions hold for the asynchronous
version of VI that starts with a function J with J* ≤ J ≤ J̄ . Asynchronous
pointwise convergence to J* can be shown, based on an extension of the
asynchronous convergence theorem (Prop. 2.6.1), where R(X) is replaced
by the set of all J ∈ E(X) with J* ≤ J ≤ J̄ .
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4.3.3 Exact and Optimistic Policy Iteration - λ-Policy Iteration

Unfortunately, in the absence of further conditions, the PI algorithm is
not guaranteed to yield the optimal cost function and/or an optimal policy
under either Assumption I or D. However, there are convergence results
for nonoptimistic and optimistic variants of PI under some conditions. In
what follows in this section we will provide an analysis of various types
of PI, mainly under Assumption D. The analysis of PI under Assumption
I will be given primarily in the next two sections, as it requires different
assumptions and methods of proof, and will be coupled with regularity
ideas relating to the semicontractive models of Chapter 3.

Optimistic Policy Iteration Under D

A surprising fact under Assumption D is that nonoptimistic/exact PI may
generate a policy that is strictly inferior over the preceding one. Moreover
there may be an oscillation between nonoptimal policies even when the
state and control spaces are finite. An illustrative example is the shortest
path example of Section 3.1.1, where it can be verified that exact PI may
oscillate between the policy that moves to the destination from node 1 and
the policy that does not. For a mathematical explanation, note that under
Assumption D, we may have TµJ* = TJ* without µ being optimal, so
starting from an optimal policy, we may obtain a nonoptimal policy by PI.

On the other hand optimistic PI under Assumption D has much better
convergence properties, because it embodies the mechanism of VI, which
is convergent to J* as we saw in the preceding subsection. Indeed, let
us consider an optimistic PI algorithm that generates a sequence {Jk, µk}
according to †

TµkJk = TJk, Jk+1 = T
mk

µk Jk, (4.20)

where mk is a positive integer. We assume that the algorithm starts with a
function J0 ∈ E(X) that satisfies J̄ ≥ J0 ≥ J* and J0 ≥ TJ0. For example,
we may choose J0 = J̄ . We have the following proposition.

Proposition 4.3.15: Let Assumption D hold and let {Jk, µk} be a
sequence generated by the optimistic PI algorithm (4.20), assuming
that J̄ ≥ J0 ≥ J* and J0 ≥ TJ0. Then Jk ↓ J∗.

Proof: We have

J0 ≥ Tµ0J0 ≥ Tm0
µ0 J0 = J1 ≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

† As with all PI algorithms in this book, we assume that the policy im-

provement operation is well-defined, in the sense that there exists µk such that

TµkJk = TJk for all k.
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where the first, second, and third inequalities hold because the assumption
J0 ≥ TJ0 = Tµ0J0 implies that

Tm
µ0J0 ≥ Tm+1

µ0 J0, ∀ m ≥ 0.

Continuing similarly we obtain

Jk ≥ TJk ≥ Jk+1, ∀ k ≥ 0.

Moreover, we can show by induction that Jk ≥ J*. Indeed this is true for
k = 0 by assumption. If Jk ≥ J*, we have

Jk+1 = T
mk

µk Jk ≥ TmkJk ≥ TmkJ* = J*, (4.21)

where the last equality follows from the fact TJ* = J* (cf. Prop. 4.3.6),
thus completing the induction. By combining the preceding two relations,
we have

Jk ≥ TJk ≥ Jk+1 ≥ J*, ∀ k ≥ 0. (4.22)

We will now show by induction that

T kJ0 ≥ Jk ≥ J*, ∀ k ≥ 0. (4.23)

Indeed this relation holds by assumption for k = 0, and assuming that it
holds for some k ≥ 0, we have by applying T to it and by using Eq. (4.22),

T k+1J0 ≥ TJk ≥ Jk+1 ≥ J*,

thus completing the induction. By applying Prop. 4.3.13 to Eq. (4.23), we
obtain Jk ↓ J∗. Q.E.D.

λ-Policy Iteration Under D

We now consider the λ-PI algorithm. It involves a scalar λ ∈ (0, 1) and
a corresponding multistep mapping, which bears a relation to temporal
differences and the proximal algorithm (cf. Section 1.2.5). It is defined by

TµkJk = TJk, Jk+1 = T
(λ)

µk Jk, (4.24)

where for any policy µ and scalar λ ∈ (0, 1), T
(λ)
µ is the mapping defined

by

(T
(λ)
µ J)(x) = (1− λ)

∞∑

t=0

λt(T t+1
µ J)(x), x ∈ X.
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Here we assume that Tµ maps R(X) to R(X), and that for all µ ∈ M
and J ∈ R(X), the limit of the series above is well-defined as a function in
R(X).

We discussed this algorithm in connection with semicontractive prob-
lems in Section 3.2.4, where we assumed that

Tµ(T
(λ)
µ J) = T

(λ)
µ (TµJ), ∀ µ ∈ M, J ∈ R(X). (4.25)

We will show that for undiscounted finite-state MDP, the algorithm can
be implemented by using matrix inversion, just like nonoptimistic PI for
discounted finite-state MDP. It turns out that this can be an advantage in
some settings, including approximate simulation-based implementations.

As noted earlier, λ-PI and optimistic PI are similar: they just use the
mapping Tµk to apply VI in different ways. In view of this similarity, it is
not surprising that it has the same type of convergence properties as the
earlier optimistic PI method (4.20). Similar to Prop. 4.3.15, we have the
following.

Proposition 4.3.16: Let Assumption D hold and let {Jk, µk} be a
sequence generated by the λ-PI algorithm (4.24), assuming Eq. (4.25),
and that J̄ ≥ J0 ≥ J* and J0 ≥ TJ0. Then Jk ↓ J∗.

Proof: As in the proof of Prop. 4.3.15, by using Assumption D, the mono-
tonicity of Tµ, and the hypothesis J0 ≥ TJ0, we have

J0 ≥ TJ0 = Tµ0J0 ≥ T
(λ)

µ0 J0 = J1 ≥ Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ T
(λ)

µ1 J0 = J2,

where for the third inequality, we use the relation J0 ≥ Tµ0J0, the definition
of J1, and the assumption (4.25). Continuing in the same manner,

Jk ≥ TJk ≥ Jk+1, ∀ k ≥ 0.

Similar to the proof of Prop. 4.3.15, we show by induction that Jk ≥ J*,
using the fact that if Jk ≥ J*, then

Jk+1 = T
(λ)

µk Jk ≥ T
(λ)

µk J* = (1− λ)

∞∑

t=0

λtT t+1J* = J*,

[cf. the induction step of Eq. (4.21)]. By combining the preceding two
relations, we obtain Eq. (4.22), and the proof is completed by using the
argument following that equation. Q.E.D.

The λ-PI algorithm has a useful property, which involves the mapping
Wk : R(X) 7→ R(X) given by

WkJ = (1− λ)TµkJk + λTµkJ. (4.26)
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In particular Jk+1 is a fixed point of Wk. Indeed, using the definition

Jk+1 = T
(λ)

µk Jk

[cf. Eq. (4.24)], and the linearity assumption (4.25), we have

WkJk+1 = (1 − λ)TµkJk + λTµk

(
T

(λ)

µk Jk

)

= (1 − λ)TµkJk + λT
(λ)

µk (TµkJk)

= T
(λ)

µk Jk

= Jk+1.

Thus Jk+1 can be calculated as a fixed point of Wk.
Consider now the case where Tµk is nonexpansive with respect to

some norm. Then from Eq. (4.26), it is seen that Wk is a contraction of
modulus λ with respect to that norm, so Jk+1 is the unique fixed point of
Wk. Moreover, if the norm is a weighted sup-norm, Jk+1 can be found using
the methods of Chapter 2 for contractive models. The following example
applies this idea to finite-state SSP problems. The interesting aspect of
this example is that it implements the policy evaluation portion of λ-PI
through solution of a system of linear equations, similar to the exact policy
evaluation method of classical PI.

Example 4.3.4 (Stochastic Shortest Path Problems with
Nonpositive Costs)

Consider the SSP problem of Example 1.2.6 with states 1, . . . , n, plus the
termination state 0. For all u ∈ U(x), the state following x is y with prob-
ability pxy(u) and the expected cost incurred is nonpositive. This problem
arises when we wish to maximize nonnegative rewards up to termination. It
includes a classical search problem where the aim, roughly speaking, is to
move through the state space looking for states with favorable termination
rewards.

We view the problem within our abstract framework with J̄(x) ≡ 0 and

TµJ = gµ + PµJ, (4.27)

with gµ ∈ ℜn being the corresponding nonpositive one-stage cost vector, and
Pµ being an n × n substochastic matrix. The components of Pµ are the
probabilities pxy

(
µ(x)

)
, x, y = 1, . . . , n. Clearly Assumption D holds.

Consider the λ-PI method (4.24), with Jk+1 computed by solving the
fixed point equation J = WkJ , cf. Eq. (4.26). This is a nonsingular n-
dimensional system of linear equations, and can be solved by matrix inversion,
just like in exact PI for discounted n-state MDP. In particular, using Eqs.
(4.26) and (4.27), we have

Jk+1 = (I − λPµk )
−1
(
gµk + (1− λ)PµkJk

)
. (4.28)
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For a small number of states n, this matrix inversion-based policy evaluation
may be simpler than the optimistic PI policy evaluation equation

Jk+1 = T
mk

µk
Jk

[cf. Eq. (4.20)], which points to an advantage of λ-PI.

Note that based on the relation between the multistep mapping T
(λ)
µ and

the proximal mapping, discussed in Section 1.2.5 and Exercise 1.2, the policy
evaluation Eq. (4.28) may be viewed as an extrapolated proximal iteration.
Note also that as λ → 1, the policy evaluation Eq. (4.28) resembles the policy
evaluation equation

Jµk = (I − λPµk )
−1gµk

for λ-discounted n-state MDP. An important difference, however, is that for
a discounted finite-state MDP, exact PI will find an optimal policy in a finite
number of iterations, while this is not guaranteed for λ-PI. Indeed λ-PI does
not require that there exists an optimal policy or even that J∗(x) is finite for
all x.

Policy Iteration Under I

Contrary to the case of Assumption D, the important cost improvement
property of PI holds under Assumption I. Thus, if µ is a policy and µ̄
satisfies the policy improvement equation Tµ̄Jµ = TJµ, we have

Jµ = TµJµ ≥ TJµ = Tµ̄Jµ,

from which we obtain
Jµ ≥ lim

k→∞
T k
µ̄Jµ.

Since Jµ ≥ J̄ and Jµ̄ = limk→∞ T k
µ̄ J̄ , it follows that

Jµ ≥ TJµ ≥ Jµ̄. (4.29)

However, this cost improvement property is not by itself sufficient for
the validity of PI under Assumption I (see the deterministic shortest path
example of Section 3.1.1). Thus additional conditions are needed to guar-
antee convergence. To this end we may use the semicontractive framework
of Chapter 3, and take advantage of the fact that under Assumption I, J*

is known to be a fixed point of T .
In particular, suppose that we have a set S ⊂ E(X) such that J*

S = J*.
Then J*

S is a fixed point of T and the theory of Section 3.2 comes into play.
Thus, by Prop. 3.2.1 the following hold:

(a) We have T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃ for
some J̃ ∈ S.

(b) J* is the only fixed point of T within the set of all J ∈ E(X) such
that J* ≤ J ≤ J̃ for some J̃ ∈ S.
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Moreover, by Prop. 3.2.4, if S has the weak PI property and for each
sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm),

then every sequence of S-regular policies {µk} that can be generated by PI
satisfies Jµk ↓ J*. If in addition the set of S-regular policies is finite, there

exists k̄ ≥ 0 such that µk̄ is optimal.
For these properties to hold, it is of course critical that J*

S = J*. If
this is not so, but J*

S is still a fixed point of T , the VI and PI algorithms
may converge to J*

S rather than to J* (cf. the linear quadratic problem of
Section 3.5.4).

4.4 REGULARITY AND NONSTATIONARY POLICIES

In this section, we will extend the notion of regularity of Section 3.2 so
that it applies more broadly. We will use this notion as our main tool
for exploring the structure of the solution set of Bellman’s equation. We
will then discuss some applications involving mostly monotone increasing
models in this section, as well as in Sections 4.5 and 4.6. We continue
to focus on the infinite horizon case of the problem of Section 4.1, but
we do not impose for the moment any additional assumptions, such as
Assumption I or D.

We begin with the following extension of the definition of S-regularity,
which we will use to prove a general result regarding the convergence prop-
erties of VI in the following Prop. 4.4.1. We will apply this result in the
context of various applications in Sections 4.4.2-4.4.4, as well as in Sections
4.5 and 4.6.

Definition 4.4.1: For a nonempty set of functions S ⊂ E(X), we say
that a nonempty collection C of policy-state pairs (π, x), with π ∈ Π
and x ∈ X , is S-regular if

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J)(x), ∀ (π, x) ∈ C, J ∈ S.

The essence of the preceding definition of S-regularity is similar to
the one of Chapter 3 for stationary policies: for an S-regular collection of

pairs (π, x), the value of Jπ(x) is not affected if the starting function is

changed from J̄ to any J ∈ S. It is important to extend the definition
of regularity to nonstationary policies because in noncontractive models,
stationary policies are generally not sufficient, i.e., the optimal cost over
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stationary policies may not be the same as the one over nonstationary
policies (cf. Prop. 4.3.2, and the subsequent example). Generally, when
referring to an S-regular collection C, we implicitly assume that S and C
are nonempty, although on occasion we may state explicitly this fact for
emphasis.

For a given set C of policy-state pairs (π, x), let us consider the func-
tion J*

C ∈ E(X), given by

J*
C(x) = inf

{π | (π,x)∈C}
Jπ(x), x ∈ X.

Note that J*
C (x) ≥ J*(x) for all x ∈ X [for those x ∈ X for which the set

of policies {π | (π, x) ∈ C} is empty, we have by convention J*
C (x) = ∞].

For an important example, note that in the analysis of Chapter 3, the
set of S-regular policies MS of Section 3.2 defines the S-regular collection

C =
{
(µ, x) | µ ∈ MS, x ∈ X

}
,

and the corresponding restricted optimal cost function J*
S is equal to J*

C . In
Sections 3.2-3.4 we saw that when J*

S is a fixed point of T , then favorable
results are obtained. Similarly, in this section we will see that for an S-
regular collection C, when J*

C is a fixed point of T , interesting results are
obtained.

The following two propositions play a central role in our analysis on
this section and the next two, and may be compared with Prop. 3.2.1,
which played a pivotal role in the analysis of Chapter 3.

Proposition 4.4.1: (Well-Behaved Region Theorem) Given a
nonempty set S ⊂ E(X), let C be a nonempty collection of policy-state
pairs (π, x) that is S-regular. Then:

(a) For all J ∈ E(X) such that J ≤ J̃ for some J̃ ∈ S, we have

lim sup
k→∞

T kJ ≤ J*
C .

(b) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, and all J ∈ E(X) such that
J ′ ≤ J ≤ J̃ for some J̃ ∈ S, we have

J ′ ≤ lim inf
k→∞

T kJ ≤ lim sup
k→∞

T kJ ≤ J*
C .

Proof: (a) Using the generic relation TJ ≤ TµJ , µ ∈ M, and the mono-
tonicity of T and Tµ, we have for all k

(T kJ̃)(x) ≤ (Tµ0 · · ·Tµk−1
J̃)(x), ∀ (π, x) ∈ C, J̃ ∈ S.
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By letting k → ∞ and by using the definition of S-regularity, it follows
that for all (π, x) ∈ C, J ∈ E(X), and J̃ ∈ S with J ≤ J̃ ,

lim sup
k→∞

(T kJ)(x) ≤ lim sup
k→∞

(T kJ̃)(x) ≤ lim sup
k→∞

(Tµ0 · · ·Tµk−1
J̃)(x) = Jπ(x),

and by taking infimum of the right side over
{
π | (π, x) ∈ C

}
, we obtain

the result.

(b) Using the hypotheses J ′ ≤ TJ ′, and J ′ ≤ J ≤ J̃ for some J̃ ∈ S, and
the monotonicity of T , we have

J ′(x) ≤ (TJ ′)(x) ≤ · · · ≤ (T kJ ′)(x) ≤ (T kJ)(x).

Letting k → ∞ and using part (a), we obtain the result. Q.E.D.

Let us discuss some interesting implications of part (b) of the propo-
sition. Suppose we are given a set S ⊂ E(X), and a collection C that is
S-regular. Then:

(1) J*
C is an upper bound to every fixed point J ′ of T that lies below

some J̃ ∈ S (i.e., J ′ ≤ J̃). Moreover, for such a fixed point J ′, the
VI algorithm, starting from any J with J*

C ≤ J ≤ J̃ for some J̃ ∈ S,
ends up asymptotically within the region

{
J ∈ E(X) | J ′ ≤ J ≤ J*

C

}
.

Thus the convergence of VI is characterized by the well-behaved region

WS,C =
{
J ∈ E(X) | J*

C ≤ J ≤ J̃ for some J̃ ∈ S
}
, (4.30)

(cf. the corresponding definition in Section 3.2), and the limit region

{
J ∈ E(X) | J ′ ≤ J ≤ J*

C for all fixed points J ′ of T

with J ′ ≤ J̃ for some J̃ ∈ S
}
.

The VI algorithm, starting from the former, ends up asymptotically
within the latter; cf. Figs. 4.4.1 and 4.4.2.

(2) If J*
C is a fixed point of T (a common case in our subsequent analysis),

then the VI-generated sequence {T kJ} converges to J*
C starting from

any J in the well-behaved region. If J*
C is not a fixed point of T , we

only have lim supk→∞ T kJ ≤ J*
C for all J in the well-behaved region.

(3) If the well-behaved region is unbounded above in the sense that
WS,C =

{
J ∈ E(X) | J*

C ≤ J
}
, which is true for example if S = E(X),

then J ′ ≤ J*
C for every fixed point J ′ of T . The reason is that for

every fixed point J ′ of T we have J ′ ≤ J for some J ∈ WS,C, and
hence also J ′ ≤ J̃ for some J̃ ∈ S, so observation (1) above applies.
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J ′ J J

VI Optimal Cost over CFixed Point of T

C E(X)

VI: T kJ

J̃ ∈ S

be a fixed point of

, we have J*
C
≤

Well-Behaved RegionWS,CWell-Behaved Region Limit Region

Figure 4.4.1. Schematic illustration of Prop. 4.4.1. Neither J∗
C nor J∗ need to

be fixed points of T , but if C is S-regular, and there exists J̃ ∈ S with J∗
C ≤ J̃ ,

then J∗
C demarcates from above the range of fixed points of T that lie below J̃ .

For future reference, we state these observations as a proposition, which
should be compared to Prop. 3.2.1, the stationary special case where C is
defined by the set of S-regular stationary policies, i.e., C =

{
(µ, x) | µ ∈

MS , x ∈ X
}
. Figures 4.4.2 and 4.4.3 illustrate some of the consequences

of Prop. 4.4.1 for two cases, respectively: when S = E(X) while J*
C is not

a fixed point of T , and when S is a strict subset of E(X) while J*
C is a fixed

point of T .

Proposition 4.4.2: (Uniqueness of Fixed Point of T and Con-
vergence of VI) Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular. Then:

(a) If J ′ is a fixed point of T with J ′ ≤ J̃ for some J̃ ∈ S, then
J ′ ≤ J*

C . Moreover, J*
C is the only possible fixed point of T

within WS,C.

(b) We have lim supk→∞ T kJ ≤ J*
C for all J ∈ WS,C , and if J*

C is a
fixed point of T , then T kJ → J*

C for all J ∈ WS,C.

(c) If WS,C is unbounded from above in the sense that

WS,C =
{
J ∈ E(X) | J*

C ≤ J
}
,

then J ′ ≤ J*
C for every fixed point J ′ of T . In particular, if J*

C is
a fixed point of T , then J*

C is the largest fixed point of T .

Proof: (a) The first statement follows from Prop. 4.4.1(b). For the second
statement, let J ′ be a fixed point of T with J ′ ∈ WS,C. Then from the
definition of WS,C , we have J*

C ≤ J ′ as well as J ′ ≤ J̃ for some J̃ ∈ S, so
from Prop. 4.4.1(b) it follows that J ′ ≤ J*

C . Hence J ′ = J*
C .
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Path of VI Set of solutions of Bellman’s equation J*
C

Paths of VI Unique solution of Bellman’s equation

Limit Region

Fixed Points of T

T S = E(X)

Well-Behaved Region

WS,C =

{

J | J*
C
≤ J

}

Figure 4.4.2. Schematic illustration of Prop. 4.4.2, for the case where S = E(X)

so that WS,C is unbounded above, i.e., WS,C =
{
J ∈ E(X) | J∗

C ≤ J
}
. In

this figure J∗
C is not a fixed point of T . The VI algorithm, starting from the

well-behaved region WS,C , ends up asymptotically within the limit region.

(b) The result follows from Prop. 4.4.1(a), and in the case where J*
C is a

fixed point of T , from Prop. 4.4.1(b), with J ′ = J*
C .

(c) See observation (3) in the discussion preceding the proposition. Q.E.D.

Examples and counterexamples illustrating the preceding proposition
are provided by the problems of Section 3.1 for the stationary case where

C =
{
(µ, x) | µ ∈ MS, x ∈ X

}
.

Similar to the analysis of Chapter 3, the preceding proposition takes special
significance when J* is a fixed point of T and C is rich enough so that
J*
C = J*, as for example in the case where C is the set Π×X of all (π, x),

or other choices to be discussed later. It then follows that every fixed
point J ′ of T that belongs to S satisfies J ′ ≤ J*, and that VI converges
to J* starting from any J ∈ E(X) such that J* ≤ J ≤ J̃ for some J̃ ∈ S.
However, there will be interesting cases where J*

C 6= J*, as in shortest
path-type problems (see Sections 3.5.1, 4.5, and 4.6).

Note that Prop. 4.4.2 does not say anything about fixed points of
T that lie below J*

C , and does not give conditions under which J*
C is a

fixed point. Moreover, it does not address the question whether J* is a
fixed point of T , or whether VI converges to J* starting from J̄ or from
below J*. Generally, it can happen that both, only one, or none of the two
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that belongs to S
Path of VI Set of solutions of Bellman’s equation J*

C

Fixed Points of T S

Fixed Points of T S

Well-Behaved Region

Paths of VI Unique solution of Bellman’s equation

WS,C =
{

J | J*
C
≤ J ≤ J̃ for some J̃ ∈ S

}

Figure 4.4.3. Schematic illustration of Prop. 4.4.2, and the set WS,C of Eq.
(4.30), for a case where J∗

C is a fixed point of T and S is a strict subset of E(X).

Every fixed point of T that lies below some J̃ ∈ S should lie below J∗
C . Also, the

VI algorithm converges to J∗
C starting from within WS,C . If S were unbounded

from above, as in Fig. 4.4.2, J∗
C would be the largest fixed point of T .

functions J*
C and J* is a fixed point of T , as can be seen from the examples

of Section 3.1.

The Case Where J*
C ≤ J̄

We have seen in Section 4.3 that the results for monotone increasing and
monotone decreasing models are markedly different. In the context of S-
regularity of a collection C, it turns out that there are analogous significant
differences between the cases J*

C ≥ J̄ and J*
C ≤ J̄ . The following propo-

sition establishes some favorable aspects of the condition J*
C ≤ J̄ in the

context of VI. These can be attributed to the fact that J̄ can always be
added to S without affecting the S-regularity of C, so J̄ can serve as the
element J̃ of S in Props. 4.4.1 and 4.4.2 (see the subsequent proof). The
following proposition may also be compared with the result on convergence
of VI under Assumption D (cf. Prop. 4.3.13).

Proposition 4.4.3: Given a set S ⊂ E(X), let C be a collection of
policy-state pairs (π, x) that is S-regular, and assume that J*

C ≤ J̄ .
Then:
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(a) For all J ′ ∈ E(X) with J ′ ≤ TJ ′, we have

J ′ ≤ lim inf
k→∞

T kJ̄ ≤ lim sup
k→∞

T kJ̄ ≤ J*
C .

(b) If J*
C is a fixed point of T , then J*

C = J* and we have T kJ̄ → J*

as well as T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃
for some J̃ ∈ S.

Proof: (a) If S does not contain J̄ , we can replace S with S̄ = S ∪ {J̄},
and C will still be S̄-regular. By applying Prop. 4.4.1(b) with S replaced
by S̄ and J̃ = J̄ , the result follows.

(b) Assume without loss of generality that J̄ ∈ S [cf. the proof of part (a)].
By using Prop. 4.4.2(b) with J̃ = J̄ , we have J*

C = limk→∞ T kJ̄ . Thus for
every policy π = {µ0, µ1, . . .} ∈ Π,

J*
C = lim

k→∞
T kJ̄ ≤ lim sup

k→∞
Tµ0 · · ·Tµk−1

J̄ = Jπ ,

so by taking the infimum over π ∈ Π, we obtain J*
C ≤ J*. Since generically

J*
C ≥ J*, it follows that J*

C = J*. Finally, from Prop. 4.4.2(b), T kJ → J*

for all J ∈ WS,C , implying the result. Q.E.D.

As a special case of the preceding proposition, we have that if J* ≤ J̄
and J* is a fixed point of T , then J* = limk→∞ T kJ̄ , and for every other
fixed point J ′ of T we have J ′ ≤ J* (apply the proposition with C = Π×X
and S = {J̄}, in which case J*

C = J* ≤ J̄). This occurs, among others, in
the monotone decreasing models, where TµJ̄ ≤ J̄ for all µ ∈ M. A special
case is the convergence of VI under Assumption D (cf. Prop. 4.3.5).

The preceding proposition also applies to a classical type of search
problem with both positive and negative costs per stage. This is the SSP
problem, where at each x ∈ X we have cost E

{
g(x, u, w)

}
≥ 0 for all u

except one that leads to a termination state with probability 1 and non-
positive cost; here J̄(x) = 0 and J*

C(x) ≤ 0 for all x ∈ X , but Assumption
D need not hold.

4.4.1 Regularity and Monotone Increasing Models

We will now return to the monotone increasing model, cf. Assumption
I. For this model, we know from Section 4.3 that J* is the smallest fixed
point of T within the class of functions J ≥ J̄ , under certain relatively mild
assumptions. However, VI may not converge to J* starting from below J*

(e.g., starting from J̄), and also starting from above J*. In this section
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we will address the question of convergence of VI from above J* by using
regularity ideas, and in Section 4.5 we will consider the characterization of
the largest fixed point of T in the context of deterministic optimal control
and infinite-space shortest path problems. We summarize the results of
Section 4.3 that are relevant to our development in the following proposition
(cf. Props. 4.3.2, 4.3.3, 4.3.9, and 4.3.14).

Proposition 4.4.4: Let Assumption I hold. Then:

(a) J* = TJ*, and if J ′ ∈ E(X) is such that J ′ ≥ J̄ and J ′ ≥ TJ ′,
then J ′ ≥ J*.

(b) For all µ ∈ M we have Jµ = TµJµ, and if J ′ ∈ E(X) is such that
J ′ ≥ J̄ and J ′ ≥ TµJ ′, then J ′ ≥ Jµ.

(c) µ∗ ∈ M is optimal if and only if Tµ∗J* = TJ*.

(d) If U is a metric space and the sets

Uk(x, λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

are compact for all x ∈ X , λ ∈ ℜ, and k, then there exists at
least one optimal stationary policy, and we have T kJ → J* for
all J ∈ E(X) with J ≤ J*.

(e) Given any ǫ > 0, there exists a policy πǫ ∈ Π such that

J* ≤ Jπǫ ≤ J* + ǫ e.

Furthermore, if the scalar α in part (c) of Assumption I satisfies
α < 1, the policy πǫ can be taken to be stationary.

Since under Assumption I there may exist fixed points J ′ of T with
J* ≤ J ′, VI may not converge to J* starting from above J*. However,
convergence of VI to J* from above, if it occurs, is often much faster than
convergence from below, so starting points J ≥ J* may be desirable. One
well-known such case is deterministic finite-state shortest path problems
where major algorithms, such as the Bellman-Ford method or other label
correcting methods have polynomial complexity, when started from J above
J*, but only pseudopolynomial complexity when started from J below J*

[see e.g., [BeT89] (Prop. 1.2 in Ch.4), [Ber98] (Exercise 2.7)].
In the next two subsections, we will consider discounted and undis-

counted optimal control problems with nonnegative cost per stage, and we
will establish conditions under which J* is the unique nonnegative fixed
point of T , and VI converges to J* from above. Our analysis will proceed
as follows:
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(a) Define a collection C such that J*
C = J*.

(b) Define a set S ⊂ E+(X) such that J* ∈ S and C is S-regular.

(c) Use Prop. 4.4.2 (which shows that J*
C is the largest fixed point of T

within S) in conjunction with Prop. 4.4.4(a) (which shows that J* is
the smallest fixed point of T within S) to show that J* is the unique
fixed point of T within S. Use also Prop. 4.4.2(b) to show that the
VI algorithm converges to J* starting from J ∈ S such that J ≥ J*.

(d) Use the compactness condition of Prop. 4.4.4(d), to enlarge the set of
functions starting from which VI converges to J*.

4.4.2 Nonnegative Cost Stochastic Optimal Control

Let us consider the undiscounted stochastic optimal control problem that
involves the mapping

H(x, u, J) = E
{
g(x, u, w) + J

(
f(x, u, w)

)}
, (4.31)

where g is the one-stage cost function and f is the system function. The
expected value is taken with respect to the distribution of the random
variable w (which takes values in a countable set W ). We assume that

0 ≤ E
{
g(x, u, w)

}
< ∞, ∀ x ∈ X, u ∈ U(x), w ∈ W.

We consider the abstract DP model with H as above, and with J̄(x) ≡ 0.
Using the nonnegativity of g, we can write the cost function of a policy
π = {µ0, µ1, . . .} in terms of a limit,

Jπ(x0) = lim
k→∞

Eπ
x0

{
k∑

m=0

g
(
xm, µm(xm), wm

)
}
, x0 ∈ X, (4.32)

where Eπ
x0{·} denotes expected value with respect to the probability dis-

tribution induced by π under initial state x0.
We will apply the analysis of this section with

C =
{
(π, x) | Jπ(x) < ∞

}
,

for which J*
C = J*. We assume that C is nonempty, which is true if and

only if J* is not identically ∞, i.e., J*(x) < ∞ for some x ∈ X . Consider
the set

S =
{
J ∈ E+(X) | Eπ

x0

{
J(xk)

}
→ 0, ∀ (π, x0) ∈ C

}
. (4.33)

One interpretation is that the functions J that are in S have the character of
Lyapounov functions for the policies π for which the set

{
x0 | Jπ(x0) < ∞

}

is nonempty.
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Note that S is the largest set with respect to which C is regular in the
sense that C is S-regular and if C is S′-regular for some other set S′, then
S′ ⊂ S. To see this we write for all J ∈ E+(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1
J)(x0) = Eπ

x0

{
J(xk)

}
+ Eπ

x0

{
k−1∑

m=0

g
(
xm, µm(xm), wm

)
}
,

where µm, m = 0, 1, . . ., denote generically the components of π. The
rightmost term above converges to Jπ(x0) as k → ∞ [cf. Eq. (4.32)], so by
taking upper limit, we obtain

lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = lim sup

k→∞
Eπ

x0

{
J(xk)

}
+ Jπ(x0). (4.34)

In view of the definition (4.33) of S, this implies that for all J ∈ S, we have

lim sup
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = Jπ(x0), ∀ (π, x0) ∈ C, (4.35)

so C is S-regular. Moreover, if C is S′-regular and J ∈ S′, Eq. (4.35) holds,
so that [in view of Eq. (4.34) and J ∈ E+(X)] limk→∞ Eπ

x0

{
J(xk)

}
= 0 for

all (π, x0) ∈ C, implying that J ∈ S.
From Prop. 4.4.2, the fixed point property of J* [cf. Prop. 4.4.4(a)],

and the fact J*
C = J*, it follows that T kJ → J* for all J ∈ S that satisfy

J ≥ J*. Moreover, if the sets Uk(x, λ) of Eq. (4.17) are compact, the
convergence of VI starting from below J* will also be guaranteed. We thus
have the following proposition, which in addition shows that J* belongs to
S and is the unique fixed point of T within S.

Proposition 4.4.5: (Uniqueness of Fixed Point of T and Con-
vergence of VI) Consider the problem corresponding to the map-
ping (4.31) with g ≥ 0, and assume that J* is not identically ∞.
Then:

(a) J* belongs to S and is the unique fixed point of T within S.
Moreover, we have T kJ → J* for all J ≥ J* with J ∈ S.

(b) If U is a metric space, and the sets Uk(x, λ) of Eq. (4.17) are
compact for all x ∈ X , λ ∈ ℜ, and k, we have T kJ → J* for all
J ∈ S, and an optimal stationary policy is guaranteed to exist.

Proof: (a) We first show that J* ∈ S. Given a policy π = {µ0, µ1, . . .},
we denote by πk the policy

πk = {µk, µk+1, . . .}.
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We have for all (π, x0) ∈ C

Jπ(x0) = Eπ
x0

{
g
(
x0, µ0(x0), w0

)}
+ Eπ

x0

{
Jπ1(x1)

}
, (4.36)

and for all m = 1, 2, . . .,

Eπ
x0

{
Jπm(xm)

}
= Eπ

x0

{
g
(
xm, µm(xm), wm

)}
+ Eπ

x0

{
Jπm+1(xm+1)

}
,

(4.37)
where {xm} is the sequence generated starting from x0 and using π. By
using repeatedly the expression (4.37) for m = 1, . . . , k− 1, and combining
it with Eq. (4.36), we obtain for all k = 1, 2, . . . ,

Jπ(x0) = Eπ
x0

{
Jπk

(xk)
}
+

k−1∑

m=0

Eπ
x0

{
g
(
xm, µm(xm), wm

)}
, ∀ (π, x0) ∈ C.

The rightmost term above tends to Jπ(x0) as k → ∞, so we obtain

Eπ
x0

{
Jπk

(xk)
}
→ 0, ∀ (π, x0) ∈ C.

Since 0 ≤ J* ≤ Jπk
, it follows that

Eπ
x0

{
J*(xk)

}
→ 0, ∀ x0 with J*(x0) < ∞.

Thus J* ∈ S while J* (which is equal to J*
C) is a fixed point of T .

For every other fixed point J ′ of T , we have J ′ ≥ J∗ [by Prop. 4.4.4(b)],
so if J ′ belongs to S, by Prop. 4.4.2(a), J ′ ≤ J∗ and thus J ′ = J*. Hence,
J* is the unique fixed point of T within the set S. By Prop. 4.4.2(b), we
also have T kJ → J* for all J ∈ S with J ≥ J*.

(b) This part follows from part (a) and Prop. 4.4.4(d). Q.E.D.

Note that under the assumptions of the preceding proposition, either
T has a unique fixed point within E+(X) (namely J*), or else all the
additional fixed points of T within E+(X) lie outside S. To illustrate the
limitations of this result, consider the shortest path problem of Section
3.1.1 for the case where the choice at state 1 is either to stay at 1 at cost
0, or move to the destination at cost b > 0. Then Bellman’s equation at
state 1 is J(1) = min

{
b, J(1)

}
, and its set of nonnegative solutions is the

interval [0, b], while we have J* = 0. The set S of Eq. (4.33) here consists
of just J* and Prop. 4.4.5 applies, but it is not very useful. Similarly, in
the linear-quadratic example of Section 3.1.4, where T has the two fixed
points J*(x) = 0 and Ĵ(x) = (γ2 − 1)x2, the set S of Eq. (4.33) consists of
just J∗.

Thus the regularity framework of this section is useful primarily in
the favorable case where J* is the unique nonnegative fixed point of T .
In particular, Prop. 4.4.5 cannot be used to differentiate between multiple
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fixed points of T , and to explain the unusual behavior in the preceding
two examples. In Sections 4.5 and 4.6, we address this issue within the
more restricted contexts of deterministic and stochastic optimal control,
respectively.

A consequence of Prop. 4.4.5 is the following condition for VI conver-
gence from above, first proved in the paper by Yu and Bertsekas [YuB15]
(Theorem 5.1) within a broader context that also addressed universal mea-
surability issues.

Proposition 4.4.6: Under the conditions of Prop. 4.4.5, we have
T kJ → J* for all J ∈ E+(X) satisfying

J* ≤ J ≤ cJ*, (4.38)

for some scalar c > 1. Moreover, J* is the unique fixed point of T
within the set

{
J ∈ E+(X) | J ≤ cJ* for some c > 0

}
.

Proof: Since J* ∈ S as shown in Prop. 4.4.5, any J satisfying Eq. (4.38),
also belongs to the set S of Eq. (4.33), and the result follows from Prop.
4.4.5. Q.E.D.

Note a limitation of the preceding proposition: in order to find func-
tions J satisfying J* ≤ J ≤ c J* we must essentially know the sets of states
x where J*(x) = 0 and J*(x) = ∞.

4.4.3 Discounted Stochastic Optimal Control

We will now consider a discounted version of the stochastic optimal control
problem of the preceding section. For a policy π = {µ0, µ1, . . .} we have

Jπ(x0) = lim
k→∞

Eπ
x0

{
k−1∑

m=0

αmg
(
xm, µm(xm), wm

)
}
,

where α ∈ (0, 1) is the discount factor, and as earlier Eπ
x0{·} denotes ex-

pected value with respect to the probability measure induced by π ∈ Π
under initial state x0. We assume that the one-stage expected cost is non-
negative,

0 ≤ E
{
g(x, u, w)

}
< ∞, ∀ x ∈ X, u ∈ U(x), w ∈ W.
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By defining the mapping H as

H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
,

and J̄(x) ≡ 0, we can view this problem within the abstract DP framework
of this chapter where Assumption I holds.

Note that because of the discount factor, the existence of a terminal
set of states is not essential for the optimal costs to be finite. Moreover,
the nonnegativity of g is not essential for our analysis. Any problem where
g can take both positive and negative values, but is bounded below, can
be converted to an equivalent problem where g is nonnegative, by adding
a suitable constant c to g. Then the cost of all policies will simply change
by the constant

∑∞
k=0 α

kc = c/(1− α).
The line of analysis of this section makes a connection between the

S-regularity notion of Definition 4.4.1 and a notion of stability, which is
common in feedback control theory and will be explored further in Section
4.5. We assume that X is a normed space, so that boundedness within X
is defined with respect to its norm. We introduce the set

X∗ =
{
x ∈ X | J*(x) < ∞

}
,

which we assume to be nonempty. Given a state x ∈ X∗, we say that a
policy π is stable from x if there exists a bounded subset ofX∗ [that depends
on (π, x)] such that the (random) sequence {xk} generated starting from
x and using π lies with probability 1 within that subset. We consider the
set of policy-state pairs

C =
{
(π, x) | x ∈ X∗, π is stable from x

}
,

and we assume that C is nonempty.
Let us say that a function J ∈ E+(X) is bounded on bounded subsets

of X∗ if for every bounded subset X̃ ⊂ X∗ there is a scalar b such that
J(x) ≤ b for all x ∈ X̃ . Let us also introduce the set

S =
{
J ∈ E+(X) | J is bounded on bounded subsets of X∗

}
.

We assume that C is nonempty, J* ∈ S, and for every x ∈ X∗ and ǫ > 0,
there exists a policy π that is stable from x and satisfies Jπ(x) ≤ J*(x)+ ǫ
(thus implying that J*

C = J*). We have the following proposition.

Proposition 4.4.7: Under the preceding assumptions, J* is the uni-
que fixed point of T within S, and we have T kJ → J* for all J ∈ S
with J* ≤ J . If in addition U is a metric space, and the sets Uk(x, λ) of
Eq. (4.17) are compact for all x ∈ X , λ ∈ ℜ, and k, we have T kJ → J*

for all J ∈ S, and an optimal stationary policy is guaranteed to exist.
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Proof: We have for all J ∈ E(X), (π, x0) ∈ C, and k,

(Tµ0 · · ·Tµk−1
J)(x0) = αkEπ

x0

{
J(xk)

}
+Eπ

x0

{
k−1∑

m=0

αmg
(
xm, µm(xm), wm

)
}
.

Since (π, x0) ∈ C, there is a bounded subset ofX∗ such that {xk} belongs to
that subset with probability 1, so if J ∈ S it follows that αkEπ

x0

{
J(xk)

}
→

0. Thus by taking limit as k → ∞ in the preceding relation, we have for all
(π, x0) ∈ C and J ∈ S,

lim
k→∞

(Tµ0 · · ·Tµk−1
J)(x0) = lim

k→∞
Eπ

x0

{
k−1∑

m=0

αmg
(
xm, µm(xm), wm

)
}

= Jπ(x0),

so C is S-regular. Since J*
C is equal to J*, which is a fixed point of T , the

result follows similar to the proof of Prop. 4.4.5. Q.E.D.

4.4.4 Convergent Models

In this section we consider a case of an abstract DP model that generalizes
both the monotone increasing and the monotone decreasing models. The
model is patterned after the stochastic optimal control problem of Example
1.2.1, where the cost per stage function g can take negative as well as
positive values. Our main assumptions are that the cost functions of all
policies are defined as limits (rather than upper limits), and that −∞ <
J̄(x) ≤ J*(x) for all x ∈ X.

These conditions are somewhat restrictive and make the model more
similar to the monotone increasing than to the monotone decreasing model,
but are essential for the results of this section (for a discussion of the
pathological behaviors that can occur without the condition J̄ ≤ J*, see
the paper by H. Yu [Yu15]). We will show that J* is a fixed point of T ,
and that there exists an ǫ-optimal policy for every ǫ > 0. This will bring
to bear the regularity ideas and results of Prop. 4.4.2, and will provide a
convergence result for the VI algorithm.

In particular, we denote

Eb(X) =
{
J ∈ E(X) | J(x) > −∞, ∀ x ∈ X

}
,

and we will assume the following.

Assumption 4.4.1:

(a) For all π = {µ0, µ1, . . .} ∈ Π, Jπ can be defined as a limit:

Jπ(x) = lim
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X. (4.39)
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Furthermore, we have J̄ ∈ Eb(X) and

J̄ ≤ J*.

(b) For each sequence {Jm} ⊂ Eb(X) with Jm → J ∈ Eb(X), we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(c) There exists α > 0 such that for all J ∈ Eb(X) and r ∈ ℜ,

H(x, u, J + re) ≤ H(x, u, J) + αr, ∀ x ∈ X, u ∈ U(x),

where e is the unit function, e(x) ≡ 1.

For an example of a type of problem where the convergence condi-
tion (4.39) is satisfied, consider the stochastic optimal control problem of
Example 1.2.1, assuming that the state space consists of two regions: X1

where the cost per stage is nonnegative under all controls, and X2 where
the cost per stage is nonpositive. Assuming that once the system enters
X1 it can never return to X2, the convergence condition (4.39) is satisfied
for all π. The same is true for the reverse situation, where once the system
enters X2 it can never return to X1. Optimal stopping problems and SSP
problems are often of this type.

We first prove the existence of ǫ-optimal policies and then use it to
establish that J* is a fixed point of T . The proofs are patterned after the
ones under Assumption I (cf. Props. 4.3.2 and 4.3.3).

Proposition 4.4.8: Let Assumption 4.4.1 hold. Given any ǫ > 0,
there exists a policy πǫ ∈ Π such that

J* ≤ Jπǫ ≤ J* + ǫ e.

Proof: Let {ǫk} be a sequence such that ǫk > 0 for all k and

∞∑

k=0

αkǫk = ǫ, (4.40)

where α is the scalar of Assumption 4.4.1(c). For each x ∈ X , consider a
sequence of policies

{
πk[x]

}
⊂ Π, with components of πk[x] (to emphasize
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their dependence on x) denoted by µk
m[x], m = 0, 1, . . .,

πk[x] =
{
µk
0 [x], µ

k
1 [x], . . .

}
,

such that for k = 0, 1, . . . ,

Jπk[x]
(x) ≤ J*(x) + ǫk. (4.41)

Such a sequence exists since J* ∈ Eb(X).
Consider the functions µk defined by

µk(x) = µk
0 [x](x), ∀ x ∈ X, (4.42)

and the functions J̄k defined by

J̄k(x) = H
(
x, µk(x), lim

m→∞
Tµk

1
[x] · · ·Tµk

m[x]J̄
)
, ∀ x ∈ X, k = 0, 1, . . . .

(4.43)
By using Eqs. (4.41)-(4.43), and the continuity property of Assumption
4.4.1(b), we obtain for all x ∈ X and k = 0, 1, . . .,

J̄k(x) = H
(
x, µk

0 [x](x), lim
m→∞

Tµk
1
[x] · · ·Tµk

m[x]J̄
)

= lim
m→∞

H
(
x, µk

0 [x](x), Tµk
1
[x] · · ·Tµk

m[x]J̄
)

= lim
m→∞

(
Tµk

0
[x] · · ·Tµk

m[x]J̄
)
(x)

= Jπk[x]
(x)

≤ J*(x) + ǫk.

(4.44)

From Eqs. (4.43), (4.44), and Assumption 4.4.1(c), we have for all x ∈ X
and k = 1, 2, . . .,

(Tµk−1
J̄k)(x) = H

(
x, µk−1(x), J̄k

)

≤ H
(
x, µk−1(x), J

* + ǫk e
)

≤ H
(
x, µk−1(x), J

*
)
+ αǫk

≤ H
(
x, µk−1(x), lim

m→∞
T
µ
k−1
1

[x]
· · ·T

µ
k−1
m [x]

J̄
)
+ αǫk

= J̄k−1(x) + αǫk,

and finally
Tµk−1

J̄k ≤ J̄k−1 + αǫk e, k = 1, 2, . . . .

Using this inequality and Assumption 4.4.1(c), we obtain

Tµk−2
Tµk−1

J̄k ≤ Tµk−2
(J̄k−1 + αǫk e)

≤ Tµk−2
J̄k−1 + α2ǫk e

≤ J̄k−2 + (αǫk−1 + α2ǫk) e.
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Continuing in the same manner, we have for k = 1, 2, . . . ,

Tµ0
· · ·Tµk−1

J̄k ≤ J̄0 + (αǫ1 + · · ·+ αkǫk) e ≤ J* +

(
k∑

i=0

αiǫi

)
e.

Since by Assumption 4.4.1(c), we have J̄ ≤ J* ≤ J̄k, it follows that

Tµ0
· · ·Tµk−1

J̄ ≤ J* +

(
k∑

i=0

αiǫi

)
e.

Denote πǫ = {µ0, µ1, . . .}. Then by taking the limit in the preceding in-
equality and using Eq. (4.40), we obtain

Jπǫ ≤ J* + ǫ e.

Q.E.D.

By using Prop. 4.4.8 we can prove the following.

Proposition 4.4.9: Let Assumption 4.4.1 hold. Then J* is a fixed
point of T .

Proof: For every π = {µ0, µ1, . . .} ∈ Π and x ∈ X , we have using the
continuity property of Assumption 4.4.1(b) and the monotonicity of H ,

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·Tµk
J̄)(x)

= Tµ0

(
lim
k→∞

Tµ1 · · ·Tµk
J̄

)
(x)

≥ (Tµ0J
*)(x)

≥ (TJ*)(x).

By taking the infimum of the left-hand side over π ∈ Π, we obtain

J* ≥ TJ*.

To prove the reverse inequality, let ǫ1 and ǫ2 be any positive scalars,
and let π = {µ0, µ1, . . .} be such that

Tµ0
J* ≤ TJ* + ǫ1 e, Jπ1 ≤ J* + ǫ2 e,
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where π1 = {µ1, µ2, . . .} (such a policy exists by Prop. 4.4.8). By using the
preceding relations and Assumption 4.4.1(c), we have

J* ≤ Jπ

= lim
k→∞

Tµ0
Tµ1

· · ·Tµk
J̄

= Tµ0

(
lim
k→∞

Tµ1
· · ·Tµk

J̄

)

= Tµ0
Jπ1

≤ Tµ0
(J* + ǫ2 e)

≤ Tµ0
J* + αǫ2 e

≤ TJ* + (ǫ1 + αǫ2) e.

Since ǫ1 and ǫ2 can be taken arbitrarily small, it follows that

J* ≤ TJ*.

Hence J* = TJ*. Q.E.D.

It is known that J* may not be a fixed point of T if the convergence
condition (a) of Assumption 4.4.1 is violated (see the example of Section
3.1.2). Moreover, J* may not be a fixed point of T if either part (b) or
part (c) of Assumption 4.4.1 is violated, even when the monotone increase
condition J̄ ≤ T J̄ [and hence also the convergence condition of part (a)] is
satisfied (see Examples 4.3.1 and 4.3.2). By applying Prop. 4.4.2, we have
the following proposition.

Proposition 4.4.10: Let Assumption 4.4.1 hold, let C be a set of
policy-state pairs such that J*

C = J*, and let S be any subset of E(X)
such that C is S-regular. Then:

(a) J* is the only possible fixed point of T within the set {J ∈ S |
J ≥ J*}.

(b) We have T kJ → J* for every J ∈ E(X) such that J* ≤ J ≤ J̃
for some J̃ ∈ S.

Proof: By Prop. 4.4.9, J* is a fixed point of T . The result follows from
Prop. 4.4.2. Q.E.D.

4.5 STABLE POLICIES AND DETERMINISTIC OPTIMAL
CONTROL

In this section, we will consider the use of the regularity ideas of the preced-
ing section in conjunction with a particularly favorable class of monotone
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Systemuk = µk(xk) xk

) µk

xk+1 = f(xk, uk)

“Destination” t

t (cost-free and absorbing) :

Cost: g(xk, uk) ≥ 0 VI converges to

Figure 4.5.1 A deterministic optimal control problem with nonnegative cost per
stage, and a cost-free and absorbing destination t.

increasing models. These are the discrete-time infinite horizon determinis-
tic optimal control problems with nonnegative cost per stage, and a desti-
nation that is cost-free and absorbing. The classical linear-quadratic regu-
lator problem of Section 3.5.4, as well as deterministic finite-state shortest
path problems, are special cases. Except for the cost nonnegativity, our
assumptions are very general, and allow the possibility that the optimal
policy may not be stabilizing the system, e.g., may not reach the destina-
tion either asymptotically or in a finite number of steps. This situation
is illustrated by the one-dimensional linear-quadratic example of Section
3.1.4, where we saw that the Riccati equation may have multiple nonneg-
ative solutions, with the largest solution corresponding to the restricted
optimal cost over just the stable policies.

Our approach is similar to the one of the preceding section. We use
forcing functions and a perturbation line of analysis like the one of Section
3.4 to delineate collections C of regular policy-state pairs such that the
corresponding restricted optimal cost function J*

C is a fixed point of T , as
required by Prop. 4.4.2.

To this end, we introduce a new unifying notion of p-stability, which in
addition to implying convergence of the generated states to the destination,
quantifies the speed of convergence. Here is an outline of our analysis:

(a) We consider the properties of several distinct cost functions: J*, the
overall optimal, and Ĵp, the restricted optimal over just the p-stable
policies. Different choices of p may yield different classes of p-stable
policies, with different speeds of convergence.

(b) We show that for any p and associated class of p-stable policies, Ĵp is
a solution of Bellman’s equation, and we will characterize the smallest
and the largest solutions: they are J*, the optimal cost function, and
Ĵ+, the restricted optimal cost function over the class of (finitely)
terminating policies.

(c) We discuss modified versions of the VI and PI algorithms, as substi-
tutes for the standard algorithms, which may not work in general.
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Consider a deterministic discrete-time infinite horizon optimal control
problem involving the system

xk+1 = f(xk, uk), k = 0, 1, . . . , (4.45)

where xk and uk are the state and control at stage k, which belong to
sets X and U , referred to as the state and control spaces, respectively,
and f : X × U 7→ X is a given function. The control uk must be chosen
from a constraint set U(xk) ⊂ U that may depend on the current state xk.
The cost per stage g(x, u) is assumed nonnegative and possibly extended
real-valued:

0 ≤ g(x, u) ≤ ∞, ∀ x ∈ X, u ∈ U(x), k = 0, 1, . . . . (4.46)

We assume that X contains a special state, denoted t, which is referred to
as the destination, and is cost-free and absorbing:

f(t, u) = t, g(t, u) = 0, ∀ u ∈ U(t).

Except for the cost nonnegativity assumption (4.46), this problem is similar
to the one of Section 3.5.5. It arises in many classical control applications
involving regulation around a set point, and in finite-state and infinite-state
versions of shortest path applications; see Fig. 4.5.1.

As earlier, we denote policies by π and stationary policies by µ. Given
an initial state x0, a policy π = {µ0, µ1, . . .} when applied to the system
(4.45), generates a unique sequence of state-control pairs

(
xk, µk(xk)

)
, k =

0, 1, . . .. The cost of π starting from x0 is

Jπ(x0) =

∞∑

k=0

g
(
xk, µk(xk)

)
, x0 ∈ X,

[the series converges to some number in [0,∞] thanks to the nonnegativity
assumption (4.46)]. The optimal cost function over the set of all policies Π
is

J*(x) = inf
π∈Π

Jπ(x), x ∈ X.

We denote by E+(X) the set of functions J : X 7→ [0,∞]. In our analysis,
we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost-free and absorbing, this set contains the cost function Jπ of
every π ∈ Π, as well as J*.

Under the cost nonnegativity assumption (4.46), the problem can be
cast as a special case of the monotone increasing model with

H(x, u, J) = g(x, u) + J
(
f(x, u)

)
,
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and the initial function J̄ being identically zero. Thus Prop. 4.4.4 applies
and in particular J* satisfies Bellman’s equation:

J*(x) = inf
u∈U(x)

{
g(x, u) + J*

(
f(x, u)

)}
, x ∈ X.

Moreover, an optimal stationary policy (if it exists) may be obtained through
the minimization in the right side of this equation, cf. Prop. 4.4.4(c).

The VI method starts from some function J0 ∈ J , and generates a
sequence of functions {Jk} ⊂ J according to

Jk+1(x) = inf
u∈U(x)

{
g(x, u)+Jk

(
f(x, u)

)}
, x ∈ X, k = 0, 1, . . . . (4.47)

From Prop. 4.4.6, we have that the VI sequence {Jk} converges to J*

starting from any function J0 ∈ E+(X) that satisfies

J* ≤ J0 ≤ cJ*,

for some scalar c > 0. We also have that VI converges to J* starting from
any J0 with

0 ≤ J0 ≤ J*

under the compactness condition of Prop. 4.4.4(d). However, {Jk} may not
always converge to J* because, among other reasons, Bellman’s equation
may have multiple solutions within J .

The PI method starts from a stationary policy µ0, and generates a
sequence of stationary policies {µk} via a sequence of policy evaluations to
obtain Jµk from the equation

Jµk (x) = g
(
x, µk(x)

)
+ Jµk

(
f
(
x, µk(x)

))
, x ∈ X, (4.48)

interleaved with policy improvements to obtain µk+1 from Jµk according
to

µk+1(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµk

(
f(x, u)

)}
, x ∈ X. (4.49)

Here, we implicitly assume that the minimum in Eq. (4.49) is attained
for each x ∈ X , which is true under some compactness condition on either
U(x) or the level sets of the function g(x, ·)+Jk

(
f(x, ·)

)
, or both. However,

as noted in Section 4.3.3, PI may not produce a strict improvement of the
cost function of a nonoptimal policy, a fact that was demonstrated with
the simple deterministic shortest path example of Section 3.1.1.

The uniqueness of solution of Bellman’s equation within J , and the
convergence of VI to J* have been investigated as part of the analysis
of Section 3.5.5. There we introduced conditions guaranteeing that J* is
the unique solution of Bellman’s equation within a large set of functions
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[the near-optimal termination Assumption 3.5.10, but not the cost non-
negativity assumption (4.46)]. Our approach here will make use of the
cost nonnegativity but will address the problem under otherwise weaker
conditions.

Our analytical approach will also be different than the approach of
Section 3.5.5. Here, we will implicitly rely on the regularity ideas for non-
stationary policies that we introduced in Section 4.4, and we will make
a connection with traditional notions of feedback control system stability.
Using nonstationary policies may be important in undiscounted optimal
control problems with nonnegative cost per stage because it is not gener-
ally true that there exists a stationary ǫ-optimal policy [cf. the ǫ-optimality
result of Prop. 4.4.4(e)].

4.5.1 Forcing Functions and p-Stable Policies

We will introduce a notion of stability that involves a function p : X 7→
[0,∞) such that

p(t) = 0, p(x) > 0, ∀ x 6= t.

As in Section 3.4, we refer to p as the forcing function, and we associate
with it the p-δ-perturbed optimal control problem, where δ > 0 is a given
scalar. This is the same problem as the original, except that the cost per
stage is changed to

g(x, u) + δp(x).

We denote by Jπ,p,δ the cost function of a policy π ∈ Π in the p-δ-perturbed
problem:

Jπ,p,δ(x0) = Jπ(x0) + δ

∞∑

k=0

p(xk), (4.50)

where {xk} is the sequence generated starting from x0 and using π. We
also denote by Ĵp,δ, the corresponding optimal cost function,

Ĵp,δ(x) = inf
π∈Π

Jπ,p,δ(x), x ∈ X.

Definition 4.5.1: Let p be a given forcing function. For a state
x0 ∈ X , we say that a policy π is p-stable from x0 if for the sequence
{xk} generated starting from x0 and using π we have

Jπ(x0) < ∞ and

∞∑

k=0

p(xk) < ∞, (4.51)

or equivalently [using Eq. (4.50)]
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Jπ,p,δ(x0) < ∞, ∀ δ > 0.

The set of all policies that are p-stable from x0 is denoted by Πp,x0 .

We define the restricted optimal cost function Ĵp by

Ĵp(x) = inf
π∈Πp,x

Jπ(x), x ∈ X, (4.52)

(with the convention that the infimum over the empty set is ∞). We
say that π is p-stable (without qualification) if π ∈ Πp,x for all x ∈ X
such that Πp,x 6= Ø. The set of all p-stable policies is denoted by Πp.

Note that since Eq. (4.51) does not depend on δ, we see that an equiv-
alent definition of a policy π that is p-stable from x0 is that Jπ,p,δ(x0) < ∞
for some δ > 0 (rather than all δ > 0). Thus the set Πp,x of p-stable policies
from x depends on p and x but not on δ. Let us make some observations:

(a) Rate of convergence to t using p-stable policies : The relation (4.51)
shows that the forcing function p quantifies the rate at which the
destination is approached using the p-stable policies. As an example,
let X = ℜn and

p(x) = ‖x‖ρ,

where ρ > 0 is a scalar. Then the policies π ∈ Πp,x0 are the ones that
force xk towards 0 at a rate faster than O(1/kρ), so slower policies
are excluded from Πp,x0 .

(b) Approximation property of Jπ,p,δ(x): Consider a pair (π, x0) with
π ∈ Πp,x0 . By taking the limit as δ ↓ 0 in the expression

Jπ,p,δ(x0) = Jπ(x0) + δ
∞∑

k=0

p(xk),

[cf. Eq. (4.50)] and by using Eq. (4.51), it follows that

lim
δ↓0

Jπ,p,δ(x0) = Jπ(x0), ∀ pairs (π, x0) with π ∈ Πp,x0 . (4.53)

From this equation, we have that if π ∈ Πp,x, then Jπ,p,δ(x) is fi-
nite and differs from Jπ(x) by O(δ). By contrast, if π /∈ Πp,x, then
Jπ,p,δ(x) = ∞ by the definition of p-stability, even though we may
have Jπ(x) < ∞.

(c) Limiting property of Ĵp(xk): Consider a pair (π, x0) with π ∈ Πp,x0 .
By breaking down Jπ,p,δ(x0) into the sum of the costs of the first k
stages and the remaining stages, we have for all δ > 0 and k > 0,

Jπ,p,δ(x0) =

k−1∑

m=0

g
(
xm, µm(xm)

)
+ δ

k−1∑

m=0

p(xm) + Jπk,p,δ
(xk),
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where {xk} is the sequence generated starting from x0 and using π,
and πk is the policy {µk, µk+1, . . .}. By taking the limit as k → ∞
and using Eq. (4.50), it follows that

lim
k→∞

Jπk,p,δ
(xk) = 0, ∀ pairs (π, x0) with π ∈ Πp,x0 , δ > 0.

Also, since Ĵp(xk) ≤ Ĵp,δ(xk) ≤ Jπk,p,δ
(xk), it follows that

lim
k→∞

Jp,δ(xk) = 0, ∀ (π, x0) with x0 ∈ X and π ∈ Πp,x0 , δ > 0,

(4.54)
lim
k→∞

Ĵp(xk) = 0, ∀ (π, x0) with x0 ∈ X and π ∈ Πp,x0 . (4.55)

Terminating Policies and Controllability

An important special case is when p is equal to the function

p+(x) =

{
0 if x = t,
1 if x 6= t.

(4.56)

For p = p+, a policy π is p+-stable from x if and only if it is terminating

from x, i.e., reaches t in a finite number of steps starting from x [cf. Eq.
(4.51)]. The set of terminating policies from x is denoted by Π+

x and it is
contained within every other set of p-stable policies Πp,x, as can be seen
from Eq. (4.51). As a result, the restricted optimal cost function over Π+

x ,

Ĵ+(x) = inf
π∈Π+

x

Jπ(x), x ∈ X,

satisfies J*(x) ≤ Ĵp(x) ≤ Ĵ+(x) for all x ∈ X. A policy π is said to be
terminating if it is simultaneously terminating from all x ∈ X such that
Π+

x 6= Ø. The set of all terminating policies is denoted by Π+.
Note that if the state space X is finite, we have for every forcing

function p
β p+(x) ≤ p(x) ≤ β̄ p+(x), ∀ x ∈ X,

for some scalars β, β̄ > 0. As a result it can be seen that Πp,x = Π+
x and

Ĵp = Ĵ+, so in effect the case where p = p+ is the only case of interest for
finite-state problems.

The notion of a terminating policy is related to the notion of control-
lability. In classical control theory terms, the system xk+1 = f(xk, uk) is
said to be completely controllable if for every x0 ∈ X , there exists a pol-
icy that drives the state xk to the destination in a finite number of steps.
This notion of controllability is equivalent to the existence of a terminating
policy from each x ∈ X .
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One of our main results, to be shown shortly, is that J*, Ĵp, and Ĵ+

are solutions of Bellman’s equation, with J* being the “smallest” solution
and Ĵ+ being the “largest” solution within J . The most favorable situation
arises when J* = Ĵ+, in which case J* is the unique solution of Bellman’s
equation within J . Moreover, in this case it will be shown that the VI
algorithm converges to J* starting with any J0 ∈ J with J0 ≥ J*, and
the PI algorithm converges to J* as well. Once we prove the fixed point
property of Ĵp, we will be able to bring to bear the regularity ideas of the
preceding section (cf. Prop. 4.4.2).

4.5.2 Restricted Optimization over Stable Policies

For a given forcing function p, we denote by X̂p the effective domain of Ĵp,

i.e., the set of all x where Ĵp is finite,

X̂p =
{
x ∈ X | Ĵp(x) < ∞

}
.

Since Ĵp(x) < ∞ if and only if Πp,x 6= Ø [cf. Eqs. (4.51) (4.52)], or equiv-

alently Jπ,p,δ(x) < ∞ for some π and all δ > 0, it follows that X̂p is also

the effective domain of Ĵp,δ,

X̂p =
{
x ∈ X | Πp,x 6= Ø} =

{
x ∈ X | Ĵp,δ(x) < ∞

}
, ∀ δ > 0.

Note that X̂p may depend on p and may be a strict subset of the effective
domain of J*, which is denoted by

X* =
{
x ∈ X | J*(x) < ∞

}
;

(cf. Section 3.5.5). The reason is that there may exist a policy π such that
Jπ(x) < ∞, even when there is no p-stable policy from x (for example, no
terminating policy from x).

Our first objective is to show that as δ ↓ 0, the p-δ-perturbed optimal
cost function Ĵp,δ converges to the restricted optimal cost function Ĵp.

Proposition 4.5.1 (Approximation Property of Ĵp,δ): Let p be
a given forcing function and δ > 0.

(a) We have

Jπ,p,δ(x) = Jπ(x) + wπ,p,δ(x), ∀ x ∈ X, π ∈ Πp,x, (4.57)

where wπ,p,δ is a function such that limδ↓0 wπ,p,δ(x) = 0 for all
x ∈ X .

(b) We have
lim
δ↓0

Ĵp,δ(x) = Ĵp(x), ∀ x ∈ X.
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Proof: (a) Follows by using Eq. (4.53) for x ∈ X̂p, and by taking wp,δ(x) =

0 for x /∈ X̂p.

(b) By Prop. 4.4.4(e), there exists an ǫ-optimal policy πǫ for the p-δ-

perturbed problem, i.e., Jπǫ,p,δ(x) ≤ Ĵp,δ(x) + ǫ for all x ∈ X . Moreover,

for x ∈ X̂p we have Ĵp,δ(x) < ∞, so Jπǫ,p,δ(x) < ∞. Hence πǫ is p-stable

from all x ∈ X̂p, and we have Ĵp ≤ Jπǫ . Using also Eq. (4.57), we have for
all δ > 0, ǫ > 0, x ∈ X , and π ∈ Πp,x,

Ĵp(x)− ǫ ≤ Jπǫ (x)− ǫ ≤ Jπǫ,p,δ(x)− ǫ ≤ Ĵp,δ(x) ≤ Jπ,p,δ(x) = Jπ(x)+wπ,p,δ(x),

where limδ↓0 wπ,p,δ(x) = 0 for all x ∈ X . By taking the limit as ǫ ↓ 0, we
obtain for all δ > 0 and π ∈ Πp,x,

Ĵp(x) ≤ Ĵp,δ(x) ≤ Jπ(x) + wπ,p,δ(x), ∀ x ∈ X.

By taking the limit as δ ↓ 0 and then the infimum over all π ∈ Πp,x, we
have

Ĵp(x) ≤ lim
δ↓0

Ĵp,δ(x) ≤ inf
π∈Πp,x

Jπ(x) = Ĵp(x), ∀ x ∈ X,

from which the result follows. Q.E.D.

We now consider ǫ-optimal policies, setting the stage for our main
proof argument. We know that given any ǫ > 0, by Prop. 4.4.4(e), there
exists an ǫ-optimal policy for the p-δ-perturbed problem, i.e., a policy π
such that Jπ(x) ≤ Jπ,p,δ(x) ≤ Ĵp,δ(x) + ǫ for all x ∈ X . We address the
question whether there exists a p-stable policy π that is ǫ-optimal for the
restricted optimization over p-stable policies, i.e., a policy π that is p-stable
simultaneously from all x ∈ Xp, (i.e., π ∈ Πp) and satisfies

Jπ(x) ≤ Ĵp(x) + ǫ, ∀ x ∈ X.

We refer to such a policy as a p-ǫ-optimal policy.

Proposition 4.5.2 (Existence of p-ǫ-Optimal Policy): Let p be
a given forcing function and δ > 0. For every ǫ > 0, a policy π that
is ǫ-optimal for the p-δ-perturbed problem is p-ǫ-optimal, and hence
belongs to Πp.

Proof: For any ǫ-optimal policy πǫ for the p-δ-perturbed problem, we have

Jπǫ,p,δ(x) ≤ Ĵp,δ(x) + ǫ < ∞, ∀ x ∈ X̂p.
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This implies that πǫ ∈ Πp. Moreover, for all sequences {xk} generated from

initial state-policy pairs (π, x0) with x0 ∈ X̂p and π ∈ Πp,x0 , we have

Jπǫ(x0) ≤ Jπǫ,p,δ(x0) ≤ Ĵp,δ(x0) + ǫ ≤ Jπ(x0) + δ

∞∑

k=0

p(xk) + ǫ.

Taking the limit as δ ↓ 0 and using the fact
∑∞

k=0 p(xk) < ∞ (since π ∈
Πp,x0), we obtain

Jπǫ(x0) ≤ Jπ(x0) + ǫ, ∀ x0 ∈ X̂p, π ∈ Πp,x0 .

By taking infimum over π ∈ Πp,x0 , it follows that

Jπǫ(x0) ≤ Ĵp(x0) + ǫ, ∀ x0 ∈ X̂p,

which in view of the fact Jπǫ(x0) = Ĵp(x0) = ∞ for x0 /∈ X̂p, implies that
πǫ is p-ǫ-optimal. Q.E.D.

Note that the preceding proposition implies that

Ĵp(x) = inf
π∈Πp

Jπ(x), ∀ x ∈ X, (4.58)

which is a stronger statement than the definition Ĵp(x) = infπ∈Πp,x Jπ(x)
for all x ∈ X . However, it can be shown through examples that there
may not exist a restricted-optimal p-stable policy, i.e., a π ∈ Πp such that

Jπ = Ĵp, even if there exists an optimal policy for the original problem. One
such example is the one-dimensional linear-quadratic problem of Section
3.1.4 for the case where p = p+. Then, there exists a unique linear stable
policy that attains the restricted optimal cost Ĵ+(x) for all x, but this
policy is not terminating. Note also that there may not exist a stationary p-
ǫ-optimal policy, since generally in undiscounted nonnegative cost optimal
control problems there may not exist a stationary ǫ-optimal policy (an
example is given following Prop. 4.4.8).

We now take the first steps for bringing regularity ideas into the
analysis. We introduce the set of functions Sp given by

Sp =
{
J ∈ J

∣∣ J(xk) → 0 for all sequences {xk} generated from initial

state-policy pairs (π, x0) with x0 ∈ X and π ∈ Πp,x0

}
.

(4.59)
In words, Sp consists of the functions in J whose value is asymptotically
driven to 0 by all the policies that are p-stable starting from some x0 ∈ X .
Similar to the analysis of Section 4.4.2, we can prove that the collection
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Cp =
{
(π, x0) | π ∈ Πp,x0

}
is Sp-regular. Moreover, Sp is the largest set S

for which Cp is S-regular.

Note that Sp contains Ĵp and Ĵp,δ for all δ > 0 [cf. Eq. (4.54), (4.55)].
Moreover, Sp contains all functions J such that

0 ≤ J ≤ cĴp,δ

for some c > 0 and δ > 0.
We summarize the preceding discussion in the following proposition,

which also shows that Ĵp,δ is the unique solution (within Sp) of Bellman’s
equation for the p-δ-perturbed problem. This will be needed to prove that
Ĵp solves the Bellman equation of the unperturbed problem, but also shows
that the p-δ-perturbed problem can be solved more reliably than the orig-
inal problem (including by VI methods), and yields a close approximation
to Ĵp [cf. Prop. 4.5.1(b)].

Proposition 4.5.3: Let p be a forcing function and δ > 0. The
function Ĵp,δ belongs to the set Sp, and is the unique solution within
Sp of Bellman’s equation for the p-δ-perturbed problem,

Ĵp,δ(x) = inf
u∈U(x)

{
g(x, u)+ δp(x)+ Ĵp,δ

(
f(x, u)

)}
, x ∈ X. (4.60)

Moreover, Sp contains Ĵp and all functions J satisfying

0 ≤ J ≤ cĴp,δ

for some scalar c > 0.

Proof: We have Ĵp,δ ∈ Sp and Ĵp ∈ Sp by Eq. (4.54), as noted earlier.

We also have that Ĵp,δ is a solution of Bellman’s equation (4.60) by Prop.

4.4.4(a). To show that Ĵp,δ is the unique solution within Sp, let J̃ ∈ Sp be
another solution, so that using also Prop. 4.4.4(a), we have

Ĵp,δ(x) ≤ J̃(x) ≤ g(x, u) + δp(x) + J̃
(
f(x, u)

)
, ∀ x ∈ X, u ∈ U(x).

(4.61)
Fix ǫ > 0, and let π = {µ0, µ1, . . .} be an ǫ-optimal policy for the p-
δ-perturbed problem. By repeatedly applying the preceding relation, we
have for any x0 ∈ X̂p,

Ĵp,δ(x0) ≤ J̃(x0) ≤ J̃(xk)+δ
k−1∑

m=0

p(xm)+
k−1∑

m=0

g
(
xm, µm(xm)

)
, ∀ k ≥ 1,

(4.62)
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where {xk} is the state sequence generated starting from x0 and using π.
We have J̃(xk) → 0 (since J̃ ∈ Sp and π ∈ Πp by Prop. 4.5.2), so that

lim
k→∞

{
J̃(xk) + δ

k−1∑

m=0

p(xm) +

k−1∑

m=0

g
(
xm, µm(xm)

)
}

= Jπ,δ(x0)

≤ Ĵp,δ(x0) + ǫ.
(4.63)

By combining Eqs. (4.62) and (4.63), we obtain

Ĵp,δ(x0) ≤ J̃(x0) ≤ Ĵp,δ(x0) + ǫ, ∀ x0 ∈ X̂p.

By letting ǫ → 0, it follows that Ĵp,δ(x0) = J̃(x0) for all x0 ∈ X̂p. Also for

x0 /∈ X̂p, we have Ĵp,δ(x0) = J̃(x0) = ∞ [since Ĵp,δ(x0) = ∞ for x0 /∈ X̂p

and Ĵp,δ ≤ J̃ , cf. Eq. (4.61)]. Thus Ĵp,δ = J̃ , proving that Ĵp,δ is the unique
solution of the Bellman Eq. (4.60) within Sp. Q.E.D.

We next show our main result in this section, namely that Ĵp is the
unique solution of Bellman’s equation within the set of functions

Wp = {J ∈ Sp | Ĵp ≤ J}. (4.64)

Moreover, we show that the VI algorithm yields Ĵp in the limit for any initial
J0 ∈ Wp. This result is intimately connected with the regularity ideas of
Section 4.4. The idea is that the collection Cp =

{
(π, x0) | π ∈ Πp,x0

}
is

Sp-regular, as noted earlier. In view of this and the fact that J*
Cp

= Ĵp,

the result will follow from Prop. 4.4.2 once Ĵp is shown to be a solution of
Bellman’s equation. This latter property is shown essentially by taking the
limit as δ ↓ 0 in Eq. (4.60).

Proposition 4.5.4: Let p be a given forcing function. Then:

(a) Ĵp is the unique solution of Bellman’s equation

J(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X, (4.65)

within the set Wp of Eq. (4.64).

(b) (VI Convergence) If {Jk} is the sequence generated by the VI
algorithm (4.47) starting with some J0 ∈ Wp, then Jk → Ĵp.

(c) (Optimality Condition) If µ̂ is a p-stable stationary policy and

µ̂(x) ∈ argmin
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, ∀ x ∈ X, (4.66)
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then µ̂ is optimal over the set of p-stable policies. Conversely, if
µ̂ is optimal within the set of p-stable policies, then it satisfies
the preceding condition (4.66).

Proof: (a), (b) We first show that Ĵp is a solution of Bellman’s equation.

Since Ĵp,δ is a solution of Bellman’s equation for the p-δ-perturbed problem

(cf. Prop. 4.5.3) and Ĵp,δ ≥ Ĵp [cf. Prop. 4.5.1(b)], we have for all δ > 0,

Ĵp,δ(x) = inf
u∈U(x)

{
g(x, u) + δp(x) + Ĵp,δ

(
f(x, u)

)}

≥ inf
u∈U(x)

{
g(x, u) + Ĵp,δ

(
f(x, u)

)}

≥ inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
.

By taking the limit as δ ↓ 0 and using the fact limδ↓0 Ĵp,δ = Ĵp [cf. Prop.
4.5.1(b)], we obtain

Ĵp(x) ≥ inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, ∀ x ∈ X. (4.67)

For the reverse inequality, let {δm} be a sequence with δm ↓ 0. From
Prop. 4.5.3, we have for all m, x ∈ X , and u ∈ U(x),

g(x, u) + δmp(x) + Ĵp,δm
(
f(x, u)

)
≥ inf

v∈U(x)

{
g(x, v) + δmp(x)

+ Ĵp,δm
(
f(x, v)

)}

= Ĵp,δm(x).

Taking the limit as m → ∞, and using the fact limδm↓0 Ĵp,δm = Ĵp [cf.
Prop. 4.5.1(b)], we have

g(x, u) + Ĵp
(
f(x, u)

)
≥ Ĵp(x), ∀ x ∈ X, u ∈ U(x),

so that

inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
≥ Ĵp(x), ∀ x ∈ X. (4.68)

By combining Eqs. (4.67) and (4.68), we see that Ĵp is a solution of Bell-

man’s equation. We also have Ĵp ∈ Sp by Prop. 4.5.3, implying that

Ĵp ∈ Wp and proving part (a) except for the uniqueness assertion. Part
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(b) and the uniqueness part of part (a) follow from Prop. 4.4.2; see the
discussion preceding the proposition.

(c) If µ is p-stable and Eq. (4.66) holds, then

Ĵp(x) = g
(
x, µ(x)

)
+ Ĵp

(
f(x, µ(x))

)
, x ∈ X.

By Prop. 4.4.4(b), this implies that Jµ ≤ Ĵp, so µ is optimal over the set of

p-stable policies. Conversely, assume that µ is p-stable and Jµ = Ĵp. Then
by Prop. 4.4.4(b), we have

Ĵp(x) = g
(
x, µ(x)

)
+ Ĵp

(
f(x, µ(x))

)
, x ∈ X,

and since [by part (a)] Ĵp is a solution of Bellman’s equation,

Ĵp(x) = inf
u∈U(x)

{
g(x, u) + Ĵp

(
f(x, u)

)}
, x ∈ X.

Combining the last two relations, we obtain Eq. (4.66). Q.E.D.

As a supplement to the preceding proposition, we note the special-
ization of Prop. 4.4.5 that relates to the optimal cost function J*.

Proposition 4.5.5: Let S∗ be the set

S∗ =
{
J ∈ J

∣∣ J(xk) → 0 for all sequences {xk} generated from

initial state-policy pairs (π, x0) with Jπ(x0) < ∞
}
,

and W∗ be the set

W∗ =
{
J ∈ S∗ | J* ≤ J

}
.

Then J* belongs to S∗ and is the unique solution of Bellman’s equation
within S∗. Moreover, we have T kJ → J* for all J ∈ W∗.

Proof: Follows from Prop. 4.4.5 in the deterministic special case where
wk takes a single value. Q.E.D.

We now consider the special case where p is equal to the function
p+(x) = 1 for all x 6= t [cf. Eq. (4.56)]. Then the set of p+-stable policies
from x is Π+

x , the set of terminating policies from x, and the corresponding
restricted optimal cost is Ĵ+(x):

Ĵ+(x) = Ĵp+(x) = inf
π∈Π+

x

Jπ(x) = inf
π∈Π+

Jπ(x), x ∈ X,
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[the last equality follows from Eq. (4.58)]. In this case, the set Sp+ of Eq.
(4.59) is the entire set J ,

Sp+ = J ,

since for all J ∈ J and all sequences {xk} generated from initial state-policy
pairs (π, x0) with x0 ∈ X and π terminating from x0, we have J(xk) = 0
for k sufficiently large. Thus, the corresponding set of Eq. (4.64) is

W+ = {J ∈ J | Ĵ+ ≤ J}.

By specializing to the case p = p+ the result of Prop. 4.5.4, we obtain the
following proposition, which makes a stronger assertion than Prop. 4.5.4(a),
namely that Ĵ+ is the largest solution of Bellman’s equation within J
(rather than the smallest solution within W+).

Proposition 4.5.6:

(a) Ĵ+ is the largest solution of the Bellman equation (4.65) within
J , i.e., Ĵ+ is a solution and if J ′ ∈ J is another solution, then
J ′ ≤ Ĵ+.

(b) (VI Convergence) If {Jk} is the sequence generated by the VI
algorithm (4.47) starting with some J0 ∈ J with J0 ≥ Ĵ+, then
Jk → Ĵ+.

(c) (Optimality Condition) If µ+ is a terminating stationary policy
and

µ+(x) ∈ argmin
u∈U(x)

{
g(x, u) + Ĵ+

(
f(x, u)

)}
, ∀ x ∈ X, (4.69)

then µ+ is optimal over the set of terminating policies. Con-
versely, if µ+ is optimal within the set of terminating policies,
then it satisfies the preceding condition (4.69).

Proof: In view of Prop. 4.5.4, we only need to show that Ĵ+ is the largest
solution of the Bellman equation. From Prop. 4.5.4(a), Ĵ+ is a solution
that belongs to J . If J ′ ∈ J is another solution, we have J ′ ≤ J̃ for some
J̃ ∈ W+, so J ′ = T kJ ′ ≤ T kJ̃ for all k. Since T kJ̃ → Ĵ+, it follows that
J ′ ≤ Ĵ+. Q.E.D.

We illustrate Props. 4.5.4 and 4.5.6 in Fig. 4.5.2. In particular, each
forcing function p delineates the set of initial functions Wp from which VI

converges to Ĵp. The function Ĵp is the minimal element of Wp. Moreover,

we have Wp ∩Wp′ = Ø if Ĵp 6= Ĵp′ , in view of the VI convergence result
of Prop. 4.5.4(b).
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VI converges to J+

from within W+

VI converges to Ĵp

from within Wp

W+ =
{

J | J ≥ J+, J(t) = 0
}

Ĵp

Ĵp′

p Wp

t W+

Wp′

Wp: Functions J ≥ Ĵp with J

with J(xk) → 0 for all p-stable π

C J∗

Ĵ+

W∗

C 0

Path of VI Set of solutions of Bellman’s equation
Set of solutions of Bellman’s equation

Figure 4.5.2 Schematic two-dimensional illustration of the results of Prop. 4.5.4
and 4.5.6. The functions J∗, Ĵ+, and Ĵp are all solutions of Bellman’s equation.
Moreover J∗ and Ĵ+ are the smallest and largest solutions, respectively. Each p

defines the set of initial functions Wp from which VI converges to Ĵp from above.
For two forcing functions p and p′, we have Wp∩Wp′ = Ø if Ĵp 6= Ĵp′ . Moreover,

Wp contains no solutions of Bellman’s equation other than Ĵp. It is also possible
that Wp consists of just Ĵp.

Note a significant fact: Proposition 4.5.6(b) implies that VI converges
to Ĵ+ starting from the readily available initial condition

J0(x) =

{
0 if x = t,
∞ if x 6= t.

For this choice of J0, the value Jk(x) generated by VI is the optimal cost
that can be achieved starting from x subject to the constraint that t is
reached in k steps or less. As we have noted earlier, in shortest-path type
problems VI tends to converge faster when started from above.

Consider now the favorable case where terminating policies are suf-
ficient, in the sense that Ĵ+ = J*; cf. Fig. 4.5.3. Then, from Prop. 4.5.6,
it follows that J* is the unique solution of Bellman’s equation within J ,
and the VI algorithm converges to J* from above, i.e., starting from any
J0 ∈ J with J0 ≥ J*. Under additional conditions, such as finiteness of
U(x) for all x ∈ X [cf. Prop. 4.4.4(d)], VI converges to J* starting from any
J0 ∈ E+(X) with J0(t) = 0. These results are consistent with our analysis
of Section 3.5.5.

Examples of problems where terminating policies are sufficient in-
clude linear-quadratic problems under the classical conditions of controlla-
bility and observability, and finite-node deterministic shortest path prob-



282 Noncontractive Models Chap. 4

C 0

Paths of VI Unique solution of Bellman’s equation

Paths of VI Unique solution of Bellman’s equation
Unique solution of Bellman’s equation

) Ĵ+ = J*

Paths of VI Under Compactness
Paths of VI Under Compactness

Figure 4.5.3 Schematic two-dimensional illustration of the favorable case where
Ĵ+ = J∗. Then J∗ is the unique solution of Bellman’s equation within J , and
the VI algorithm converges to J∗ from above [and also starting from any J0 ≥ 0
under a suitable compactness condition; cf. Prop. 4.4.4(d)].

lems with all cycles having positive length. Note that in the former case,
despite the fact Ĵ+ = J*, there is no optimal terminating policy, since the
only optimal policy is a linear policy that drives the system to the origin
asymptotically, but not in finite time.

Let us illustrate the results of this section with two examples.

Example 4.5.1 (Minimum Energy Stable Control of
Linear Systems)

Consider the linear-quadratic problem of Section 3.5.4. We assume that there
exists at least one linear stable policy, so that J∗ is real-valued. However,
we are making no assumptions on the state weighting matrix Q other than
positive semidefiniteness. This includes the case Q = 0, when J∗(x) ≡ 0. In
this case an optimal policy is µ∗(x) ≡ 0, which may not be stable, yet the
problem of finding a stable policy that minimizes the “control energy” (a cost
that is positive definite quadratic on the control with no penalty on the state)
among all stable policies is meaningful.

We consider the forcing function

p(x) = ‖x‖2,

so the p-δ-perturbed problem includes a positive definite state penalty and
from the classical linear-quadratic results, Ĵp,δ is a positive definite quadratic
function x′Pδx, where Pδ is the unique solution of the δ-perturbed Riccati
equation

Pδ = A′
(
Pδ − PδB(B′PδB +R)−1B′Pδ

)
A+Q+ δI, (4.70)
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within the class of positive semidefinite matrices. By Prop. 4.5.1, we have
Ĵp(x) = x′P̂ x, where P̂ = limδ↓0 Pδ is positive semidefinite, and solves the
(unperturbed) Riccati equation

P = A′
(
P − PB(B′PB +R)−1B′P

)
A+Q.

Moreover, by Prop. 4.5.4(a), P̂ is the largest solution among positive semidef-
inite matrices, since all positive semidefinite quadratic functions belong to the
set Sp of Eq. (4.59). By Prop. 4.5.4(c), any stable stationary policy µ̂ that is
optimal among the set of stable policies must satisfy the optimality condition

µ̂(x) ∈ argmin
u∈ℜm

{
u′Ru+ (Ax+Bu)′P̂ (Ax+Bu)

}
, ∀ x ∈ ℜn,

[cf. Eq. (4.66)], or equivalently, by setting the gradient of the minimized
expression to 0,

(R +B′P̂B)µ̂(x) = −B′P̂Ax. (4.71)

We may solve Eq. (4.71), and check if any of its solutions µ̂ is p-stable; if this
is so, µ̂ is optimal within the class of p-stable policies. Note, however, that in
the absence of additional conditions, it is possible that some policies µ̂ that
solve Eq. (4.71) are p-unstable.

In the case where there is no linear stable policy, the p-δ-perturbed cost
function Ĵp,δ need not be real-valued, and the δ-perturbed Riccati equation
(4.70) may not have any solution (consider for example the case where n = 1,
m = 1, A = 2, B = 0, and Q = R = 1). Then, Prop. 4.5.6 still applies, but
the preceding analytical approach needs to be modified.

As noted earlier, the Bellman equation may have multiple solutions
corresponding to different forcing functions p, with each solution being
unique within the corresponding set Wp of Eq. (4.64), consistently with
Prop. 4.5.4(a). The following is an illustrative example.

Example 4.5.2 (An Optimal Stopping Problem)

Consider an optimal stopping problem where the state space X is ℜn. We
identify the destination with the origin of ℜn, i.e., t = 0. At each x 6= 0, we
may either stop (move to the origin) at a cost c > 0, or move to state γx
at cost ‖x‖, where γ is a scalar with 0 < γ < 1; see Fig. 4.5.4.† Thus the
Bellman equation has the form

J(x) =
{
min

{
c, ‖x‖+ J(γx)

}
if x 6= 0,

0 if x = 0.

† In this example, the salient feature of the policy that never stops at an
x 6= 0 is that it drives the system asymptotically to the destination according to
an equation of the form xk+1 = f(xk), where f is a contraction mapping. The
example admits generalization to the broader class of optimal stopping problems
that have this property. For simplicity in illustrating our main point, we consider
here the special case where f(x) = γx with γ ∈ (0, 1).
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(0) = 0

x γ

‖ (1 − γ)c

c Cost ‖x‖ (1

‖ γx (1

x c Cost c Cost
Stop Cone

Stop Cone

Stop Cone C

Figure 4.5.4 Illustration of the stopping problem of Example 4.5.2. The
optimal policy is to stop outside the sphere of radius (1− γ)c and to continue
otherwise. Each cone C of the state space defines a different solution Ĵp of
Bellman’s equation, with Ĵp(x) = c for all nonzero x ∈ C, and a corresponding
region of convergence of the VI algorithm.

Let us consider first the forcing function

p(x) = ‖x‖.

Then it can be verified that all policies are p-stable. We have

J∗(x) = Ĵp(x) = min

{
c,

1

1− γ
‖x‖

}
, ∀ x ∈ ℜn,

and the optimal cost function of the corresponding p-δ-perturbed problem is

Ĵp,δ(x) = min

{
c+ δ‖x‖,

1 + δ

1− γ
‖x‖

}
, ∀ x ∈ ℜn.

Here the set Sp of Eq. (4.59) is given by

Sp =
{
J ∈ J | lim

x→0
J(x) = 0

}
,

and the corresponding set Wp of Eq. (4.64) is given by

Wp =
{
J ∈ J | J∗ ≤ J, lim

x→0
J(x) = 0

}
.

Let us consider next the forcing function

p+(x) =
{
1 if x 6= 0,
0 if x = 0.
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(0) = 0 (0) = 0 (0) = 0

Ĵ(x)

x γ x γ x γ

) J∗(x) ) J+(x)

x c Cost x c Cost x c Cost

x0 a

Figure 4.5.5 Illustration of three solutions of Bellman’s equation in the one-
dimensional case (n = 1) of the stopping problem of Example 4.5.2. The solution
in the middle is specified by a scalar x0 > 0, and has the form

Ĵ(x) =

{
0 if x = 0,

1
1−γ

|x| if 0 < x < (1 − γ)c and x = γkx0 for some k ≥ 0,
c otherwise.

Then the p+-stable policies are the terminating policies. Since stopping at
some time and incurring the cost c is a requirement for a p+-stable policy, it
follows that the optimal p+-stable policy is to stop as soon as possible, i.e.,
stop at every state. The corresponding restricted optimal cost function is

Ĵ+(x) =
{
c if x 6= 0,
0 if x = 0.

The optimal cost function of the corresponding p+-δ-perturbed problem is

Ĵp+,δ(x) =
{
c+ δ if x 6= 0,
0 if x = 0,

since in the p+-δ-perturbed problem it is again optimal to stop as soon as
possible, at cost c+ δ. Here the set Sp+ is equal to J , and the corresponding

set W+ is equal to
{
J ∈ J | Ĵ+ ≤ J

}
.

However, there are infinitely many additional solutions of Bellman’s
equation between the largest and smallest solutions J∗ and Ĵ+. For example,
when n > 1, functions J ∈ J such that J(x) = J∗(x) for x in some cone
and J(x) = Ĵ+(x) for x in the complementary cone are solutions; see Fig.
4.5.4. There is also a corresponding infinite number of regions of convergence
Wp of VI [cf. Eq. (4.64)]. Also VI converges to J∗ starting from any J0 with
0 ≤ J0 ≤ J∗ [cf. Prop. 4.4.4(d)]. Figure 4.5.5 illustrates additional solutions
of Bellman’s equation of a different character.

4.5.3 Policy Iteration Methods

Generally, the standard PI algorithm [cf. Eqs. (4.48), (4.49)] produces un-
clear results under our assumptions. The following example provides an
instance where the PI algorithm may converge to either an optimal or a
strictly suboptimal policy.



286 Noncontractive Models Chap. 4

Example 4.5.3 (Counterexample for PI)

Consider the case X = {0, 1}, U(0) = U(1) = {0, 1}, and the destination is
t = 0. Let also

f(x, u) =
{
0 if u = 0,
x if u = 1,

g(x, u) =
{
1 if u = 0, x = 1,
0 if u = 1 or x = 0.

This is a one-state-plus-destination shortest path problem where the control
u = 0 moves the state from x = 1 to x = 0 (the destination) at cost 1,
while the control u = 1 keeps the state unchanged at cost 0 (cf. the problem
of Section 3.1.1). The policy µ∗ that keeps the state unchanged is the only
optimal policy, with Jµ∗(x) = J∗(x) = 0 for both states x. However, under
any forcing function p with p(1) > 0, the policy µ̂, which moves from state 1
to 0, is the only p-stable policy, and we have Jµ̂(1) = Ĵp(1) = 1. The standard
PI algorithm (4.48), (4.49) when started with µ∗, it will repeat µ∗. If this
algorithm is started with µ̂, it may generate µ∗ or it may repeat µ̂, depending
on how the policy improvement iteration is implemented. The reason is that
for both x we have

µ̂(x) ∈ arg min
u∈{0,1}

{
g(x, u) + Ĵp

(
f(x, u)

)}
,

as can be verified with a straightforward calculation. Thus a rule for breaking
a tie in the policy improvement operation is needed, but such a rule may not
be obvious in general.

For another illustration, consider the stopping problem of Example
4.5.2. There if PI is started with the policy that stops at every state, it
repeats that policy, and this policy is not optimal even within the class of
stable policies with respect to the forcing function p(x) = ‖x‖.

Motivated by the preceding examples, we consider several types of
PI methods that bypass the difficulty above either through assumptions
or through modifications. We first consider a favorable case where the
standard PI algorithm is reliable. This is the case where the terminating
policies are sufficient, in the sense that J* = Ĵ+, as in Section 3.5.5.

Policy Iteration for the Case J* = Ĵ+

The standard PI algorithm starts with a stationary policy µ0, and generates
a sequence of stationary policies {µk} via a sequence of policy evaluations
to obtain Jµk from the equation

Jµk (x) = g
(
x, µk(x)

)
+ Jµk

(
f
(
x, µk(x)

))
, x ∈ X, (4.72)

interleaved with policy improvements to obtain µk+1 from Jµk according
to

µk+1(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµk

(
f(x, u)

)}
, x ∈ X. (4.73)
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We implicitly assume here that Eq. (4.72) can be solved for Jµk , and that
the minimum in Eq. (4.73) is attained for each x ∈ X , which is true under
some compactness condition on either U(x) or the level sets of the function
g(x, ·) + Jk

(
f(x, ·)

)
, or both.

Proposition 4.5.7: (Convergence of PI) Assume that J* = Ĵ+.
Then the sequence {Jµk} generated by the PI algorithm (4.72), (4.73),
satisfies Jµk (x) ↓ J*(x) for all x ∈ X .

Proof: For a stationary policy µ, let µ̄ satisfy the policy improvement
equation

µ̄(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
, x ∈ X.

We have shown that

Jµ(x) ≥ inf
u∈U(x)

{
g(x, u) + Jµ

(
f(x, u)

)}
≥ Jµ̄(x), x ∈ X ; (4.74)

cf. Eq. (4.29). Using µk and µk+1 in place of µ and µ̄, we see that the
sequence {Jµk} generated by PI converges monotonically to some function
J∞ ∈ E+(X), i.e., Jµk ↓ J∞. Moreover, from Eq. (4.74) we have

J∞(x) ≥ inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
, x ∈ X,

as well as

g(x, u) + Jµk

(
f(x, u)

)
≥ J∞(x), x ∈ X, u ∈ U(x).

We now take the limit in the second relation as k → ∞, then take the
infimum over u ∈ U(x), and then combine with the first relation, to obtain

J∞(x) ≥ inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
≥ J∞(x), x ∈ X.

Thus J∞ is a solution of Bellman’s equation, satisfying J∞ ≥ J* (since
Jµk ≥ J* for all k) and J∞ ∈ J (since Jµk ∈ J ), so by Prop. 4.5.6(a), it
must satisfy J∞ = J*. Q.E.D.

A Perturbed Version of Policy Iteration for the Case J* 6= Ĵ+

We now consider PI algorithms without the condition J* = Ĵ+. We pro-
vide a version of the PI algorithm, which uses a given forcing function p
that is fixed, and generates a sequence {µk} of p-stable policies such that
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Jµk → Ĵp. Related algorithms were given in Sections 3.4 and 3.5.1. The
following assumption requires that the algorithm generates p-stable policies
exclusively, which can be quite restrictive. For instance it is not satisfied
for the problem of Example 4.5.3.

Assumption 4.5.1: For each δ > 0 there exists at least one p-stable
stationary policy µ such that Jµ,p,δ ∈ Sp. Moreover, given a p-stable
stationary policy µ and a scalar δ > 0, every stationary policy µ such
that

µ(x) ∈ arg min
u∈U(x)

{
g(x, u) + Jµ,p,δ

(
f(x, u)

)}
, ∀ x ∈ X,

is p-stable, and at least one such policy exists.

The perturbed version of the PI algorithm is defined as follows. Let
{δk} be a positive sequence with δk ↓ 0, and let µ0 be a p-stable policy
that satisfies Jµ0,p,δ0

∈ Sp. One possibility is that µ0 is an optimal policy
for the δ0-perturbed problem (cf. the discussion preceding Prop. 4.5.3). At
iteration k, we have a p-stable policy µk, and we generate a p-stable policy
µk+1 according to

µk+1(x) ∈ argmin
u∈U(x)

{
g(x, u) + Jµk,p,δk

(
f(x, u)

)}
, x ∈ X. (4.75)

Note that by Assumption 4.5.1 the algorithm is well-defined, and is guar-
anteed to generate a sequence of p-stable stationary policies. We have the
following proposition.

Proposition 4.5.8: Let Assumption 4.5.1 hold. Then for a sequence
of p-stable policies {µk} generated by the perturbed PI algorithm
(4.75), we have Jµk,p,δk

↓ Ĵp and Jµk → Ĵp.

Proof: Since the forcing function p is kept fixed, to simplify notation, we
abbreviate Jµ,p,δ with Jµ,δ for all policies µ and scalars δ > 0. Also, we
will use the mappings Tµ : E+(X) 7→ E+(X) and Tµ,δ : E+(X) 7→ E+(X)
given by

(TµJ)(x) = g
(
x, µ(x)

)
+ J

(
f(x, µ(x))

)
, x ∈ X,

(Tµ,δJ)(x) = g
(
x, µ(x)

)
+ δp(x) + J

(
f(x, µ(x))

)
, x ∈ X.

Moreover, we will use the mapping T : E+(X) 7→ E+(X) given by

(TJ)(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X.
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The algorithm definition (4.75) implies that for all integer m ≥ 1 we
have for all x0 ∈ X ,

Jµk ,δk
(x0) ≥ (TJµk,δk

)(x0) + δkp(x0)

= (Tµk+1,δk
Jµk ,δk

)(x0)

≥ (Tm
µk+1,δk

Jµk ,δk
)(x0)

≥ (Tm
µk+1,δk

J̄)(x0),

where J̄ is the identically zero function [J̄(x) ≡ 0]. From this relation we
obtain

Jµk,δk
(x0) ≥ lim

m→∞
(Tm

µk+1,δk
J̄)(x0)

= lim
m→∞

{
m−1∑

ℓ=0

(
g
(
xℓ, µk+1(xℓ)

)
+ δkp(xℓ)

)
}

≥ Jµk+1,δk+1
(x0),

as well as

Jµk ,δk
(x0) ≥ (TJµk,δk

)(x0) + δkp(x0) ≥ Jµk+1,δk+1
(x0).

It follows that {Jµk,δk
} is monotonically nonincreasing, so that Jµk ,δk

↓ J∞
for some J∞, and

lim
k→∞

TJµk,δk
= J∞. (4.76)

We also have, using the fact J∞ ≤ Jµk ,δk
,

inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
≤ lim

k→∞
inf

u∈U(x)

{
g(x, u) + Jµk,δk

(
f(x, u)

)}

≤ inf
u∈U(x)

lim
k→∞

{
g(x, u) + Jµk,δk

(
f(x, u)

)}

= inf
u∈U(x)

{
g(x, u) + lim

k→∞
Jµk ,δk

(
f(x, u)

)}

= inf
u∈U(x)

{
g(x, u) + J∞

(
f(x, u)

)}
.

Thus equality holds throughout above, so that

lim
k→∞

TJµk,δk
= TJ∞.

Combining this with Eq. (4.76), we obtain J∞ = TJ∞, i.e., J∞ solves
Bellman’s equation. We also note that J∞ ≤ Jµ0,δ0

and that Jµ0,δ0
∈ Sp by

assumption, so that J∞ ∈ Sp. By Prop. 4.5.4(a), it follows that J∞ = Ĵp.
Q.E.D.
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Note that despite the fact Jµk → Ĵp, the generated sequence {µk}
may exhibit some serious pathologies in the limit. In particular, if U is a
metric space and {µk}K is a subsequence of policies that converges to some
µ̄, in the sense that

lim
k→∞, k∈K

µk(x) = µ̄(x), ∀ x ∈ X,

it does not follow that µ̄ is p-stable. In fact it is possible to construct
examples where the generated sequence of p-stable policies {µk} satisfies
limk→∞ Jµk = Ĵp = J*, yet {µk} may converge to a p-unstable policy

whose cost function is strictly larger than Ĵp.

An Optimistic Policy Iteration Method

Let us consider an optimistic variant of PI, where policies are evaluated
inexactly, with a finite number of VIs. We use a fixed forcing function p.
The algorithm aims to compute Ĵp, the restricted optimal cost function
over the p-stable policies, and generates a sequence {Jk, µk} according to

TµkJk = TJk, Jk+1 = T
mk

µk Jk, k = 0, 1, . . . , (4.77)

where mk is a positive integer for each k. We assume that a policy µk

satisfying TµkJk = TJk can be found for all k, but it need not be p-stable.
However, the algorithm requires that

J0 ∈ Wp, J0 ≥ TJ0. (4.78)

This may be a restrictive assumption. We have the following proposition.

Proposition 4.5.9: (Convergence of Optimistic PI) Assume
that there exists at least one p-stable policy π ∈ Πp, and that J0
satisfies Eq. (4.78). Then a sequence {Jk} generated by the optimistic
PI algorithm (4.77) belongs to Wp and satisfies Jk ↓ Ĵp.

Proof: Since J0 ≥ Ĵp and Ĵp = T Ĵp [cf. Prop. 4.5.6(a)], all operations

on any of the functions Jk with Tµk or T maintain the inequality Jk ≥ Ĵp
for all k, so that Jk ∈ Wp for all k. Also the conditions J0 ≥ TJ0 and
TµkJk = TJk imply that

J0 = J1 ≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

and continuing similarly,

Jk ≥ TJk ≥ Jk+1, k = 0, 1, . . . . (4.79)
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Thus Jk ↓ J∞ for some J∞, which must satisfy J∞ ≥ Ĵp, and hence belong
to Wp. By taking limit as k → ∞ in Eq. (4.79) and using an argument
similar to the one in the proof of Prop. 4.5.8, it follows that J∞ = TJ∞.
By Prop. 4.5.6(a), this implies that J∞ ≤ Ĵp. Together with the inequality

J∞ ≥ Ĵp shown earlier, this proves that J∞ = Ĵp. Q.E.D.

As an example, for the shortest path problem of Example 4.5.3, the
reader may verify that in the case where p(x) = 1 for x = 1, the optimistic
PI algorithm converges in a single iteration to

Ĵp(x) =

{
1 if x = 1,
0 if x = 0,

provided that J0 ∈ Wp =
{
J | J(1) ≥ 1, J(0) = 0

}
. For other starting

functions J0, the algorithm converges in a single iteration to the function

J∞(1) = min
{
1, J0(1)

}
, J∞(0) = 0.

All functions J∞ of the form above are solutions of Bellman’s equation,
but only Ĵp is restricted optimal.

4.6 INFINITE-SPACES STOCHASTIC SHORTEST PATH
PROBLEMS

In this section we consider a stochastic discrete-time infinite horizon opti-
mal control problem involving the system

xk+1 = f(xk, uk, wk), k = 0, 1, . . . , (4.80)

where xk and uk are the state and control at stage k, which belong to setsX
and U , wk is a random disturbance that takes values in a countable set W
with given probability distribution P (wk | xk, uk), and f : X×U×W 7→ X
is a given function (cf. Example 1.2.1 in Chapter 1). The state and control
spacesX and U are arbitrary, but we assume that W is countable to bypass
complex measurability issues in the choice of control (see [BeS78]).

The control u must be chosen from a constraint set U(x) ⊂ U that
may depend on x. The expected cost per stage, E

{
g(x, u, w)

}
, is assumed

nonnegative:

0 ≤ E
{
g(x, u, w)

}
< ∞, ∀ x ∈ X, u ∈ U(x), w ∈ W.

We assume that X contains a special cost-free and absorbing state t, re-
ferred to as the destination:

f(t, u, w) = t, g(t, u, w) = 0, ∀ u ∈ U(t), w ∈ W.
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This is a special case of an SSP problem, where the cost per stage
is nonnegative, but the state and control spaces are arbitrary. It is also a
special case of the nonnegative cost stochastic optimal control problem of
Section 4.4.2. We adopt the notation and terminology of that section, but
we review it here briefly for convenience.

Given an initial state x0, a policy π = {µ0, µ1, . . .} when applied
to the system (4.80), generates a random sequence of state-control pairs(
xk, µk(xk)

)
, k = 0, 1, . . . , with cost

Jπ(x0) = Eπ
x0

{
∞∑

k=0

g
(
xk, µk(xk), wk

)
}
,

where Eπ
x0{·} denotes expectation with respect to the probability measure

corresponding to initial state x0 and policy π. For a stationary policy µ, the
corresponding cost function is denoted by Jµ. The optimal cost function is

J*(x) = inf
π∈Π

Jπ(x), x ∈ X,

and its effective domain is denoted X∗, i.e.,

X∗ =
{
x ∈ X | J*(x) < ∞

}
.

A policy π∗ is said to be optimal if Jπ∗(x) = J*(x) for all x ∈ X.
We denote by E+(X) the set of functions J : X 7→ [0,∞]. In our

analysis, we will use the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

Since t is cost-free and absorbing, this set contains the cost functions Jπ of
all π ∈ Π, as well as J*.

Here the results of Section 4.3 under Assumption I apply, and the
optimal cost function J* is a solution of the Bellman equation

J(x) = inf
u∈U(x)

E
{
g(x, u, w) + J

(
f(x, u, w)

)}
, x ∈ X,

where the expected value is with respect to the distribution P (w | x, u).
Moreover, an optimal stationary policy (if it exists) may be obtained through
the minimization in the right side of this equation (with J replaced by J*,
cf. Prop. 4.4.4). The VI algorithm starts from some function J0 ∈ J , and
generates a sequence {Jk} ⊂ J according to

Jk+1(x) = inf
u∈U(x)

E
{
g(x, u, w) + Jk

(
f(x, u, w)

)}
, x ∈ X, k = 0, 1, . . . .
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Proper Policies and the δ-Perturbed Problem

We will now introduce a notion of proper policy with a definition that
extends the one used for finite-state SSP in Section 3.5.1. For a given state
x ∈ X , a policy π is said to be proper at x if

Jπ(x) < ∞,

∞∑

k=0

rk(π, x) < ∞, (4.81)

where rk(π, x) is the probability that xk 6= t when using π and starting

from x0 = x. We denote by Π̂x the set of all policies that are proper at x,
and we denote by Ĵ the corresponding restricted optimal cost function,

Ĵ(x) = inf
π∈Π̂x

Jπ(x), x ∈ X,

(with the convention that the infimum over the empty set is ∞). Finally

we denote by X̂ the effective domain of Ĵ , i.e.,

X̂ =
{
x ∈ X | Ĵ(x) < ∞

}
. (4.82)

Note that X̂ is the set of x such that Π̂x is nonempty and that t ∈ X̂.
For any δ > 0, let us consider the δ-perturbed optimal control problem.

This is the same problem as the original, except that the cost per stage is
changed to

g(x, u, w) + δ, ∀ x 6= t,

while g(x, u, w) is left unchanged at 0 when x = t. Thus t is still cost-free
as well as absorbing in the δ-perturbed problem. The δ-perturbed cost
function of a policy π starting from x is denoted by Jπ,δ(x) and involves
an additional expected cost δrk(π, x) for each stage k, so that

Jπ,δ(x) = Jπ(x) + δ
∞∑

k=0

rk(π, x).

Clearly, the sum
∑∞

k=0 rk(π, x) is the expected number of steps to reach
the destination starting from x and using π, if the sum is finite. We denote
by Ĵδ the optimal cost function of the δ-perturbed problem, i.e., Ĵδ(x) =
infπ∈Π Jπ,δ(x). The following proposition provides some characterizations
of proper policies in relation to the δ-perturbed problem.

Proposition 4.6.1:

(a) A policy π is proper at a state x ∈ X if and only if Jπ,δ(x) < ∞
for all δ > 0.

(b) We have Ĵδ(x) < ∞ for all δ > 0 if and only if x ∈ X̂.

(c) For every ǫ > 0 and δ > 0, a policy πǫ that is ǫ-optimal for the

δ-perturbed problem is proper at all x ∈ X̂ , and such a policy
exists.
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Proof: (a) Follows from Eq. (4.50) and the definition (4.81) of a proper
policy.

(b) If x ∈ X̂ there exists a policy π that is proper at x, and by part (a),
Ĵδ(x) ≤ Jπ,δ(x) < ∞ for all δ > 0. Conversely, if Ĵδ(x) < ∞, there exists π

such that Jπ,δ(x) < ∞, implying [by part (a)] that π ∈ Π̂x, so that x ∈ X̂.

(c) An ǫ-optimal πǫ exists by Prop. 4.4.4(e). We have Jπǫ,δ(x) ≤ Ĵδ(x) + ǫ

for all x ∈ X . Hence Jπǫ,δ(x) < ∞ for all x ∈ X̂, implying by part (a) that

πǫ is proper at all x ∈ X̂. Q.E.D.

The next proposition shows that the cost function Ĵδ of the δ-perturbed
problem can be used to approximate Ĵ .

Proposition 4.6.2: We have limδ↓0 Ĵδ(x) = Ĵ(x) for all x ∈ X .
Moreover, for any ǫ > 0 and δ > 0, a policy πǫ that is ǫ-optimal
for the δ-perturbed problem is ǫ-optimal within the class of proper
policies, i.e., satisfies

Jπǫ(x) ≤ Ĵ(x) + ǫ, ∀ x ∈ X.

Proof: Let us fix δ > 0, and for a given ǫ > 0, let πǫ be a policy that is
proper at all x ∈ X̂ and is ǫ-optimal for the δ-perturbed problem [cf. Prop.

4.6.1(c)]. By using Eq. (4.50), we have for all ǫ > 0, x ∈ X̂ , and π ∈ Π̂x,

Ĵ(x) − ǫ ≤ Jπǫ(x)− ǫ ≤ Jπǫ,δ(x)− ǫ ≤ Ĵδ(x) ≤ Jπ,δ(x) = Jπ(x) + wπ,δ(x),

where

wπ,δ(x) = δ

∞∑

k=0

rk(π, x) < ∞, ∀ x ∈ X̂, π ∈ Π̂x.

By taking the limit as ǫ ↓ 0, we obtain for all δ > 0 and π ∈ Π̂x,

Ĵ(x) ≤ Ĵδ(x) ≤ Jπ(x) + wπ,δ(x), ∀ x ∈ X̂, π ∈ Π̂x.

We have limδ↓0 wπ,δ(x) = 0 for all x ∈ X̂ and π ∈ Π̂x, so by taking the

limit as δ ↓ 0 and then the infimum over all π ∈ Π̂x,

Ĵ(x) ≤ lim
δ↓0

Ĵδ(x) ≤ inf
π∈Π̂x

Jπ(x) = Ĵ(x), ∀ x ∈ X̂,

from which Ĵ(x) = limδ↓0 Ĵδ(x) for all x ∈ X̂. Moreover, by Prop. 4.6.1(b),

Ĵδ(x) = Ĵ(x) = ∞ for all x /∈ X̂, so that Ĵ(x) = limδ↓0 Ĵδ(x) for all x ∈ X .
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We also have

Jπǫ(x) ≤ Jπǫ,δ(x) ≤ Ĵδ(x)+ǫ ≤ Jπ(x)+δ

∞∑

k=0

r(π, x)+ǫ, ∀ x ∈ X̂, π ∈ Π̂x.

By taking the limit as δ ↓ 0, we obtain

Jπǫ(x) ≤ Jπ(x) + ǫ, ∀ x ∈ X̂, π ∈ Π̂x.

By taking the infimum over π ∈ Π̂x, it follows that Jπǫ(x) ≤ Ĵ(x) + ǫ for

all x ∈ X̂, which combined with the fact Jπǫ(x) = Ĵ(x) = ∞ for all x /∈ X̂,
yields the result. Q.E.D.

Main Results

By Prop. 4.4.4(a), Ĵδ solves Bellman’s equation for the δ-perturbed prob-
lem, while by Prop. 4.6.2, limδ↓0 Ĵδ(x) = Ĵ(x). This suggests that Ĵ solves
the unperturbed Bellman equation, which is the “limit” as δ ↓ 0 of the
δ-perturbed version. Indeed we will show a stronger result, namely that Ĵ
is the unique solution of Bellman’s equation within the set of functions

Ŵ = {J ∈ S | Ĵ ≤ J}, (4.83)

where

S =
{
J ∈ J | Eπ

x0

{
J(xk)

}
→ 0, ∀ (π, x0) with π ∈ Π̂x0

}
. (4.84)

Here Eπ
x0

{
J(xk)

}
denotes the expected value of the function J along the

sequence {xk} generated starting from x0 and using π. Similar to earlier
proofs in Sections 4.4 and 4.5, we have that the collection

C =
{
(π, x) | π ∈ Π̂x

}
(4.85)

is S-regular.
We first show a preliminary result. Given a policy π = {µ0, µ1, . . .},

we denote by πk the policy

πk = {µk, µk+1, . . .}. (4.86)

Proposition 4.6.3:

(a) For all pairs (π, x0) ∈ C and k = 0, 1, . . ., we have

0 ≤ Eπ
x0

{
Ĵ(xk)

}
≤ Eπ

x0

{
Jπk

(xk)
}
< ∞,

where πk is the policy given by Eq. (4.86).

(b) The set Ŵ of Eq. (4.83) contains Ĵ , as well as all functions J ∈ S
satisfying Ĵ ≤ J ≤ cĴ for some c ≥ 1.
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Proof: (a) For any pair (π, x0) ∈ C and δ > 0, we have

Jπ,δ(x0) = Eπ
x0

{
Jπk,δ

(xk) +

k−1∑

m=0

g
(
xm, µm(xm), wm

)
}

+ δ

k−1∑

m=0

rm(π, x0).

Since Jπ,δ(x0) < ∞ [cf. Prop. 4.6.1(a)], it follows that Eπ
x0

{
Jπk,δ

(xk)
}
<

∞. Hence for all xk that can be reached with positive probability using π
and starting from x0, we have Jπk,δ

(xk) < ∞, implying [by Prop. 4.6.1(a)]

that (πk, xk) ∈ C. Hence Ĵ(xk) ≤ Jπk
(xk) and by applying Eπ

x0{·}, the
result follows.

(b) We have for all (π, x0) ∈ C,

Jπ(x0) = Eπ
x0

{
g
(
x0, µ0(x0), w0

)}
+ Eπ

x0

{
Jπ1(x1)

}
, (4.87)

and for m = 1, 2, . . . ,

Eπ
x0

{
Jπm(xm)

}
= Eπ

x0

{
g
(
xm, µm(xm), wm

)}
+ Eπ

x0

{
Jπm+1(xm+1)

}
,

(4.88)
where {xm} is the sequence generated starting from x0 and using π. By
using repeatedly the expression (4.88) for m = 1, . . . , k− 1, and combining
it with Eq. (4.87), we obtain for all k = 1, 2, . . . ,

Jπ(x0) = Eπ
x0

{
Jπk

(xk)
}
+

k−1∑

m=0

Eπ
x0

{
g
(
xm, µm(xm), wm

)}
, ∀ (π, x0) ∈ C.

The rightmost term above tends to Jπ(x0) as k → ∞, so by using the fact
Jπ(x0) < ∞, we obtain

Eπ
x0

{
Jπk

(xk)
}
→ 0, ∀ (π, x0) ∈ C.

By part (a), it follows that

Eπ
x0

{
Ĵ(xk)

}
→ 0, ∀ (π, x0) ∈ C,

so that Ĵ ∈ Ŵ . This also implies that

Eπ
x0

{
J(xk)

}
→ 0, ∀ (π, x0) ∈ C,

if Ĵ ≤ J ≤ cĴ for some c ≥ 1. Q.E.D.

We can now prove our main result.
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Proposition 4.6.4: Assume that either W is finite or there exists a
δ > 0 such that

E
{
g(x, u, w) + Ĵδ

(
f(x, u, w)

)}
< ∞, ∀ x ∈ X∗, u ∈ U(x).

(a) Ĵ is the unique solution of the Bellman Eq. (4.65) within the set

Ŵ of Eq. (4.83).

(b) (VI Convergence) If {Jk} is the sequence generated by the VI

algorithm (4.47) starting with some J0 ∈ Ŵ , then Jk → Ĵ .

(c) (Optimality Condition) If µ is a stationary policy that is proper

at all x ∈ X̂ and

µ(x) ∈ argmin
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x ∈ X,

(4.89)
then µ is optimal over the set of proper policies, i.e., Jµ = Ĵ .

Conversely, if µ is proper at all x ∈ X̂ and Jµ = Ĵ , then µ
satisfies the preceding condition (4.89).

Proof: (a), (b) By Prop. 4.6.3(b), Ĵ ∈ Ŵ. We will first show that Ĵ is
a solution of Bellman’s equation. Since Ĵδ solves the Bellman equation for
the δ-perturbed problem, and Ĵδ ≥ Ĵ (cf. Prop. 4.6.2), we have for all δ > 0
and x 6= t,

Ĵδ(x) = inf
u∈U(x)

E
{
g(x, u, w) + δ + Ĵδ

(
f(x, u, w)

)}

≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵδ

(
f(x, u, w)

)}

≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
.

By taking the limit as δ ↓ 0 and using Prop. 4.6.2, we obtain

Ĵ(x) ≥ inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, ∀ x ∈ X. (4.90)

For the reverse inequality, let {δm} be a sequence with δm ↓ 0. We
have for all m, x 6= t, and u ∈ U(x),

E
{
g(x, u, w) + δm + Ĵδm

(
f(x, u, w)

)}
≥ inf

v∈U(x)
E
{
g(x, v, w) + δm

+ Ĵδm
(
f(x, v, w)

)}

= Ĵδm(x).
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We now take limit as m → ∞ in the preceding relation, and we interchange
limit and expectation (our assumptions allow the use of the monotone
convergence theorem for this purpose; Exercise 4.11 illustrates the need for
these assumptions). Using also the fact limδm↓0 Ĵδm = Ĵ (cf. Prop. 4.6.2),
we have

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X, u ∈ U(x),

so that

inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
≥ Ĵ(x), ∀ x ∈ X. (4.91)

By combining Eqs. (4.90) and (4.91), we see that Ĵ is a solution of Bellman’s
equation.

Part (b) follows by using the S-regularity of the collection (4.85) and

Prop. 4.4.2(b). Finally, since Ĵ ∈ Ŵ and Ĵ is a solution of Bellman’s
equation, part (b) implies the uniqueness assertion of part (a).

(c) If µ is proper at all x ∈ X̂ and Eq. (4.89) holds, then

Ĵ(x) = E
{
g
(
x, µ(x), w

)
+ Ĵ

(
f(x, µ(x), w)

)}
, x ∈ X.

By Prop. 4.4.4(b), this implies that Jµ ≤ Ĵ , so µ is optimal over the set

of proper policies. Conversely, assume that µ is proper at all x ∈ X̂ and
Jµ = Ĵ . Then by Prop. 4.4.4(b), we have

Ĵ(x) = E
{
g
(
x, µ(x), w

)
+ Ĵ

(
f(x, µ(x), w)

)}
, x ∈ X,

while [by part (a)] Ĵ is a solution of Bellman’s equation,

Ĵ(x) = inf
u∈U(x)

E
{
g(x, u, w) + Ĵ

(
f(x, u, w)

)}
, x ∈ X.

Combining the last two relations, we obtain Eq. (4.89). Q.E.D.

We illustrate Prop. 4.6.4 in Fig. 4.6.1. Let us consider now the favor-
able case where the set of proper policies is sufficient in the sense that it can
achieve the same optimal cost as the set of all policies, i.e., Ĵ = J*. This
is true for example if all policies are proper at all x such that J*(x) < ∞.
Moreover it is true in some of the finite-state formulations of SSP that we
discussed in Chapter 3; see also the subsequent Prop. 4.6.5. When Ĵ = J*,
it follows from Prop. 4.6.4 that J* is the unique solution of Bellman’s equa-
tion within Ŵ , and that the VI algorithm converges to J* starting from
any J0 ∈ Ŵ. Under an additional compactness condition, such as finiteness
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(0) = 0 J JJ J∗ ∗ Ĵ J

Region of solutions of Bellman’s Eq.
Region of solutions of Bellman’s Eq.

VI converges from Ŵ

Figure 4.6.1 Illustration of the solutions of Bellman’s equation. All solutions
either lie between J∗ and Ĵ , or they lie outside the set Ŵ . The VI algorithm
converges to Ĵ starting from any J0 ∈ Ŵ.

of U(x) for all x ∈ X [cf. Prop. 4.4.4(e)], VI converges to J* starting from
any J0 in the set S of Eq. (4.84).

Proposition 4.6.4 does not say anything about the existence of a
proper policy that is optimal within the class of proper policies. For a
simple example where J* = Ĵ but the only optimal policy is improper,
consider a deterministic shortest path problem with a single state 1 plus
the destination t. At state 1 we may choose u ∈ [0, 1] with cost u, and
move to t if u 6= 0 and stay at 1 if u = 0. Note that here we have
J*(1) = Ĵ(1) = 0, and the minimum over u ∈ [0, 1] is attained in Bellman’s
equation, which has the form

J*(1) = min

{
inf

u∈(0,1]
u, J*(1)

}
.

However, the only optimal policy (staying at 1) is improper.

4.6.1 The Multiplicity of Solutions of Bellman’s Equation

Let us now discuss the issue of multiplicity of solutions of Bellman’s equa-
tion within the set of functions

J =
{
J ∈ E+(X) | J(t) = 0

}
.

We know from Props. 4.4.4(a) and 4.6.4(a) that J* and Ĵ are solutions,

and that all other solutions J must satisfy either J* ≤ J ≤ Ĵ or J /∈ Ŵ .
In the special case of a deterministic problem (one where the distur-

bance wk takes a single value), it was shown in Section 4.5 that Ĵ is the
largest solution of Bellman’s equation within J , so all solutions J ′ ∈ J
satisfy J* ≤ J ′ ≤ Ĵ . It was also shown through examples that there can
be any number of solutions that lie between J* and Ĵ : a finite number, an
infinite number, or none at all.

In stochastic problems, however, the situation is strikingly different
in the following sense: there can be an infinite number of solutions that
do not lie below Ĵ , i.e., solutions J ′ ∈ J that do not satisfy J ′ ≤ Ĵ . Of
course, by Prop. 4.6.4(a), these solutions must lie outside Ŵ . The following
example, which involves a finite set W , is an illustration.
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Example 4.6.1

Let X = ℜ, t = 0, and assume that there is only one control at each state,
and hence a single policy π. The disturbance wk takes two values: 1 and 0
with probabilities α ∈ (0, 1) and 1− α, respectively. The system equation is

xk+1 =
wkxk

α
,

and there is no cost at each state and stage:

g(x, u,w) ≡ 0.

Thus from state xk we move to state xk/α with probability α and to the
termination state t = 0 with probability 1− α.

Here, the unique policy is stationary and proper at all x ∈ X, and we
have

J∗(x) = Ĵ(x) = 0, ∀ x ∈ X.

Bellman’s equation has the form

J(x) = (1− α)J(0) + αJ
(
x

a

)
,

which within J reduces to

J(x) = αJ
(
x

α

)
, ∀ J ∈ J , x ∈ X. (4.92)

It can be seen that Bellman’s equation has an infinite number of solu-
tions within J in addition to J∗ and Ĵ : any positively homogeneous function,
such as, for example,

J(x) = γ|x|, γ > 0,

is a solution. Consistently with Prop. 4.6.4(a), none of these solutions belongs

to Ŵ, since xk is either equal to x0/α
k (with probability αk) or equal to 0

(with probability 1− αk). For example, in the case of J(x) = γ|x|, we have

Eπ
x0

{
J(xk)

}
= αkγ

∣∣∣ x0

αk

∣∣∣ = γ|x0|, ∀ k ≥ 0,

so J(xk) does not converge to 0, unless x0 = 0. Moreover, none of these
additional solutions seems to be significant in some discernible way.

The preceding example illustrates an important structural difference
between deterministic and stochastic shortest path problems with infinite
state space. For a terminating policy µ in the context of the deterministic
problem of Section 4.5, the corresponding Bellman equation J = TµJ has
a unique solution within J [to see this, consider the restricted problem
for which µ is the only policy, and apply Prop. 4.5.6(a)]. By contrast,
for a proper policy in the stochastic context of the present section, the
corresponding Bellman equation may have an infinite number of solutions
within J , as Example 4.6.1 shows. This discrepancy does not occur when
the state space is finite, as we have seen in Section 3.5.1. We will next
elaborate on the preceding observations and refine our analysis regarding
multiplicity of solutions of Bellman’s equation for problems where the cost
per stage is bounded.
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4.6.2 The Case of Bounded Cost per Stage

Let us consider the special case where the cost per stage g is bounded over
X × U ×W , i.e.,

sup
(x,u,w)∈X×U×W

g(x, u, w) < ∞. (4.93)

We will show that Ĵ is the largest solution of Bellman’s equation within
the class of functions that are bounded over the effective domain X̂ of Ĵ
[cf. Eq. (4.82)].

We say that a policy π is uniformly proper if there is a uniform bound
on the expected number of steps to reach the destination from states x ∈ X̂
using π:

sup
x∈X̂

∞∑

k=0

rk(π, x) < ∞.

Since we have

Jπ(x0) ≤

(
sup

(x,u,w)∈X×U×W

g(x, u, w)

)
·

∞∑

k=0

rk(π, x0) < ∞, ∀ π ∈ Π̂x0 ,

it follows that the cost function Jπ of a uniformly proper π belongs to the
set B, defined by

B =

{
J ∈ J

∣∣∣ sup
x∈X̂

J(x) < ∞

}
. (4.94)

When X̂ = X , the notion of a uniformly proper policy coincides with
the notion of a transient policy used in [Pli78] and [JaC06], which itself
descends from earlier works. However, our definition is somewhat more
general, since it also applies to the case where X̂ is a strict subset of X .

Let us denote by Ŵb the set of functions

Ŵb = {J ∈ B | Ĵ ≤ J}.

The following proposition, illustrated in Fig. 4.6.2, provides conditions for
Ĵ to be the largest fixed point of T within B. Its assumptions include
the existence of a uniformly proper policy, which implies that Ĵ belongs
to B. The proposition also uses the earlier Prop. 4.4.6 in order to provide
conditions for J* = Ĵ , in which case J* is the unique fixed point of T
within B.
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Paths of VI Unique solution of Bellman’s equation

Fixed Points of T

2 Ĵ J

b > 0

T J*

Set of Bounded Functions B

̂

Ŵb

Figure 4.6.2. Schematic illustration of Prop. 4.6.5 for a nonnegative cost SSP
problem. The functions J∗ and Ĵ are the smallest and largest solutions, re-
spectively, of Bellman’s equation within the set B. Moreover, the VI algorithm
converges to Ĵ starting from J0 ∈ Ŵb = {J ∈ B | Ĵ ≤ J}.

Proposition 4.6.5: Let the assumptions of Prop. 4.6.4 hold, and
assume further that the cost per stage g is bounded over X × U ×W
[cf. Eq. (4.93)], and that there exists a uniformly proper policy. Then:

(a) Ĵ is the largest solution of the Bellman Eq. (4.65) within the
set B of Eq. (4.94), i.e., Ĵ is a solution that belongs to B and if
J ′ ∈ B is another solution, then J ′ ≤ Ĵ . Moreover, if Ĵ = J*,
then J* is the unique solution of Bellman’s equation within B.

(b) If {Jk} is the sequence generated by the VI algorithm (4.47)
starting with some J0 ∈ B with J0 ≥ Ĵ , then Jk → Ĵ .

(c) Assume in addition that X is finite, that J*(x) > 0 for all x 6= t,

and that X∗ = X̂. Then Ĵ = J*.

Proof: (a) Since the cost function of a uniformly proper policy belongs to
B, we have Ĵ ∈ B. On the other hand, for all J ∈ B, we have

Eπ
x0

{
J(xk)

}
≤

(
sup
x∈X̂

J(x)

)
· rk(π, x0) → 0, ∀ π ∈ Π̂x0 .

It follows that the set Ŵb is contained in Ŵ , while the function Ĵ belongs
to Ŵb. Since Ŵb is unbounded above within the set B, for every solution
J ′ ∈ B of Bellman’s equation we have J ′ ≤ J for some J ∈ Ŵb, and hence
also J ′ ≤ J̃ for some J̃ in the set S of Eq. (4.84). It follows from Prop.
4.4.2(a) and the S-regularity of the collection (4.85) that J ′ ≤ Ĵ .
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If in addition Ĵ = J*, from Prop. 4.4.4(a), Ĵ is also the smallest
solution of Bellman’s equation within J . Hence J* is the unique solution
of Bellman’s equation within B.

(b) Follows from Prop. 4.6.4(b), since Ŵb ⊂ Ŵ , as shown in the proof of
part (a).

(c) We have by assumption

0 < J*(x) ≤ Ĵ(x), ∀ x 6= t,

while Ĵ(x) < ∞ for all x ∈ X∗ since X∗ = X̂ . In view of the finiteness of
X , we can find a sufficiently large c such that Ĵ ≤ cJ*, so by Prop. 4.4.6,
it follows that Ĵ = J*. Q.E.D.

The uniqueness of solution of Bellman’s equation within B when Ĵ =
J* [cf. part (a) of the preceding proposition] is consistent with Example
4.6.1. In that example, J* and Ĵ are equal and bounded, and all the
additional solutions of Bellman’s equation are unbounded, as can be verified
by using Eq. (4.92).

Note that without the assumption of existence of a uniformly proper
π, Ĵ and J* need not belong to B. As an example, let X be the set of
nonnegative integers, let t = 0, and let there be a single policy that moves
the system deterministically from a state x ≥ 1 to the state x − 1 at cost
g(x, x− 1) = 1. Then

Ĵ(x) = J*(x) = x, ∀ x ∈ X,

so Ĵ and J* do not belong to B, even though g is bounded. Here the unique
policy is proper at all x, but is not uniformly proper.

In a given practical application, we may be interested in computing
either J* or Ĵ . If the cost per stage is bounded, we may compute Ĵ with
the VI algorithm, assuming that an initial function in the set Ŵb can be
found. The computation of J* is also possible by using the VI algorithm
and starting from the zero initial condition, assuming that the conditions
of Prop. 4.4.4(d) are satisfied.

An alternative possibility for the case of a finite spaces SSP is to
approximate the problem with a sequence of αk-discounted problems where
the discount factors αk tend to 1. This approach, developed in some detail
in Exercise 5.28 of the book [Ber17a], has the advantage that the discounted
problems can be solved more reliably and with a broader variety of methods
than the original undiscounted SSP.

Another technique, developed in the paper [BeY16], is to transform
a finite-state SSP problem such that J*(x) = 0 for some x 6= t into an
equivalent SSP problem that satisfies the conditions of Prop. 4.6.5(c), and
thus allow the computation of J* by a VI or PI algorithm. The idea is
to lump t together with the states x for which J*(x) = 0 into a single
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state, which is the termination state for the equivalent SSP problem. This
technique is strictly limited to finite-state problems, since in general the
conditions J*(x) > 0 for all x 6= t and X∗ = X̂ do not imply that Ĵ = J*,
even under the bounded cost and uniform properness assumptions of this
section (see the deterministic stopping Example 4.5.2).

4.7 NOTES, SOURCES, AND EXERCISES

Sections 4.1: The use of monotonicity as the foundational property of
abstract DP models was initiated in the author’s papers [Ber75], [Ber77].

Section 4.2: The finite horizon analysis of Section 4.2 was given in Chap-
ter 3 of the monograph by Bertsekas and Shreve [BeS78].

Section 4.3: The analysis of the monotone increasing and decreasing ab-
stract DP models of Section 4.3 is due to the author’s papers [Ber75],
[Ber77]. This analysis was also presented in Chapter 5 of [BeS78].

Important examples of noncontractive infinite horizon models are the
classical negative cost DP problems, analyzed by Blackwell [Bla65], and by
Dubins and Savage [DuS65], and the positive cost DP problems analyzed in
Strauch [Str66] (and also in Strauch’s Ph.D. thesis, written under the su-
pervision of Blackwell). The monograph by Bertsekas and Shreve [BeS78]
provides a detailed treatment of these two models, which also resolves the
associated measurability questions using the notion of universally measur-
able policies. The paper by Yu and Bertsekas [YuB15] provides a more
recent analysis that addresses some issues regarding the convergence of the
VI and PI algorithms that were left unresolved in the monograph [BeS78].
A simpler textbook treatment, which bypasses the measurability questions,
is given in the author’s [Ber12a], Chapter 4.

The compactness condition that guarantees convergence of VI to J*

starting with the initial condition J0 = J̄ under Assumption I (cf. Prop.
4.3.14) was obtained by the author in [Ber72] for reachability problems (see
Exercise 4.5), and in [Ber75], [Ber77] for positive cost DP models; see also
Schal [Sch75] and Whittle [Whi80]. A more refined analysis of the question
of convergence of VI to J* is possible. This analysis provides a necessary
and sufficient condition for convergence, and improves over the compactness
condition of Prop. 4.3.14. In particular, the following characterization is
shown in [Ber77], Prop. 11 (see also [BeS78], Prop. 5.9):

For a set C ⊂ X×U×ℜ, let Π(C) be the projection of C onto X×ℜ:

Π(C) =
{
(x, λ) | (x, u, λ) ∈ C for some u ∈ U(x)

}
,

and denote also

Π(C) =
{
(x, λ) | λm → λ for some sequence {λm} with

{
(x, λm)} ⊂ C

}
.
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Consider the sets Ck ⊂ X × U ×ℜ given by

Ck =
{
(x, u, λ) | H(x, u, T kJ̄) ≤ λ, x ∈ X, u ∈ U(x)

}
, k = 0, 1, . . . .

Then under Assumption I we have T kJ̄ → J* if and only if

Π
(
∩∞
k=0 Ck

)
= ∩∞

k=0Π(Ck).

Moreover we have T kJ̄ → J* and in addition there exists an optimal sta-
tionary policy if and only if

Π
(
∩∞
k=0 Ck

)
= ∩∞

k=0Π(Ck). (4.95)

For a connection with Prop. 4.3.14, it can be shown that compactness of

Uk(x, λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

implies Eq. (4.95) (see [Ber77], Prop. 12, or [BeS78], Prop. 5.10).
The analysis of convergence of VI to J* under Assumption I and

starting with an initial condition J0 ≥ J* is far more complicated than for
the initial condition J0 = J̄ . A principal reason for this is the multiplicity
of solutions of Bellman’s equation within the set

{
J ∈ E+(X) | J ≥ J̄

}
.

We know that J* is the smallest solution (cf. Prop. 4.4.9), and an interest-
ing issue is the characterization of the largest solution and other solutions
within some restricted class of functions of interest. We substantially re-
solved this question in Sections 4.5 and 4.6 for infinite-spaces deterministic
and stochastic shortest path problems, respectively (as well in Sections
3.5.1 and 3.52 for finite-state stochastic shortest path and affine monotonic
problems). Generally, optimal control problems with nonnegative cost per
stage can typically be reduced to problems with a cost-free and absorb-
ing termination state (see [BeY16] for an analysis of the finite-state case).
However, the fuller characterization of the set of solutions of Bellman’s
equation for general abstract DP models under Assumption I requires fur-
ther investigation.

Optimistic PI and λ-PI under Assumption D have not been considered
prior to the 2013 edition of this book, and the corresponding analysis of
Section 4.3.3 is new. See [BeI96], [ThS10a], [ThS10b], [Ber11b], [Sch11],
[Ber16b] for analyses of λ-PI for discounted and SSP problems.

Section 4.4: The definition and analysis of regularity for nonstationary
policies was introduced in the author’s paper [Ber15]. We have primarily
used regularity in this book to analyze the structure of the solution set of
Bellman’s equation, and to identify the region of attraction of value and
policy iteration algorithms. This analysis is multifaceted, so it is worth
summarizing here:

(a) We have characterized the fixed point properties of the optimal cost
function J* and the restricted optimal cost function J*

C over S-regular
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collections C, for various sets S. While J* and J*
C need not be fixed

points of T , they are fixed points in a large variety of interesting
contexts (Sections 3.3-3.5 and 4.4-4.6).

(b) We have shown that when J* = J*
C , then J* is the unique solution of

Bellman’s equation in several interesting noncontractive contexts. In
particular, Section 3.3 deals with an important case that covers among
others, the most common type of stochastic shortest path problems.
However, even when J* 6= J*

C , the functions J* and J*
C often bound

the set of solutions from below and/or from above (see Sections 3.5.1,
3.5.2, 4.5, 4.6).

(c) Simultaneously with the analysis of the fixed point properties of J*

and J*
C , we have used regularity to identify the region of convergence

of value iteration. Often convergence to J*
C can be shown from start-

ing functions J ≥ J*
C , assuming that J*

C is a fixed point of T . In
the favorable case where J* = J*

C , convergence to J* can often be
shown from every starting function of interest. In addition regularity
has been used to guarantee the validity of policy iteration algorithms
that generate exclusively regular policies, and are guaranteed to con-
verge to J* or J*

C .

(d) We have been able to characterize some of the solutions of Bellman’s
equation, but not the entire set. Generally, there may exist an infinite
number of solutions, and some of them may not be associated with
an S-regular collection for any set S, unless we change the starting
function J̄ that is part of the definition of the cost function Jπ of the
policies. There is a fundamental difficulty here: the solutions of the
Bellman equation J = TJ do not depend on J̄ , but S-regularity of
a collection of policy-state pairs depends strongly on J̄ . A sharper
characterization of the solution set of Bellman’s equation remains an
open interesting question, in both specific problem contexts as well
as in generality.

The use of regularity in the analysis of undiscounted and discounted
stochastic optimal control in Sections 4.4.2 and 4.4.3 is new, and was pre-
sented in the author’s paper [Ber15]. The analysis of convergent models in
Section 4.4.4, under the condition

J*(x) ≥ J̄(x) > −∞, ∀ x ∈ X,

is also new. A survey of stochastic optimal control problems under con-
vergence conditions that are more general than the ones considered here is
given by Feinberg [Fei02]. An analysis of convergent models for stochastic
optimal control, which illustrates the broad range of pathological behaviors
that can occur without the condition J* ≥ J̄ , is given in the paper by Yu
[Yu15].
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Section 4.5: This section follows the author’s paper [Ber17a]. The issue
of the connection of optimality with stability (and also with controllability
and observability) was raised in the classic paper by Kalman [Kal60] in the
context of linear-quadratic problems.

The set of solutions of the Riccati equation has been extensively inves-
tigated starting with the papers by Willems [Wil71] and Kucera [Kuc72],
[Kuc73], which were followed up by several other works; see the book
by Lancaster and Rodman [LaR95] for a comprehensive treatment. In
these works, the “largest” solution of the Riccati equation is referred to
as the “stabilizing” solution, and the stability of the corresponding policy
is shown, although the author could not find an explicit statement in the
literature regarding the optimality of this policy within the class of all lin-
ear stable policies. Also the lines of analysis of these works are tied to the
structure of the linear-quadratic problem and are unrelated to our analysis
of Section 4.5, which is based on semicontractive ideas.

Section 4.6: Proper policies for infinite-state SSP problems have been
considered earlier in the works of Pliska [Pli78], and James and Collins
[JaC06], where they are called “transient.” There are a few differences
between the frameworks of [Pli78], [JaC06] and Section 4.6, which impact
on the results obtained. In particular, the papers [Pli78] and [JaC06] use
a related (but not identical) definition of properness to the one of Section
4.6, while the notion of a transient policy used in [JaC06] coincides with

the notion of a uniformly proper policy of Section 4.6.2 when X̂ = X .
Furthermore, [Pli78] and [JaC06] do not consider the notion of policy that is
“proper at a state.” The paper [Pli78] assumes that all policies are transient,
that g is bounded, and that J* is real-valued. The paper [JaC06] allows
for notransient policies that have infinite cost from some initial states, and
extends the analysis of Bertsekas and Tsitsiklis [BeT91] from finite state
space to infinite state space (addressing also measurability issues). Also,
[JaC06] allows the cost per stage g to take both positive and negative values,
and uses assumptions that guarantee that J* = Ĵ , that J* is real-valued,
and that improper policies cannot be optimal. Instead, in Section 4.6 we
allow that J* 6= Ĵ and that J* can take the value ∞, while requiring that
g is nonnegative and that the disturbance space W is countable.

The analysis of Section 4.6 comes from the author’s paper [Ber17b],
and is most closely related to the SSP analysis under the weak conditions of
Section 3.5.1, where we assumed that the state space is finite, but allowed
g to take both positive and negative values. The extension of some of
our results of Section 4.6 to SSP problems where g takes both positive and
negative values may be possible; Exercises 4.8 and 4.9 suggest some research
directions. However, our analysis of infinite-spaces SSP problems in this
chapter relies strongly on the nonnegativity of g and cannot be extended
without major modifications. In this connection, it is worth mentioning
the example of Section 3.1.2, which shows that J* may not be a solution
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of Bellman’s equation when g can take negative values.

E X E R C I S E S

4.1 (Example of Nonexistence of an Optimal Policy Under D)

This is an example of a deterministic stopping problem where Assumption D
holds, and an optimal policy does not exist, even though only two controls are
available at each state (stop and continue). The state space is X = {1, 2, . . .}.
Continuation from state x leads to state x+ 1 with certainty and no cost, while
the stopping cost is −1 + (1/x), so that there is an incentive to delay stopping
at every state. Here for all x, J̄(x) = 0, and

H(x, u, J) =

{
J(x+ 1) if u = continue,

−1 + (1/x) if u = stop.

Show that J∗(x) = −1 for all x, but there is no policy (stationary or not) that
attains the optimal cost starting from x.

Solution: Since a cost is incurred only upon stopping, and the stopping cost is
greater than -1, we have Jµ(x) > −1 for all x and µ. On the other hand, starting
from any state x and stopping at x + n yields a cost −1 + 1

x+n
, so by taking n

sufficiently large, we can attain a cost arbitrarily close to -1. Thus J∗(x) = −1
for all x, but no policy can attain this optimal cost.

4.2 (Counterexample for Optimality Condition Under D)

For the problem of Exercise 4.1, show that the policy µ that never stops is not
optimal but satisfies TµJ

∗ = TJ∗.

Solution: We have J∗(x) = −1 and Jµ(x) = 0 for all x ∈ X. Thus µ is
nonoptimal, yet attains the minimum in Bellman’s equation

J∗(x) = min
{
J∗(x+ 1), −1 +

1

x

}

for all x.

4.3 (Counterexample for Optimality Condition Under I)

Let
X = ℜ, U(x) ≡ (0, 1], J̄(x) ≡ 0,

H(x, u, J) = |x|+ J(ux), ∀ x ∈ X, u ∈ U(x).
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Let µ(x) = 1 for all x ∈ X. Then Jµ(x) = ∞ if x 6= 0 and Jµ(0) = 0. Verify that
TµJµ = TJµ. Verify also that J∗(x) = |x|, and hence µ is not optimal.

Solution: The verification of TµJµ = TJµ is straightforward. To show that
J∗(x) = |x|, we first note that |x| is a fixed point of T , so by Prop. 4.3.2,
J∗(x) ≤ |x|. Also (T J̄)(x) = |x| for all x, while under Assumption I, we have
J∗ ≥ T J̄ , so J∗(x) ≥ |x|. Hence J∗(x) = |x|.

4.4 (Solution by Mathematical Programming)

This exercise shows that under Assumptions I and D, it is possible to use a com-
putational method based on mathematical programming when X = {1, . . . , n}.

(a) Under Assumption I, show that J∗ is the unique solution of the following
optimization problem in z = (z1, . . . , zn):

minimize

n∑

i=1

zi

subject to zi ≥ J̄(i), zi ≥ inf
u∈U(i)

H(i, u, z), i = 1, . . . , n.

(b) Under Assumption D, show that J∗ is the unique solution of the following
optimization problem in z = (z1, . . . , zn):

maximize

n∑

i=1

zi

subject to zi ≤ J̄(i), zi ≤ H(i, u, z), i = 1, . . . , n, u ∈ U(i).

Note: Generally, these programs may not be linear or even convex.

Solution: (a) Any feasible solution z of the given optimization problem satisfies
z ≥ J̄ as well as zi ≥ infu∈U(i) H(i, u, z) for all i = 1, . . . , n, so that z ≥ Tz. It
follows from Prop. 4.4.9 that z ≥ J∗, which implies that J∗ is an optimal solution
of the given optimization problem. Also J∗ is the unique optimal solution since
if z is feasible and z 6= J∗, the inequality z ≥ J∗ implies that

∑
i
zi >

∑
i
J∗(i),

so z cannot be optimal.

(b) Any feasible solution z of the given optimization problem satisfies z ≤ J̄ as
well as zi ≤ H(i, u, z) for all i = 1, . . . , n and u ∈ U(i), so that z ≤ Tz. It follows
from Prop. 4.3.6 that z ≤ J∗, which implies that J∗ is an optimal solution of
the given optimization problem. Similar to part (a), J∗ is the unique optimal
solution.

4.5 (Infinite Time Reachability [Ber71], [Ber72])

This exercise provides an instance of an interesting problem where the mapping
H is naturally extended real-valued. Consider a dynamic system

xk+1 = f(xk, uk, wk),
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where wk is viewed as an uncertain disturbance that may be any point in a
set W (xk, uk) (this is known in the literature as an “unknown but bounded”
disturbance, and is the basis for a worst case/minimax treatment of uncertainty
in the control of uncertain dynamic systems). We introduce an abstract DPmodel
where the objective is to find a policy that keeps the state xk of the system within
a given set X at all times, for all possible values of the sequence {wk}. This is a
common objective, which arises in a variety of control theory contexts, including
model predictive control (see [Ber17a], Section 6.4.3).

Let

J̄(x) =
{
0 if x ∈ X,
∞ otherwise,

and

H(x, u, J) =
{
0 if J(x) = 0, u ∈ U(x), and J

(
f(x, u,w)

)
= 0, ∀ w ∈ W (x,u),

∞ otherwise.

(a) Show that Assumption I holds, and that the optimal cost function has the
form

J∗(x) =
{
0 if x ∈ X∗,
∞ otherwise,

where X∗ is some subset of X.

(b) Consider the sequence of sets {Xk}, where

Xk =
{
x ∈ X | (T kJ̄)(x) = 0

}
.

Show that Xk+1 ⊂ Xk for all k, and that X∗ ⊂ ∩∞
k=0Xk. Show also that

convergence of VI (i.e., T kJ̄ → J∗) is equivalent to X∗ = ∩∞
k=0Xk.

(c) Show that X∗ = ∩∞
k=0Xk and there exists an optimal stationary policy if

the sets

Ûk(x) =
{
u ∈ U(x) | f(x, u, w) ∈ Xk, ∀ w ∈ W (x, u)

}

are compact for all k greater than some index k̄. Hint : Use Prop. 4.3.14.

Solution: Let Ê(X) be the subset of E(X) that consists of functions that take
only the two values 0 and ∞, and for all J ∈ Ê(X) denote

D(J) =
{
x ∈ X | J(x) = 0

}
.

Note that for all J ∈ Ê(X) we have TµJ ∈ Ê(X), TJ ∈ Ê(X), and that

D(TµJ) =
{
x ∈ X | x ∈ D(J), f

(
x,µ(x), w

)
∈ D(J), ∀ w ∈ W (x,µ(x))

}
,

D(TJ) = ∪µ∈MD(TµJ).

(a) For all J ∈ Ê(X), we have D(TµJ) ⊂ D(J) and TµJ ≥ J , so condition (1) of
Assumption I holds, and it is easily verified that the remaining two conditions of
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Assumption I also hold. We have J̄ ∈ Ê(X), so for any policy π = {µ0, µ1, . . .},
we have Tµ0 · · ·Tµk

J̄ ∈ Ê(X). It follows that Jπ , given by

Jπ = lim
k→∞

Tµ0 · · · Tµk
J̄ ,

also belongs to Ê(X), and the same is true for J∗ = infπ∈Π Jπ. Thus J
∗ has the

given form with D(J∗) = X∗.

(b) Since {T kJ̄} is monotonically nondecreasing we have D(T k+1J̄) ⊂ D(T kJ̄),
or equivalently Xk+1 ⊂ Xk for all k. Generally for a sequence {Jk} ⊂ Ê(X), if
Jk ↑ J , we have J ∈ Ê(X) and D(J) = ∩∞

k=0D(Jk). Thus convergence of VI (i.e.,
T kJ̄ ↑ J∗) is equivalent to D(J∗) = ∩∞

k=0D(Jk) or X∗ = ∩∞
k=0Xk.

(c) The compactness condition of Prop. 4.3.14 guarantees that T kJ̄ ↑ J∗, or
equivalently by part (b), X∗ = ∩∞

k=0Xk. This condition requires that the sets

Uk(x, λ) =
{
u ∈ U(x)

∣∣ H(x, u, T kJ̄) ≤ λ
}

are compact for every x ∈ X, λ ∈ ℜ, and for all k greater than some integer k.
It can be seen that Uk(x, λ) is equal to the set

Ûk(x) =
{
u ∈ U(x)

∣∣ f(x, u,w) ∈ Xk, ∀ w ∈ W (x,u)
}

given in the statement of the exercise.

4.6 (Exceptional Linear-Quadratic Problems)

Consider the deterministic linear-quadratic problem of Section 3.5.4 and Example
4.5.1. Assume that there is a single control variable uk, and two state variables,
x1
k and x2

k, which evolve according to

x1
k+1 = γx1

k + buk, x2
k+1 = x1

k + x2
k + uk,

where γ > 1. The cost of stage k is quadratic of the form

q
(
(x1

k)
2 + (x2

k)
2
)
+ (uk)

2.

Consider the four cases of pairs of values (b, q) where b ∈ {0, 1} and q ∈ {0, 1}.
For each case, use the theory of Section 4.5 to find the optimal cost function
J∗ and the optimal cost function over stable policies Ĵ+, and to describe the
convergence behavior of VI.

Solution: When b = 1 and q = 1, the classical controllability and observability
conditions are satisfied, and we have J∗ = Ĵ+, while there exists an optimal
policy that is linear and stable (so J∗ and Ĵ+ are real-valued and positive definite
quadratic). Moreover, the VI algorithm converges to J∗ starting from any J0 ≥ 0
(even extended real-valued J0) with J0(0) = 0.

When b = 0 and q = 0, we clearly have J∗(x) ≡ 0. Also Ĵ+(x1, x2) = ∞
for x1 6= 0, while Ĵ+(0, x2) is finite for all x2, but positive for x2 6= 0 (since for
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x1 = 0, the problem becomes essentially one-dimensional, and similar to the one
of Section 3.5.4). The VI algorithm converges to Ĵ+ starting from any positive
semidefinite quadratic initial condition J0 with J0(0, x

2) = 0 and J0 6= J∗.
When b = 0 and q = 1, we have J∗ = Ĵ+, but J∗ and Ĵ+ are not real-

valued. In particular, since x1
k stays constant under all policies when b = 0, we

have J∗(x1, x2) = Ĵ+(x1, x2) = ∞ for x1 6= 0. Moreover, for an initial state
with x1

0 = 0, the problem becomes essentially a one-dimensional problem that
satisfies the classical controllability and observability conditions, and we have
J∗(0, x2) = Ĵ+(0, x2) for all x2. The VI algorithm takes the form

Jk+1(0, x
2) = min

u

{
(x2)2 + (u)2 + Jk(0, x

2 + u)
}
,

Jk+1(x
1, x2) = min

u

{
(x1)2 + (x2)2 + (u)2 + Jk(γx

1, x1 + x2 + u)
}
, if x1 6= 0.

It can be seen that the VI iterates Jk(0, x
2) evolve as in the case of a single state

variable problem, where x1 is fixed at 0. For x1 6= 0, the VI iterates Jk(x
1, x2)

diverge to ∞.
When b = 1 and q = 0, we have J∗(x) ≡ 0, while 0 < Ĵ+(x) < ∞ for

all x 6= 0. Similar to Example 4.5.1, the VI algorithm converges to Ĵ+ starting
from any initial condition J0 ≥ Ĵ+. The functions J∗ and Ĵ+ are real-valued
and satisfy Bellman’s equation, which has the form

J(x1, x2) = min
u

{
(u)2 + J(γx1 + u, x1 + x2 + u)

}
.

However, Bellman’s equation has additional solutions, other than J∗ and Ĵ+.
One of these is

Ĵ(x1, x2) = P (x1)2,

where P = γ2 − 1 (cf. the example of Section 3.5.4).

4.7 (Discontinuities in Infinite-State Shortest Path Problems)

The purpose of this exercise is to show that different types of perturbations in
infinite-state shortest path problems, may yield different solutions of Bellman’s
equation. Consider the optimal stopping problem of Example 4.5.2, and introduce
a perturbed version by modifying the effect of the action that moves the state
from x 6= 0 to γx. Instead, this action stops the system with probability δ > 0 at
cost β ≥ 0, and moves the state from x to γx with probability 1− δ at cost ‖x‖.
Note that with this modification, all policies become uniformly proper. Show
that:

(a) The optimal cost function of the (δ, β)-perturbed version of the problem,
denoted Ĵδ,β , is the unique solution of the corresponding Bellman equation
within the class of bounded functions B of Eq. (4.94).

(b) For β = 0, we have limδ↓0 Ĵδ,0 = J∗, where J∗ is the optimal cost function
of the deterministic problem of Example 4.5.2.

(c) For β = c, we have Ĵδ,c = Ĵ+ for all δ > 0, where Ĵ+ is the largest
solution of Bellman’s equation in the deterministic problem of Example
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4.5.2 [Ĵ+(x) = c for all x 6= 0, which corresponds to the policy that stops
at all states].

Solution: (a) It can be seen that the Bellman equation for the (δ, β)-perturbed
version of the problem is

J(x) =

{
min

{
c, δβ + (1− δ)

(
‖x‖+ J(γx)

)}
if x 6= 0,

0 if x = 0,

and has exactly the same solutions as the equation

J(x) =
{
min

{
c, δβ + (1− δ)

(
min

{
c/(1− δ), ‖x‖

}
+ J(γx)

)}
if x 6= 0,

0 if x = 0.

The latter equation involves a bounded cost per stage, and hence according to
the theory of Section 4.6, has a unique solution within B, when all policies are
proper.

(b) Evident since the effect of δ on the cost of the optimal policy of the problem
of Example 4.5.2 diminishes as δ → 0.

(c) Since termination at cost c is inevitable (with probability 1) under every
policy, the optimal policy for the (δ, β)-perturbed version of the problem is to
stop as soon as possible.

4.8 (A Perturbation Approach for Semicontractive Models)

The purpose of this exercise is to adapt the perturbation approach of Section 3.4
so that it can be used in conjunction with the regularity notion for nonstationary
policies of Definition 4.4.1. Given a set of functions S ⊂ E(X) and a collection C
of policy-state pairs (π, x) that is S-regular, let J∗

C be the restricted optimal cost
function defined by

J∗
C (x) = inf

(π,x)∈C
Jπ(x), x ∈ X.

Consider also a nonnegative forcing function p : X 7→ [0,∞), and for each δ > 0
and stationary policy µ, the mappings Tµ,δ and Tδ given by

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δp(x), (TδJ)(x) = inf

µ∈M
(Tµ,δJ)(x), x ∈ X.

We refer to the problem associated with the mappings Tµ,δ as the δ-perturbed
problem. The cost function of a policy π = {µ0, µ1, . . .} ∈ Π for this problem is

Jπ,δ = lim sup
k→∞

Tµ0,δ · · ·Tµk,δJ̄ ,

and the optimal cost function is Ĵδ = infπ∈Π Jπ,δ. Assume that for every δ > 0:

(1) Ĵδ satisfies the Bellman equation of the δ-perturbed problem, Ĵδ = TδĴδ.
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(2) For every x ∈ X, we have inf(π,x)∈C Jπ,δ(x) = Ĵδ(x).

(3) For all x ∈ X and (π, x) ∈ C, we have

Jπ,δ(x) ≤ Jπ(x) + wπ,δ(x),

where wπ,δ is a function such that limδ↓0 wπ,δ = 0.

(4) For every sequence {Jm} ⊂ S with Jm ↓ J , we have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x).

Then J∗
C is a fixed point of T and the conclusions of Prop. 4.4.2 hold. Moreover,

we have
J∗
C = lim

δ↓0
Ĵδ.

Solution: The proof is very similar to the one of Prop. 3.4.1. Condition (2)
implies that for every x ∈ X and ǫ > 0, there exists a policy πx,ǫ such that
(πx,ǫ, x) ∈ C and Jπx,ǫ,δ(x) ≤ Ĵδ(x) + ǫ. Thus, using conditions (2) and (3), we
have for all x ∈ X, δ > 0, ǫ > 0, and π with (π, x) ∈ C,

J∗
C (x)− ǫ ≤ Jπx,ǫ (x)− ǫ ≤ Jπx,ǫ,δ(x)− ǫ ≤ Ĵδ(x) ≤ Jπ,δ(x) ≤ Jπ(x) + wπ,δ(x).

By taking the limit as ǫ ↓ 0, we obtain for all x ∈ X, δ > 0, and π with (π, x) ∈ C,

J∗
C (x) ≤ Ĵδ(x) ≤ Jπ,δ(x) ≤ Jπ(x) + wπ,δ(x).

By taking the limit as δ ↓ 0 and then the infimum over all π with (π, x) ∈ C, it
follows [using also condition (3)] that for all x ∈ X,

J∗
C (x) ≤ lim

δ↓0
Ĵδ(x) ≤ inf

{π|(π,x)∈C}
lim
δ↓0

Jπ,δ(x) ≤ inf
{π|(π,x)∈C}

Jπ(x) = J∗
C (x),

so that J∗
C = limδ↓0 Ĵδ.

To prove that J∗
C is a fixed point of T , we prove that both J∗

C ≥ TJ∗
C and

J∗
C ≤ TJ∗

C hold. Indeed, from condition (1) and the fact Ĵδ ≥ J∗
C shown earlier,

we have for all δ > 0,
Ĵδ = TδĴδ ≥ T Ĵδ ≥ TJ∗

C ,

and by taking the limit as δ ↓ 0 and using the fact J∗
C = limδ↓0 Ĵδ shown earlier,

we obtain J∗
C ≥ TJ∗

C . For the reverse inequality, let {δm} be a sequence with
δm ↓ 0. Using condition (1) we have for all m,

H(x, u, Ĵδm) + δmp(x) ≥ (Tδm Ĵδm)(x) = Ĵδm(x), ∀ x ∈ X, u ∈ U(x).

Taking the limit as m → ∞, and using condition (4) and the fact Ĵδm ↓ J∗
C shown

earlier, we have

H(x, u, J∗
C ) ≥ J∗

C (x), ∀ x ∈ X, u ∈ U(x),

so that by minimizing over u ∈ U(x), we obtain TJ∗
C ≥ J∗

C .
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4.9 (Deterministic Optimal Control with Positive and
Negative Costs per Stage)

In this exercise, we consider the infinite-spaces optimal control problem of Section
4.5 and its notation, but without the assumption g ≥ 0 [cf. Eq. (4.46)]. Instead,
we assume that

−∞ < g(x, u) ≤ ∞, ∀ x ∈ X, u ∈ U(x), k = 0, 1, . . . ,

and that J∗(x) > −∞ for all x ∈ X. The latter assumption was also made in
Section 3.5.5, but in the present exercise, we will not assume the additional near-
optimal termination Assumption 3.5.9 of that section, and we will use instead
the perturbation framework of Exercise 4.8.

We say that a policy π is terminating from state x0 ∈ X if the sequence
{xk} generated by π starting from x0 terminates finitely (i.e., satisfies xk̄ = t for
some index k̄). We denote by Πx the set of all policies that are terminating from
x, and we consider the collection

C =
{
(π, x) | π ∈ Πx

}
.

Let J∗
C be the corresponding restricted optimal cost function,

J∗
C (x) = inf

(π,x)∈C
Jπ(x) = inf

π∈Πx

Jπ(x), x ∈ X,

and let S be the set of functions

S =
{
J ∈ E(X) | J(t) = 0, J(x) > −∞, x ∈ X

}
.

Clearly C is S-regular, so we may consider the perturbation framework of Exercise
4.8 with p(x) = 1 for all x 6= t and p(t) = 0. Apply the results of that exercise to
show that:

(a) We have

J∗
C = lim

δ↓0
Ĵδ.

(b) J∗
C is the only fixed point of T within the set

W =
{
J ∈ E(X) | J(t) = 0, J ≥ J∗

C

}
.

(c) We have T kJ → J∗
C for all J ∈ W.

Solution: Part (a) follows from Exercise 4.8, and parts (b), (c) follow from
Exercise 4.8 and Prop. 4.4.2.
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4.10 (On Proper Policies for Stochastic Shortest Paths)

Consider the infinite-spaces SSP problem of Section 4.6 under the assumptions
of Prop. 4.6.4, and assume that g is bounded over X × U ×W .

(a) Show that if µ is a uniformly proper policy, then Jµ is the unique solution
of the equation J = TµJ within B and that T k

µJ → Jµ for all J ∈ B.

(b) Let J ′ be a fixed point of T such that J ′ ∈ B and J ′ 6= Ĵ . Show that a
policy µ satisfying TµJ

′ = TJ ′ cannot be uniformly proper.

Solution: (a) Consider the problem where the only policy is µ, i.e., with control
constraint set Ũ(x) =

{
µ(x)

}
, x ∈ X, and apply Props. 4.6.5 and 4.4.4.

(b) Assume to come to a contradiction that µ is uniformly proper. We have
TµJ

′ = TJ ′ = J ′, so by part (a) we have J ′ = Jµ, while Jµ ≥ Ĵ since µ is
uniformly proper. Thus J ′ ≥ Ĵ while J ′ 6= Ĵ by assumption. This contradicts
the largest fixed point property of Ĵ [cf. Prop. 4.6.5(a)].

4.11 (Example where Ĵ is not a Fixed Point of T in Infinite
Spaces SSP)

We noted in Section 4.6 that some additional assumption, like

E
{
g(x, u,w) + Ĵδ

(
f(x, u,w)

)}
< ∞, ∀ x ∈ X∗, u ∈ U(x), (4.96)

or the finiteness of W , is necessary to prove that Ĵ is a fixed point for SSP
problems (cf. Prop. 4.6.4). [The condition (4.96) is satisfied for example if there
exists a policy π (necessarily proper at all x ∈ X∗) such that Jπ,δ is bounded
over X∗.] To see what can happen without such an assumption, consider the
following example, which was constructed by Yi Zhang (private communication).

LetX = {t, 0, 1, 2, . . .}, where t is the termination state, and let g(x, u,w) ≡
0, so that J∗(x) ≡ 0. There is only one control at each state, and hence only one
policy. The transitions are as follows:

From each state x = 2, 3, . . . , we move deterministically to state x−1, from
state 1 we move deterministically to state t, and from state 0 we move to state
x = 1, 2, . . ., with probability px such that

∑∞

x=1
xpx = ∞.

Verify that the unique policy is proper at all x = 1, 2, . . ., and we have
Ĵ(x) = J∗(x) = 0. However, the policy is not proper at x = 0, since the expected
number of transitions from x = 0 to termination is

∑∞

x=1
xpx = ∞. As a result

the set Π̂0 is empty and we have Ĵ(0) = ∞. Thus Ĵ does not satisfy the Bellman
equation for x = 0, since

∞ = Ĵ(0) 6= E
{
g(0, u, w) + Ĵ

(
f(0, u, w)

)}
=

∞∑

x=1

pxĴ(x) = 0.
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4.12 (Convergence of Nonexpansive Monotone Fixed Point
Iterations with a Unique Fixed Point)

Consider the mappingH of Section 2.1 under the monotonicity Assumption 2.1.1.
Assume that instead of the contraction Assumption 2.1.2, the following hold:

(1) For every J ∈ B(X), the function TJ belongs to B(X), the space of func-
tions on X that are bounded with respect to the weighted sup-norm corre-
sponding to a positive weighting function v.

(2) T is nonexpansive, i.e., ‖TJ − TJ ′‖ ≤ ‖J − J ′‖ for all J, J ′ ∈ B(X).

(3) T has a unique fixed point within B(X), denoted J∗.

(4) If X is infinite the following continuity property holds: For each J ∈ B(X)
and {Jm} ⊂ B(X) with either Jm ↓ J or Jm ↑ J ,

H (x, u, J) = lim
m→∞

H(x,u, Jm), ∀ x ∈ X, u ∈ U(x).

Show the following:

(a) For every J ∈ B(X), we have ‖T kJ−J∗‖ → 0 if X is finite, and T kJ → J∗

if X is infinite.

(b) Part (a) holds if B(X) is replaced by
{
J ∈ B(X) | J ≥ 0

}
, or by

{
J ∈

B(X) | J(t) = 0
}
, or by

{
J ∈ B(X) | J(t) = 0, J ≥ 0

}
, where t is a special

cost-free and absorbing destination state t.

(Unpublished joint work of the author with H. Yu.)

Solution: (a) Assume first that X is finite. For any c > 0, let V0 = J∗ + c v
and consider the sequence {Vk} defined by Vk+1 = TVk for k ≥ 0. Note that
{Vk} ⊂ B(X), since ‖V0‖ ≤ ‖J∗‖+c so that V0 ∈ B(X), and we have Vk+1 = TVk,
so that property (1) applies. From the nonexpansiveness property (2), we have

H(x, u, J∗ + c v) ≤ H(x, u, J∗) + c v(x), x ∈ X, u ∈ U(x),

and by taking the infimum over u ∈ U(x), we obtain J∗ ≤ T (J∗+ c v) ≤ J∗+ c v,
i.e., J∗ ≤ V1 ≤ V0. From this and the monotonicity of T it follows that J∗ ≤
Vk+1 ≤ Vk for all k, so that for each x ∈ X, Vk(x) ↓ V (x) where V (x) ≥ J∗(x).
Moreover, V lies in B(X) (since J∗ ≤ V ≤ Vk), and also satisfies ‖Vk − V ‖ → 0
(since X is finite). From property (2), we have ‖TVk − TV ‖ ≤ ‖Vk − V ‖, so
that ‖TVk − TV ‖ → 0, which together with the fact TVk = Vk+1 → V , implies
that V = TV . Thus V = J∗ by the uniqueness property (3), and it follows that
Vk ↓ J∗.

Similarly, define Wk = T k(J∗ − c v), and by an argument symmetric to the
above, Wk ↑ J∗. Now for any J ∈ B(X), let c = ‖J − J∗‖ in the definition of Vk

and Wk. Then J∗ − c v ≤ J ≤ J∗ + c v, so by the monotonicity of T , we have
Wk ≤ T kJ ≤ Vk as well as Wk ≤ J∗ ≤ Vk for all k. Therefore ‖T kJ − J∗‖ ≤
‖Wk − Vk‖ for all k ≥ 0. Since ‖Wk − Vk‖ ≤ ‖Wk − J∗‖ + ‖Vk − J∗‖ → 0, the
conclusion follows.

If X is infinite and property (4) holds, the preceding proof goes through,
except for the part that shows that ‖Vk − V ‖ → 0. Instead we use a different
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argument to prove that V = TV . Indeed, since Vk ≥ Vk+1 = TVk ≥ TV , it
follows that V ≥ TV . For the reverse inequality we write

TV = inf
u∈U(x)

lim
k→∞

H(x, u, Vk) ≥ lim
k→∞

inf
u∈U(x)

H(x, u, Vk) = lim
k→∞

TVk = V ,

where the first equality follows from the continuity property (4), and the inequal-
ity follows from the generic relation inf limH ≥ lim infH . Thus we have V = TV ,
which by the uniqueness property (3), implies that V = J∗ and Vk ↓ J∗. With a
similar argument we obtain Wk ↑ J∗, implying that T kJ → J∗.

(b) The proof of part (a) applies with simple modifications.

4.13 (Convergence of Nonexpansive Monotone Fixed Point
Iterations with Multiple Fixed Points)

Consider the mappingH of Section 2.1 under the monotonicity Assumption 2.1.1.
Assume that instead of the contraction Assumption 2.1.2, the following hold:

(1) For every J ∈ B(X), the function TJ belongs to B(X), the space of func-
tions on X that are bounded with respect to the weighted sup-norm corre-
sponding to a positive weighting function v.

(2) T is nonexpansive, i.e., ‖TJ − TJ ′‖ ≤ ‖J − J ′‖ for all J, J ′ ∈ B(X).

(3) T has a largest fixed point within B(X), denoted Ĵ , i.e., Ĵ ∈ B(X), Ĵ is a
fixed point of T , and for every other fixed point J ′ ∈ B(X) we have J ′ ≤ Ĵ .

(4) If X is infinite the following continuity property holds: For each J ∈ B(X)
and {Jm} ⊂ B(X) with either Jm ↓ J or Jm ↑ J ,

H (x, u, J) = lim
m→∞

H(x,u, Jm), ∀ x ∈ X, u ∈ U(x).

Show the following:

(a) For every J ∈ B(X) such that Ĵ ≤ J ≤ Ĵ + c v for some c > 0, we have
‖T kJ − Ĵ‖ → 0 if X is finite, and T kJ → Ĵ if X is infinite.

(b) Part (a) holds if B(X) is replaced by
{
J ∈ B(X) | J ≥ 0

}
, or by

{
J ∈

B(X) | J(t) = 0
}
, or by

{
J ∈ B(X) | J(t) = 0, J ≥ 0

}
, where t is a special

cost-free and absorbing destination state t.

(Note the similarity with the preceding exercise.)

Solution: (a) The proof follows the line of proof of the preceding exercise. As-
sume first that X is finite. For any c > 0, let V0 = Ĵ + c v and consider the
sequence {Vk} defined by Vk+1 = TVk for k ≥ 0. Note that {Vk} ⊂ B(X), since
‖V0‖ ≤ ‖Ĵ‖ + c so that V0 ∈ B(X), and we have Vk+1 = TVk, so that property
(1) applies. From the nonexpansiveness property (2), we have

H(x, u, Ĵ + c v) ≤ H(x, u, Ĵ) + c v(x), x ∈ X, u ∈ U(x),

and by taking the infimum over u ∈ U(x), we obtain Ĵ ≤ T (Ĵ+c v) ≤ Ĵ+c v, i.e.,
Ĵ ≤ V1 ≤ V0. From this and the monotonicity of T it follows that Ĵ ≤ Vk+1 ≤ Vk
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for all k, so that for each x ∈ X, Vk(x) ↓ V (x) where V (x) ≥ Ĵ(x). Moreover,
V lies in B(X) (since Ĵ ≤ V ≤ Vk), and also satisfies ‖Vk − V ‖ → 0 (since
X is finite). From property (2), we have ‖TVk − TV ‖ ≤ ‖Vk − V ‖, so that
‖TVk − TV ‖ → 0, which together with the fact TVk = Vk+1 → V , implies that
V = TV . Thus V = Ĵ by property (3), and it follows that Vk ↓ Ĵ .

If X is infinite and property (4) holds, the preceding proof goes through,
except for the part that shows that ‖Vk − V ‖ → 0. Instead we use a different
argument to prove that V = TV . Indeed, since Vk ≥ Vk+1 = TVk ≥ TV , it
follows that V ≥ TV . For the reverse inequality we write

TV = inf
u∈U(x)

lim
k→∞

H(x, u, Vk) ≥ lim
k→∞

inf
u∈U(x)

H(x, u, Vk) = lim
k→∞

TVk = V ,

where the first equality follows from the continuity property (4). Thus we have
V = TV , which by property (3), implies that V = Ĵ and Vk ↓ Ĵ .

(b) The proof of part (a) applies with simple modifications.

4.14 (Necessary and Sufficient Condition for an Interpolated
Nonexpansive Mapping to be a Contraction)

This exercise (due to unpublished joint work with H. Yu) considers a nonexpan-
sive mapping G : ℜn 7→ ℜn, and derives conditions under which the interpolated
mapping Gγ defined by

Gγ(x) = (1− γ)x+ γG(x), x ∈ ℜn,

is a contraction for all γ ∈ (0, 1). Consider ℜn equipped with a strictly convex
norm ‖ · ‖, and the set

C =

{(
x− y

‖x− y‖
,
G(x)−G(y)

‖x− y‖

) ∣∣∣∣∣ x, y ∈ ℜn, x 6= y

}
,

which can be viewed as a set of “slopes” of G along all directions. Show that the
mapping Gγ defined by

Gγ(x) = (1− γ)x+ γG(x), x ∈ ℜn,

is a contraction for all γ ∈ (0, 1) if and only if there is no closure point (z, w) of C
such that z = w. Note: To illustrate with some one-dimensional examples what
can happen if this closure condition is violated, let G : ℜ 7→ ℜ be continuously
differentiable, monotonically nondecreasing, and satisfying 0 ≤ dG(x)

dx
≤ 1. Note

that G is nonexpansive. We consider two cases.

(1) G(0) = 0, dG(0)
dx

= 1, 0 ≤ dG(x)
dx

< 1 for x 6= 0, limx→∞
dG(x)
dx

< 1 and

limx→−∞
dG(x)
dx

< 1. Here (z, w) = (1, 1) is a closure point of C and
satisfies z = w. Note that Gγ is not a contraction for any γ ∈ (0, 1),
although it has 0 as its unique fixed point.
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(2) limx→∞
dG(x)
dx

= 1. Here we have limx→∞

(
G(x) − G(y)

)
= x − y for

x = y+1, so (1, 1) is a closure point of C. It can also be seen that because

limx→∞
dGγ (x)

dx
= 1, Gγ is not a contraction for any γ ∈ (0, 1), and may

have one, more than one, or no fixed points.

Solution: Assume there is no closure point (z, w) of C such that z = w, and for
γ ∈ (0, 1), let

ρ = sup
(z,w)∈C

∥∥(1− γ)z + γw
∥∥.

The set C is bounded since for all (z, w) ∈ C, we have ‖z‖ = 1, and ‖w‖ ≤ 1 by
the nonexpansiveness of G. Hence, there exists a sequence

{
(zk, wk)

}
⊂ C that

converges to some (z, w), and is such that

∥∥(1− γ)zk + γwk

∥∥→ ρ.

Since (z, w) is a closure point of C, we have z 6= w. Using the continuity of the
norm, we have

ρ =
∥∥(1− γ)z + γw

∥∥ < (1− γ)‖z‖+ γ‖w‖ ≤ 1,

where for the strict inequality we use the strict convexity of the norm, and for
the last inequality we use the fact ‖z‖ = 1 and ‖w‖ ≤ 1. Thus ρ < 1, and since

∥∥∥∥(1− γ)
x− y

‖x− y‖
+ γ

G(x)−G(y)

‖x− y‖

∥∥∥∥ =

∥∥Gγ(x)−Gγ(y)
∥∥

‖x− y‖

≤ sup
(z,w)∈C

∥∥(1− γ)z + γw
∥∥

= ρ, ∀ x 6= y,

it follows that Gγ is a contraction of modulus ρ.
Conversely, if Gγ is a contraction, we have

sup
(z,w)∈C

∥∥(1− γ)z + γw
∥∥ = sup

x 6=y

∥∥∥∥(1− γ)
x− y

‖x− y‖
+ γ

G(x)−G(y)

‖x− y‖

∥∥∥∥

≤ sup
x 6=y

∥∥Gγ(x)−Gγ(y)
∥∥

‖x− y‖

< 1.

Thus for every closure point (z, w) of C,

∥∥(1− γ)z + γw
∥∥ < 1,

which implies that we cannot have z = w.


