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We will now consider abstract DP models that are intermediate between
the contractive models of Chapter 2, where all stationary policies involve a
contraction mapping, and noncontractive models to be discussed in Chapter
4, where there are no contraction-like assumptions (although there are some
compensating conditions, including monotonicity).

A representative instance of such an intermediate model is the deter-
ministic shortest path problem of Example 1.2.7, where we can distinguish
between two types of stationary policies: those that terminate at the des-
tination from every starting node, and those that do not. A more general
instance is the stochastic shortest path (SSP for short) problem of Example
1.2.6. In this problem, the analysis revolves around two types of stationary
policies µ: those with a mapping Tµ that is a contraction with respect to
some norm, and those with a mapping Tµ that is not a contraction with
respect to any norm (it can be shown that the former are the ones that
terminate with probability 1 starting from any state).

In the models of this chapter, like in SSP problems, we divide policies
into two groups, one of which has favorable characteristics. We loosely
refer to such models as semicontractive to indicate that these favorable
characteristics include contraction-like properties of the mapping Tµ. To
develop a more broadly applicable theory, we replace the notion of contrac-
tiveness of Tµ with a notion of S-regularity of µ, where S is an appropriate
set of functions of the state (roughly, this is a form of “local stability” of
Tµ, which ensures that the cost function Jµ is the unique fixed point of Tµ

within S, and that T k
µJ converges to Jµ regardless of the choice of J from

within S). We allow that some policies are S-regular while others are not.
Note that the term “semicontractive” is not used in a precise mathe-

matical sense here. Rather it refers qualitatively to a collection of models
where some policies have a regularity/contraction-like property but others
do not. Moreover, regularity is a relative property: the division of policies
into “regular” and “irregular” depends on the choice of the set S. On the
other hand, typically in practical applications an appropriate choice of S
is fairly evident.

Our analysis will involve two types of assumptions:

(a) Favorable assumptions , under which we obtain results that are nearly
as strong as those available for the contractive models of Chapter 2.
In particular, we show that J* is a fixed point of T , that the Bellman
equation J = TJ has a unique solution, at least within a suitable
class of functions, and that variants of the VI and PI algorithms are
valid. Some of the VI and PI approaches are suitable for distributed
asynchronous computation, similar to their Chapter 2 counterparts
for contractive models.

(a) Less favorable assumptions , under which serious difficulties may oc-
cur: J* may not be a fixed point of T , and even when it is, it may not
be found using the VI and PI algorithms. These anomalies may ap-
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pear in simple problems, such as deterministic and stochastic shortest
path problems with some zero length cycles. To address the difficul-
ties, we will consider a restricted problem, where the only admissible
policies are the ones that are S-regular. Under reasonable conditions
we show that this problem is better-behaved. In particular, J*

S , the
optimal cost function over the S-regular policies only, is the unique
solution of Bellman’s equation among functions J ∈ S with J ≥ J*

S ,
while VI converges to J*

S starting from any J ∈ S with J ≥ J*
S .

We will also derive a variety of PI approaches for finding J*
S and an

S-regular policy that is optimal within the class of S-regular policies.

We will illustrate our analysis in Section 3.5, both under favorable and
unfavorable assumptions, by means of four classes of practical problems.
Some of these problems relate to finding a path to a destination in a graph
under stochastic or set membership uncertainty, while others relate to the
control of a continuous-state system to a terminal state. In particular, we
will consider SSP problems, affine monotonic problems, including problems
with multiplicative or risk-sensitive exponential cost function, minimax-
type shortest path problems, and continuous-state deterministic problems
with nonnegative cost, such as linear-quadratic problems.

The chapter is organized as follows. In Section 3.1, we illustrate the
pathologies regarding solutions of Bellman’s equation, and the VI and PI
algorithms. To this end, we use four simple examples, ranging from finite-
state shortest path problems, to continuous-state linear-quadratic prob-
lems. These examples provide orientation and motivation for S-regular
policies later. In Section 3.2, we formally introduce our abstract DP model,
and the notion of an S-regular policy. We then develop some of the basic
associated results relating to Bellman’s equation, and the convergence of
VI and PI, based primarily on the ideas underlying the PI algorithm. In
Section 3.3 we refine the results of Section 3.2 under favorable conditions,
obtaining results and algorithms that are almost as powerful as the ones for
contractive models. In Section 3.4 we develop a complementary analytical
approach, which is based on the use of perturbations and applies under less
favorable assumptions. In Section 3.5, we discuss in detail the application
and refinement of the results of Sections 3.2-3.4 in some important shortest
path-type practical contexts. In Section 3.6, we focus on variants of VI and
PI-type algorithms for semicontractive DP models, including some that are
suitable for asynchronous distributed computation.

3.1 PATHOLOGIES OF NONCONTRACTIVE DP MODELS

In this section we provide a general overview of the analytical and compu-
tational difficulties in noncontractive DP models, using for the most part
shortest path-type problems. For illustration we will first use two of the
simplest and most widely encountered finite-state DP problems: deter-
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ministic and SSP problems, whereby we are aiming to reach a destination
state at minimum cost. † We will also discuss an example of continuous-
state shortest path problem that involves a linear system and a quadratic
cost function.

We will adopt the general abstract DP model of Section 1.2. We give
a brief description that is adequate for the purposes of this section, and
defer a more formal definition to Section 3.2. In particular, we introduce
a set of states X , and for each x ∈ X , the nonempty control constraint set
U(x). For each policy µ, the mapping Tµ is given by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X,

where H is a suitable function of (x, u, J). The mapping T is given by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X.

The cost function of a policy π = {µ0, µ1, . . .} is

Jπ(x) = lim sup
N→∞

Jπ,N(x) = lim sup
N→∞

(Tµ0Tµ1 · · ·TµN−1 J̄)(x), x ∈ X,

where J̄ is some function. ‡ We want to minimize Jπ over π, i.e., to find

J*(x) = inf
π

Jπ(x), x ∈ X,

and a policy that attains the infimum.
For orientation purposes, we recall from Chapter 1 (Examples 1.2.1

and 1.2.2) that for a stochastic optimal control problem involving a finite-
state Markov chain with state spaceX = {1, . . . , n}, transition probabilities
pxy(u), and expected one-stage cost function g, the mapping H is given by

H(x, u, J) = g(x, u) +

n∑

y=1

pxy(u)J(y), x ∈ X,

and J̄(x) ≡ 0. The SSP problem arises when there is an additional ter-
mination state that is cost-free, and corresponding transition probabilities
pxt(u), x ∈ X .

† These problems are naturally undiscounted, and cannot be readily ad-

dressed by introducing a discount factor close to 1, because then the optimal

policies may exhibit undesirable behavior. In particular, in the presence of dis-

counting, they may involve moving initially along a small-length cycle in order

to postpone the use of an optimal but unavoidably costly path until later, when

the discount factor will reduce substantially the cost of that path.

‡ In the contractive models of Chapter 2, the choice of J̄ is immaterial, as we

discussed in Section 2.1. Here, however, the choice of J̄ is important, and affects

important characteristics of the model, as we will see later.
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A more general undiscounted stochastic optimal control problem in-
volves a stationary discrete-time dynamic system where the state is an
element of a space X , and the control is an element of a space U . The
control uk is constrained to take values in a given set U(xk) ⊂ U , which
depends on the current state xk [uk ∈ U(xk), for all xk ∈ X ]. For a policy
π = {µ0, µ1, . . .}, the state evolves according to a system equation

xk+1 = f
(
xk, µk(xk), wk

)
, k = 0, 1, . . . , (3.1)

where wk is a random disturbance that takes values from a space W . We
assume that wk, k = 0, 1, . . ., are characterized by probability distributions
P (· | xk, uk) that are identical for all k, where P (wk | xk, uk) is the prob-
ability of occurrence of wk, when the current state and control are xk and
uk, respectively. Here, we allow infinite state and control spaces, as well as
problems with discrete (finite or countable) state space (in which case the
underlying system is a Markov chain). However, for technical reasons that
relate to measure-theoretic issues, we assume that W is a countable set. †

Given an initial state x0, we want to find a policy π = {µ0, µ1, . . .},
where µk : X 7→ U , µk(xk) ∈ U(xk), for all xk ∈ X , k = 0, 1, . . ., that
minimizes

Jπ(x0) = lim sup
k→∞

E

{
k∑

t=0

g
(
xt, µt(xt), wt

)
}
, (3.2)

subject to the system equation constraint (3.1), where g is the one-stage
cost function. The corresponding mapping of the abstract DP problem is

H(x, u, J) = E
{
g(x, u, w) + J

(
f(x, u, w)

)}
,

and J̄(x) ≡ 0. Again here, (Tµ0 · · ·Tµk
J̄)(x) is the expected cost of the

first k + 1 periods using π starting from x, and with terminal cost 0.
A discounted version of the problem is defined by the mapping

H(x, u, J) = E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
,

where α ∈ (0, 1) is the discount factor. It corresponds to minimization of

Jπ(x0) = lim sup
k→∞

E

{
k∑

t=0

αtg
(
xt, µt(xt), wt

)
}
.

If the cost per stage g is bounded, then a problem that fits the contractive
framework of Chapter 2 is obtained, and can be analyzed using the methods
of that chapter. However, there are interesting infinite-state discounted
optimal control problems where g is not bounded.

† Measure-theoretic issues are not addressed at all in this second edition of

the book. The first edition addressed some of these issues within an abstract

DP context in its Chapter 5 and Appendix C (this material is posted at the

book’s web site); see also the monograph by Bertsekas and Shreve [BeS78], and

the paper by Yu and Bertsekas [YuB15].
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A Summary of Pathologies

The four examples to be discussed in Sections 3.1.1-3.1.4 are special cases
of deterministic and stochastic optimal control problems of the type just
described. In each of these examples, we will introduce a subclass of
“well-behaved” policies and a restricted optimization problem, which is
to minimize the cost over the “well-behaved” subclass (in Section 3.2 the
property of being “well-behaved” will be formalized through the notion
of S-regularity). The optimal cost function over just the “well-behaved”
policies is denoted Ĵ (we will also use the notation J*

S later). Here is a
summary of the examples and the pathologies that they reveal:

(a) A finite-state, finite-control deterministic shortest path problem (Sec-
tion 3.1.1). Here the mapping T can have infinitely many fixed points,
including J* and Ĵ . There exist policies that attain the optimal costs
J* and Ĵ . Depending on the starting point, the VI algorithm may
converge to J* or to Ĵ or to a third fixed point of T (for cases where
J* 6= Ĵ , VI converges to Ĵ starting from any J ≥ Ĵ). The PI algo-
rithm can oscillate between two policies that attain J* and Ĵ , respec-
tively.

(b) A finite-state, finite-control stochastic shortest path problem (Section
3.1.2). The salient feature of this example is that J* is not a fixed
point of the mapping T . By contrast Ĵ is a fixed point of T . The VI
algorithm converges to Ĵ starting from any J ≥ Ĵ , while it does not
converge otherwise.

(c) A finite-state, infinite-control stochastic shortest path problem (Sec-
tion 3.1.3). We give three variants of this example. In the first variant
(a classical problem known as the “blackmailer’s dilemma”), all the
policies are “well-behaved,” so J* = Ĵ , and VI converges to J* start-
ing from any real-valued initial condition, while PI also succeeds in
finding J* as the limit of the generated sequence {Jµk}. However, PI
cannot find an optimal policy, because there is no optimal stationary
policy. In a second variant of this example, PI generates a sequence of
“well-behaved” policies {µk} such that Jµk ↓ Ĵ , but {µk} converges
to a policy that is either infeasible or is strictly suboptimal. In the
third variant of this example, the problem data can strongly affect
the multiplicity of the fixed points of T , and the behavior of the VI
and PI algorithms.

(d) A continuous-state, continuous-control deterministic linear-quadratic
problem (Section 3.1.4). Here the mapping T has exactly two fixed
points, J* and Ĵ , within the class of positive semidefinite quadratic
functions. The VI algorithm converges to Ĵ starting from all positive
initial conditions, and to J* starting from all other initial conditions.
Moreover, starting with a “well-behaved” policy, the PI algorithm
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converges to Ĵ and to an optimal policy within the class of “well-
behaved” policies.

It can be seen that the examples exhibit wide-ranging pathological
behavior. In Section 3.2, we will aim to construct a theoretical framework
that explains this behavior. Moreover, in Section 3.3, we will derive condi-
tions guaranteeing that much of this type of behavior does not occur. These
conditions are natural and broadly applicable. They are used to exclude
from optimality the policies that are not “well-behaved,” and to obtain
results that are nearly as powerful as their counterparts for the contractive
models of Chapter 2.

3.1.1 Deterministic Shortest Path Problems

Let us consider the classical deterministic shortest path problem, discussed
in Example 1.2.7. Here, we have a graph of n nodes x = 1, . . . , n, plus
a destination t, and an arc length axy for each directed arc (x, y). The
objective is to find for each x a directed path that starts at x, ends at t,
and has minimum length (the length of a path is defined as the sum of the
lengths of its arcs). A standard assumption, which we will adopt here, is
that every node x is connected to the destination, i.e., there exists a path
from every x to t.

To formulate this shortest path problem as a DP problem, we embed
it within a “larger” problem, whereby we view all paths as admissible,
including those that do not terminate at t. We also view t as a cost-
free and absorbing node. Of course, we need to deal with the presence of
policies that do not terminate, and the most common way to do this is to
assume that all cycles have strictly positive length, in which case policies
that do not terminate cannot be optimal. However, it is not uncommon to
encounter shortest path problems with zero length cycles, and even negative
length cycles. Thus we will not impose any assumption on the sign of the
cycle lengths, particularly since we aim to use the shortest path problem
to illustrate behavior that arises in a broader undiscounted/noncontractive
DP setting.

As noted in Section 1.2, we can formulate the problem in terms of an
abstract DP model where the states are the nodes x = 1, . . . , n, and the
controls available at x can be identified with the outgoing neighbors of x
[the nodes u such that (x, u) is an arc]. The mapping H that defines the
corresponding abstract DP problem is

H(x, u, J) =

{
axu + J(u) if u 6= t,
axt if u = t,

x = 1, . . . , n.

A stationary policy µ defines the subgraph whose arcs are
(
x, µ(x)

)
,

x = 1, . . . , n. We say that µ is proper if this graph is acyclic, i.e., it consists
of a tree of paths leading from each node to the destination. If µ is not
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a

t b
a 1 2 1 2 t b

t b Destination

u Cost 1 Cost 1

u Cost 1 Cost 1

Figure 3.1.1. A deterministic shortest path problem with a single node 1 and a
termination node t. At 1 there are two choices; a self-transition, which costs a,
and a transition to t, which costs b.

proper, it is called improper . Thus there exists a proper policy if and only
if each node is connected to t with a path. Furthermore, an improper policy
has cost greater than −∞ starting from every initial state if and only if all
the cycles of the corresponding subgraph have nonnegative cycle cost.

Let us now get a sense of what may happen by considering the simple
one-node example shown in Fig. 3.1.1. Here there is a single state 1 in
addition to the termination state t. At state 1 there are two choices: a
self-transition, which costs a, and a transition to t, which costs b. The
mapping H , abbreviating J(1) with just the scalar J , is

H(1, u, J) =

{
a+ J if u: self transition,
b if u: transition to t,

J ∈ ℜ.

There are two policies here: the policy µ that transitions from 1 to t,
which is proper, and the policy µ′ that self-transitions at state 1, which is
improper. We have

TµJ = b, Tµ′J = a+ J, J ∈ ℜ,

and

TJ = min{b, a+ J}, J ∈ ℜ.

Note that for the proper policy µ, the mapping Tµ : ℜ 7→ ℜ is a contraction.
For the improper policy µ′, the mapping Tµ′ : ℜ 7→ ℜ is not a contraction,
and it has a fixed point within ℜ only if a = 0, in which case every J ∈ ℜ
is a fixed point.

We now consider the optimal cost J*, the fixed points of T within ℜ,
and the behavior of the VI and PI methods for different combinations of
values of a and b.

(a) If a > 0, the optimal cost, J* = b, is the unique fixed point of T , and
the proper policy is optimal.
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(b) If a = 0, the set of fixed points of T (within ℜ) is the interval (−∞, b].
Here the improper policy is optimal if b ≥ 0, and the proper policy is
optimal if b ≤ 0 (both policies are optimal if b = 0).

(c) If a = 0 and b > 0, the proper policy is strictly suboptimal, yet its cost
at state 1 (which is b) is a fixed point of T . The optimal cost, J* = 0,
lies in the interior of the set of fixed points of T , which is (−∞, b].
Thus the VI method that generates {T kJ} starting with J 6= J*

cannot find J*. In particular if J is a fixed point of T , VI stops at J ,
while if J is not a fixed point of T (i.e., J > b), VI terminates in two
iterations at b 6= J*. Moreover, the standard PI method is unreliable
in the sense that starting with the suboptimal proper policy µ, it
may stop with that policy because TµJµ = b = min{b, Jµ} = TJµ
(the improper/optimal policy µ′ also satisfies Tµ′Jµ = TJµ, so a rule
for breaking the tie in favor of µ is needed but such a rule may not
be obvious in general).

(d) If a = 0 and b < 0, the improper policy is strictly suboptimal, and
we have J* = b. Here it can be seen that the VI sequence {T kJ}
converges to J* for all J ≥ b, but stops at J for all J < b, since the
set of fixed points of T is (−∞, b]. Moreover, starting with either
the proper policy or the improper policy, the standard form of PI
may oscillate, since TµJµ′ = TJµ′ and Tµ′Jµ = TJµ, as can be easily
verified [the optimal policy µ also satisfies TµJµ = TJµ but it is not
clear how to break the tie; compare also with case (c) above].

(e) If a < 0, the improper policy is optimal and we have J* = −∞.
There are no fixed points of T within ℜ, but J* is the unique fixed
point of T within the set [−∞,∞]. The VI method will converge to
J* starting from any J ∈ [−∞,∞]. The PI method will also converge
to the optimal policy starting from either policy.

3.1.2 Stochastic Shortest Path Problems

We consider the SSP problem, which was described in Example 1.2.6 and
will be revisited in Section 3.5.1. Here a policy is associated with a station-
ary Markov chain whose states are 1, . . . , n, plus the cost-free termination
state t. The cost of a policy starting at a state x is the sum of the expected
cost of its transitions up to reaching t. A policy is said to be proper , if in
its Markov chain, every state is connected with t with a path of positive
probability transitions, and otherwise it is called improper . Equivalently, a
policy is proper if its Markov chain has t as its unique ergodic state, with
all other states being transient.

In deterministic shortest path problems, it turns out that Jµ is always
a fixed point of Tµ, and J* is always a fixed point of T . This is a generic
feature of deterministic problems, which was illustrated in Section 1.1 (see
Exercise 3.1 for a rigorous proof). However, in SSP problems where the
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) Cost 0
t b Destination

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

u Cost 0 Cost

1 Cost 1

1 Cost 1 u Cost −1 Cost 1

u Cost −1 Cost 1 Cost 0 Cost 2 CostCost 0 Cost 2 Cost −2 Cost

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

1 2 t b

Prob. 1/2Prob. 1/2

(4) = 1 Jµ(2) = 1 (7) = 1 Jµ(5) = 1

Jµ(1) = 0

Figure 3.1.2. An example of an improper policy µ, where Jµ is not a fixed
point of Tµ. All transitions under µ are shown with solid lines. These transitions
are deterministic, except at state 1 where the next state is 2 or 5 with equal
probability 1/2. There are additional high cost transitions from nodes 1, 4, and
7 to the destination (shown with broken lines), which create a suboptimal proper
policy. We have J∗ = Jµ and J∗ is not a fixed point of T .

cost per stage can take both positive and negative values this need not be
so, as we will now show with an example due to [BeY16].

Let us consider the problem of Fig. 3.1.2. It involves an improper
policy µ, whose transitions are shown with solid lines in the figure, and
form the two zero length cycles shown. All the transitions under µ are
deterministic, except at state 1 where the successor state is 2 or 5 with
equal probability 1/2. The problem has been deliberately constructed so
that corresponding costs at the nodes of the two cycles are negatives of
each other. As a result, the expected cost at each time period starting
from state 1 is 0, implying that the total cost over any number or even
infinite number of periods is 0.

Indeed, to verify that Jµ(1) = 0, let ck denote the cost incurred at

time k, starting at state 1, and let sN (1) =
∑N−1

k=0 ck denote the N -step
accumulation of ck starting from state 1. We have

sN (1) = 0 if N = 1 or N = 4 + 3t, t = 0, 1, . . .,

sN (1) = 1 or sN (1) = −1 with probability 1/2 each

if N = 2 + 3t or N = 3 + 3t, t = 0, 1, . . ..
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Thus E
{
sN (1)

}
= 0 for all N , and

Jµ(1) = lim sup
N→∞

E
{
sN (1)

}
= 0.

On the other hand, using the definition of Jµ in terms of lim sup, we
have

Jµ(2) = Jµ(5) = 1,

(the sequence of N -stage costs undergoes a cycle {1,−1, 0, 1,−1, 0, . . .}
when starting from state 2, and undergoes a cycle {−1, 1, 0,−1, 1, 0, . . .}
when starting from state 5). Thus the Bellman equation at state 1,

Jµ(1) = 1
2

(
Jµ(2) + Jµ(5)

)
,

is not satisfied, and Jµ is not a fixed point of Tµ.
The mathematical reason why Bellman’s equation Jµ = TµJµ may

not hold for stochastic problems is that lim sup may not commute with the
expected value that is inherent in Tµ, and the proof argument given for
deterministic problems in Section 1.1 breaks down. We can also modify
this example so that there are multiple policies. To this end, we can add
for i = 1, 4, 7, another control that leads from i to t with a cost c > 1 (cf.
the broken line arcs in Fig. 3.1.2). Then we create a proper policy that is
strictly suboptimal, while not affecting J*, which again is not a fixed point
of T .

Let us finally note an anomaly around randomized policies in noncon-
tractive models. The improper policy shown in Fig. 3.1.2 may be viewed as
a randomized policy for a deterministic shortest path problem: this is the
problem for which at state 1 we must (deterministically) choose one of the
two successor states 2 and 5. For this deterministic problem, J* takes the
same values as before for all i 6= 1, but it takes the value J*(1) = 1 rather
than J*(1) = 0. Thus, remarkably, once we allow randomized policies into
the problem, the optimal cost function ceases to be a solution of Bellman’s
equation and simultaneously the optimal cost at state 1 is improved!

In subsequent sections we will see that favorable results hold in SSP
problems where the restricted optimal cost function over just the proper
policies is equal to the overall optimal J*. This can be guaranteed by
assumptions that essentially imply that improper polices cannot be optimal
(see Sections 3.3 and 3.5.1). We will then see that not only is J* a fixed
point of T , but it is also the unique fixed point (within the class of real-
valued functions), and that the VI and PI algorithms yield J* and an
optimal proper policy in the limit.

3.1.3 The Blackmailer’s Dilemma

This is a classical example involving a profit maximizing blackmailer. We
formulate it as an SSP problem involving cost minimization, with a single
state x = 1, in addition to the termination state t.
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a 1 2 1 2 t b

Prob. u2

u Destination

2 Prob. 1− u
2

2

2 Control u ∈ (0, 1] Cost
1] Cost −u

Figure 3.1.3. Transition diagram for the first variant of the blackmailer problem.
At state 1, the blackmailer may demand any amount u ∈ (0, 1]. The victim will
comply with probability 1−u2 and will not comply with probability u2, in which
case the process will terminate.

In a first variant of the problem, at state 1, we can choose a control u ∈
(0, 1], while incurring a cost −u; we then move to state t with probability
u2, and stay in state 1 with probability 1−u2; see Fig. 3.1.3. We may regard
u as a demand made by the blackmailer, and state 1 as the situation where
the victim complies. State t is arrived at when the victim (permanently)
refuses to yield to the blackmailer’s demand. The problem then can be
viewed as one where the blackmailer tries to maximize his expected total
gain by balancing his desire for increased demands (large u) with keeping
his victim compliant (small u).

For notational simplicity, let us abbreviate J(1) and µ(1) with just
the scalars J and µ, respectively. Then in terms of abstract DP we have

X = {1}, U = (0, 1], J̄ = 0, H(1, u, J) = −u+ (1 − u2)J,

and for every stationary policy µ, we have

TµJ = −µ+ (1− µ2)J. (3.3)

Clearly Tµ, viewed as a mapping from ℜ to ℜ, is a contraction with modulus
1− µ2, and its unique fixed point within ℜ, Jµ, is the solution of

Jµ = TµJµ = −µ+ (1− µ2)Jµ,

which yields

Jµ = −
1

µ
.

Here all policies are proper in the sense that they lead asymptotically to
t with probability 1, and the infimum of Jµ over µ is −∞, implying also
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that J* = −∞. However, there is no optimal stationary policy within the
class of proper policies. †

Another interesting fact about this problem is that Tµ is a contrac-
tion for all µ. However the theory of contractive models does not apply
because there is no uniform modulus of contraction (α < 1) that applies
simultaneously to all µ ∈ (0, 1] [cf. Eq. (3.3)]. As a result, the contraction
Assumption 2.1.2 of Section 2.1 does not hold.

Let us now consider Bellman’s equation. The mapping T is given by

TJ = inf
0<u≤1

{
− u+ (1 − u2)J

}
,

and Bellman’s equation is written as

J = J − sup
0<u≤1

{u+ u2J}.

It can be verified that this equation has no real-valued solution. How-
ever, J∗ = −∞ is a solution within the set of extended real numbers
[−∞,∞]. Moreover the VI method will converge to J* starting from any
J ∈ [−∞,∞). The PI method, starting from any policy µ0, will pro-
duce the ever improving sequence of policies {µk} with µk+1 = µk/2 and
Jµk ↓ J*, while µk will converge to 0, which is not a feasible policy.

A Second Problem Variant

Consider next a variant of the problem where at state 1, we terminate at
no cost with probability u, and stay in state 1 at a cost −u with probability
1− u. The control constraint is still u ∈ (0, 1].

Here we have

H(1, u, J) = (1− u)(−u) + (1− u)J.

It can be seen that for every policy µ, Tµ is again a contraction and we have
Jµ = µ−1. Thus J* = −1, but again there is no optimal policy, stationary
or not. Moreover, T has multiple fixed points: its set of fixed points within
ℜ is {J | J ≤ −1}. Here the VI method will converge to J* starting from
any J ∈ [−1,∞). The PI method will produce an ever improving sequence
of policies {µk} with Jµk ↓ J*, starting from any policy µ0, while µk will
converge to 0, which is not a feasible policy.

† An unusual fact about this problem is that there exists a nonstationary pol-

icy π∗ that is optimal in the sense that Jπ∗ = J∗ = −∞ (for a proof see [Ber12a],

Section 3.2). The underlying intuition is that when the amount demanded u is

decreased toward 0, the probability of noncompliance, u2, decreases much faster.

This fact, however, will not be significant in the context of our analysis.
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A Third Problem Variant

Finally, let us again assume that

H(1, u, J) = (1 − u)(−u) + (1− u)J, ∀ u ∈ (0, 1],

but also allow, in addition to u ∈ (0, 1], the choice u = 0 that self-transitions
to state 1 at a cost c (this is the choice where the blackmailer can forego
blackmail for a single period in exchange for a fixed payment −c). Here
there is the extra (improper) policy µ′ that chooses µ′(1) = 0. We have

Tµ′J = c+ J,

and the mapping T is given by

TJ = min

{
c+ J, inf

0<u≤1

{
− u+ u2 + (1− u)J

}}
. (3.4)

Let us consider the optimal policies and the fixed points of T in the two
cases where c ≥ 0 and c < 0.

When c ≥ 0, we have J* = −1, while Jµ′ = ∞ (if c > 0) or Jµ′ = 0
(if c = 0). It can be seen that there is no optimal policy, and that all
J ∈ (−∞,−1] are fixed points of T , including J*. Here the VI method will
converge to J* starting from any J ∈ [−1,∞). The PI method will produce
an ever improving sequence of policies {µk}, with Jµk ↓ J*. However, µk

will converge to 0, which is a feasible but strictly suboptimal policy.
When c < 0, we have Jµ′ = −∞, and the improper policy µ′ is

optimal. Here the optimal cost over just the proper policies is Ĵ = −1,
while J* = −∞. Moreover Ĵ is not a fixed point of T , and in fact T
has no real-valued fixed points, although J* is a fixed point. It can be
verified that the VI algorithm will converge to J* starting from any scalar
J . Furthermore, starting with a proper policy, the PI method will produce
the optimal (improper) policy within a finite number of iterations.

3.1.4 Linear-Quadratic Problems

One of the most important optimal control problems involves a linear sys-
tem and a cost per stage that is positive semidefinite quadratic in the state
and the control. The objective here is roughly to bring the system at or
close to the origin, which can be viewed as a cost-free and absorbing state.
Thus the problem has a shortest path character, even though the state
space is continuous.

Under reasonable assumptions (involving the notions of system con-
trollability and observability; see e.g., [Ber17a], Section 3.1), the problem
admits a favorable analysis and an elegant solution: the optimal cost func-
tion is positive semidefinite quadratic and the optimal policy is a linear
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function of the state. Moreover, Bellman’s equation can be equivalently
written as an algebraic Riccati equation, which admits a unique solution
within the class of nonnegative cost functions.

On the other hand, the favorable results just noted depend on the
assumptions and the structure of the linear-quadratic problem. There is
no corresponding analysis for more general deterministic continuous-state
optimal control problems. Moreover, even for linear-quadratic problems,
when the aforementioned controllability and observability assumptions do
not hold, the favorable results break down and pathological behavior can
occur. This suggests analytical difficulties in more general continuous-state
contexts, which we will discuss later in Section 3.5.4.

To illustrate what can happen, consider the scalar system

xk+1 = γxk + uk, xk ∈ ℜ, uk ∈ ℜ,

with X = U(x) = ℜ, and a cost per stage equal to u2. Here we have
J*(x) = 0 for all x ∈ ℜ, while the policy that applies control u = 0 at
every state x is optimal. This is reminiscent of the deterministic shortest
path problem of Section 3.1.1, for the case where a = 0 and there is a zero
length cycle. Bellman’s equation has the form

J(x) = min
u∈ℜ

{
u2 + J(γx+ u)

}
, x ∈ ℜ,

and it is seen that J* is a solution. We will now show that there is another
solution, which has an interesting interpretation.

Let us assume that γ > 1 so the system is unstable (the instability of
the system is important for the purpose of this example). It is well-known
that for linear-quadratic problems the class of quadratic cost functions,

S =
{
J | J(x) = px2, p ≥ 0

}
,

plays a special role. Linear policies of the form

µ(x) = rx,

where r is a scalar, also play a special role, particularly the subclass L of
linear policies that are stable, in the sense that the closed-loop system

xk+1 = (γ + r)xk

is stable, i.e., |γ+r| < 1. For such a policy, the generated system trajectory
{xk}, starting from an initial state x0, is

{
(γ+r)kx0

}
, and the correspond-

ing cost function is quadratic as shown by the following calculation,

Jµ(x0) =
∞∑

k=0

(
µ(xk)

)2
=

∞∑

k=0

r2x2
k =

∞∑

k=0

r2(γ + r)2kx2
0 =

r2

1− (γ + r)2
x2
0.

(3.5)
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Note that there is no policy in L that is optimal, since the optimal policy
µ∗(x) ≡ 0 is unstable and does not belong to L.

Let us consider fixed points of the mapping T ,

(TJ)(x) = inf
u∈ℜ

{
u2 + J(γx+ u)

}
,

within the class of nonnegative quadratic functions S. For J(x) = px2 with
p ≥ 0, we have

(TJ)(x) = inf
u∈ℜ

{
u2 + p(γx+ u)2

}
,

and by setting to 0 the derivative with respect to u, we see that the infimum
is attained at

u∗ = −
pγ

1 + p
x.

By substitution into the formula for TJ , we obtain

(TJ)(x) =
pγ2

1 + p
x2. (3.6)

Thus the function J(x) = px2 is a fixed point of T if and only if p solves
the equation

p =
pγ2

1 + p
.

This equation has two solutions:

p = 0 and p = γ2 − 1,

as shown in Fig. 3.1.4. Thus there are exactly two fixed points of T within
S: the functions

J*(x) ≡ 0 and Ĵ(x) = (γ2 − 1)x2.

The fixed point Ĵ has some significance. It turns out to be the optimal
cost function within the subclass L of linear policies that are stable. This
can be verified by minimizing the expression (3.5) over the parameter r. In
particular, by setting to 0 the derivative with respect to r of

r2

1− (γ + r)2
,

we obtain after a straightforward calculation that it is minimized for r =
(1− γ2)/γ, which corresponds to the policy

µ̂(x) =
(1− γ2)

γ
x,
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Figure 3.1.4. Illustrating the fixed points of T , and the convergence of the VI
algorithm for the one-dimensional linear-quadratic problem.

while from Eq. (3.5), we can verify that

Jµ̂(x) = (γ2 − 1)x2.

Thus, we have

Jµ̂(x) = inf
µ∈L

Jµ(x) = Ĵ(x), x ∈ ℜ.

Let us turn now to the VI algorithm starting from a function in S.
Using Eq. (3.6), we see that it generates a sequence of functions Jk ∈ S of
the form

Jk(x) = pkx2,

where the sequence {pk} is generated by

pk+1 =
pkγ2

1 + pk
, k = 0, 1, . . . .

From Fig. 3.1.4 it can be seen that starting with p0 > 0, the sequence {pk}
converges to

p̂ = γ2 − 1,
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which corresponds to Ĵ . In summary, starting from any nonzero function
in S, the VI algorithm converges to the optimal cost function Ĵ over the
linear stable policies L, while starting from the zero function, it converges
to the optimal cost function J*.

Finally, let us consider the PI algorithm starting from a linear stable
policy. We first note that given any µ ∈ L, i.e.,

µ(x) = rx with |γ + r| < 1,

we can compute Jµ as the limit of the VI sequence {T k
µJ}, where J is any

function in S, i.e.,

J(x) = px2 with p ≥ 0.

This can be verified by writing

(TµJ)(x) =
(
r2 + p(γ + r)2

)
x2,

and noting that the iteration that maps p to r2 + p(γ + r)2 converges to

pµ =
r2

1− (γ + r)2
,

in view of |γ + r| < 1. Thus,

T k
µJ → Jµ, ∀ µ ∈ L, J ∈ S.

Moreover, we have Jµ = TµJµ.
We now use a standard proof argument to show that PI generates

a sequence of linear stable policies starting from a linear stable policy.
Indeed, we have for all k,

Jµ0 = Tµ0Jµ0 ≥ TJµ0 = Tµ1Jµ0 ≥ T k
µ1Jµ0 ≥ T kĴ = Ĵ ,

where the second inequality follows by the monotonicity of Tµ1 and the

third inequality follows from the fact Jµ0 ≥ Ĵ . By taking the limit as
k → ∞, we obtain

Jµ0 ≥ TJµ0 ≥ Jµ1 ≥ Ĵ .

It can be verified that µ1 is a nonzero linear policy, so the preceding relation
implies that µ1 is linear stable. Continuing similarly, it follows that the
policies µk generated by PI are linear stable and satisfy for all k,

Jµk ≥ TJµk ≥ Jµk+1 ≥ Ĵ .

By taking the limit as k → ∞, we see that the sequence of quadratic
functions {Jµk} converges monotonically to a quadratic function J∞, which
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is a fixed point of T and satisfies J∞ ≥ Ĵ . Since we have shown that Ĵ is
the only fixed point of T in the range [Ĵ ,∞), it follows that J∞ = Ĵ . In
summary, the PI algorithm starting from a linear stable policy converges
to Ĵ , the optimal cost function over linear stable policies.

In Section 3.5.4, we will consider a more general multidimensional
version of the linear-quadratic problem, using in part the analysis of Section
3.4. We will then explain the phenomena described in this section within
a more general setting. We will also see there that the unusual behavior in
the present example is due to the fact that there is no penalty for a nonzero
state. For example, if the cost per stage is δx2 + u2, where δ > 0, rather
than u2, then the corresponding Bellman equation has a unique solution
with the class of positive semidefinite quadratic functions. We will analyze
this case within a more general setting of deterministic optimal control
problems in Section 3.5.5.

3.1.5 An Intuitive View of Semicontractive Analysis

In the preceding sections we have demonstrated various aspects of the char-
acter of semicontractive analysis in the context of several examples. The
salient feature is a class of “well-behaved” policies (e.g., proper policies in
shortest path problems, stable policies in linear-quadratic problems), and
the restricted optimal cost function Ĵ over just these policies. The main
results we typically derived were that Ĵ is a fixed point of T , and that the
VI and PI algorithms are attracted to Ĵ , at least from within some suitable
class of initial conditions. In the favorable case where Ĵ = J*, these results
hold also for J*, but in general J* need not be a fixed point of T .

The central issue of semicontractive analysis is the choice of a class
of “well-behaved” policies M̂ ⊂ M such that the corresponding restricted
optimal cost function Ĵ is a fixed point of T . Such a choice is often fairly ev-
ident, but there are also several systematic approaches to identify a suitable
class M̂ and to show its fixed point property; see the end of Section 3.2.2
for a discussion of various alternatives. As an example, let us introduce a
class of policies M̂ ⊂ M for which we assume the following:

(a) M̂ is well-behaved with respect to VI: For all µ ∈ M̂ and real-valued
functions J , we have

Jµ = TµJµ, Jµ = lim
k→∞

T k
µJ. (3.7)

Moreover Jµ is real-valued.

(b) M̂ is well-behaved with respect to PI: For each µ ∈ M̂, any policy µ′

such that
Tµ′Jµ = TJµ

belongs to M̂, and there exists at least one such µ′.
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We can show that Ĵ is a fixed point of T and obtain our main results
with the following line of argument. The first step in this argument is
to show that the cost functions of a PI-generated sequence {µk} ⊂ M̂

(starting from a µ0 ∈ Ŵ) are monotonically nonincreasing. Indeed, we
have using Eq. (3.7),

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk .

Using the monotonicity property of Tµk+1 , it follows that

Jµk ≥ TJµk ≥ lim
k→∞

T k
µk+1Jµk = Jµk+1 ≥ Ĵ , (3.8)

where the equality holds by Eq. (3.7), and the rightmost inequality holds

since µk+1 ∈ M̂. Thus we obtain

Jµk ↓ J∞ ≥ Ĵ ,

for some function J∞.
Now by taking the limit as k → ∞ in the relation Jµk ≥ TJµk ≥ Jµk+1

[cf. Eq. (3.8)], it follows (under a mild continuity assumption) that J∞ is
a fixed point of T with J∞ ≥ Ĵ . † We claim that J∞ = Ĵ . Indeed we have

Ĵ ≤ J∞ = T kJ∞ ≤ T k
µJ∞ ≤ T k

µJµ0 , ∀ µ ∈ M̂, k = 0, 1, . . . .

By taking the limit as k → ∞, and using the fact µ ∈ M̂ [cf. Eq. (3.7)], we

obtain Ĵ ≤ J∞ ≤ Jµ for all µ ∈ M̂. By taking the infimum over µ ∈ M̂, it

follows that J∞ = Ĵ .
Finally, let J be real-valued and satisfy J ≥ Ĵ . We claim that T kJ →

Ĵ . Indeed, since Ĵ is a fixed point of T , we have

T k
µJ ≥ T kJ ≥ T kĴ = Ĵ , ∀ µ ∈ M̂, k ≥ 0,

† We elaborate on this argument; see also the proof of Prop. 3.2.4 in the next
section. From Eq. (3.8), we have Jµk ≥ TJµk ≥ TJ∞, so by letting k → ∞, we
obtain J∞ ≥ TJ∞. To prove the reverse inequality, we assume that T has the
continuity property

H(x, u, J∞) = lim
k→∞

H(x, u, Jµk ) ≥ lim
k→∞

(TJµk )(x), x ∈ X, u ∈ U(x).

By taking the limit in Eq. (3.8), we obtain

lim
k→∞

(TJµk )(x) ≥ lim
k→∞

Jµk+1(x) = J∞(x), x ∈ X,

and from the preceding two relations we have H(x, u, J∞) ≥ J∞(x). By taking

the infimum over u ∈ U(x), it follows that TJ∞ ≥ J∞. Combined with the

relation J∞ ≥ TJ∞ shown earlier, this implies that J∞ is a fixed point of T .
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so by taking the limit as k → ∞ and using Eq. (3.7), we obtain

Jµ ≥ lim
k→∞

T kJ ≥ Ĵ , ∀ µ ∈ M̂.

By taking the infimum over µ ∈ M̂, it follows that T kJ → Ĵ , i.e., that VI
converges to Ĵ stating from all initial conditions J ≥ Ĵ .

The analysis of the following two sections will be based to a large ex-
tent on refinements of the preceding argument. Note that in this argument
we have not assumed that Ĵ = J*, which leaves open the possibility that
J* is not a fixed point of T . Indeed this can happen, as we have seen in the
SSP example of Section 3.1.2. Moreover, we have not assumed that Ĵ is
real-valued. In fact Ĵ may not be real-valued even though all Jµ, µ ∈ M̂,
are; see the first variant of the blackmailer problem of Section 3.1.3.

An alternative analytical approach, which does not rely on M̂ being
well-behaved with respect to PI, is given in Section 3.4. The idea there is to
introduce a small δ-perturbation to the mappingH and a corresponding “δ-
perturbed” problem. The perturbation is chosen so that the cost function
of some policies, the “well-behaved” ones, is minimally affected [say by
O(δ)], while the cost function of the policies that are not “well-behaved” is
driven to ∞ for some initial states, thereby excluding these policies from
optimality. Thus as δ ↓ 0, the optimal cost function Ĵδ of the δ-perturbed
problem approaches Ĵ (not J*). Assuming that Ĵδ is a solution of the
δ-perturbed Bellman equation, and we can then use a limiting argument
to show that Ĵ is a fixed point of T , as well as other results relating to
the VI and PI algorithms. The perturbation approach will become more
prominent in our semicontractive analysis of Chapter 4 (Sections 4.5 and
4.6), where we will consider “well-behaved” policies that are nonstationary,
and thus do not lend themselves to a PI-based analysis.

3.2 SEMICONTRACTIVE MODELS AND REGULAR POLICIES

In the preceding section we illustrated a general pattern of pathologies in
noncontractive models, involving the solutions of Bellman’s equation, and
the convergence of the VI and PI algorithms. To summarize:

(a) Bellman’s equation may have multiple solutions (equivalently, T may
have multiple fixed points). Often but not always, J* is a fixed point
of T . Moreover, a restricted problem, involving policies that are “well-
behaved” (proper in shortest path problems, or linear stable in the
linear-quadratic case), may be meaningful and play an important role.

(b) The optimal cost function over all policies, J*, may differ from Ĵ , the
optimal cost function over the “well-behaved” policies. Furthermore,
it may be that Ĵ (not J*) is “well-behaved” from the algorithmic
point of view. In particular, Ĵ is often a fixed point of T , in which
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case it is the likely limit of the VI and the PI algorithms, starting
from an appropriate set of initial conditions.

In this section we will provide an analytical framework that explains
this type of phenomena, and develops the kind of assumptions needed in or-
der to avoid them. We will introduce a concept of regularity that formalizes
mathematically the notion of “well-behaved” policy, and we will consider
a restricted optimization problem that involves regular policies only. We
will show that the optimal cost function of the restricted problem is a fixed
point of T under several types of fairly natural assumptions. Moreover, we
will show that it can be computed by versions of VI and PI, starting from
suitable initial conditions.

Problem Formulation

Let us first introduce formally the model that we will use in this chap-
ter. Compared to the contractive model of Chapter 2, it maintains the
monotonicity assumption, but not the contraction assumption.

We introduce the set X of states and the set U of controls, and for
each x ∈ X , the nonempty control constraint set U(x) ⊂ U . Since in
the absence of the contraction assumption, the cost function Jµ of some
policies µ may take infinite values for some states, we will use the set of
extended real numbers ℜ∗ = ℜ∪{∞,−∞} = [−∞,∞]. The mathematical
operations with ∞ and −∞ are standard and are summarized in Appendix
A. We consider the set of all extended real-valued functions J : X 7→ ℜ∗,
which we denote by E(X). We also denote by R(X) the set of real-valued
functions J : X 7→ ℜ.

As earlier, when we write lim, lim sup, or lim inf of a sequence of
functions we mean it to be pointwise. We also write Jk → J to mean that
Jk(x) → J(x) for each x ∈ X ; see Appendix A.

We denote byM the set of all functions µ : X 7→ U with µ(x) ∈ U(x),
for all x ∈ X , and by Π the set of policies π = {µ0, µ1, . . .}, where µk ∈ M
for all k. We refer to a stationary policy {µ, µ, . . .} simply as µ. We
introduce a mapping H : X × U × E(X) 7→ ℜ∗ that satisfies the following.

Assumption 3.2.1: (Monotonicity) If J, J ′ ∈ E(X) and J ≤ J ′,
then

H(x, u, J) ≤ H(x, u, J ′), ∀ x ∈ X, u ∈ U(x).

The preceding monotonicity assumption will be in effect throughout
this chapter. Consequently, we will not mention it explicitly in various
propositions . We define the mapping T : E(X) 7→ E(X) by

(TJ)(x) = inf
u∈U(x)

H(x, u, J), ∀ x ∈ X, J ∈ E(X),
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and for each µ ∈ M the mapping Tµ : E(X) 7→ E(X) by

(TµJ)(x) = H
(
x, µ(x), J

)
, ∀ x ∈ X, J ∈ E(X).

The monotonicity assumption implies the following properties for all J, J ′ ∈
E(X) and k = 0, 1, . . .,

J ≤ J ′ ⇒ T kJ ≤ T kJ ′, T k
µJ ≤ T k

µJ ′, ∀ µ ∈ M,

J ≤ TJ ⇒ T kJ ≤ T k+1J, T k
µJ ≤ T k+1

µ J, ∀ µ ∈ M,

which we will use extensively in various proof arguments.
We now define cost functions associated with Tµ and T . In Chapter

2 our starting point was to define Jµ and J* as the unique fixed points of
Tµ and T , respectively, based on the contraction assumption used there.
However, under our assumptions in this chapter this is not possible, so we
use a different definition, which nonetheless is consistent with the one of
Chapter 2 (see the discussion of Section 2.1, following Prop. 2.1.2). We
introduce a function J̄ ∈ E(X), and we define the infinite horizon cost of a
policy in terms of the limit of its finite horizon costs with J̄ being the cost
function at the end of the horizon. Note that in the case of the optimal
control problems of the preceding section we have taken J̄ to be the zero
function, J̄(x) ≡ 0 [cf. Eq. (3.2)].

Definition 3.2.1: Given a function J̄ ∈ E(X), for a policy π ∈ Π
with π = {µ0, µ1, . . .}, we define the cost function of π by

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), ∀ x ∈ X.

In the case of a stationary policy µ, the cost function of µ is denoted
by Jµ and is given by

Jµ(x) = lim sup
k→∞

(T k
µ J̄)(x), ∀ x ∈ X.

The optimal cost function J* is given by

J*(x) = inf
π∈Π

Jπ(x), ∀ x ∈ X.

An optimal policy π∗ ∈ Π is one for which Jπ∗ = J*.
Note two important differences from Chapter 2:

(1) Jµ is defined in terms of a pointwise lim sup rather than lim, since we
don’t know whether the limit exists.
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Figure 3.2.1. Illustration of S-regular and S-irregular policies. Policy µ is S-
regular because Jµ ∈ S and T k

µJ → Jµ for all J ∈ S. Policy µ is S-irregular.

(2) Jπ and Jµ in general depend on J̄ , so J̄ becomes an important part
of the problem definition.

Similar to Chapter 2, under the assumptions to be introduced in this chap-
ter, stationary policies will typically turn out to be “sufficient” in the sense
that the optimal cost obtained with nonstationary policies that depend on
the initial state is matched by the one obtained by stationary ones.

3.2.1 S-Regular Policies

Our objective in this chapter is to construct an analytical framework with
a strong connection to fixed point theory, based on the idea of separating
policies into those that have “favorable” characteristics and those that do
not. Clearly, a favorable property for a policy µ is that Jµ is a fixed point
of Tµ. However, Jµ may depend on J̄ , even though Tµ does not depend on
J̄ . It would thus appear that a related favorable property for µ is that Jµ
stays the same if J̄ is changed arbitrarily within some set S. We express
these two properties with the following definition.

Definition 3.2.2: Given a set of functions S ⊂ E(X), we say that a
stationary policy µ is S-regular if:

(a) Jµ ∈ S and Jµ = TµJµ.

(b) T k
µJ → Jµ for all J ∈ S.

A policy that is not S-regular is called S-irregular .

Thus a policy µ is S-regular if the VI algorithm corresponding to
µ, Jk+1 = TµJk, represents a dynamic system that has Jµ as its unique
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J TJ

= 0 TµJ

= 0

−

ℜ-regular

−

-regular ℜ-irregular

) Jµ

Figure 3.2.2. Illustration of S-regular and S-irregular policies for the case where
there is only one state and S = ℜ. There are three mappings Tµ corresponding
to S-irregular policies: one crosses the 45-degree line at multiple points, another
crosses at a single point but at an angle greater than 45 degrees, and the third is
discontinuous and does not cross at all. The mapping Tµ of the ℜ-regular policy
has Jµ as its unique fixed point and satisfies T k

µJ → Jµ for all J ∈ ℜ.

equilibrium within S, and is asymptotically stable in the sense that the
iteration converges to Jµ, starting from any J ∈ S (see Fig. 3.2.1).

For orientation purposes, we note the distinction between the set S
and the problem data: S is an analytical device, and is not part of the
problem’s definition. Its choice, however, can enable analysis and clarify
properties of Jµ and J*. For example, we will later prove local fixed point
statements such as

“J* is the unique fixed point of T within S”

or local region of attraction assertions such as

“the VI sequence {T kJ} converges to J* starting from any J ∈ S.”

Results of this type and their proofs depend on the choice of S: they may
hold for some choices but not for others.

Generally, with our selection of S we will aim to differentiate between
S-regular and S-irregular policies in a manner that produces useful results
for the given problem and does not necessitate restrictive assumptions.
Examples of sets S that we will use are R(X), B(X), E(X), and subsets of
R(X), B(X), and E(X) involving functions J satisfying J ≥ J* or J ≥ J̄ .
However, there is a diverse range of other possibilities, so it makes sense to
postpone making the choice of S more specific. Figure 3.2.2 illustrates the
mappings Tµ of some S-regular and S-irregular policies for the case where
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J TJ

= 0 TµJ

= 0 J̄ = 0 ) Jµ

S

S S-regular

Ĵ T k
µ J̄

J̃ J

Figure 3.2.3. Illustration of a mapping Tµ where there is only one state and S
is a subset of the real line. Here Tµ has two fixed points, Jµ and J̃ . If S is as
shown, µ is S-regular. If S is enlarged to include J̃ , µ becomes S-irregular.

there is a single state and S = ℜ. Figure 3.2.3 illustrates the mapping
Tµ of an S-regular policy µ, where Tµ has multiple fixed points, and upon
changing S, the policy may become S-irregular.

3.2.2 Restricted Optimization over S-Regular Policies

We will now introduce a restricted optimization framework where S-regular
policies are central. Given a nonempty set S ⊂ E(X), let MS denote the
set of policies that are S-regular, and consider optimization over just the
set MS. The corresponding optimal cost function is denoted J*

S :

J*
S(x) = inf

µ∈MS

Jµ(x), ∀ x ∈ X. (3.9)

We say that µ∗ is MS-optimal if

µ∗ ∈ MS and Jµ∗ = J*
S .

Note that while S is assumed nonempty, it is possible that MS is empty.
In this case our results will not be useful, but J*

S is still defined by Eq.
(3.9) as J*

S(x) ≡ ∞. This is convenient in various proof arguments.
An important question is whether J*

S is a fixed point of T and can
be obtained by the VI algorithm. Naturally, this depends on the choice of
S, but it turns out that reasonable choices can be readily found in several
important contexts, so the consequences of J*

S being a fixed point of T are
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Jµ for µ ∈ MS

J J∗

S

Well-Behaved Region Fixed Point of T

Well-Behaved Region WS

∗ J ∈ E(X)

J̃ ∈ S

Figure 3.2.4. Interpretation of Prop. 3.2.1, where for illustration purposes, E(X)
is represented by the extended real line. A set S ⊂ E(X) such that J∗

S
is a fixed

point of T , demarcates the well-behaved region WS [cf. Eq. (3.10)], within which
T has a unique fixed point, and starting from which the VI algorithm converges
to J∗

S
.

interesting. The next proposition shows that if J*
S is a fixed point of T ,

then the VI algorithm is convergent starting from within the set

WS = {J ∈ E(X) | J*
S ≤ J ≤ J̃ for some J̃ ∈ S}, (3.10)

which we refer to as the well-behaved region (see Fig. 3.2.4). Note that by
the definition of S-regularity, the cost functions Jµ, µ ∈ MS , belong to
S and hence also to WS . The proposition also provides a necessary and
sufficient condition for an S-regular policy µ∗ to be MS-optimal.

Proposition 3.2.1: (Well-Behaved Region Theorem) Given a
set S ⊂ E(X), assume that J*

S is a fixed point of T . Then:

(a) (Uniqueness of Fixed Point) If J ′ is a fixed point of T and there
exists J̃ ∈ S such that J ′ ≤ J̃ , then J ′ ≤ J*

S . In particular, if
WS is nonempty, J*

S is the unique fixed point of T within WS .

(b) (VI Convergence) We have T kJ → J*
S for every J ∈ WS .

(c) (Optimality Condition) If µ is S-regular, J*
S ∈ S, and TµJ*

S =
TJ*

S , then µ is MS-optimal. Conversely, if µ is MS-optimal,
then TµJ*

S = TJ*
S .

Proof: (a) For every µ ∈ MS , we have using the monotonicity of Tµ,

J ′ = TJ ′ ≤ TµJ ′ ≤ · · · ≤ T k
µJ ′ ≤ T k

µ J̃ , k = 1, 2, . . . .

Taking limit as k → ∞, and using the S-regularity of µ, we obtain J ′ ≤ Jµ
for all µ ∈ MS . Taking the infimum over µ ∈ MS , we have J ′ ≤ J*

S .
Assume that WS is nonempty. Then J*

S is a fixed point of T that
belongs to WS . To show its uniqueness, let J ′ be another fixed point that
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belongs to WS , so that J*
S ≤ J ′ and there exists J̃ ∈ S such that J ′ ≤ J̃ .

By what we have shown so far, J ′ ≤ J*
S , implying that J ′ = J*

S .

(b) Let J ∈ WS , so that J*
S ≤ J ≤ J̃ for some J̃ ∈ S. We have for all k ≥ 1

and µ ∈ MS ,
J*
S = T kJ*

S ≤ T kJ ≤ T kJ̃ ≤ T k
µ J̃ ,

where the equality follows from the fixed point property of J*
S , while the

inequalities follow from the monotonicity and the definition of T . The
right-hand side tends to Jµ as k → ∞, since µ is S-regular and J̃ ∈ S.
Hence the infimum over µ ∈ MS of the limit of the right-hand side tends
to the left-hand side J*

S . It follows that T
kJ → J*

S .

(c) From the assumptions TµJ*
S = TJ*

S and TJ*
S = J*

S , we have TµJ*
S = J*

S ,
and since J*

S ∈ S and µ is S-regular, we have J*
S = Jµ. Thus µ is MS-

optimal. Conversely, if µ is MS-optimal, we have Jµ = J*
S , so that the

fixed point property of J*
S and the S-regularity of µ imply that

TJ*
S = J*

S = Jµ = TµJµ = TµJ*
S .

Q.E.D.

Some useful extensions and modified versions of the preceding propo-
sition are given in Exercises 3.2-3.5. Let us illustrate the proposition in the
context of the deterministic shortest path example of Section 3.1.1.

Example 3.2.1

Consider the deterministic shortest path example of Section 3.1.1 for the case
where there is a zero length cycle (a = 0), and let S be the real line ℜ. There
are two policies: µ which moves from state 1 to the destination at cost b, and
µ′ which stays at state 1 at cost 0. We use X = {1} (i.e., we do not include
t in X, since all function values of interest are 0 at t). Then by abbreviating
function values J(1) with J , we have

Jµ = b, Jµ′ = 0, J∗ = min{b, 0};

cf. Fig. 3.2.5. The corresponding mappings Tµ, Tµ′ , and T are

TµJ = b, Tµ′J = J, J = TJ = min{b, J}, J ∈ E(X),

and the initial function J̄ is taken to be 0. It can be seen from the definition of
S-regularity that µ is S–regular, while the policy µ′ is not. The cost functions
Jµ, Jµ′ , and J∗ are fixed points of the corresponding mappings, but the sets of
fixed points of Tµ′ and T within S are ℜ and (−∞, b], respectively. Moreover,
J∗
S = Jµ = b, so J∗

S is a fixed point of T and Prop. 3.2.1 applies.
The figure also shows the well-behaved regions for the two cases b > 0

and b < 0. It can be seen that the results of Prop. 3.2.1 are consistent with
the discussion of Section 3.1.1. In particular, the VI algorithm fails when
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1 2 t b
a 1 2

t b Destination

t b c u′, Cost 0
Stationary policy costs Prob.

Jµ(1) = b, Jµ′(1) = 0 Optimal cost

(1) = 0 Optimal cost J∗(1) = min{b, 0} a destination t

Well-Behaved Region

Well-Behaved Region

J* = Jµ′ = 0

b Jµ′ = 0

Set of Fixed Points of T

Set of Fixed Points of T

J*
S = Jµ = b > 0

J* = J*
S = Jµ = b < 0

u, Cost b J

Figure 3.2.5. The well-behaved region of Eq. (3.10) for the deterministic shortest
path example of Section 3.1.1 when where there is a zero length cycle (a = 0). For
S = ℜ, the policy µ is S-regular, while the policy µ′ is not. The figure illustrates
the two cases where b > 0 and b < 0.

started outside the well-behaved region, while when started from within the
region, it is attracted to J∗

S rather than to J∗.

Let us now discuss some of the fine points of Prop. 3.2.1. The salient
assumption of the proposition is that J∗

S is a fixed point of T . Depending on
the choice of S, this may or may not be true, and much of the subsequent
analysis in this chapter is geared towards the development of approaches
to choose S so that J∗

S is a fixed point of T and has some other interesting
properties. As an illustration of the range of possibilities, consider the three
variants of the blackmailer problem of Section 3.1.3 for the choice S = ℜ:

(a) In the first variant, we have J* = J*
S = −∞, and J*

S is a fixed point
of T that lies outside S. Here parts (a) and (b) of Prop. 3.2.1 apply.
However, part (c) does not apply (even though we have TµJ*

S = TJ*
S

for all policies µ) because J*
S /∈ S, and in fact there is no MS-optimal

policy. In the subsequent analysis, we will see that the condition
J*
S ∈ S plays an important role in being able to assert existence of an

MS-optimal policy (see the subsequent Props. 3.2.5 and 3.2.6).

(b) In the second variant, we have J* = J*
S = −1, and J*

S is a fixed point
of T that lies within S. Here parts (a) and (b) of Prop. 3.2.1 apply,
but part (c) still does not apply because there is no S-regular µ such
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that TµJ*
S = TJ*

S, and in fact there is no MS-optimal policy.

(c) In the third variant with c < 0, we have J* = −∞, J*
S = −1, and J*

S

is not a fixed point of T . Thus Prop. 3.2.1 does not apply, and in fact
we have T kJ → J* for every J ∈ WS (and not T kJ → J*

S).

Another fine point is that Prop. 3.2.1(b) asserts convergence of the
VI algorithm to J*

S only for initial conditions J satisfying J*
S ≤ J ≤ J̃ for

some J̃ ∈ S. For an illustrative example of an S-regular µ, where {T k
µJ}

does not converge to Jµ starting from some J ≥ Jµ that lies outside S,
consider a case where there is a single state and a single policy µ that is
S-regular, so J*

S = Jµ. Suppose that Tµ : ℜ 7→ ℜ has two fixed points: Jµ
and another fixed point J ′ > Jµ. Let

J̃ = (Jµ + J ′)/2, S = (−∞, J̃ ],

and assume that Tµ is a contraction mapping within S (an example of this
type can be easily constructed graphically). Then starting from any J ∈ S,
we have T kJ → Jµ, so that µ is S-regular. However, since J ′ is a fixed
point of T , the sequence {T kJ ′} stays at J ′ and does not converge to Jµ.
The difficulty here is that WS = [Jµ, J̃ ] and J ′ /∈ WS .

Still another fine point is that if there exists an MS-optimal policy µ,
we have J*

S = TµJ*
S (since J*

S = Jµ and µ is S-regular), but this does not
guarantee that J*

S is a fixed point of T , which is essential for Prop. 3.2.1.
This can be seen from an example given in Fig. 3.2.6, where there exists
an MS-optimal policy, but both J*

S and J* are not fixed points of T (in
this example the MS-optimal policy is also overall optimal so J*

S = J*). In
particular, starting from J*

S , the VI algorithm converges to some J ′ 6= J*
S

that is a fixed point of T .

Convergence Rate when a Contractive Policy is MS-Optimal

In many contexts where Prop. 3.2.1 applies, there exists an MS-optimal
policy µ such that Tµ is a contraction with respect to a weighted sup-norm.
This is true for example in the shortest path problem to be discussed in
Section 3.5.1. In such cases, the rate of convergence of VI to J*

S is linear,
as shown in the following proposition.

Proposition 3.2.2: (Convergence Rate of VI) Let S be equal to
B(X), the space of all functions over X that are bounded with respect
to a weighted sup-norm ‖ · ‖v corresponding to a positive function
v : X 7→ ℜ. Assume that J*

S is a fixed point of T , and that there exists
an MS-optimal policy µ such that Tµ is a contraction with respect to
‖ · ‖v, with modulus of contraction β. Then J*

S ∈ B(X), WS ⊂ B(X),
and
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Figure 3.2.6. Illustration of why the assumption that J∗
S
is a fixed point of T is

essential for Prop. 3.2.1. In this example there is only one state and S = ℜ. There
are two stationary policies: µ for which Tµ is a contraction, so µ is ℜ-regular,
and µ for which Tµ has multiple fixed points, so µ is ℜ-irregular. Moreover,
Tµ is discontinuous from above at Jµ as shown. Here, it can be verified that
Tµ0

· · · Tµk
J̄ ≥ Jµ for all µ0, . . . , µk and k, so that Jπ ≥ Jµ for all π and the S-

regular policy µ is optimal, so J∗
S
= J∗. However, as can be seen from the figure,

we have J∗
S
= J∗ 6= TJ∗ = TJ∗

S
. Moreover, starting at J∗

S
, the VI sequence T kJ∗

S

converges to J ′, the fixed point of T shown in the figure, and all parts of Prop.
3.2.1 fail.

∥∥TJ − J*
S‖v ≤ β‖J − J*

S‖v, ∀ J ∈ WS . (3.11)

Moreover, we have

‖J − J*
S‖v ≤

1

1− β
sup
x∈X

J(x) − (TJ)(x)

v(x)
, ∀ J ∈ WS . (3.12)

Proof: Since µ is S-regular and S = B(X), we have J*
S = Jµ ∈ B(X) as

well as WS ⊂ B(X). By using the MS-optimality of µ and Prop. 3.2.1(c),

J*
S = TµJ*

S = TJ*
S,

so for all x ∈ X and J ∈ WS ,

(TJ)(x)− J*
S(x)

v(x)
≤

(TµJ)(x) − (TµJ*
S)(x)

v(x)
≤ βmax

x∈X

J(x)− J*
S(x)

v(x)
,

where the second inequality holds by the contraction property of Tµ. By
taking the supremum of the left-hand side over x ∈ X , and by using the
fact TJ ≥ TJ*

S = J*
S for all J ∈ WS , we obtain Eq. (3.11).
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By using again the relation TµJ*
S = TJ*

S, we have for all x ∈ X and
all J ∈ WS ,

J(x)− J*
S(x)

v(x)
=

J(x)− (TJ)(x)

v(x)
+

(TJ)(x)− J*
S(x)

v(x)

≤
J(x)− (TJ)(x)

v(x)
+

(TµJ)(x) − (TµJ*
S)(x)

v(x)

≤
J(x)− (TJ)(x)

v(x)
+ β‖J − J*

S‖v.

By taking the supremum of both sides over x, we obtain Eq. (3.12). Q.E.D.

Approaches to Show that J*
S is a Fixed Point of T

The critical assumption of Prop. 3.2.1 is that J*
S is a fixed point of T . For

a specific application, this must be proved with a separate analysis after a
suitable set S is chosen. To this end, we will provide several approaches
that guide the choice of S and facilitate the analysis.

One approach applies to problems where J* is generically a fixed
point of T , in which case for every set S such that J*

S = J*, Prop. 3.2.1
applies and shows that J* can be obtained by the VI algorithm starting
from any J ∈ WS . Exercise 3.1 provides some conditions that guarantee
that J* is a fixed point of T . These conditions can be verified in wide
classes of problems such as deterministic models. Sections 3.5.4 and 3.5.5
illustrate this approach. Other important models where J* is guaranteed to
be a fixed point of T are the monotone increasing and monotone decreasing
models of Section 4.3. We will discuss the application of Prop. 3.2.1 and
other related results to these models in Chapter 4.

In the present chapter the approach for showing that J*
S is a fixed

point of T will be mostly based on the PI algorithm; cf. the discussion of
Section 3.1.5. An alternative and complementary approach is the perturba-
tion-based analysis to be given in Section 3.4. This approach will be applied
to a variety of problems in Section 3.5, and will also be prominent in
Sections 4.5 and 4.6 of the next chapter.

3.2.3 Policy Iteration Analysis of Bellman’s Equation

We will develop a PI-based approach for showing that J*
S is a fixed point

of T . The approach is applicable under assumptions that guarantee that
there is a sequence {µk} of S-regular policies that can be generated by PI.
The significance of S-regularity of all µk lies in that the corresponding cost
function sequence {Jµk} belongs to the well-behaved region of Eq. (3.10),
and is monotonically nonincreasing (see the subsequent Prop. 3.2.3). Un-
der an additional mild technical condition, the limit of this sequence is a
fixed point of T and is in fact equal to J*

S (see the subsequent Prop. 3.2.4).
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Let us consider the standard form of the PI algorithm, which starts
with a policy µ0 and generates a sequence {µk} of stationary policies ac-
cording to

Tµk+1Jµk = TJµk , k = 0, 1, . . . . (3.13)

This iteration embodies both the policy evaluation step, which computes
Jµk in some way, and the policy improvement step, which computes µk+1(x)
as a minimum over u ∈ U(x) of H(x, u, Jµk ) for each x ∈ X . Of course, to
be able to carry out the policy improvement step, there should be enough
assumptions to guarantee that the minimum is attained for every x. One
such assumption is that U(x) is a finite set for each x ∈ X . A more general
assumption, which applies to the case where the constraint sets U(x) are
infinite, will be given in Section 3.3.

The evaluation of the cost function Jµ of a policy µ may be done
by solving the equation Jµ = TµJµ, which holds when µ is an S-regular
policy. An important fact is that if the PI algorithm generates a sequence
{µk} consisting exclusively of S-regular policies, then not only the policy
evaluation is facilitated through the equation Jµ = TµJµ, but also the
sequence of cost functions {Jµk} is monotonically nonincreasing, as we
will show next.

Proposition 3.2.3: (Policy Improvement Under S-Regularity)
Given a set S ⊂ E(X), assume that {µk} is a sequence generated by
the PI algorithm (3.13) that consists of S-regular policies. Then

Jµk ≥ Jµk+1 , k = 0, 1, . . . .

Proof: Using the S-regularity of µk and Eq. (3.13), we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk . (3.14)

By using the monotonicity of Tµk+1 , we obtain

Jµk ≥ TJµk ≥ lim
m→∞

Tm
µk+1Jµk = Jµk+1 , (3.15)

where the equation on the right holds since µk+1 is S-regular and Jµk ∈ S
(in view of the S-regularity of µk). Q.E.D.

The preceding proposition shows that if a sequence of S-regular poli-
cies {µk} is generated by PI, the corresponding cost function sequence
{Jµk} is monotonically nonincreasing and hence converges to a limit J∞.
Under mild conditions, we will show that J∞ is a fixed point of T and is
equal to J*

S . This is important as it brings to bear Prop. 3.2.1, and the
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associated results on VI convergence and optimality conditions. Let us first
formalize the property that the PI algorithm can generate a sequence of
S-regular policies.

Definition 3.2.3: (Weak PI Property) We say that a set S ⊂
E(X) has the weak PI property if there exists a sequence of S-regular
policies that can be generated by the PI algorithm [i.e., a sequence
{µk} that satisfies Eq. (3.13) and consists of S-regular policies].

Note a fine point here. For a given starting policy µ0, there may be
many different sequences {µk} that can be generated by PI [i.e., satisfy Eq.
(3.13)]. While the weak PI property guarantees that some of these consist
of S-regular policies exclusively, there may be some that do not. The policy
improvement property shown in Prop. 3.2.3 holds for the former sequences,
but not necessarily for the latter. The following proposition provides the
basis for showing that J*

S is a fixed point of T based on the weak PI
property.

Proposition 3.2.4: (Weak PI Property Theorem) Given a set
S ⊂ E(X), assume that:

(1) S has the weak PI property.

(2) For each sequence {Jm} ⊂ S with Jm ↓ J for some J ∈ E(X),
we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x). (3.16)

Then:

(a) J*
S is a fixed point of T and the conclusions of Prop. 3.2.1 hold.

(b) (PI Convergence) Every sequence of S-regular policies {µk} that
can be generated by PI satisfies Jµk ↓ J*

S . If in addition the set

of S-regular policies is finite, there exists k̄ ≥ 0 such that µk̄ is
MS-optimal.

Proof: (a) Let {µk} be a sequence of S-regular policies generated by the
PI algorithm (there exists such a sequence by the weak PI property). Then
by Prop. 3.2.3, the sequence {Jµk} is monotonically nonincreasing and must

converge to some J∞ ≥ J*
S .

We first show that J∞ is a fixed point of T . Indeed, from Eq. (3.14),
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we have
Jµk ≥ TJµk ≥ TJ∞,

so by letting k → ∞, we obtain J∞ ≥ TJ∞. From Eq. (3.15) we also have
TJµk ≥ Jµk+1 Taking the limit in this relation as k → ∞, we obtain

lim
k→∞

(TJµk)(x) ≥ lim
k→∞

Jµk+1(x) = J∞(x), x ∈ X.

By using Eq. (3.16) we also have

H(x, u, J∞) = lim
k→∞

H(x, u, Jµk) ≥ lim
k→∞

(TJµk)(x), x ∈ X, u ∈ U(x).

By combining the preceding two relations, we obtain

H(x, u, J∞) ≥ J∞(x), x ∈ X, u ∈ U(x),

and by taking the infimum of the left-hand side over u ∈ U(x), it follows
that TJ∞ ≥ J∞. Thus J∞ is a fixed point of T .

Finally, we show that J∞ = J*
S . Indeed, since J*

S ≤ Jµk , we have

J*
S ≤ J∞ = T kJ∞ ≤ T k

µJ∞ ≤ T k
µJµ0 , ∀ µ ∈ MS , k = 0, 1, . . . .

By taking the limit as k → ∞, and using the fact µ ∈ MS and Jµ0 ∈ S, it

follows that J*
S ≤ J∞ ≤ Jµ, for all µ ∈ MS . By taking the infimum over

µ ∈ MS, it follows that J∞ = J*
S , so J*

S is a fixed point of T .

(b) The limit of {Jµk} was shown to be equal to J*
S in the preceding proof.

Moreover, the finiteness of MS and the policy improvement property of
Prop. 3.2.3 imply that some µk̄ is MS-optimal. Q.E.D.

Note that under the weak PI property, the preceding proposition
shows convergence of the PI-generated cost functions Jµk to J*

S but not
necessarily to J*. An example of this type of behavior was seen in the
linear-quadratic problem of Section 3.1.4 (where S is the set of nonnega-
tive quadratic functions). Let us describe another example, which shows
in addition that under the weak PI property, it is possible for the PI algo-
rithm to generate a nonmonotonic sequence of policy cost functions that
includes both optimal and strictly suboptimal policies.

Example 3.2.2: (Weak PI Property and the Deterministic
Shortest Path Example)

Consider the deterministic shortest path example of Section 3.1.1 for the case
where there is a zero length cycle (a = 0), and let S be the real line ℜ, as
in Example 3.2.1. There are two policies: µ which moves from state 1 to the
destination at cost b, and µ′ which stays at state 1 at cost 0. Starting with
the S-regular policy µ, the PI algorithm generates the policy that corresponds
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to the minimum in TJµ = min{b, Jµ} = min{b, b}. Thus both the S-regular
policy µ and the S-irregular µ′ can be generated at the first iteration. This
means that the weak PI property holds (although the strong PI property,
which will be introduced shortly, does not hold). Indeed, consistent with
Prop. 3.2.4, we have that J∗

S = Jµ = b is a fixed point of T , in fact the only
fixed point of T in the well-behaved region {J | J ≥ b}.

An interesting fact here is that when b < 0, and PI is started with the
optimal S-regular policy µ, then it may generate the S-irregular policy µ′,
and from that policy, it will generate µ again. Thus the weak PI property
does not preclude the PI algorithm from generating a policy sequence that
includes S-irregular policies, with corresponding policy cost functions that
are oscillating.

Let us also revisit the blackmailer example of Section 3.1.3. In the first
variant of that example, when S = ℜ, all policies are S-regular, the weak
PI property holds, and Prop. 3.2.4 applies. In this case, PI will generate a
sequence of S-regular policies that converges to J*

S = −∞, which is a fixed
point of T , consistent with Prop. 3.2.4 (even though J*

S /∈ S and there is
no MS-optimal policy).

Analysis Under the Strong PI Property

Proposition 3.2.4(a) does not guarantee that every sequence {µk} generated
by the PI algorithm satisfies Jµk ↓ J*

S . This is true only for the sequences
that consist of S-regular policies. We know that when the weak PI property
holds, there exists at least one such sequence, but PI can also generate
sequences that contain S-irregular policies, even when started with an S-
regular policy, as we have seen in Example 3.2.2. We thus introduce a
stronger type of PI property, which will guarantee stronger conclusions.

Definition 3.2.4: (Strong PI Property) We say that a set S ⊂
E(X) has the strong PI property if:

(a) There exists at least one S-regular policy.

(b) For every S-regular policy µ, any policy µ′ such that Tµ′Jµ =
TJµ is S-regular, and there exists at least one such µ′.

The strong PI property implies that every sequence that can be gen-
erated by PI starting from an S-regular policy consists exclusively of S-
regular policies. Moreover, there exists at least one such sequence. Hence
the strong PI property implies the weak PI property. Thus if the strong
PI property holds together with the mild continuity condition (2) of Prop.
3.2.4, it follows that J*

S is a fixed point of T and Prop. 3.2.1 applies. We
will see that the strong PI property implies additional results, relating to
the uniqueness of the fixed point of T .
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The following proposition provides conditions guaranteeing that S
has the strong PI property. The salient feature of these conditions is that
they preclude optimality of an S-irregular policy [see condition (4) of the
proposition].

Proposition 3.2.5: (Verifying the Strong PI Property) Given
a set S ⊂ E(X), assume that:

(1) J(x) < ∞ for all J ∈ S and x ∈ X .

(2) There exists at least one S-regular policy.

(3) For every J ∈ S there exists a policy µ such that TµJ = TJ .

(4) For every J ∈ S and S-irregular policy µ, there exists a state
x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞. (3.17)

Then:

(a) A policy µ satisfying TµJ ≤ J for some function J ∈ S is S-
regular.

(b) S has the strong PI property.

Proof: (a) By the monotonicity of Tµ, we have lim supk→∞ T k
µJ ≤ J , and

since by condition (1), J(x) < ∞ for all x, it follows from Eq. (3.17) that
µ is S-regular.

(b) In view of condition (3), it will suffice to show that for every S-regular
policy µ, any policy µ′ such that Tµ′Jµ = TJµ is also S-regular. Indeed we
have

Tµ′Jµ = TJµ ≤ TµJµ = Jµ,

so µ′ is S-regular by part (a). Q.E.D.

For an example where the assumptions of the preceding proposition
fail, consider the linear-quadratic problem of Section 3.1.4. Here S is the set
of nonnegative quadratic functions, but the optimal policy µ∗ that applies
control u = 0 at all states is S-irregular, since we do not have T k

µ∗J →
Jµ∗ = 0 for J equal to a positive quadratic function, while condition (4) of
the proposition does not hold. Thus we cannot conclude that the strong
PI property holds in the absence of additional analysis.

We next derive some of the implications of the strong PI property
regarding fixed properties of J*

S . In particular, we show that if J*
S ∈ S,
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then J*
S is the unique fixed point of T within S. This result will be the

starting point for the analysis of Section 3.3.

Proposition 3.2.6: (Strong PI Property Theorem) Let S sat-
isfy the conditions of Prop. 3.2.5.

(a) (Uniqueness of Fixed Point) If T has a fixed point within S, then
this fixed point is equal to J*

S .

(b) (Fixed Point Property and Optimality Condition) If J*
S ∈ S, then

J*
S is the unique fixed point of T within S and the conclusions of

Prop. 3.2.1 hold. Moreover, every policy µ that satisfies TµJ*
S =

TJ*
S is MS-optimal and there exists at least one such policy.

(c) (PI Convergence) If for each sequence {Jm} ⊂ S with Jm ↓ J for
some J ∈ E(X), we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x),

then J*
S is a fixed point of T , and every sequence {µk} generated

by the PI algorithm starting from an S-regular policy µ0 satisfies
Jµk ↓ J*

S . Moreover, if the set of S-regular policies is finite, there

exists k̄ ≥ 0 such that µk̄ is MS-optimal.

Proof: (a) Let J ′ ∈ S be a fixed point of T . Then for every µ ∈ MS and
k ≥ 1, we have J ′ = T kJ ′ ≤ T k

µJ ′. By taking the limit as k → ∞, we have
J ′ ≤ Jµ, and by taking the infimum over µ ∈ MS , we obtain J ′ ≤ J*

S . For
the reverse inequality, let µ′ be such that J ′ = TJ ′ = Tµ′J ′ [cf. condition
(3) of Prop. 3.2.5]. Then by Prop. 3.2.5(a), it follows that µ′ is S-regular,
and since J ′ ∈ S, by the definition of S-regularity, we have J ′ = Jµ′ ≥ J*

S ,
showing that J ′ = J*

S .

(b) For every µ ∈ MS we have Jµ ≥ J*
S , so that

Jµ = TµJµ ≥ TµJ*
S ≥ TJ*

S.

Taking the infimum over all µ ∈ MS , we obtain J*
S ≥ TJ*

S. Let µ be a policy
such that TJ*

S = TµJ*
S , [there exists one by condition (3) of Prop. 3.2.5,

since we assume that J*
S ∈ S]. The preceding relations yield J*

S ≥ TµJ*
S ,

so by Prop. 3.2.5(a), µ is S-regular. Therefore, we have

J*
S ≥ TJ*

S = TµJ*
S ≥ lim

k→∞
T k
µJ*

S = Jµ ≥ J*
S ,

where the second equality holds since µ was proved to be S-regular, and
J*
S ∈ S by assumption. Hence equality holds throughout in the above
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relation, which proves that J*
S is a fixed point of T (implying the conclusions

of Prop. 3.2.1) and that µ is MS-optimal.

(c) Since the strong PI property [which holds by Prop. 3.2.5(b)] implies the
weak PI property, the result follows from Prop. 3.2.4(b). Q.E.D.

The preceding proposition does not address the question whether J*

is a fixed point of T , and does not guarantee that VI converges to J*
S or

J* starting from every J ∈ S. We will consider both of these issues in the
next section. Note, however, a consequence of part (a): if J* is known to
be a fixed point of T and J* ∈ S, then J* = J*

S .
Let us now illustrate with examples some of the fine points of the

analysis. For an example where the preceding proposition does not apply,
consider the first two variants of the blackmailer problem of Section 3.1.3.
Let us take S = ℜ, so that all policies are S-regular and the strong PI
property holds. In the first variant of the problem, we have J* = J*

S =
−∞, and consistent with Prop. 3.2.4, J*

S is a fixed point of T . However,
J*
S /∈ S, and T has no fixed points within S. On the other hand if we

change S to be [−∞,∞), there are no S-regular policies at all, since for
J = −∞ ∈ S, we have T k

µJ = −∞ < Jµ for all µ. As noted earlier, both
Props. 3.2.1 and 3.2.4 do apply. In the second variant of the problem, we
have J* = J*

S = −1, while the set of fixed points of T within S is (−∞,−1],
so Prop. 3.2.6(a) fails. The reason is that the condition (3) of Prop. 3.2.5
is violated.

The next example, when compared with Example 3.2.2, illustrates
the difference in PI-related results obtained under the weak and the strong
PI properties. Moreover it highlights a generic difficulty in applying PI,
even if the strong PI property holds, namely that an initial S-regular policy
must be available.

Example 3.2.3: (Strong PI Property and the Deterministic
Shortest Path Example)

Consider the deterministic shortest path example of Section 3.1.1 for the case
where the cycle has positive length (a > 0), and let S be the real line ℜ, as
in Example 3.2.1. The two policies are: µ which moves from state 1 to the
destination at cost b and is S-regular, and µ′ which stays at state 1 at cost
a, which is S-irregular. However, µ′ has infinite cost and satisfies Eq (3.17).
As a result, Prop. 3.2.5 applies and the strong PI property holds. Consistent
with Prop. 3.2.6, J∗

S is the unique fixed point of T within S.
Turning now to the PI algorithm, we see that starting from the S-regular

µ, which is optimal, it stops at µ, consistent with Prop. 3.2.6(c). However,
starting from the S-irregular policy µ′ the policy evaluation portion of the
PI algorithm must be able to deal with the infinite cost values associated
with µ′. This is a generic difficulty in applying PI to problems where there
are irregular policies: we either need to know an initial S-regular policy, or



144 Semicontractive Models Chap. 3

appropriately modify the PI algorithm. See the discussions in Sections 3.5.1
and 3.6.2.

3.2.4 Optimistic Policy Iteration and λ-Policy Iteration

We have already shown the validity of the VI and PI algorithms for com-
puting J*

S (subject to various assumptions, and restrictions involving the
starting points). In this section and the next one we will consider some ad-
ditional algorithmic approaches that can be justified based on the preceding
analysis.

An Optimistic Form of PI

Let us consider an optimistic variant of PI, where policies are evaluated
inexactly, with a finite number of VIs. In particular, this algorithm starts
with some J0 ∈ E(X) such that J0 ≥ TJ0, and generates a sequence
{Jk, µk} according to

TµkJk = TJk, Jk+1 = T
mk

µk Jk, k = 0, 1, . . . , (3.18)

where mk is a positive integer for each k.
The following proposition shows that optimistic PI converges under

mild assumptions to a fixed point of T , independently of any S-regularity
framework. However, when such a framework is introduced, and the se-
quence generated by optimistic PI generates a sequence of S-regular poli-
cies, then the algorithm converges to J*

S , which is in turn a fixed point of
T , similar to the PI convergence result under the weak PI property; cf.
Prop. 3.2.4(b).

Proposition 3.2.7: (Convergence of Optimistic PI) Let J0 ∈
E(X) be a function such that J0 ≥ TJ0, and assume that:

(1) For all µ ∈ M, we have Jµ = TµJµ, and for all J ∈ E(X) with
J ≤ J0, there exists µ̄ ∈ M such that Tµ̄J = TJ .

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X),
we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x).

Then the optimistic PI algorithm (3.18) is well defined and the follow-
ing hold:

(a) The sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞,
where J∞ is a fixed point of T .
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(b) If for a set S ⊂ E(X), the sequence {µk} generated by the algo-
rithm consists of S-regular policies, and we have Jk ∈ S for all
k, then Jk ↓ J*

S and J*
S is a fixed point of T .

Proof: (a) Condition (1) guarantees that the sequence {Jk, µk} is well
defined in the following argument. We have

J0 ≥ TJ0 = Tµ0J0 ≥ Tm0
µ0 J0 = J1

≥ Tm0+1

µ0 J0 = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2,

(3.19)
and continuing similarly, we obtain

Jk ≥ TJk ≥ Jk+1, k = 0, 1, . . . . (3.20)

Thus Jk ↓ J∞ for some J∞.
The proof that J∞ is a fixed point of T is similar to the case of the

PI algorithm (3.13) in Prop. 3.2.4. In particular, from Eq. (3.20), we have
Jk ≥ TJ∞, and by taking the limit as k → ∞,

J∞ ≥ TJ∞.

For the reverse inequality, we use Eq. (3.20) to write

H(x, u, Jk) ≥ (TJk)(x) ≥ J∞(x), ∀ x ∈ X, u ∈ U(x).

By taking the limit as k → ∞ and using condition (2), we have that

H(x, u, J∞) ≥ J∞(x), ∀ x ∈ X, u ∈ U(x).

By taking the infimum over u ∈ U(x), we obtain

TJ∞ ≥ J∞,

thus showing that TJ∞ = J∞.

(b) In the case where all the policies µk are S-regular and {Jk} ⊂ S, from
Eq. (3.19), we have Jk+1 ≥ Jµk for all k, so it follows that

J∞ = lim
k→∞

Jk ≥ lim inf
k→∞

Jµk ≥ J*
S .

We will also show that the reverse inequality holds, so that J∞ = J*
S .

Indeed, for every S-regular policy µ and all k ≥ 0, we have

J∞ = T kJ∞ ≤ T k
µJ∞ ≤ T k

µJ0,
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from which by taking limit as k → ∞ and using the assumption J0 ∈ S,
we obtain

J∞ ≤ lim
k→∞

T k
µJ0 = Jµ, ∀ µ ∈ MS .

Taking infimum over µ ∈ MS , we have J∞ ≤ J*
S . Thus, J∞ = J*

S , and by
using the properties of J∞ proved in part (a), the result follows. Q.E.D.

Note that, in general, the fixed point J∞ in Prop. 3.2.7(a) need not be
equal to J*

S or J*. As an illustration, consider the shortest path Example
3.2.1 with S = ℜ, and a = 0, b > 0. Then if 0 < J0 < b, it can be seen
that Jk = J0 for all k, so J* = 0 < J∞ and J∞ < J*

S = b.

λ-Policy Iteration

We next consider λ-policy iteration (λ-PI for short), which was described
in Section 2.5. It involves a scalar λ ∈ (0, 1) and it is defined by

TµkJk = TJk, Jk+1 = T
(λ)

µk Jk, (3.21)

where for any policy µ and scalar λ ∈ (0, 1), T
(λ)
µ is the multistep mapping

discussed in Section 1.2.5:

(T
(λ)
µ J)(x) = (1− λ)

∞∑

t=0

λt(T t+1
µ J)(x), x ∈ X. (3.22)

Here we assume that the limit of the series above is well-defined as a func-
tion in E(X) for all x ∈ X , µ ∈ M, and J ∈ E(X).

We will also assume that Tµ and T
(λ)
µ commute, i.e.,

Tµ(T
(λ)
µ J) = T

(λ)
µ (TµJ), ∀ µ ∈ M, J ∈ E(X). (3.23)

This assumption is commonly satisfied in DP problems where Tµ is linear,
such as the stochastic optimal control problem of Example 1.2.1.

To compare the λ-PI method (3.21) with the exact PI algorithm
(3.13), note that by the analysis of Section 1.2.5 (see also Exercise 1.2),

the mapping T
(λ)

µk is an extrapolated version of the proximal mapping for

solving the fixed point equation J = TµkJ . Thus in λ-PI, the policy evalua-
tion phase is done approximately with a single iteration of the (extrapolated)
proximal algorithm.

As noted in Section 2.5, the λ-PI and the optimistic PI methods are

related. The reason is that both mappings T
(λ)

µk and T
mk

µk involve multiple

applications of the VI mapping Tµk : a fixed number mk in the latter case,
and a geometrically weighted infinite number in the former case [cf. Eq.
(3.22)]. Thus λ-PI and optimistic PI use VI in alternative ways to evaluate
Jµk approximately.
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Since λ-PI and optimistic PI are related, it is not surprising that
they have the same type of convergence properties. We have the following
proposition, which is similar to Prop. 3.2.7.

Proposition 3.2.8: (Convergence of λ-PI) Let J0 ∈ E(X) be a
function such that J0 ≥ TJ0, assume that the limit in the series (3.22)
is well defined and Eq. (3.23) holds. Assume further that:

(1) For all µ ∈ M, we have Jµ = TµJµ, and for all J ∈ E(X) with
J ≤ J0, there exists µ̄ ∈ M such that Tµ̄J = TJ .

(2) For each sequence {Jm} ⊂ E(X) with Jm ↓ J for some J ∈ E(X),
we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x).

Then the λ-PI algorithm (3.21) is well defined and the following hold:

(a) A sequence {Jk} generated by the algorithm satisfies Jk ↓ J∞,
where J∞ is a fixed point of T .

(b) If for a set S ⊂ E(X), the sequence {µk} generated by the algo-
rithm consists of S-regular policies, and we have Jk ∈ S for all
k, then Jk ↓ J*

S and J*
S is a fixed point of T .

Proof: (a) We first note that for all µ ∈ M and J ∈ E(X) such that
J ≥ TµJ , we have

TµJ ≥ T
(λ)
µ J.

This follows from the power series expansion (3.22) and the fact that J ≥
TµJ implies that

TµJ ≥ T 2
µJ ≥ · · · ≥ Tm+1

µ J, ∀ m ≥ 1.

Using also the monotonicity of Tµ and T
(λ)
µ , and Eq. (3.23), we have that

J ≥ TµJ ⇒ TµJ ≥ T
(λ)
µ J ≥ T

(λ)
µ (TµJ) = Tµ(T

(λ)
µ J).

The preceding relation and our assumptions imply that

J0 ≥ TJ0 = Tµ0J0 ≥ T
(λ)
µ0 J0 = J1

≥ Tµ0(T
(λ)
µ0 J0) = Tµ0J1 ≥ TJ1 = Tµ1J1 ≥ · · · ≥ J2.

Continuing similarly, we obtain Jk ≥ TJk ≥ Jk+1 for all k. Thus Jk ↓ J∞
for some J∞. From this point, the proof that J∞ is a fixed point of T is
similar to the one of Prop. 3.2.7(a).

(b) Similar to the proof of Prop. 3.2.7(b). Q.E.D.
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3.2.5 A Mathematical Programming Approach

Let us finally consider an alternative to the VI and PI approaches. It is
based on the fact that J*

S is an upper bound to all functions J ∈ S that
satisfy J ≤ TJ , as we will show shortly. We will exploit this fact to obtain a
method to compute J*

S that is based on solution of a related mathematical
programming problem. We have the following proposition.

Proposition 3.2.9: Given a set S ⊂ E(X), for all functions J ∈ S
satisfying J ≤ TJ , we have J ≤ J*

S .

Proof: If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides
and using the monotonicity of T , we obtain J ≤ T kJ ≤ T k

µJ for all k and
S-regular policies µ. Taking the limit as k → ∞, we obtain J ≤ Jµ, so by
taking the infimum over µ ∈ MS, we obtain J ≤ J*

S . Q.E.D.

Thus if J*
S is a fixed point of T , it is the “largest” fixed point of T , and

we can use the preceding proposition to compute J*
S by maximizing an ap-

propriate monotonically increasing function of J subject to the constraints
J ∈ S and J ≤ TJ . † This approach, when applied to finite-spaces Marko-
vian decision problems, is usually referred to as the linear programming
solution method , since then the resulting optimization problem is a linear
program (see e.g., see Exercise 2.5 for the case of contractive problems or
[Ber12a], Ch. 2).

Suppose now that X = {1, . . . , n}, S = ℜn, and J*
S is a fixed point of

T . Then Prop. 3.2.9 shows that J*
S =

(
J*
S(1), . . . , J

*
S(n)

)
is the unique solu-

tion of the following optimization problem in the vector J =
(
J(1), . . . , J(n)

)
:

maximize

n∑

i=1

βiJ(i)

subject to J(i) ≤ H(i, u, J), i = 1, . . . , n, u ∈ U(i),

where β1, . . . , βn are any positive scalars. If H is linear in J and each
U(i) is a finite set, this is a linear program, which can be solved by using
standard linear programming methods.

† For the mathematical programming approach to apply, it is sufficient that
J∗
S ≤ TJ∗

S . However, we generally have J∗
S ≥ TJ∗

S (this follows by writing

Jµ = TµJµ ≥ TJµ ≥ TJ∗
S , ∀ µ ∈ MS,

and taking the infimum over all µ ∈ MS), so the condition J∗
S ≤ TJ∗

S is equivalent

to J∗
S being a fixed point of T .
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3.3 IRREGULAR POLICIES/INFINITE COST CASE

The results of the preceding section guarantee (under various conditions)
that J*

S is a fixed point of T and can be found by the VI and PI algorithms,
but they do not assert that J* is a fixed point of T or that J* = J*

S . In this
section we address these issues by carrying the strong PI property analysis
further with some additional assumptions. A critical part of the analysis
is based on the strong PI property theorem of Prop. 3.2.6. We first collect
all of our assumptions. We will verify these assumptions in the context of
several applications in Section 3.5.

Assumption 3.3.1: We have a subset S ⊂ R(X) satisfying the fol-
lowing:

(a) S contains J̄ , and has the property that if J1, J2 are two functions
in S, then S contains all functions J with J1 ≤ J ≤ J2.

(b) The function J*
S = infµ∈MS

Jµ belongs to S.

(c) For each S-irregular policy µ and each J ∈ S, there is at least
one state x ∈ X such that

lim sup
k→∞

(T k
µJ)(x) = ∞.

(d) The control set U is a metric space, and the set

{
u ∈ U(x) | H(x, u, J) ≤ λ

}

is compact for every J ∈ S, x ∈ X , and λ ∈ ℜ.

(e) For each sequence {Jm} ⊂ S with Jm ↑ J for some J ∈ S,

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(f) For each function J ∈ S, there exists a function J ′ ∈ S such that
J ′ ≤ J and J ′ ≤ TJ ′.

An important restriction of the preceding assumption is that S con-
sists of real-valued functions . This underlies the mechanism of differenti-
ating between S-regular and S-irregular policies that is embodied in As-
sumption 3.3.1(c).

The conditions (b) and (c) of the preceding assumption have been in-
troduced in Props. 3.2.5 and 3.2.6 in the context of the strong PI property-
related analysis. New conditions, not encountered earlier, are (a), (e), and
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(f). They will be used to assert that J* = J*
S , that J

* is the unique fixed
point of T within S, and that the VI and PI algorithms have improved
convergence properties compared with the ones of Section 3.2.

Note that in the case where S is the set of real-valued functions R(X)
and J̄ ∈ R(X), condition (a) is automatically satisfied, while condition
(e) is typically verified easily. The verification of condition (f) may be
nontrivial in some cases. We postpone the discussion of this issue for later
(see the subsequent Prop. 3.3.2).

The main result of this section is the following proposition, which
provides results that are almost as strong as the ones for contractive models.

Proposition 3.3.1: Let Assumption 3.3.1 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
the set S.

(b) We have T kJ → J* for all J ∈ S.

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover, there
exists an optimal policy that is S-regular.

(d) For any J ∈ S, if J ≤ TJ we have J ≤ J*, and if J ≥ TJ we
have J ≥ J*.

(e) If in addition for each sequence {Jm} ⊂ S with Jm ↓ J for some
J ∈ S, we have

H (x, u, J) = lim
m→∞

H(x, u, Jm), ∀ x ∈ X, u ∈ U(x),

then every sequence {µk} generated by the PI algorithm starting
from an S-regular policy µ0 satisfies Jµk ↓ J*. Moreover, if the

set of S-regular policies is finite, there exists k̄ ≥ 0 such that µk̄

is optimal.

We will prove Prop. 3.3.1 through a sequence of lemmas, which delin-
eate the assumptions that are needed for each part of the proof. Our first
lemma guarantees that starting from an S-regular policy, the PI algorithm
is well defined.

Lemma 3.3.1: Let Assumption 3.3.1(d) hold. For every J ∈ S, there
exists a policy µ such that TµJ = TJ .

Proof: For any x ∈ X with (TJ)(x) < ∞, let
{
λm(x)

}
be a decreasing



Sec. 3.3 Irregular Policies/Infinite Cost Case 151

scalar sequence with

λm(x) ↓ inf
u∈U(x)

H(x, u, J).

The set

Um(x) =
{
u ∈ U(x) | H(x, u, J) ≤ λm(x)

}
,

is nonempty, and by assumption it is compact. The set of points attain-
ing the infimum of H(x, u, J) over U(x) is ∩∞

m=0Um(x), and is therefore
nonempty. Let ux be a point in this intersection. Then we have

H(x, ux, J) ≤ λm(x), ∀ m ≥ 0. (3.24)

Consider now a policy µ, which is formed by the point ux for x with
(TJ)(x) < ∞, and by any point ux ∈ U(x) for x with (TJ)(x) = ∞. Taking
the limit in Eq. (3.24) asm → ∞ shows that µ satisfies (TµJ)(x) = (TJ)(x)
for x with (TJ)(x) < ∞. For x with (TJ)(x) = ∞, we also have trivially
(TµJ)(x) = (TJ)(x), so TµJ = TJ . Q.E.D.

The next two lemmas follow from the analysis of the preceding section.

Lemma 3.3.2: Let Assumption 3.3.1(c) hold. A policy µ that satis-
fies TµJ ≤ J for some J ∈ S is S-regular.

Proof: This is Prop. 3.2.5(a). Q.E.D.

Lemma 3.3.3: Let Assumption 3.3.1(b),(c),(d) hold. Then:

(a) The function J*
S of Assumption 3.3.1(b) is the unique fixed point

of T within S.

(b) Every policy µ satisfying TµJ*
S = TJ*

S is optimal within the set
of S-regular policies, i.e., µ is S-regular and Jµ = J*

S . Moreover,
there exists at least one such policy.

Proof: This is Prop. 3.2.6(b) [Assumption 3.3.1(d) guarantees that for
every J ∈ S, there exists a policy µ such that TµJ = TJ (cf. Lemma
3.3.1), which is part of the assumptions of Prop. 3.2.6]. Q.E.D.

Let us also prove the following technical lemma, which makes use of
the additional part (e) of Assumption 3.3.1.
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Lemma 3.3.4: Let Assumption 3.3.1(b),(c),(d),(e) hold. Then if J ∈
S, {T kJ} ⊂ S, and T kJ ↑ J∞ for some J∞ ∈ S, we have J∞ = J*

S .

Proof: We fix x ∈ X , and consider the sets

Uk(x) =
{
u ∈ U(x) | H(x, u, T kJ) ≤ J∞(x)

}
, k = 0, 1, . . . , (3.25)

which are compact by assumption. Let uk ∈ U(x) be such that

H(x, uk, T kJ) = inf
u∈U(x)

H(x, u, T kJ) = (T k+1J)(x) ≤ J∞(x)

(such a point exists by Lemma 3.3.1). Then uk ∈ Uk(x).
For every k, consider the sequence {ui}∞i=k. Since T

kJ ↑ J∞, it follows
using the monotonicity of H , that for all i ≥ k,

H(x, ui, T kJ) ≤ H(x, ui, T iJ) ≤ J∞(x).

Therefore from the definition (3.25), we have {ui}∞i=k ⊂ Uk(x). Since Uk(x)
is compact, all the limit points of {ui}∞i=k belong to Uk(x) and at least one
limit point exists. Hence the same is true for the limit points of the whole
sequence {ui}. Thus if ũ is a limit point of {ui}, we have

ũ ∈ ∩∞
k=0Uk(x).

By Eq. (3.25), this implies that

H
(
x, ũ, T kJ

)
≤ J∞(x), k = 0, 1, . . . .

Taking the limit as k → ∞ and using Assumption 3.3.1(e), we obtain

(TJ∞)(x) ≤ H(x, ũ, J∞) ≤ J∞(x).

Thus, since x was chosen arbitrarily within X , we have TJ∞ ≤ J∞. To
show the reverse inequality, we write T kJ ≤ J∞, apply T to this inequality,
and take the limit as k → ∞, so that J∞ = limk→∞ T k+1J ≤ TJ∞. It
follows that J∞ = TJ∞. Since J∞ ∈ S by assumption, by applying Lemma
3.3.3(a) we have J∞ = J*

S . Q.E.D.

We are now ready to prove Prop. 3.3.1 by making use of the additional
parts (a) and (f) of Assumption 3.3.1.

Proof of Prop. 3.3.1: (a), (b) We will first prove that T kJ → J*
S for all

J ∈ S, and we will use this to prove that J*
S = J* and that there exists
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an optimal S-regular policy. Thus parts (a) and (b), together with the
existence of an optimal S-regular policy, will be shown simultaneously.

We fix J ∈ S, and choose J ′ ∈ S such that J ′ ≤ J and J ′ ≤ TJ ′

[cf. Assumption 3.3.1(f)]. By the monotonicity of T , we have T kJ ′ ↑ J∞
for some J∞ ∈ E(X). Let µ be an S-regular policy such that Jµ = J*

S [cf.
Lemma 3.3.3(b)]. Then we have, using again the monotonicity of T ,

J∞ = lim
k→∞

T kJ ′ ≤ lim sup
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ = J*

S . (3.26)

Since J ′ and J*
S belong to S, and J ′ ≤ T kJ ′ ≤ J∞ ≤ J*

S , Assumption
3.3.1(a) implies that {T kJ ′} ⊂ S, and J∞ ∈ S. From Lemma 3.3.4, it
then follows that J∞ = J*

S . Thus equality holds throughout in Eq. (3.26),
proving that limk→∞ T kJ = J*

S .
There remains to show that J*

S = J* and that there exists an optimal
S-regular policy. To this end, we note that by the monotonicity Assumption
3.2.1, for any policy π = {µ0, µ1, . . .}, we have

Tµ0 · · ·Tµk−1
J̄ ≥ T kJ̄ .

Taking the limit of both sides as k → ∞, we obtain

Jπ ≥ lim
k→∞

T kJ̄ = J*
S ,

where the equality follows since T kJ → J*
S for all J ∈ S (as shown earlier),

and J̄ ∈ S [cf. Assumption 3.3.1(a)]. Thus for all π ∈ Π, Jπ ≥ J*
S = Jµ,

implying that the policy µ that is optimal within the class of S-regular
policies is optimal over all policies, and that J*

S = J*.

(c) If µ is optimal, then Jµ = J* ∈ S, so by Assumption 3.3.1(c), µ is
S-regular and therefore TµJµ = Jµ. Hence,

TµJ* = TµJµ = Jµ = J* = TJ*.

Conversely, if
J* = TJ* = TµJ*,

µ is S-regular (cf. Lemma 3.3.2), so J* = limk→∞ T k
µJ* = Jµ. Therefore,

µ is optimal.

(d) If J ∈ S and J ≤ TJ , by repeatedly applying T to both sides and using
the monotonicity of T , we obtain J ≤ T kJ for all k. Taking the limit as
k → ∞ and using the fact T kJ → J* [cf. part (b)], we obtain J ≤ J*. The
proof that J ≥ TJ implies J ≥ J* is similar.

(e) As in the proof of Prop. 3.2.4(b), the sequence {Jµk} converges mono-
tonically to a fixed point of T , call it J∞. Since J∞ lies between Jµ0 ∈ S

and J*
S ∈ S, it must belong to S, by Assumption 3.3.1(a). Since the only
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fixed point of T within S is J* [cf. part (a)], it follows that J∞ = J*.
Q.E.D.

Note that Prop. 3.3.1(d) provides the basis for a solution method
based on mathematical programming; cf. the discussion following Prop.
3.2.9. Here is an example where Prop. 3.3.1 does not apply, because the
compactness condition of Assumption 3.3.1(d) fails.

Example 3.3.1

Consider the third variant of the blackmailer problem (Section 3.1.3) for the
case where c > 0 and S = ℜ. Then the (nonoptimal) S-irregular policy µ̄
whereby at each period, the blackmailer may demand no payment (u = 0)
and pay cost c > 0, has infinite cost (Jµ̄ = ∞). However, T has multiple fixed
points within the real line, namely the set (−∞,−1]. By choosing S = ℜ, we
see that the uniqueness of fixed point part (a) of Prop. 3.3.1 fails because the
compactness part (d) of Assumption 3.3.1 is violated (all other parts of the
assumption are satisfied). In this example, the results of Prop. 3.2.1 apply
with S = ℜ, because J∗

S is a fixed point of T .

In various applications, the verification of part (f) of Assumption 3.3.1
may not be simple. The following proposition is useful in several contexts,
including some that we will encounter in Section 3.5.

Proposition 3.3.2: Let S be equal to Rb(X), the subset of R(X)
that consists of functions J that are bounded above and below, in the
sense that for some b ∈ ℜ, we have

∣∣J(x)
∣∣ ≤ b for all x ∈ X . Let parts

(b), (c), and (d) of Assumption 3.3.1 hold, and assume further that
for all scalars r > 0, we have

TJ*
S − re ≤ T (J*

S − re), (3.27)

where e is the unit function, e(x) ≡ 1. Then part (f) of Assumption
3.3.1 also holds.

Proof: Let J ∈ Rb(x), and let r > 0 be a scalar such that J*
S − re ≤ J

[such a scalar exists since J*
S ∈ Rb(x) by Assumption 3.3.1(b)]. Define

J ′ = J*
S − re, and note that by Lemma 3.3.3, J*

S is a fixed point of T . By
using Eq. (3.27), we have

J ′ = J*
S − re = TJ*

S − re ≤ T (J*
S − re) = TJ ′,

while J ′ ∈ Rb(x), thus proving part (f) of Assumption 3.3.1. Q.E.D.

The relation (3.27) is satisfied among others in stochastic optimal
control problems (cf. Example 1.2.1), where

(TJ)(x) = inf
u∈U(x)

E
{
g(x, u, w) + αJ

(
f(x, u, w)

)}
, x ∈ X,
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with α ∈ (0, 1]. Note that application of the preceding proposition is
facilitated when X is a finite set, in which case Rb(X) = R(X). This
fact will be used in the context of some of the applications of Sections
3.5.1-3.5.4.

3.4 IRREGULAR POLICIES/FINITE COST CASE -
A PERTURBATION APPROACH

In this section, we address problems where some S-irregular policies may
have finite cost for all states [thus violating Assumption 3.3.1(c)], so Prop.
3.3.1 cannot be used. Our approach instead will be to assert that J*

S is a
fixed point of T , so that Prop. 3.2.1 applies and can be used to guarantee
convergence of VI to J*

S starting from J0 ≥ J*
S .

Our line of analysis is quite different from the one of Sections 3.2.3
and 3.3, which was based on PI ideas. Instead, we add a perturbation to
the mapping H , designed to provide adequate differentiation between S-
regular and S-irregular policies. Using a limiting argument, as the size of
the perturbation diminishes to 0, we are able to prove that J*

S is a fixed
point of T . Moreover, we provide a perturbation-based PI algorithm that
may be more reliable than the standard PI algorithm, which can fail for
problems where irregular policies may have finite cost for all states; cf.
Example 3.2.2. We will also use the perturbation approach in Sections 4.5
and 4.6, where we will extend the notion of S-regularity to nonstationary
policies that do not lend themselves to a PI-based analysis.

An example where the approach of this section will be shown to apply
is an SSP problem where Assumption 3.3.1 is violated while J*(x) > −∞
for all x (see also Section 3.5.1). Here is a classical problem of this type.

Example 3.4.1 (Search Problem)

Consider a situation where the objective is to move within a finite set of
states searching for a state to stop while minimizing the expected cost. We
formulate this as a DP problem with finite state space X, and two controls
at each x ∈ X: stop, which yields an immediate cost s(x), and continue, in
which case we move to a state f(x,w) at cost g(x,w), where w is a random
variable with given distribution that may depend on x. The mapping H is

H(x, u, J) =

{
s(x) if u = stop,

E
{
g(x,w) + J

(
f(x,w)

)}
if u = continue,

and the function J̄ is identically 0.
Letting S = R(X), we note that the policy µ that stops nowhere is

S-irregular, since Tµ cannot have a unique fixed point within S (adding any
unit function multiple to J adds to TµJ the same multiple). This policy may
violate Assumption 3.3.1(c) of the preceding section, because its cost may be
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finite for all states. A special case where this occurs is when g(x,w) ≡ 0 for
all x. Then the cost function of µ is identically 0.

Note that case (b) of the deterministic shortest path problem of Sec-
tion 3.1.1, which involves a zero length cycle, is a special case of the search
problem just described. Therefore, the anomalous behavior we saw there
(nonconvergence of VI to J∗ and oscillation of PI; cf. Examples 3.2.1 and
3.2.2) may also arise in the context of the present example. We will see that
by adding a small positive constant to the length of the cycle we can rectify
the difficulties of VI and PI, at least partially; this is the idea behind the
perturbation approach that we will use in this section.

We will address the finite cost issue for irregular policies by intro-
ducing a perturbation that makes their cost infinite for some states. We
can then use Prop. 3.3.1 of the preceding section. The idea is that with a
perturbation, the cost functions of S-irregular policies may increase dispro-
portionately relative to the cost functions of the S-regular policies, thereby
making the problem more amenable to analysis.

We introduce a nonnegative “forcing function” p : X 7→ [0,∞), and
for each δ > 0 and policy µ, we consider the mappings

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δp(x), x ∈ X, TδJ = inf

µ∈M
Tµ,δJ.

We refer to the problem associated with the mappings Tµ,δ as the δ-
perturbed problem. The cost functions of policies π = {µ0, µ1, . . .} ∈ Π
and µ ∈ M for this problem are

Jπ,δ = lim sup
k→∞

Tµ0,δ · · ·Tµk,δ
J̄ , Jµ,δ = lim sup

k→∞

T k
µ,δJ̄ ,

and the optimal cost function is Ĵδ = infπ∈Π Jπ,δ.
The following proposition shows that if the δ-perturbed problem is

“well-behaved” with respect to a subset of S-regular policies, then its cost
function Ĵδ can be used to approximate the optimal cost function over this
subset of policies only. Moreover J*

S is a fixed point of T . Note that the
unperturbed problem need not be as well-behaved, and indeed J* need not
be a fixed point of T .

Proposition 3.4.1: Given a set S ⊂ E(X), let M̂ be a subset of S-
regular policies, and let Ĵ be the optimal cost function over the policies
in M̂ only, i.e.,

Ĵ = inf
µ∈M̂

Jµ.

Assume that for every δ > 0:

(1) The optimal cost function Ĵδ of the δ-perturbed problem satisfies
the corresponding Bellman equation Ĵδ = TδĴδ.
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(2) We have inf
µ∈M̂

Jµ,δ = Ĵδ, i.e., for every x ∈ X and ǫ > 0, there

exists a policy µx,ǫ ∈ M̂ such that Jµx,ǫ,δ(x) ≤ Ĵδ(x) + ǫ.

(3) For every µ ∈ M̂, we have

Jµ,δ ≤ Jµ + wµ,δ,

where wµ,δ is a function such that limδ↓0 wµ,δ = 0.

(4) For every sequence {Jm} ⊂ S with Jm ↓ J , we have

lim
m→∞

H(x, u, Jm) = H(x, u, J), ∀ x ∈ X, u ∈ U(x).

Then J*
S is a fixed point of T and the conclusions of Prop. 3.2.1 hold.

Moreover, we have
J*
S = Ĵ = lim

δ↓0
Ĵδ.

Proof: For every x ∈ X , using conditions (2) and (3), we have for all

δ > 0, ǫ > 0, and µ ∈ M̂,

Ĵ(x)−ǫ ≤ Jµx,ǫ(x)−ǫ ≤ Jµx,ǫ,δ(x)−ǫ ≤ Ĵδ(x) ≤ Jµ,δ(x) ≤ Jµ(x)+wµ,δ(x).

By taking the limit as ǫ ↓ 0, we obtain for all δ > 0 and µ ∈ M̂,

Ĵ ≤ Ĵδ ≤ Jµ,δ ≤ Jµ + wµ,δ.

By taking the limit as δ ↓ 0 and then the infimum over all µ ∈ M̂, it follows
[using also condition (3)] that

Ĵ ≤ lim
δ↓0

Ĵδ ≤ inf
µ∈M̂

lim
δ↓0

Jµ,δ ≤ inf
µ∈M̂

Jµ = Ĵ ,

so that Ĵ = limδ↓0 Ĵδ.

Next we prove that Ĵ is a fixed point of T and use this fact to show
that Ĵ = J*

S , thereby concluding the proof. Indeed, from condition (1) and

the fact Ĵδ ≥ Ĵ shown earlier, we have for all δ > 0,

Ĵδ = TδĴδ ≥ T Ĵδ ≥ T Ĵ,

and by taking the limit as δ ↓ 0 and using part (a), we obtain Ĵ ≥ T Ĵ. For
the reverse inequality, let {δm} be a sequence with δm ↓ 0. Using condition
(1) we have for all m,

H(x, u, Ĵδm) + δmp(x) ≥ (Tδm Ĵδm)(x) = Ĵδm(x), ∀ x ∈ X, u ∈ U(x).
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Taking the limit as m → ∞, and using condition (4) and the fact Ĵδm ↓ Ĵ
shown earlier, we have

H(x, u, Ĵ) ≥ Ĵ(x), ∀ x ∈ X, u ∈ U(x),

so that T Ĵ ≥ Ĵ . Thus Ĵ is a fixed point of T .
Finally, to show that Ĵ = J*

S , we first note that J*
S ≤ Ĵ since every

policy in M̂ is S-regular. For the reverse inequality, let µ be S-regular.
We have Ĵ = T Ĵ ≤ TµĴ ≤ T k

µ Ĵ for all k ≥ 1, so that for all µ′ ∈ M̂,

Ĵ ≤ lim
k→∞

T k
µ Ĵ ≤ lim

k→∞
T k
µJµ′ = Jµ,

where the equality follows since µ and µ′ are S-regular (so Jµ′ ∈ S). Taking

the infimum over all S-regular µ, we obtain Ĵ ≤ J*
S , so that J*

S = Ĵ .
Q.E.D.

Aside from S-regularity of the set M̂, a key assumption of the pre-
ceding proposition is that inf

µ∈M̂
Jµ,δ = Ĵδ, i.e., that with a perturbation

added, the subset of policies M̂ is sufficient (the optimal cost of the δ-

perturbed problem can be achieved using the policies in M̂). This is the

key insight to apply when selecting M̂.
Note that the preceding proposition applies even if

lim
δ↓0

Ĵδ(x) > J*(x)

for some x ∈ X . This is illustrated by the deterministic shortest path
example of Section 3.1.1, for the zero-cycle case where a = 0 and b > 0.
Then for S = ℜ, we have J*

S = b > 0 = J*, while the proposition applies
because its assumptions are satisfied with p(x) ≡ 1. Consistently with the
conclusions of the proposition, we have Ĵδ = b + δ, so J*

S = Ĵ = limδ↓0 Ĵδ
and J*

S is a fixed point of T .
Proposition 3.4.1 also applies to Example 3.4.1. In particular, it can

be used to assert that J*
S is a fixed point of T , and hence also that the

conclusions of Prop. 3.2.1 hold. These conclusions imply that J*
S is the

unique fixed point of T within the set {J | J ≥ J*
S} and that the VI

algorithm converges to J*
S starting from within this set.

We finally note that while Props. 3.3.1 and 3.4.1 relate to qualitatively
different problems, they can often be used synergistically. In particular,
Prop. 3.3.1 may be applied to the δ-perturbed problem in order to verify
the assumptions of Prop. 3.4.1.

A Policy Iteration Algorithm with Perturbations

We now consider a subset M̂ of S-regular policies, and introduce a ver-
sion of the PI algorithm that uses perturbations and generates a sequence
{µk} ⊂ M̂ such that Jµk → J*

S . We assume the following.
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Assumption 3.4.1: The subset of S-regular policies M̂ is such that:

(a) The conditions of Prop. 3.4.1 are satisfied.

(b) Every policy µ ∈ M̂ is S-regular for all the δ-perturbed problems,
δ > 0.

(c) Given a policy µ ∈ M̂ and a scalar δ > 0, every policy µ′ such
that

Tµ′Jµ,δ = TJµ,δ

belongs to M̂, and at least one such policy exists.

The perturbed version of the PI algorithm is defined as follows. Let
{δk} be a positive sequence with δk ↓ 0, and let µ0 be a policy in M̂. At

iteration k, we have a policy µk ∈ M̂, and we generate µk+1 ∈ M̂ according
to

Tµk+1Jµk,δk
= TJµk,δk

. (3.28)

Note that by Assumption 3.4.1(c) the algorithm is well-defined, and is

guaranteed to generate a sequence of policies {µk} ⊂ M̂. We have the
following proposition.

Proposition 3.4.2: Let Assumption 3.4.1 hold. Then J*
S is a fixed

point of T and for a sequence of S-regular policies {µk} generated by
the perturbed PI algorithm (3.28), we have Jµk ,δk

↓ J*
S and Jµk → J*

S .

Proof: We have that J*
S is a fixed point of T by Prop. 3.4.1. The algorithm

definition (3.28) implies that for all m ≥ 1 we have

Tm
µk+1,δk

Jµk,δk
≤ Tµk+1,δk

Jµk ,δk
= TJµk,δk

+ δk p ≤ Jµk,δk
.

From this relation it follows that

Jµk+1,δk+1
≤ Jµk+1,δk

= lim
m→∞

Tm
µk+1,δk

Jµk ,δk
≤ Jµk ,δk

,

where the equality holds because µk+1 and µk are S-regular for all the δ-
perturbed problems. It follows that {Jµk,δk

} is monotonically nonincreas-

ing, so that Jµk,δk
↓ J∞ for some J∞. Moreover, we must have J∞ ≥ J*

S

since Jµk ,δk
≥ Jµk ≥ J*

S . Thus

J*
S ≤ J∞ = lim

k→∞
TJµk,δk

. (3.29)
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We also have

inf
u∈U(x)

H(x, u, J∞) ≤ lim
k→∞

inf
u∈U(x)

H
(
x, u, Jµk,δk

)

≤ inf
u∈U(x)

lim
k→∞

H
(
x, u, Jµk,δk

)

= inf
u∈U(x)

H
(
x, u, lim

k→∞
Jµk ,δk

)

= inf
u∈U(x)

H(x, u, J∞),

where the first inequality follows from the fact J∞ ≤ Jµk ,δk
, which implies

that H(x, u, J∞) ≤ H
(
x, u, Jµk,δk

)
, and the first equality follows from the

continuity property that is assumed in Prop. 3.4.1. Thus equality holds
throughout above, so that

lim
k→∞

TJµk,δk
= TJ∞. (3.30)

Combining Eqs. (3.29) and (3.30), we obtain J*
S ≤ J∞ = TJ∞. By re-

placing Ĵ with J∞ in the last part of the proof of Prop. 3.4.1, we obtain
J*
S = J∞. Thus Jµk ,δk

↓ J*
S , which in view of the fact Jµk,δk

≥ Jµk ≥ J*
S ,

implies that Jµk → J*
S . Q.E.D.

When the control space U is finite, Prop. 3.4.2 also implies that the
generated policies µk will be optimal for all k sufficiently large. The reason
is that the set of policies is finite and there exists a sufficiently small ǫ > 0,
such that for all nonoptimal µ there is some state x such that Jµ(x) ≥

Ĵ(x)+ǫ. This convergence behavior should be contrasted with the behavior
of PI without perturbations, which may lead to oscillations, as noted earlier.

However, when the control space U is infinite, the generated sequence
{µk} may exhibit some serious pathologies in the limit. If {µk}K is a
subsequence of policies that converges to some µ̄, in the sense that

lim
k→∞, k∈K

µk(x) = µ̄(x), ∀ x = 1, . . . , n,

it does not follow that µ̄ is S-regular. In fact it is possible that the generated
sequence of S-regular policies {µk} satisfies limk→∞ Jµk → J*

S = J*, yet
{µk} may converge to an S-irregular policy whose cost function is strictly
larger than J*

S , as illustrated by the following example.

Example 3.4.2

Consider the third variant of the blackmailer problem (Section 3.1.3) for the
case where c = 0 (the blackmailer may forgo demanding a payment at cost
c = 0); see Fig. 3.4.1. Here the mapping T is given by

TJ = min

{
J, inf

0<u≤1

{
− u+ u2 + (1− u)J

}}
,
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a 1 2 1 2 t b

u Destination

1] Cost −u

Prob. u

u Prob. 1− u

u Control u ∈ [0, 1] Cost

u Cost 0 Destination

Figure 3.4.1. Transition diagram for a blackmailer problem (the third variant
of Section 3.1.3 in the case where c = 0). At state 1, the blackmailer may
demand any amount u ∈ [0, 1]. The victim will comply with probability
1 − u and will not comply with probability u, in which case the process will
terminate.

[cf. Eq. (3.4)], and can be written as

TJ = min
0≤u≤1

{
− u+ u2 + (1− u)J

}
.

Letting S = ℜ, it can be seen that the set of fixed points of T within S
is (−∞,−1]. Here the policy whereby the blackmailer demands no payment
(u = 0) and pays no cost at each period, is S-irregular and strictly suboptimal,
yet has finite (zero) cost, so part (c) of Assumption 3.3.1 is violated (all other
parts of the assumption are satisfied).

It can be seen that

J∗ = J∗
S = −1,

J∗
S is a fixed point of T , Prop. 3.2.1 applies, and VI converges to J∗ starting

from any J ≥ J∗. Moreover, starting from any policy (including the S-
irregular one that applies u = 0), the PI algorithm (3.28) generates a sequence
of S-regular policies {µk} with Jµk → J∗

S. However, {µk} converges to the
S-irregular and strictly suboptimal policy that applies u = 0.

Here a phenomenon of “oscillation in the limit” is observed: starting
with the S-irregular policy that applies u = 0, we generate a sequence of
S-regular policies that converges to the S-irregular policy we started from!
The perturbation-based PI algorithm of this section cannot rectify this type
of behavior; it can only guarantee that a sequence of S-regular policies with
Jµk → J∗

S is generated.

3.5 APPLICATIONS IN SHORTEST PATH AND OTHER
CONTEXTS

In this section we will apply the results of the preceding sections to various
problems with a semicontractive character, including shortest path and
deterministic optimal control problems of various types.
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As we are about to apply the theory developed so far in this chapter,
it may be helpful to summarize our results. Given a suitable set of functions
S, we have been dealing with two problems. These are the original prob-
lem whose optimal cost function is J*, and the restricted problem whose
optimal cost function is J*

S , the optimal cost over the S-regular policies.
In summary, the aims of our analysis have been the following:

(a) To establish the fixed point properties of T . We have showed under
various conditions (cf. Prop. 3.2.1) that J*

S is the unique fixed point
of T within the well-behaved region WS , and moreover the VI algo-
rithm converges from above to J*

S . Related analyses involve the use
of infinite cost assumptions for S-irregular policies (Section 3.3), pos-
sibly in conjunction with the use of perturbations (Section 3.4). A
favorable case is when J*

S = J*. However, we may also have J*
S 6= J*.

Generally, proving that J* is a fixed point of T is a separate issue,
which may either be addressed in conjunction with the analysis of
properties of J*

S as in Section 3.3 (cf. Prop. 3.3.1), or independently
of J*

S (for example J* is generically a fixed point of T in deterministic
problems, among other classes of problems; see Exercise 3.1).

(b) To delineate the initial conditions under which the VI and PI algo-
rithms are guaranteed to converge to J*

S or to J*. This was done in
conjunction with the analysis of the fixed point properties of T . For
example, a major line of analysis for establishing that J*

S is a fixed
point of T is based on the PI algorithm (cf. Sections 3.2.3 and 3.3).
We have also obtained several other results relating to the conver-
gence of variants of PI (the optimistic version, cf. Prop. 3.2.7, the
λ-PI version, cf. Prop. 3.2.8, and the perturbation-based version, cf.
Prop. 3.4.2), and to the mathematical programming-based solution,
cf. Section 3.2.5.

(c) To establish the existence of optimal policies for the original or for
the restricted problem, and the associated optimality conditions . This
was accomplished in conjunction with the analysis of the fixed points
of T , and under special compactness-like conditions (cf. Props. 3.2.1,
3.2.6, and 3.3.1).

As we apply our analysis to various specific contexts in this section, we
will make frequent reference to the pathological behavior that we witnessed
in the examples of Section 3.1. In particular, we will explain this behavior
through our theoretical results, and we will discuss how to preclude this
behavior through appropriate assumptions.

3.5.1 Stochastic Shortest Path Problems

Let us consider the SSP problem that we discussed in Section 1.3.2. It
involves a directed graph with nodes x = 1, . . . , n, plus a destination node
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t that is cost-free and absorbing. At each node x, we must select a control
u ∈ U(x), which defines a probability distribution pxy(u) over all possible
successor nodes y = 1, . . . , n, t, while a cost g(x, u) is incurred. We wish to
minimize the expected cost of the traversed path, with cost accumulated
up to reaching the destination.

Note that if for every feasible control the corresponding probability
distribution assigns probability 1 to a single successor node, we obtain the
deterministic shortest path problem of Section 3.1.1. This problem admits
a relatively simple analysis, yet exhibits pathological behavior that we have
described. The pathologies exhibited by SSP problems are more severe, and
were illustrated in Sections 3.1.2 and 3.1.3.

We formulate the SSP problem as an abstract DP problem where:

(a) The state space is X = {1, . . . , n} and the control constraint set is
U(x) for all x ∈ X . (For technical reasons, it is convenient to exclude
from X the destination t; we know that the optimal cost starting from
t is 0, and including t within X would just complicate the notation
and the analysis, with no tangible benefit.)

(b) The mapping H is given by

H(x, u, J) = g(x, u) +
n∑

y=1

pxy(u)J(y), x = 1, . . . , n.

(c) The function J̄ is identically 0, J̄(x) = 0 for all x.

We continue to denote by E(X) the set of all extended real-valued
functions J : X 7→ ℜ∗, and by R(X) the set of real-valued functions J :
X 7→ ℜ. Note that since X = {1, . . . , n}, R(X) is essentially the n-
dimensional space Rn.

Here the mapping Tµ corresponding to a policy µ maps R(X) to
R(X), and is given by

(TµJ)(x) = g
(
x, µ(x)

)
+

n∑

y=1

pxy
(
µ(x)

)
J(y), x = 1, . . . , n.

The corresponding cost for a given initial state x0 ∈ {1, . . . , n} is

Jµ(x0) = lim sup
k→∞

(T k
µ J̄)(x0) = lim sup

k→∞

k−1∑

m=0

E
{
g
(
xm, µ(xm)

)}
,

where {xm} is the (random) state trajectory generated under policy µ,
starting from initial state x0. The expected value E

{
g(xm, µ(xm))

}
above

is defined in the natural way: it is the weighted sum of the numerical values
g
(
x, µ(x)

)
, x = 1, . . . , n, weighted by the probabilities p(xm = x | x0, µ)
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that xm = x given that the initial state is x0 and policy µ is used. Thus
Jµ(x0) is the upper limit as k → ∞ of the cost for the first k steps or up
to reaching the destination, whichever comes first.

A stationary policy µ is said to be proper if for every initial state
there is positive probability that the destination will be reached under that
policy after at most n stages. A stationary policy that is not proper is said
to be improper . The relation between proper policies and S-regularity is
given in the following proposition.

Proposition 3.5.1: (Proper Policies and Regularity) A policy
is proper if and only if it is R(X)-regular.

Proof: Clearly µ is R(X)-regular if and only if the n × n matrix Pµ,
whose components are pij

(
µ(i)

)
, i, j = 1, . . . , n, is a contraction (since Tµ

is a linear mapping with matrix Pµ). If µ is proper then Pµ is a contraction
mapping with respect to some weighted sup-norm; this is a classical result,
given for example in [BeT89], Section 4.2. Conversely, it can be seen that
if µ is improper, Pµ is not a contraction mapping since the Markov chain
corresponding to µ has multiple ergodic classes and hence the equilibrium
equation ξ′ = ξ′Pµ has multiple solutions. Q.E.D.

Looking back to the shortest path examples of Sections 3.1.1-3.1.3,
we can make some observations. In deterministic shortest path problems,
µ(x) can be identified with the single successor node of node x. Thus µ is
proper if and only if the corresponding graph of arcs

(
x, µ(x)

)
is acyclic.

Moreover, there exists a proper policy if and only if each node is connected
to the destination with a sequence of arcs. Every improper policy involves
at least one cycle. Depending on the sign of the length of their cycle(s),
improper policies can be strictly suboptimal (if all cycles have positive
length), or may be optimal (possibly together with some proper policies,
if all cycles have nonnegative length). Moreover, if there are cycles with
negative length, no proper policy can be optimal and for the states x that
lie on some negative length cycle we have J*(x) = −∞.

A further characterization of the optimal solution is possible in deter-
ministic shortest path problems. Since the sets U(x) are finite, there exists
an optimal policy, which can be separated into a “proper” part consisting
of arcs that form an acyclic subgraph, and an “improper” part consisting
of cycles that have negative or zero length. These facts can be proved with
simple arguments, which will not be given here (deterministic shortest path
theory and algorithms are developed in detail in the author’s text [Ber98]).

In SSP problems, the situation is more complicated. In particular,
the cost function of an improper policy µ may not be a fixed point of
Tµ while J* may not be a fixed point of T (cf. the example of Section
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3.1.2). Moreover, there may not exist an optimal stationary policy even if
all policies are proper (cf. the three variants of the blackmailer example of
Section 3.1.3).

In this section we will use various assumptions, which we will in turn
translate into the conditions and corresponding results of Sections 3.2-3.4.
Throughout this section we will assume the following.

Assumption 3.5.1: There exists at least one proper policy.

Depending on the circumstances, we will also consider the use of one
or both of the following assumptions.

Assumption 3.5.2: The control space U is a metric space. Moreover,
for each state x, the set U(x) is a compact subset of U , the functions
pxy(·), y = 1, . . . , n, are continuous over U(x), and the function g(x, ·)
is lower semicontinuous over U(x).

Assumption 3.5.3: For every improper policy µ and function J ∈
R(X), there exists at least one state x ∈ X such that Jµ(x) = ∞.

An important consequence of Assumption 3.5.2 is that it implies the
compactness condition (d) of Assumption 3.3.1. We will also see from the
proof of the following proposition that Assumption 3.5.3 implies the infinite
cost condition (c) of Assumption 3.3.1.

Analysis Under the Strong SSP Conditions

The preceding three assumptions, referred to as the strong SSP condi-
tions , † were introduced in the paper [BeT91], and they were used to show
strong results for the SSP problem. In particular, the following proposition
was shown.

Proposition 3.5.2: Let the strong SSP conditions hold. Then:

(a) The optimal cost function J* is the unique solution of Bellman’s
equation J = TJ within R(X).

† The strong SSP conditions and the weak SSP conditions, which will be

introduced shortly, connect to the strong and weak PI properties of Section 3.2.
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(b) The VI sequence {T kJ} converges to J* starting from any J ∈
R(X).

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover, there
exists an optimal policy that is proper.

(d) The PI algorithm, starting from any proper policy, is valid in the
sense described by the conclusions of Prop. 3.3.1(e).

We will prove the proposition by using the strong SSP conditions to
verify Assumption 3.3.1 for S = R(X), and then by applying Prop. 3.3.1.
To this end, we first state without proof the following result relating to
proper policies from [BeT91].

Proposition 3.5.3: Under the strong SSP conditions, the optimal
cost function Ĵ over proper policies only,

Ĵ(x) = inf
µ: proper

Jµ(x), x ∈ X,

is real-valued.

The preceding proposition holds trivially if the control space U is
finite (since then the set of all policies is finite), or if J* is somehow known to
be real-valued [for example if g(x, u) ≥ 0 for all (x, u)]. The three variants
of the blackmailer problem of Section 3.1.3 provide examples illustrating
what can happen if U is infinite. In particular, in the first variant of the
blackmailer problem all policies are proper (and hence Assumptions 3.5.1
and 3.5.3 are satisfied), but Ĵ is not real-valued. The proof of Prop. 3.5.3
in the case of an infinite control space U was given as part of Prop. 2 of
the paper [BeT91]. Despite the intuitive nature of Prop. 3.5.3, the proof
embodies a fairly complicated argument (see Lemma 3 of [BeT91]).

Another related result is that if all policies are proper, then for all
µ ∈ M, Tµ is a contraction mapping with respect to a common weighted
sup-norm, so the contractive model analysis and algorithms of Chapter 2
apply (see [BeT96], Prop. 2.2). However, this fact will not be useful to us
in this section.

Proof of Prop. 3.5.2: In the context of Section 3.3, let us choose S =
R(X), so the proper policies are identified with the S-regular policies by
Prop. 3.5.1. We will verify Assumption 3.3.1.

Indeed parts (a) and (e) are trivially satisfied, part (b) is satisfied
by Prop. 3.5.3, part (d) can be easily verified by using Assumption 3.5.2.
To verify part (f), we use Prop. 3.3.2, which applies because S = R(X) =
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Rb(X) (since X is finite) and Eq. (3.27) clearly holds. Finally, to verify part
(c) we must show that given an improper policy µ, for every J ∈ R(X) there
exists an x ∈ X such that lim supk→∞(T k

µJ)(x) = ∞. This follows since
by Assumption 3.5.3, Jµ(x) = lim supk→∞(T k

µ J̄)(x) = ∞, for some x ∈ X ,
and (T k

µJ)(x) and (T k
µ J̄)(x) differ by E

{
J(xk)

}
, an amount that is finite

since J is real-valued and has a finite number of components J(x). Thus
Assumption 3.3.1 holds and the result follows from Prop. 3.3.1. Q.E.D.

Analysis Under the Weak SSP Conditions

Under the strong SSP conditions, we showed in Prop. 3.5.2 that J* is the
unique fixed point of T within R(X). Moreover, we showed that a policy µ∗

is optimal if and only if Tµ∗J* = TJ*, and an optimal proper policy exists
(so in particular J*, being the cost function of a proper policy, is real-
valued). In addition, J* can be computed by the VI algorithm starting
with any J ∈ ℜn.

We will now replace Assumption 3.5.3 (improper policies have cost
∞ for some initial states) with the following weaker assumption:

Assumption 3.5.4: The optimal cost function J* is real-valued.

We will refer to the Assumptions 3.5.1, 3.5.2, and 3.5.4 as the weak
SSP conditions . The examples of Sections 3.1.1 and 3.1.2 show that under
these assumptions, it is possible that

J* 6= Ĵ = inf
µ: proper

Jµ,

while J* need not be a fixed point of T (Section 3.1.2). The key fact is that
under Assumption 3.5.4, we can use the perturbation approach of Section
3.4, whereby adding δ > 0 to the mapping Tµ makes all improper policies
have infinite cost for some initial states, so the results of Prop. 3.5.2 can be
used for the δ-perturbed problem. In particular, Prop. 3.5.1 implies that
J*
S = Ĵ , so from Prop. 3.4.1 it follows that Ĵ is a fixed point of T and the

conclusions of Prop. 3.2.1 hold. We thus obtain the following proposition,
which provides additional results, not implied by Prop. 3.2.1; see Fig. 3.5.1.

Proposition 3.5.4: Let the weak SSP conditions hold. Then:

(a) The optimal cost function over proper policies, Ĵ , is the largest
solution of Bellman’s equation J = TJ within R(X), i.e., Ĵ is
a solution that belongs to R(X), and if J ′ ∈ R(X) is another
solution, we have J ′ ≤ Ĵ .
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Paths of VI Unique solution of Bellman’s equation

Fixed Points of T

S = ℜ2

2 Ĵ JĴ : Largest fixed point of T J

Figure 3.5.1. Schematic illustration of Prop. 3.5.4 for a problem with two states,
so R(X) = ℜ2 = S. We have that Ĵ is the largest solution of Bellman’s equation,
while VI converges to Ĵ starting from J ≥ Ĵ . As shown in Section 3.1.2, J∗ need
not be a solution of Bellman’s equation.

(b) The VI sequence {T kJ} converges linearly to Ĵ starting from any
J ∈ R(X) with J ≥ Ĵ .

(c) Let µ be a proper policy. Then µ is optimal within the class of
proper policies (i.e., Jµ = Ĵ) if and only if TµĴ = T Ĵ .

(d) For every J ∈ R(X) such that J ≤ TJ , we have J ≤ Ĵ .

Proof: (a), (b) Let S = R(X), so the proper policies are identified with
the S-regular policies by Prop. 3.5.1. We use the perturbation framework
of Section 3.4 with forcing function p(x) ≡ 1. From Prop. 3.5.2 it follows
that Prop. 3.4.1 applies so that Ĵ is a fixed point of T , and the conclusions
of Prop. 3.2.1 hold, so T kJ → Ĵ starting from any J ∈ R(X) with J ≥ Ĵ .
The convergence rate of VI is linear in view of Prop. 3.2.2 and the existence
of an optimal proper policy to be shown in part (c). Finally, let J ′ ∈ R(X)
be another solution of Bellman’s equation, and let J ∈ R(X) be such that
J ≥ Ĵ and J ≥ J ′. Then T kJ → Ĵ , while T kJ ≥ T kJ ′ = J ′. It follows
that Ĵ ≥ J ′.

(c) If the proper policy µ satisfies Jµ = Ĵ , we have Ĵ = Jµ = TµJµ = TµĴ ,

so, using also the relation Ĵ = T Ĵ [cf. part (a)], we obtain TµĴ = T Ĵ .

Conversely, if µ satisfies TµĴ = T Ĵ , then using part (a), we have TµĴ = Ĵ

and hence limk→∞ T k
µ Ĵ = Ĵ . Since µ is proper, we have Jµ = limk→∞ T k

µ Ĵ ,

so Jµ = Ĵ .

(d) Let J ≤ TJ and δ > 0. We have J ≤ TJ + δe = TδJ , and hence
J ≤ T k

δ J for all k. Since the strong SSP conditions hold for the δ-perturbed
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problem, it follows that T k
δ J → Ĵδ, so J ≤ Ĵδ. By taking δ ↓ 0 and using

Prop. 3.4.1, it follows that J ≤ Ĵ . Q.E.D.

The first variant of the blackmailer Example 3.4.2 shows that un-
der the weak SSP conditions there may not exist an optimal policy or an
optimal policy within the class of proper policies if the control space is
infinite. This is consistent with Prop. 3.5.4(c). Another interesting fact is
provided by the third variant of this example in the case where c < 0. Then
J*(1) = −∞ (violating Assumption 3.5.4), but Ĵ is real-valued and does
not solve Bellman’s equation, contrary to the conclusion of Prop. 3.5.4(a).

Part (d) of Prop. 3.5.4 shows that Ĵ is the unique solution of the
problem of maximizing

∑n
i=1 βiJ(i) over all J =

(
J(1), . . . , J(n)

)
such

that J ≤ TJ , where β1, . . . , βn are any positive scalars (cf. Prop. 3.2.9).
This problem can be written as

maximize

n∑

i=1

J(i)

subject to J(x) ≤ g(x, u) +
n∑

y=1

pij(u)J(j), i = 1, . . . , n, u ∈ U(i),

and is a linear program if each U(i) is a finite set.
Generally, under the weak SSP conditions the strong PI property may

not hold, so a sequence generated by PI starting from a proper policy need
not have the cost improvement property. An example is the deterministic
shortest path problem of Section 3.1.1, when there is a zero length cycle
(a = 0) and the only optimal policy is proper (b = 0). Then the PI
algorithm may oscillate between the optimal proper policy and the strictly
suboptimal improper policy. We will next consider the modified version of
the PI algorithm that is based on the use of perturbations (Section 3.4).

Policy Iteration with Perturbations

To deal with the oscillatory behavior of PI, which was illustrated in the de-
terministic shortest path Example 3.2.2, we may use the perturbed version
of the PI algorithm of Section 3.4, with forcing function p(x) ≡ 1. Thus,
we have

(Tµ,δJ)(x) = H
(
x, µ(x), J

)
+ δ, x ∈ X, TδJ = inf

µ∈M
Tµ,δJ.

The algorithm generates the sequence {µk} as follows.
Let {δk} be a positive sequence with δk ↓ 0, and let µ0 be any proper

policy. At iteration k, we have a proper policy µk, and we generate µk+1

according to
Tµk+1Jµk,δk

= TJµk,δk
, (3.31)



170 Semicontractive Models Chap. 3

where Jµk,δk
is computed as the unique fixed point of the mapping Tµk,δk

given by
Tµk,δk

J = TµkJ + δke.

The policy µk+1 of Eq. (3.31) exists by the compactness Assumption
3.5.2. We claim that µk+1 is proper. To see this, note that

Tµk+1,δk
Jµk,δk

= TJµk,δk
+ δk e ≤ TµkJµk,δk

+ δk e = Jµk,δk
,

so that by the monotonicity of T k+1
µ ,

Tm
µk+1,δk

Jµk ,δk
≤ Tµk+1,δk

Jµk,δk
= TJµk,δk

+ δk e ≤ Jµk ,δk
, ∀ m ≥ 1.

Since Jµk ,δk
forms an upper bound to Tm

µk+1,δk
Jµk ,δk

, it follows that µk+1

is proper [if it were improper, we would have (Tm
µk+1,δk

Jµk ,δk
)(x) → ∞ for

some x, because of the perturbation δk]. Thus the sequence {µk} generated
by the perturbed PI algorithm (3.31) is well-defined and consists of proper
policies. We have the following proposition.

Proposition 3.5.5: Let the weak SSP conditions hold. Then the se-
quence {Jµk} generated by the perturbed PI algorithm (3.31) satisfies

Jµk → Ĵ .

Proof: We apply the perturbation framework of Section 3.4 with S =
R(X), M̂ equal to the set of proper policies, and the forcing function
p(x) ≡ 1. Clearly Assumption 3.4.1 holds, so Prop. 3.4.2 applies. Q.E.D.

When the control space U is finite, the generated policies µk will be
optimal for all k sufficiently large, as noted following Prop. 3.4.2. However,
when the control space U is infinite, the generated sequence {µk} may
exhibit some serious pathologies in the limit, as we have seen in Example
3.4.2.

3.5.2 Affine Monotonic Problems

In this section, we consider a class of semicontractive models, called affine
monotonic, where the abstract mapping Tµ associated with a stationary
policy µ is affine and maps nonnegative functions to nonnegative functions.
These models include as special cases stochastic undiscounted nonnegative
cost problems, and multiplicative cost problems, such as risk-averse prob-
lems with exponentiated additive cost and a termination state (see Example
1.2.8). Here we will focus on the special case where the state space is finite
and a certain compactness condition holds.
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We consider a finite state space X = {1, . . . , n} and a (possibly in-
finite) control constraint set U(x) for each state x. For each µ ∈ M the
mapping Tµ is given by

TµJ = bµ +AµJ,

where bµ is a vector of ℜn with components b
(
x, µ(x)

)
, x = 1, . . . , n, and

Aµ is an n × n matrix with components Axy

(
µ(x)

)
, x, y = 1, . . . , n. We

assume that b(x, u) and Axy(u) are nonnegative,

b(x, u) ≥ 0, Axy(u) ≥ 0, ∀ x, y = 1, . . . , n, u ∈ U(x).

Thus Tµ maps E+(X) into E+(X), where E+(X) denotes the set of non-
negative extended real-valued functions J : X 7→ [0,∞]. Moreover T maps
R+(X) toR+(X), whereR+(X) denotes the set of nonnegative real-valued
functions J : X 7→ [0,∞).

The mapping T : E+(X) 7→ E+(X) is given by

(TJ)(x) = inf
µ∈M

(TµJ)(x), x ∈ X,

or equivalently,

(TJ)(x) = inf
u∈U(x)

[
b(x, u) +

n∑

y=1

Axy(u)J(y)

]
, x ∈ X.

Multiplicative and Exponential Cost SSP Problems

Affine monotonic models appear in several contexts. In particular, finite-
state sequential stochastic control problems (including SSP problems) with
nonnegative cost per stage (see, e.g., [Ber12a], Chapter 3, and Section 4.1)
are special cases where J̄ is the identically zero function [J̄(i) ≡ 0]. We will
describe another type of SSP problem, where the cost function of a policy
accumulates over time multiplicatively, rather than additively.

As in the SSP problems of the preceding section, we assume that
there are n states i = 1, . . . , n, and a cost-free and absorbing state t. There
are probabilistic state transitions among the states i = 1, . . . , n, up to the
first time a transition to state t occurs, in which case the state transitions
terminate. We denote by pit(u) and pij(u) the probabilities of transition
under u from i to t and to j, respectively, so that

pit(u) +
n∑

j=1

pij(u) = 1, i = 1, . . . , n, u ∈ U(i).

We introduce nonnegative scalars h(i, u, t) and h(i, u, j),

h(i, u, t) ≥ 0, h(i, u, j) ≥ 0, ∀ i, j = 1, . . . , n, u ∈ U(i),
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and we consider the affine monotonic problem where the scalars Aij(u) and
b(i, u) are defined by

Aij(u) = pij(u)h(i, u, j), i, j = 1, . . . , n, u ∈ U(i),

and
b(i, u) = pit(u)h(i, u, t), i = 1, . . . , n, u ∈ U(i),

and the vector J̄ is the unit vector,

J̄(i) = 1, i = 1, . . . , n.

The cost function of this problem has a multiplicative character as we show
next.

Indeed, with the preceding definitions of Aij(u), b(i, u), and J̄ , we will
prove that the expression for the cost function of a policy π = {µ0, µ1, . . .},

Jπ(x0) = lim sup
N→∞

(Tµ0 · · ·TµN−1 J̄)(x0), x0 = 1, . . . , n,

can be written in the multiplicative form

Jπ(x0) = lim sup
N→∞

E

{
N−1∏

k=0

h
(
xk, µk(xk), xk+1

)
}
, x0 = 1, . . . , n,

(3.32)
where:

(a) {x0, x1, . . .} is the random state trajectory generated starting from
x0, using π.

(b) The expected value is with respect to the probability distribution of
that trajectory.

(c) We use the notation

h
(
xk, µk(xk), xk+1

)
= 1, if xk = xk+1 = t,

(so that the multiplicative cost accumulation stops once the state
reaches t).

Thus, we claim that Jπ(x0) can be viewed as the expected value of cost ac-
cumulated multiplicatively, starting from x0 up to reaching the termination
state t (or indefinitely accumulated multiplicatively, if t is never reached).

To verify the formula (3.32) for Jπ , we use the definition TµJ =
bµ +AµJ, to show by induction that for every π = {µ0, µ1, . . .}, we have

Tµ0 · · ·TµN−1 J̄ = Aµ0 · · ·AµN−1 J̄ + bµ0 +

N−1∑

k=1

Aµ0 · · ·Aµk−1
bµk

. (3.33)
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We then interpret the n components of each vector on the right as condi-
tional expected values of the expression

N−1∏

k=0

h
(
xk, µk(xk), xk+1

)
(3.34)

multiplied with the appropriate conditional probability. In particular:

(a) The ith component of the vector Aµ0 · · ·AµN−1 J̄ in Eq. (3.33) is the
conditional expected value of the expression (3.34), given that x0 = i
and xN 6= t, multiplied with the conditional probability that xN 6= t,
given that x0 = i.

(b) The ith component of the vector bµ0 in Eq. (3.33) is the conditional
expected value of the expression (3.34), given that x0 = i and x1 = t,
multiplied with the conditional probability that x1 = t, given that
x0 = i.

(c) The ith component of the vector Aµ0 · · ·Aµk−1
bµk

in Eq. (3.33) is
the conditional expected value of the expression (3.34), given that
x0 = i, x1, . . . , xk−1 6= t, and xk = t, multiplied with the conditional
probability that x1, . . . , xk−1 6= t, and xk = t, given that x0 = i.

By adding these conditional probability expressions, we obtain the ith com-
ponent of the unconditional expected value

E

{
N−1∏

k=0

h
(
xk, µk(xk), xk+1

)
}
,

thus verifying the formula (3.32).
A special case of multiplicative cost problem is the risk-sensitive SSP

problem with exponential cost function, where for all i = 1, . . . , n, and
u ∈ U(i),

h(i, u, j) = exp
(
g(i, u, j)

)
, j = 1, . . . , n, t,

and the function g can take both positive and negative values. The mapping
Tµ has the form

(TµJ)(i) = pit
(
µ(i)

)
exp
(
g(i, µ(i), t)

)

+

n∑

j=1

pij
(
µ(i)

)
exp
(
g(i, µ(i), j)

)
J(j), i = 1, . . . , n,

(3.35)

where pij(u) is the probability of transition from i to j under u, and g(i, u, j)
is the cost of the transition. The Bellman equation is

J(i) = inf
u∈U(i)


pit(u)exp

(
g(i, u, t)

)
+

n∑

j=1

pij(u)exp
(
g(i, u, j)

)
J(j)


 .
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Based on Eq. (3.32), we have that Jπ(x0) is the limit superior of the ex-
pected value of the exponential of the N -step additive finite horizon cost

up to termination, i.e.,
∑k̄

k=0 g
(
xk, µk(xk), xk+1

)
, where k̄ is equal to the

first index prior to N − 1 such that xk̄+1 = t, or is equal to N − 1 if there
is no such index. The use of the exponential introduces risk aversion, by
assigning a strictly convex increasing penalty for large rather than small
cost of a trajectory up to termination (and hence a preference for small
variance of the additive cost up to termination).

The deterministic version of the exponential cost problem where for
each u ∈ U(i), one of the transition probabilities pit(u), pi1(u), . . . , pin(u)
is equal to 1 and all others are equal to 0, is mathematically equivalent
to the classical deterministic shortest path problem (since minimizing the
exponential of a deterministic expression is equivalent to minimizing that
expression). For this problem a standard assumption is that there are
no cycles that have negative total length to ensure that the shortest path
length is finite. However, it is interesting that this assumption is not re-
quired for the analysis of the present section: when there are paths that
travel perpetually around a negative length cycle we simply have J*(i) = 0
for all states i on the cycle, which is permissible within our context.

Assumptions on Policies - Contractive Policies

Let us now derive an expression for the cost function of a policy. By
repeatedly applying the mapping T to the equation TµJ = bµ + AµJ , we
have

TN
µ J = AN

µ J +

N−1∑

k=0

Ak
µbµ, ∀ J ∈ E+(X), N = 1, 2, . . . ,

and hence

Jµ = lim sup
N→∞

TN
µ J̄ = lim sup

N→∞

AN
µ J̄ +

∞∑

k=0

Ak
µbµ (3.36)

(the series converges since Aµ and bµ have nonnegative components).
We say that µ is contractive if Aµ has eigenvalues that are strictly

within the unit circle. In this case Tµ is a contraction mapping with re-
spect to some weighted sup-norm (see Prop. B.3 in Appendix B). If µ is
contractive, then AN

µ J̄ → 0 and from Eq. (3.36), it follows that

Jµ =

∞∑

k=0

Ak
µbµ = (I −Aµ)−1bµ,

and Jµ is real-valued as well as nonnegative, i.e., Jµ ∈ R+(X). Moreover, a
contractive µ is alsoR+(X)-regular, since Jµ does not depend on the initial
function J̄ . The reverse is also true as shown by the following proposition.
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Proposition 3.5.6: A policy µ is contractive if and only if it is
R+(X)-regular. Moreover, if µ is noncontractive and all the com-
ponents of bµ are strictly positive, there exists a state x such that the
corresponding component of the vector

∑∞

k=0 A
k
µbµ is ∞.

Proof: As noted earlier, if µ is contractive it is R+(X)-regular. It will
thus suffice to show that for a noncontractive µ and strictly positive com-
ponents of bµ, some component of

∑∞

k=0 A
k
µbµ is ∞. Indeed, according

to the Perron-Frobenius Theorem, the nonnegative matrix Aµ has a real
eigenvalue λ, which is equal to its spectral radius, and an associated non-
negative eigenvector ξ 6= 0 [see Prop. B.3(a) in Appendix B]. Choose γ > 0
to be such that bµ ≥ γξ, so that

∞∑

k=0

Ak
µbµ ≥ γ

∞∑

k=0

Ak
µξ = γ

(
∞∑

k=0

λk

)
ξ.

Since some component of ξ is positive while λ ≥ 1 (since µ is noncon-
tractive), the corresponding component of the infinite sum on the right is
infinite, and the same is true for the corresponding component of the vector∑∞

k=0 A
k
µbµ on the left. Q.E.D.

Let us introduce some assumptions that are similar to the ones of the
preceding section.

Assumption 3.5.5: There exists at least one contractive policy.

Assumption 3.5.6: (Compactness and Continuity) The control
space U is a metric space, and pxy(·) and b(x, ·) are continuous func-
tions of u over U(x), for all x and y. Moreover, for each state x, the
sets {

u ∈ U(x)
∣∣∣ b(x, u) +

n∑

y=1

Axy(u)J(y) ≤ λ

}

are compact subsets of U for all scalars λ ∈ ℜ and J ∈ R+(X).

Case of Infinite Cost Noncontractive Policies

We now turn to questions relating to Bellman’s equation, the convergence of
the VI and PI algorithms, as well as conditions for optimality of a stationary
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policy. We first consider the following assumption, which parallels the
infinite cost Assumption 3.5.3 for SSP problems.

Assumption 3.5.7: (Infinite Cost Condition) For every noncon-
tractive policy µ, there is at least one state such that the corresponding
component of the vector

∑∞

k=0 A
k
µbµ is equal to ∞.

We will now show that for S = R+(X), Assumptions 3.5.5, 3.5.6,
and 3.5.7 imply all the parts of Assumption 3.3.1 of Section 3.3, so Prop.
3.3.1 can be applied to the affine monotonic model. Indeed parts (a), (e)
of Assumption 3.3.1 clearly hold. Part (b) also holds, since by Assumption
3.5.5 there exists a contractive and hence S-regular policy, so we have J*

S ∈
R+(X). Moreover Assumption 3.5.6 implies part (d), while Assumption
3.5.7 implies part (c). Finally part (f) holds since for every J ∈ R+(X), the
zero function, J ′(x) ≡ 0, lies in R+(X), and satisfies J ′ ≤ J and J ′ ≤ TJ ′.
Thus Prop. 3.3.1 yields the following result.

Proposition 3.5.7: (Bellman’s Equation, Policy Iteration, Va-
lue Iteration, and Optimality Conditions) Let Assumptions 3.5.5,
3.5.6, and 3.5.7 hold.

(a) The optimal cost vector J* is the unique fixed point of T within
R+(X).

(b) We have T kJ → J* for all J ∈ R+(X).

(c) A policy µ is optimal if and only if TµJ* = TJ*. Moreover there
exists an optimal policy that is contractive.

(d) For any J ∈ R+(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ
we have J ≥ J*.

(e) Every sequence {µk} generated by the PI algorithm starting from
a contractive policy µ0 satisfies Jµk ↓ J*. Moreover, if the set of

contractive policies is finite, there exists k̄ ≥ 0 such that µk̄ is
optimal.

Example 3.5.1 (Exponential Cost Shortest Path Problem)

Consider the deterministic shortest path example of Section 3.1.1, but with
the exponential cost function of the present subsection; cf. Eq. (3.35). There
are two policies denoted µ and µ′; see Fig. 3.5.2. The corresponding mappings
and costs are shown in the figure, and Bellman’s equation is given by

J(1) = (TJ)(1) = min
{
exp(b), exp(a)J(1)

}
.
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a 1 2 1 2 t b

t b Destination

Policy µ

Jµ(1) = exp(b)

) (TµJ)(1) = exp(b) (

a Length b

Length a

) and Policy µ′

) Jµ′(1) = limN→∞ exp(aN)

(Tµ′J)(1) = exp(a)J(1)

Figure 3.5.2. Shortest path problem with exponential cost function.

We consider three cases:

(a) a > 0: Here the proper policy µ is optimal, and the improper policy
µ′ is R+(X)-irregular (noncontractive) and has infinite cost, Jµ′(1) =
∞. The assumptions of Prop. 3.5.7 hold, and consistently with the
conclusions of the proposition, J∗(1) = exp(b) is the unique solution of
Bellman’s equation.

(b) a = 0: Here the improper policy µ′ is R+(X)-irregular (noncontractive)
and has finite cost, Jµ′(1) = 1, so the assumptions of Prop. 3.5.7 are
violated. The set of solutions of Bellman’s equation within S = R+(X)
is the interval

[
0, exp(b)

]
.

(c) a < 0: Here both policies are contractive, including the improper pol-
icy µ′. The assumptions of Prop. 3.5.7 hold, and consistently with
the conclusions of the proposition, J∗(1) = 0 is the unique solution of
Bellman’s equation.

The reader may also verify that in the cases where a 6= 0, the assumptions
and the results of Prop. 3.5.7 hold.

Case of Finite Cost Noncontractive Policies

We will now eliminate Assumption 3.5.7, thus allowing noncontractive poli-
cies with real-valued cost functions, similar to the corresponding case of the
preceding section, under the weak SSP conditions. Let us denote by Ĵ the
optimal cost function that can be achieved with contractive policies only,

Ĵ(x) = inf
µ: contractive

Jµ(x), x = 1, . . . , n. (3.37)

We use the perturbation approach of Section 3.4 and Prop. 3.4.1 to show
that Ĵ is a solution of Bellman’s equation. In particular, we add a constant
δ > 0 to all components of bµ. By using arguments that are entirely
analogous to the ones for the SSP case of Section 3.5.1, we obtain the
following proposition, which is illustrated in Fig. 3.5.3. A detailed analysis
and proof is given in the exercises.
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Paths of VI Unique solution of Bellman’s equation

Fixed Points of T

2 Ĵ JĴ : Largest fixed point of T J

ℜ2
+

b < 0

Figure 3.5.3. Schematic illustration of Prop. 3.5.8 for a problem with two states.
The optimal cost function over contractive policies, Ĵ , is the largest solution of
Bellman’s equation, while VI converges to Ĵ starting from J ≥ Ĵ.

Proposition 3.5.8: (Bellman’s Equation, Value Iteration, and
Optimality Conditions)Let Assumptions 3.5.5 and 3.5.6 hold. Then:

(a) The optimal cost function over contractive policies, Ĵ , is the
largest solution of Bellman’s equation J = TJ within R+(X),
i.e., Ĵ is a solution that belongs to R+(X), and if J ′ ∈ R+(X)
is another solution, we have J ′ ≤ Ĵ .

(b) We have T kJ → Ĵ for every J ∈ R+(X) with J ≥ Ĵ .

(c) Let µ be a contractive policy. Then µ is optimal within the class
of contractive policies (i.e., Jµ = Ĵ) if and only if TµĴ = T Ĵ .

(d) For every J ∈ R+(X) such that J ≤ TJ , we have J ≤ Ĵ .

The other results of Section 3.5.1 for SSP problems also have straight-
forward analogs. Moreover, there is an adaptation of the example of Section
3.1.2, which provides an affine monotonic model for which J* is not a fixed
point of T (see the author’s paper [Ber16a], to which we refer for further
discussion).

Example 3.5.2 (Deterministic Shortest Path Problem with
Exponential Cost - Continued)

Consider the problem of Fig. 3.5.2, for the case a = 0. This is the case where
the noncontractive policy µ′ has finite cost, so Assumption 3.5.7 is violated
and Prop. 3.5.7 does not apply. However, it can be seen that the assumptions
of Prop. 3.5.8 hold. Consistent with part (a) of the proposition, the optimal
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cost over contractive policies, Ĵ(1) = exp(b), is the largest of the fixed points
of T . The other parts of Prop. 3.5.8 may also be easily verified.

We note that in the absence of the infinite cost Assumption 3.5.7,
it is possible that the only optimal policy is noncontractive, even if the
compactness Assumption 3.5.6 holds and Ĵ = J*. This is shown in the
following example.

Example 3.5.3 (A Counterexample on the Existence of an
Optimal Contractive Policy)

Consider the exponential cost version of the blackmailer problem of Example
3.4.2 (cf. Fig. 3.4.1). Here there is a single state 1, at which we must choose
u ∈ [0, 1]. Then, we terminate at no cost [g(1, u, t) = 0 in Eq. (3.35)] with
probability u, and we stay at state 1 at cost −u [i.e., g(1, u, 1) = −u in Eq.
(3.35)] with probability 1− u. We have

b(i, u) = u exp (0) = u, A11(u) = (1− u) exp (−u),

so that
H(1, u, J) = u+ (1− u) exp (−u)J.

Here there is a unique noncontractive policy µ′: it chooses u = 0 at state 1,
and has cost Jµ′(1) = 1. Every policy µ with µ(1) ∈ (0, 1] is contractive, and
Jµ can be obtained by solving the equation Jµ = TµJµ, i.e.,

Jµ(1) = µ(1) +
(
1− µ(1)

)
exp
(
− µ(1)

)
Jµ(1).

We thus obtain

Jµ(1) =
µ(1)

1−
(
1− µ(1)

)
exp
(
− µ(1)

) .

By minimizing over µ(1) ∈ (0, 1] this expression, it can be seen that Ĵ(1) =
J∗(1) = 1

2
, but there exists no optimal policy, and no optimal policy within

the class of contractive policies [Jµ(1) decreases monotonically to 1
2
as µ(1) →

0].

3.5.3 Robust Shortest Path Planning

We will now discuss how the analysis of Sections 3.3 and 3.4 applies to
minimax shortest path-type problems, following the author’s paper [Ber14],
to which we refer for further discussion. To formally describe the problem,
we consider a graph with a finite set of nodes X ∪ {t} and a finite set
of directed arcs A ⊂

{
(x, y) | x, y ∈ X ∪ {t}

}
, where t is a special node

called the destination. At each node x ∈ X we may choose a control u
from a nonempty set U(x), which is a subset of a finite set U . Then a
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successor node y is selected by an antagonistic opponent from a nonempty
set Y (x, u) ⊂ X ∪ {t} and a cost g(x, u, y) is incurred. The destination
node t is absorbing and cost-free, in the sense that the only outgoing arc
from t is (t, t), and we have Y (t, u) = {t} and g(t, u, t) = 0 for all u ∈ U(t).

As earlier, we denote the set of all policies by Π, and the finite set of
all stationary policies by M. Also, we denote the set of functions J : X 7→
[−∞,∞] by E(X), and the set of functions J : X 7→ (−∞,∞) by R(X).
We introduce the mapping H : X × U × E(X) 7→ [−∞,∞] given by

H(x, u, J) = max
y∈Y (x,u)

[
g(x, u, y) + J̃(y)

]
, x ∈ X, (3.38)

where for any J ∈ E(X) we denote by J̃ the function given by

J̃(y) =

{
J(y) if y ∈ X ,
0 if y = t.

(3.39)

We consider the mapping T : E(X) 7→ E(X) defined by

(TJ)(x) = min
u∈U(x)

H(x, u, J), x ∈ X, (3.40)

and for each policy µ, the mapping Tµ : E(X) 7→ E(X), defined by

(TµJ)(x) = H
(
x, µ(x), J

)
, x ∈ X. (3.41)

We let J̄ be the zero function,

J̄(x) = 0, ∀ x ∈ X.

The cost function of a policy π = {µ0, µ1, . . .} is

Jπ(x) = lim sup
k→∞

(Tµ0 · · ·Tµk
J̄)(x), x ∈ X,

and J*(x) = infπ∈Π Jπ(x), cf. Definition 3.2.1.
For a policy µ ∈ M, we define a possible path under µ starting at

node x0 ∈ X to be an arc sequence of the form

p =
{
(x0, x1), (x1, x2), . . .

}
,

such that xk+1 ∈ Y
(
xk, µ(xk)

)
for all k ≥ 0. The set of all possible

paths under µ starting at x0 is denoted by P (x0, µ). The length of a path
p ∈ P (x0, µ) is defined by

Lµ(p) = lim sup
m→∞

m∑

k=0

g
(
xk, µ(xk), xk+1

)
.
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Using Eqs. (3.38)-(3.41), we see that for any µ ∈ M and x ∈ X , (T k
µ J̄)(x)

is the result of the k-stage DP algorithm that computes the length of the
longest path under µ that starts at x and consists of k arcs.

For completeness, we also define the length of a portion

{
(xi, xi+1), (xi+1, xi+2), . . . , (xm, xm+1)

}

of a path p ∈ P (x0, µ), consisting of a finite number of consecutive arcs, by

m∑

k=i

g
(
xk, µ(xk), xk+1

)
.

When confusion cannot arise we will also refer to such a finite-arc por-
tion as a path. Of special interest are cycles , i.e., paths of the form{
(xi, xi+1), (xi+1, xi+2), . . . , (xi+m, xi)

}
. Paths that do not contain any

cycle other than the self-cycle (t, t) are called simple.
For a given policy µ ∈ M and x0 6= t, a path p ∈ P (x0, µ) is said to

be terminating if it has the form

p =
{
(x0, x1), (x1, x2), . . . , (xm, t), (t, t), . . .

}
, (3.42)

where m is a positive integer, and x0, . . . , xm are distinct nondestination
nodes. Since g(t, u, t) = 0 for all u ∈ U(t), the length of a terminating path
p of the form (3.42), corresponding to µ, is given by

Lµ(p) = g
(
xm, µ(xm), t

)
+

m−1∑

k=0

g
(
xk, µ(xk), xk+1

)
,

and is equal to the finite length of its initial portion that consists of the
first m+ 1 arcs.

An important characterization of a policy µ ∈ M is provided by the
subset of arcs

Aµ = ∪x∈X

{
(x, y) | y ∈ Y

(
x, µ(x)

)}
.

Thus Aµ ∪ (t, t) can be viewed as the set of all possible paths under µ,
∪x∈XP (x, µ), in the sense that it contains this set of paths and no other
paths. We refer to Aµ as the characteristic graph of µ. We say that Aµ is
destination-connected if for each x ∈ X there exists a terminating path in
P (x, µ).

We say that µ is proper if the characteristic graph Aµ is acyclic
(i.e., contains no cycles). Thus µ is proper if and only if all the paths
in ∪x∈XP (x, µ) are simple and hence terminating (equivalently µ is proper
if and only if Aµ is destination-connected and has no cycles). The term
“proper” is consistent with the one used in Section 3.5.1 for SSP prob-
lems, where it indicates a policy under which the destination is reached



182 Semicontractive Models Chap. 3

a 1 2

1 2 t b

t b Destination

0 1 2

1 2 t b

t b Destination

Improper policy µ

a 1 2

0 1 2

b Proper Policy µ′

Figure 3.5.4. A robust shortest path problem with X = {1, 2}, two controls at
node 1, and one control at node 2. The two policies, µ and µ′, correspond to the
two controls at node 1. The figure shows the characteristic graphs Aµ and Aµ′ .

with probability 1. If µ is not proper, it is called improper , in which case
the characteristic graph Aµ must contain a cycle; see the examples of Fig.
3.5.4. Intuitively, a policy is improper, if and only if under that policy there
are initial states such that the antagonistic opponent can force movement
along a cycle without ever reaching the destination.

The following proposition clarifies the properties of Jµ when µ is
improper.

Proposition 3.5.9: Let µ be an improper policy.

(a) If all cycles in the characteristic graphAµ have nonpositive length,
Jµ(x) < ∞ for all x ∈ X .

(b) If all cycles in the characteristic graph Aµ have nonnegative
length, Jµ(x) > −∞ for all x ∈ X .

(c) If all cycles in the characteristic graph Aµ have zero length, Jµ
is real-valued.

(d) If there is a positive length cycle in the characteristic graph Aµ,
we have Jµ(x) = ∞ for at least one node x ∈ X . More generally,
for each J ∈ R(X), we have lim supk→∞(T k

µJ)(x) = ∞ for at
least one x ∈ X .

Proof: Any path with a finite number of arcs, can be decomposed into a
simple path, and a finite number of cycles (see e.g., the path decomposition
theorem of [Ber98], Prop. 1.1, and Exercise 1.4). Since there is only a
finite number of simple paths under µ, their length is bounded above and
below. Thus in part (a) the length of all paths with a finite number of
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arcs is bounded above, and in part (b) it is bounded below, implying that
Jµ(x) < ∞ for all x ∈ X or Jµ(x) > −∞ for all x ∈ X , respectively. Part
(c) follows by combining parts (a) and (b).

To show part (d), consider a path p, which consists of an infinite
repetition of the positive length cycle that is assumed to exist. Let Ck

µ(p)
be the length of the path that consists of the first k cycles in p. Then
Ck

µ(p) → ∞ and Ck
µ(p) ≤ Jµ(x) for all k, where x is the first node in the

cycle, thus implying that Jµ(x) = ∞. Moreover for every J ∈ R(X) and
all k, (T k

µJ)(x) is the maximum over the lengths of the k-arc paths that
start at x, plus a terminal cost that is equal to either J(y) (if the terminal
node of the k-arc path is y ∈ X), or 0 (if the terminal node of the k-arc
path is the destination). Thus we have,

(T k
µ J̄)(x) + min

{
0, min

x∈X
J(x)

}
≤ (T k

µJ)(x).

Since lim supk→∞(T k
µ J̄)(x) = Jµ(x) = ∞ as shown earlier, it follows that

lim supk→∞(T k
µJ)(x) = ∞ for all J ∈ R(X). Q.E.D.

Note that if there is a negative length cycle in the characteristic graph
Aµ, it is not necessarily true that for some x ∈ X we have Jµ(x) = −∞.
Even for x on the negative length cycle, the value of Jµ(x) is determined
by the longest path in P (x, µ), which may be simple in which case Jµ(x)
is a real number, or contain an infinite repetition of a positive length cycle
in which case Jµ(x) = ∞.

Properness and Regularity

We will now make a formal connection between the notions of properness
and R(X)-regularity. We recall that µ is R(X)-regular if Jµ ∈ R(X),
Jµ = TµJµ, and T k

µJ → Jµ for all J ∈ R(X) (cf. Definition 3.2.2). Clearly
if µ is proper, we have Jµ ∈ R(X) and the equation Jµ = TµJµ holds (this
is Bellman’s equation for the longest path problem involving the acyclic
graph Aµ). We will also show that T k

µJ → Jµ for all J ∈ R(X), so that a
proper policy is R(X)-regular. However, the following proposition shows
that there may be someR(X)-regular policies that are improper, depending
on the sign of the lengths of their associated cycles.

Proposition 3.5.10: The following are equivalent for a policy µ:

(i) µ is R(X)-regular.

(ii) The characteristic graph Aµ is destination-connected and all its
cycles have negative length.

(iii) µ is either proper or else it is improper, all the cycles of the
characteristic graph Aµ have negative length, and Jµ ∈ R(X).
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Proof: To show that (i) implies (ii), let µ be R(X)-regular and to arrive
at a contradiction, assume that Aµ contains a nonnegative length cycle.
Let x be a node on the cycle, consider the path p that starts at x and
consists of an infinite repetition of this cycle, and let Lk

µ(p) be the length
of the first k arcs of that path. Let also J be a constant function, J(x) ≡ r,
where r is a scalar. Then we have

Lk
µ(p) + r ≤ (T k

µJ)(x),

since from the definition of Tµ, we have that (T k
µJ)(x) is the maximum

over the lengths of all k-arc paths under µ starting at x, plus r, if the last
node in the path is not the destination. Since µ is R(X)-regular, we have
Jµ ∈ R(X) and lim supk→∞(T k

µJ)(x) = Jµ(x) < ∞, so that for all scalars
r,

lim sup
k→∞

(
Lk
µ(p) + r

)
≤ Jµ(x) < ∞.

Taking supremum over r ∈ ℜ, it follows that lim supk→∞ Lk
µ(p) = −∞,

which contradicts the nonnegativity of the cycle of p. Thus all cycles of Aµ

have negative length. To show that Aµ is destination-connected, assume
the contrary. Then there exists some node x ∈ X such that all paths in
P (x, µ) contain an infinite number of cycles. Since the length of all cycles
is negative, as just shown, it follows that Jµ(x) = −∞, which contradicts
the R(X)-regularity of µ.

To show that (ii) implies (iii), we assume that µ is improper and show
that Jµ ∈ R(X). By (ii) Aµ is destination-connected, so the set P (x, µ)
contains a simple path for all x ∈ X . Moreover, since by (ii) the cycles
of Aµ have negative length, each path in P (x, µ) that is not simple has
smaller length than some simple path in P (x, µ). This implies that Jµ(x)
is equal to the largest path length among simple paths in P (x, µ), so Jµ(x)
is a real number for all x ∈ X .

To show that (iii) implies (i), we note that if µ is proper, it is R(X)-
regular, so we focus on the case where µ is improper. Then by (iii), Jµ ∈
R(X), so to show R(X)-regularity of µ, we must show that (T k

µJ)(x) →
Jµ(x) for all x ∈ X and J ∈ R(X), and that Jµ = TµJµ. Indeed, from the
definition of Tµ, we have

(T k
µJ)(x) = sup

p∈P (x,µ)

[
Lk
µ(p) + J(xk

p)
]
, (3.43)

where Lk
µ(p) is the length of the first k arcs of path p, xk

p is the node reached
after k arcs along the path p, and J(t) is defined to be equal to 0. Thus as
k → ∞, for every path p that contains an infinite number of cycles (each
necessarily having negative length), the sequence Lk

p(µ)+J(xk
p) approaches

−∞. It follows that for sufficiently large k, the supremum in Eq. (3.43) is
attained by one of the simple paths in P (x, µ), so xk

p = t and J(xk
p) = 0.

Thus the limit of (T k
µJ)(x) does not depend on J , and is equal to the limit
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a

a 1 2 1 2 t b

t b Destination

a 0 1 2

Figure 3.5.5. The characteristic graph Aµ corresponding to an improper policy,
for the case of a single node 1 and a destination node t. The arcs lengths are
shown in the figure.

of (T k
µ J̄)(x), i.e., Jµ(x). To show that Jµ = TµJµ, we note that by the

preceding argument, Jµ(x) is the length of the longest path among paths
that start at x and terminate at t. Moreover, we have

(TµJµ)(x) = max
y∈Y (x,µ(x))

[
g(x, µ(x), y) + Jµ(y)

]
,

where we denote Jµ(t) = 0. Thus (TµJµ)(x) is also the length of the longest
path among paths that start at x and terminate at t, and hence it is equal
to Jµ(x). Q.E.D.

We illustrate the preceding proposition, in relation to the infinite
cost condition of Assumption 3.3.1, with a two-node example involving
an improper policy with a cycle that may have positive, zero, or negative
length.

Example 3.5.4:

Let X = {1}, and consider the policy µ where at state 1, the antagonistic
opponent may force either staying at 1 or terminating, i.e., Y

(
1, µ(1)

)
=

{1, t}; cf. Fig. 3.5.5. Then µ is improper since its characteristic graph Aµ

contains the self-cycle (1, 1). Let

g
(
1, µ(1), 1

)
= a, g

(
1, µ(1), t

)
= 0.

Then,
(TµJµ)(1) = max

[
0, a+ Jµ(1)

]
,

and

Jµ(1) =
{
∞ if a > 0,
0 if a ≤ 0.

Consistently with Prop. 3.5.10, the following hold:

(a) For a > 0, the cycle (1, 1) has positive length, and µ is R(X)-irregular.
Here we have Jµ(1) = ∞, and the infinite cost condition of Assumption
3.3.1 is satisfied.
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(b) For a = 0, the cycle (1, 1) has zero length, and µ is R(X)-irregular.
Here we have Jµ(1) = 0, and the infinite cost condition of Assumption
3.3.1 is violated because for a function J ∈ R(X) with J(1) > 0,

lim sup
k→∞

(T k
µJ)(x) = J(1) > 0 = Jµ(1).

(c) For α < 0, the cycle (1, 1) has negative length, and µ is R(X)-regular.
Here we have Jµ ∈ R(X), Jµ(1) = max

[
0, a + Jµ(1)

]
= (TµJµ)(1),

and for all J ∈ R(X),

lim
k→∞

(T k
µJ)(1) = 0 = Jµ(1).

We will now apply the regularity results of Sections 3.2-3.4 with S =
R(X). To this end, we introduce assumptions that will allow the use of
Prop. 3.3.1.

Assumption 3.5.8:

(a) There exists at least one R(X)-regular policy.

(b) For every R(X)-irregular policy µ, some cycle in the character-
istic graph Aµ has positive length.

Assumption 3.5.8 is implied by the weaker conditions given in the
following proposition. These conditions may be more easily verifiable in
some contexts.

Proposition 3.5.11: Assumption 3.5.8 holds if anyone of the follow-
ing two conditions is satisfied.

(1) There exists at least one proper policy, and for every improper
policy µ, all cycles in the characteristic graph Aµ have positive
length.

(2) Every policy µ is either proper or else it is improper and its
characteristic graph Aµ is destination-connected with all cycles
having negative length, and Jµ ∈ R(X).

Proof: Under condition (1), by Prop. 3.5.10, a policy is R(X)-regular if
and only if it is proper. Moreover, since each R(X)-irregular and hence
improper policy µ has cycles with positive length, it follows that for all
J ∈ R(X), we have

lim sup
k→∞

(T k
µJ)(x) = ∞
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for some x ∈ X . The proof under condition (2) is similar, using Prop.
3.5.10. Q.E.D.

We now show our main result for the problem of this section.

Proposition 3.5.12: Let Assumption 3.5.8 hold. Then:

(a) The optimal cost function J* is the unique fixed point of T within
R(X).

(b) We have T kJ → J* for all J ∈ R(X).

(c) A policy µ∗ is optimal if and only if Tµ∗J* = TJ*. Moreover,
there exists an optimal proper policy.

(d) For any J ∈ R(X), if J ≤ TJ we have J ≤ J*, and if J ≥ TJ
we have J ≥ J*.

Proof: We verify the parts (a)-(f) of Assumption 3.3.1 with S = R(X),
and we then use Prop. 3.3.1. To this end we argue as follows:

(1) Part (a) is satisfied since S = R(X).

(2) Part (b) is satisfied since by Assumption 3.5.8(a), there exists at least
one R(X)-regular policy. Moreover, for each R(X)-regular policy µ,
we have Jµ ∈ R(X). Since the number of all policies is finite, it
follows that J*

S ∈ R(X).

(3) To show that part (c) is satisfied, note that by Prop. 3.5.10 ev-
ery R(X)-irregular policy µ must be improper, so by Assumption
3.5.8(b), the characteristic graph Aµ contains a cycle of positive
length. By Prop. 3.5.9(d), this implies that for each J ∈ R(X) and
for at least one x ∈ X , we have lim supk→∞(T k

µJ)(x) = ∞.

(4) Part (d) is satisfied since U(x) is a finite set.

(5) Part (e) is satisfied since X is finite and Tµ is a continuous function
that maps the finite-dimensional space R(X) into itself.

(6) Part (f) follows from Prop. 3.3.2, which applies because S = R(X) =
Rb(X) (since X is finite) and Eq. (3.27) clearly holds.

Thus all parts of Assumption 3.3.1 are satisfied, and Prop. 3.3.1 applies
with S = R(X). The conclusions of this proposition are precisely the
results we want to prove [since improper policies have infinite cost for some
initial states, as argued earlier, optimal S-regular policies must be proper;
cf. the conclusion of part (c)]. Q.E.D.

The following example illustrates what may happen in the absence of
Assumption 3.5.8(b), when there may exist improper policies that involve
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a

a 1 2 1 2 t b

t b Destination

a 0 1 20 1 2
a 1 2 1 2 t b

t b Destination

Proper Policy µ Improper Policy µ′

Figure 3.5.6. A counterexample involving a single node 1 in addition to the
destination t. There are two policies, µ and µ′, with corresponding characteristic
graphs Aµ and Aµ′ , and arc lengths shown in the figure. The improper policy µ′

is optimal when a ≤ 0. It is R(X)-irregular if a = 0, and it is R(X)-regular if
a < 0.

a nonpositive length cycle.

Example 3.5.5:

Let X = {1}, and consider the proper policy µ with Y
(
1, µ(1)

)
= {t} and

the improper policy µ′ with Y
(
1, µ′(1)

)
= {1, t} (cf. Fig. 3.5.6). Let

g
(
1, µ(1), t

)
= 1, g

(
1, µ′(1), 1

)
= a ≤ 0, g

(
1, µ′(1), t

)
= 0.

The improper policy is the same as the one of Example 3.5.4. It can be seen
that under both policies, the longest path from 1 to t consists of the arc (1, t).
Thus,

Jµ(1) = 1, Jµ′(1) = 0,

so the improper policy µ′ is optimal, and strictly dominates the proper policy
µ. To explain what is happening here, we consider two different cases:

(1) a = 0: In this case, the optimal policy µ′ is both improper and R(X)-
irregular, but with finite cost Jµ′(1) < ∞. Thus the conditions of Props.
3.3.1 and 3.5.12 do not hold because Assumptions 3.3.1(c) and 3.5.9(b)
are violated.

(2) a < 0: In this case, µ′ is improper but R(X)-regular, so there are no
R(X)-irregular policies. Then all the conditions of Assumption 3.5.8
are satisfied, and Prop. 3.5.12 applies. Consistent with this proposition,
there exists an optimal R(X)-regular policy (i.e., optimal over both
proper and improper policies), which however is improper.

For further analysis and algorithms for the robust shortest path plan-
ning problem, we refer to the paper [Ber14]. In particular, this paper
applies the perturbation approach of Section 3.4 to the case where it may
be easier to guarantee nonnegativity rather than positivity of the lengths
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of cycles corresponding to improper policies, which is required by Assump-
tion 3.5.8(b). The paper shows that the VI algorithm terminates in a finite
number of iterations starting from the initial function J with J(x) = ∞
for all x ∈ X . Moreover the paper provides a Dijkstra-like algorithm for
problems with nonnegative arc lengths.

3.5.4 Linear-Quadratic Optimal Control

In this subsection, we consider a classical problem from control theory,
which involves the deterministic linear system

xk+1 = Axk +Buk, k = 0, 1, . . . ,

where xk ∈ ℜn, uk ∈ ℜm for all k, and A and B are given matrices. The
cost function of a policy π = {µ0, µ1, . . .} has the form

Jπ(x0) = lim
N→∞

N−1∑

k=0

(
x′
kQxk + µk(xk)′Rµk(xk)

)
,

where x′ denotes the transpose of a column vector x, Q is a positive semidef-
inite symmetric n×n matrix, and R is a positive definite symmetric m×m
matrix. This is a special case of the deterministic optimal control prob-
lem of Section 1.1, and was discussed briefly in the context of the one-
dimensional example of Section 3.1.4.

The theory of this problem is well-known and is discussed in vari-
ous forms in many sources, including the textbooks [AnM79] and [Ber17a]
(Section 3.1). The solution revolves around stationary policies µ that are
linear , in the sense that

µ(x) = Lx,

where L is some m × n matrix, and stable, in the sense that the matrix
A+BL has eigenvalues that are strictly within the unit circle. Thus for a
linear stable policy, the closed loop system

xk+1 = (A+BL)xk

is stable. We assume that there exists at least one linear stable policy.
Among others, this guarantees that the optimal cost function J∗ is real-
valued (it is bounded above by the real-valued cost function of every linear
stable policy).

The solution also revolves around the algebraic matrix Riccati equa-
tion, which is given by

P = A′
(
P − PB(B′PB +R)−1B′P

)
A+Q,

where the unknown is P , a symmetric n× n matrix. It is well-known that
if Q is positive definite, then the Riccati equation has a unique solution P ∗
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within the class of positive semidefinite symmetric matrices, and that the
optimal cost function has the form

J*(x) = x′P ∗x.

Moreover, there is a unique optimal policy, and this policy is linear stable
of the form

µ∗(x) = Lx, L = −(B′P ∗B +R)−1B′P ∗A.

The existence of an optimal linear stable policy can be extended to the case
where Q is instead positive semidefinite, but satisfies a certain “detectabil-
ity” condition; see the textbooks cited earlier.

However, in the general case where Q is positive semidefinite without
further assumptions (e.g., Q = 0), the example of Section 3.1.4 shows that
the optimal policy need not be stable, and in fact the optimal cost function
over just the linear stable policies may be different than J*.† We will
discuss this case by using the perturbation-based approach of Section 3.4,
and provide results that are consistent with the behavior observed in the
example of Section 3.1.4.

To convert the problem to our abstract format, we let

X = ℜn, U(x) = ℜm, J̄(x) = 0, ∀ x ∈ X,

H(x, u, J) = x′Qx+ u′Ru+ J(Ax+Bu).

Let S be the set of positive semidefinite quadratic functions, i.e.,

S =
{
J | J(x) = x′Px, P : positive semidefinite symmetric

}
.

Let M̂ be the set of linear stable policies, and note that every linear stable
policy is S-regular. This is due to the fact that for every quadratic function
J(x) = x′Px and linear stable policy µ(x) = Lx, the k-stage costs (T k

µJ)(x)
and (T k

µ J̄)(x) differ by the term

x′(A+BL)k′P (A+BL)kx,

which vanishes in the limit as k → ∞, since µ is stable.
Consider the perturbation framework of Section 3.4, with forcing

function
p(x) = ‖x‖2.

† This is also true in the discounted version of the example of Section 3.1.4,

where there is a discount factor α ∈ (0, 1). The Riccati equation then takes

the form P = A′
(
αP − α2PB(αB′PB + R)−1B′P

)
A + Q, and for the given

system and cost per stage, it has two solutions, P ∗ = 0 and P̂ = αγ2−1
α

. The VI

algorithm converges to P̂ starting from any P > 0.
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Then for δ > 0, the mapping Tµ,δ has the form

(Tµ,δJ)(x) = x′(Q+ δI)x+ µ(x)′Rµ(x) + J
(
Ax+Bµ(x)

)
,

where I is the identity, and corresponds to the linear-quadratic problem
where Q is replaced by the positive definite matrix Q + δI. This problem
admits a quadratic positive definite optimal cost Ĵδ(x) = x′P ∗

δ x, and an
optimal linear stable policy. Moreover, all the conditions of Prop. 3.4.1 can
be verified. It follows that J*

S is equal to the optimal cost over just the

linear stable policies Ĵ , and is obtained as limδ→0 Ĵδ, which also implies
that Ĵ(x) = x′P̂ x where P̂ = limδ→0 P ∗

δ .
The perturbation line of analysis of the linear-quadratic problem will

be generalized in Section 4.5. This generalization will address a determin-
istic discrete-time infinite horizon optimal control problem involving the
system

xk+1 = f(xk, uk), k = 0, 1, . . . ,

a nonnegative cost per stage g(x, u), and a cost-free termination state. We
will introduce there a notion of stability, and we will show that the optimal
cost function over the stable policies is the largest solution of Bellman’s
equation. Moreover, we will show that the VI algorithm and several ver-
sions of the PI algorithm are valid for suitable initial conditions.

3.5.5 Continuous-State Deterministic Optimal Control

In this section, we consider an optimal control problem, where the objective
is to steer a deterministic system towards a cost-free and absorbing set of
states. The system equation is

xk+1 = f(xk, uk), k = 0, 1, . . . , (3.44)

where xk and uk are the state and control at stage k, belonging to sets
X and U , respectively, and f is a function mapping X × U to X . The
control uk must be chosen from a constraint set U(xk). No restrictions are
placed on the nature of X and U : for example, they may be finite sets as
in deterministic shortest path problems, or they may be continuous spaces
as in classical problems of control to the origin or some other terminal set,
including the linear-quadratic problem of Section 3.5.4. The cost per stage
is denoted by g(x, u), and is assumed to be a real number. †

Because the system is deterministic, given an initial state x0, a policy
π = {µ0, µ1, . . .} when applied to the system (3.44), generates a unique se-
quence of state-control pairs

(
xk, µk(xk)

)
, k = 0, 1, . . . . The corresponding

† In Section 4.5, we will consider a similar problem where the cost per stage

will be assumed to be nonnegative, but some other assumptions from the present

section (e.g., the subsequent Assumption 3.5.9) will be relaxed.
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cost function is

Jπ(x0) = lim sup
N→∞

N−1∑

k=0

g
(
xk, µk(xk)

)
, x0 ∈ X.

We assume that there is a nonempty stopping set X0 ⊂ X , which consists
of cost-free and absorbing states in the sense that

g(x, u) = 0, x = f(x, u), ∀ x ∈ X0, u ∈ U(x). (3.45)

Based on our assumptions to be introduced shortly, the objective will be
roughly to reach or asymptotically approach the set X0 at minimum cost.

To formulate a corresponding abstract DP problem, we introduce the
mapping Tµ : R(X) 7→ R(X) by

(TµJ)(x) = g
(
x, µ(x)

)
+ J

(
f
(
x, µ(x)

))
, x ∈ X,

and the mapping T : E(X) 7→ E(X) given by

(TJ)(x) = inf
u∈U(x)

{
g(x, u) + J

(
f(x, u)

)}
, x ∈ X.

Here as earlier, we denote by R(X) the set of real-valued functions over
X , and by E(X) the set of extended real-valued functions over X . The
initial function J̄ is the zero function [J̄(x) ≡ 0]. An important fact is that
because the problem is deterministic, J* is a fixed point of T (cf. Exercise
3.1).

The analysis of the linear-quadratic problem of the preceding section
has revealed two distinct types of behavior for the case where g ≥ 0:

(a) J* is the unique fixed point of T within the set S (the set of nonneg-
ative definite quadratic functions).

(b) J* and the optimal cost function Ĵ over a restricted subset of S-
regular policies (the linear stable policies) are both fixed points of T
within the set S, but J* 6= Ĵ , and the VI algorithm converges to Ĵ
when started with a function J ≥ Ĵ .

In what follows we will introduce assumptions that preclude case (b); we
will postpone the discussion of this case for Section 4.5, where we will use
a perturbation-based line of analysis. Similar to the linear-quadratic prob-
lem, the restricted set of policies that we will consider have some “stability”
property: they are either terminating (reach X0 in a finite number of step),
or else they asymptotically approach X0 in a manner to be made precise
later.

As a first step in the analysis, let us introduce the effective domain
of J*, i.e., the set

X* =
{
x ∈ X | J*(x) < ∞

}
.
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Ordinarily, in practical applications, the states in X* are those from which
one can reach the stopping set X0, at least asymptotically. We say that a
policy µ is terminating if starting from any x0 ∈ X*, the state sequence
{xk} generated using µ reaches X0 in finite time, i.e., satisfies xk̄ ∈ X0 for

some index k̄. The set of terminating policies is denoted by M̂.
Our key assumption in this section is that for all x ∈ X*, the optimal

cost J*(x) can be approximated arbitrarily closely by using terminating
policies. In Section 4.5 we will relax this assumption.

Assumption 3.5.9: (Near-Optimal Termination) For every pair
(x, ǫ) with x ∈ X* and ǫ > 0, there exists a terminating policy µ
[possibly dependent on (x, ǫ)] that satisfies Jµ(x) ≤ J*(x) + ǫ.

This assumption implies in particular that the optimal cost function
over terminating policies,

Ĵ(x) = inf
µ∈M̂

Jµ(x), x ∈ X,

is equal to J*. Note that Assumption 3.5.9 is equivalent to a seemingly
weaker assumption where nonstationary policies can be used for termina-
tion (see Exercise 3.7).

Specific and easily verifiable conditions that imply Assumption 3.5.9
are given in the exercises. A prominent case is when X and U are finite, so
the problem becomes a deterministic shortest path problem. If all cycles
of the state transition graph have positive length, then for every π and
x with Jπ(x) < ∞ the generated path starting from x and using π must
reach the destination, and this implies that there exists an optimal policy
that terminates from all x ∈ X*. Thus, in this case Assumption 3.5.9 is
naturally satisfied.

Another interesting case arises when g(x, u) = 0 for all (x, u) except if
x /∈ X0 and the next state f(x, u) is a termination state, in which case the
cost of the stage is strictly negative, i.e., g(x, u) < 0 only when f(x, u) ∈
X0. Thus no cost is incurred except for a negative cost upon termination.
Intuitively, this is the problem of trying to find the best state from which
to terminate, out of all states that are reachable from the initial state x0.
Then, assuming that X0 can be reached from all states, Assumption 3.5.9
is satisfied.

When X is the n-dimensional Euclidean space ℜn, it may easily hap-
pen that the optimal policies are not terminating from some x ∈ X*, but
instead the optimal state trajectories may approach X0 asymptotically.
This is true for example in the linear-quadratic problem of the preceding
section, whereX = ℜn, X0 = {0}, U = ℜm, the system is linear of the form
xk+1 = Axk+Buk, where A and B are given matrices, and the optimal cost
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function is positive definite quadratic. There the optimal policy is linear
stable of the form µ∗(x) = Lx, where L is some matrix obtained through
the steady-state solution of the Riccati equation. Since the optimal closed-
loop system has the form xk+1 = (A+BL)xk, the state will typically never
reach the termination set X0 = {0} in finite time, although it will approach
it asymptotically. However, the Assumption 3.5.9 is satisfied under some
natural and easily verifiable conditions (see Exercise 3.8).

Let us consider the set of functions

S =
{
J ∈ E(X) | J(x) = 0, ∀ x ∈ X0, J(x) ∈ ℜ, ∀ x ∈ X*

}
.

Since X0 consists of cost-free and absorbing states [cf. Eq. (3.45)], and
J*(x) > −∞ for all x ∈ X (by Assumption 3.5.9), the set S contains the
cost functions Jµ of all terminating policies µ, as well as J*. Moreover

it can be seen that every terminating policy is S-regular, i.e., M̂ ⊂ MS ,
implying that J*

S = J*. The reason is that the terminal cost is zero after
termination for any terminal cost function J ∈ S, i.e.,

(T k
µJ)(x) = (T k

µ J̄)(x) = Jµ(x),

for µ ∈ M̂, x ∈ X*, and k sufficiently large.
The following proposition is a consequence of the well-behaved region

theorem (Prop. 3.2.1), the deterministic character of the problem (which
guarantees that J* is a fixed point of T ), and Assumption 3.5.9 (which
guarantees that J*

S = J*).

Proposition 3.5.13: Let Assumption 3.5.9 hold. Then:

(a) J* is the unique solution of the Bellman equation J = TJ within
the set of all J ∈ S such that J ≥ J*.

(b) We have T kJ → J* for every J ∈ S such that J ≥ J*.

(c) If µ∗ is terminating and Tµ∗J* = TJ*, then µ∗ is optimal. Con-
versely, if µ∗ is terminating and is optimal, then Tµ∗J* = TJ*.

To see what may happen in the absence of Assumption 3.5.9, consider
the deterministic shortest path example of Section 3.1.1 with a = 0, b > 0,
and S = ℜ. Here Assumption 3.5.9 is violated and we have 0 = J* < Ĵ = b,
while the set of fixed points of T is the interval (−∞, b]. However, for
the same example, but with b ≤ 0 instead of b > 0, Assumption 3.5.9
is satisfied and Prop. 3.5.13 applies. Consider also the linear-quadratic
example of Section 3.1.4. Here Assumption 3.5.9 is violated. This results
in multiple fixed points of T within S: the functions J*(x) ≡ 0 and Ĵ(x) =
(γ2 − 1)x2. In Section 4.5, we will reconsider this example, as well as the
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problem of this section for the case g(x, u) ≥ 0 for all (x, u), but under
assumptions that are much weaker than Assumption 3.5.9. There, we will
make a connection between regularity, perturbations like the ones of Section
3.4, and traditional notions of stability.

Another interesting fact is that when the model of this section is
extended in the natural way to a stochastic model with infinite state space,
then under the analog of Assumption 3.5.9, J* need not be the unique
solution of Bellman’s equation within the set of all J ∈ S such that J ≥ J*.
Indeed, we will show this in Section 4.6.1 with a stochastic example that
involves a single control per state and nonnegative but unbounded cost per
stage (if the cost per stage is nonnegative and bounded, and the optimal
cost over the proper policies only is equal to J*, then J* will be proved to
be the unique solution of Bellman’s equation within the set of all bounded
J such that J ≥ 0). This is a striking difference between deterministic
and stochastic optimal control problems with infinite state space. Another
striking difference is that J* is always a solution of Bellman’s equation in
deterministic problems (cf. Exercise 3.1), but this is not so in stochastic
problems, even when the state space is finite (cf. Section 3.1.2).

3.6 ALGORITHMS

We have already discussed some VI and PI algorithms for finding J* and
an optimal policy as part of our analysis under the weak and strong PI
properties in Section 3.2. Moreover, we have shown that the VI algorithm
converges to the optimal cost function J* for any starting function J ∈ S in
the case of Assumption 3.3.1 (cf. Prop. 3.3.1), or to the restricted optimal
cost function J*

S under the assumptions of Prop. 3.4.1(b).
In this section, we will introduce additional algorithms. In Section

3.6.1, we will discuss asynchronous versions of VI and will prove satisfactory
convergence properties under reasonable assumptions. In Section 3.6.2, we
will focus on a modified version of PI that is unaffected by the presence of
S-irregular policies. This algorithm is similar to the optimistic PI algorithm
with uniform fixed point (cf. Section 2.6.3), and can also be implemented
in a distributed asynchronous computing environment.

3.6.1 Asynchronous Value Iteration

Let us consider the model of Section 2.6.1 for asynchronous distributed
computation of the fixed point of a mapping T , and the asynchronous
distributed VI method described there. The model involves a partition ofX
into disjoint nonempty subsets X1, . . . , Xm, and a corresponding partition
of J as J = (J1, . . . , Jm), where Jℓ is the restriction of J on the set Xℓ.

We consider a network ofm processors, each updating asynchronously
corresponding components of J . In particular, we assume that Jℓ is up-
dated only by processor ℓ, and only for times t in a selected subset Rℓ of it-
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erations. Moreover, as in Section 2.6.1, processor ℓ uses components Jj sup-
plied by other processors j 6= ℓ with communication “delays” t−τℓj(t) ≥ 0:

J t+1
ℓ (x) =

{
T
(
J
τℓ1(t)
1 , . . . , J

τℓm(t)
m

)
(x) if t ∈ Rℓ, x ∈ Xℓ,

J t
ℓ (x) if t /∈ Rℓ, x ∈ Xℓ.

(3.46)

We can prove convergence within the frameworks of Sections 3.3 and
3.4 by using the asynchronous convergence theorem (cf. Prop. 2.6.1), and
the fact that T is monotone and has J* as its unique fixed point within the
appropriate set. We assume that the continuous updating and information
renewal Assumption 2.6.1 holds. For simplicity we restrict attention to the
framework of Section 3.3, under Assumption 3.3.1 with S = B(X). Assume
further that we have two functions V , V ∈ S such that

V ≤ TV ≤ TV ≤ V , (3.47)

so that, by Prop. 3.3.1, T kV ≤ J* ≤ T kV for all k, and

T kV ↑ J*, T kV ↓ J*.

Then we can show asynchronous convergence of the VI algorithm (3.46),
starting from any function J0 with V ≤ J0 ≤ V .

Indeed, let us apply Prop. 2.6.1 with the sets S(k) given by

S(k) =
{
J ∈ S | T kV ≤ J ≤ T kV

}
, k = 0, 1, . . . .

The sets S(k) satisfy S(k+ 1) ⊂ S(k) in view of Eq. (3.47) and the mono-
tonicity of T . Using Prop. 3.3.1, we also see that S(k) satisfy the syn-
chronous convergence and box conditions of Prop. 2.6.1. Thus, together
with Assumption 2.6.1, all the conditions of Prop. 2.6.1 are satisfied, and
the convergence of the algorithm follows starting from any J0 ∈ S(0).

3.6.2 Asynchronous Policy Iteration

In this section, we focus on PI methods, under Assumption 3.3.1 and some
additional assumptions to be introduced shortly. We first discuss briefly
a natural form of PI algorithm, which generates S-regular policies exclu-
sively. Let µ0 be an initial S-regular policy [there exists one by Assumption
3.3.1(b)]. At the typical iteration k, we have an S-regular policy µk, and
we compute a policy µk+1 such that Tµk+1Jµk = TJµk (this is possible by
Lemma 3.3.1). Then µk+1 is S-regular, by Lemma 3.3.2, and we have

Jµk = TµkJµk ≥ TJµk = Tµk+1Jµk ≥ lim
m→∞

T k
µk+1Jµk = Jµk+1 .

We can thus construct a sequence of S-regular policies {µk} and a cor-
responding nonincreasing sequence {Jµk}. Under some additional mild
conditions it is then possible to show that Jµk ↓ J*, cf. Prop. 3.3.1(e).
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Unfortunately, when there are S-irregular policies, the preceding PI
algorithm is somewhat limited, because an initial S-regular policy may not
be known. Moreover, when asynchronous versions of the algorithm are
implemented, it is difficult to guarantee that all the generated policies are
S-regular.

In what follows in this section, we will discuss a PI algorithm that
works in the presence of S-irregular policies, and can operate in a dis-
tributed asynchronous environment, like the PI algorithm for contractive
models of Section 2.6.3. The main assumption is that J* is the unique fixed
point of T within R(X), the set of real-valued functions over X . This as-
sumption holds under Assumption 3.3.1 with S = R(X), but it also holds
under weaker conditions. Our assumptions also include finiteness of U ,
which among others facilitates the policy evaluation and policy improve-
ment operations, and ensures that the algorithm generates iterates that
lie in R(X). The algorithm and its analysis also go through if R(X) is
replaced by R+(X) (the set of all nonnegative real-valued functions) in the
following assumptions, arguments, and propositions.

Assumption 3.6.1: In addition to the monotonicity Assumption 3.2.1,
the following hold.

(a) H(x, u, J) is real-valued for all J ∈ R(X), x ∈ X , and u ∈ U(x).

(b) U is a finite set.

(c) For each sequence {Jm} ⊂ R(X) with either Jm ↑ J or Jm ↓ J
for some J ∈ R(X), we have

lim
m→∞

H(x, u, Jm) = H (x, u, J) , ∀ x ∈ X, u ∈ U(x).

(d) For all scalars r > 0 and functions J ∈ R(X), we have

H(x, u, J + r e) ≤ H(x, u, J) + r e, ∀ x ∈ X, u ∈ U(x),
(3.48)

where e is the unit function.

(e) J* is the unique fixed point of T within R(X).

Part (d) of the preceding assumption is a nonexpansiveness condition
for H(x, u, ·), and can be easily verified in many DP models, including
deterministic, minimax, and stochastic optimal control problems. It is not
readily satisfied, however, in the affine monotonic model of Section 3.5.2.

Similar to Section 2.6.3, we introduce a new mapping that is parametri-
zed by µ and can be shown to have a common fixed point for all µ. It
operates on a pair (V,Q) where:
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• V is a real-valued function with a component denoted V (x) for each
x ∈ X .

• Q is a real-valued function with a component denoted Q(x, u) for each
pair (x, u) with x ∈ X , u ∈ U(x).

The mapping produces a pair

(
MFµ(V,Q), Fµ(V,Q)

)
,

where

• Fµ(V,Q) is a function with a component Fµ(V,Q)(x, u) for each (x, u),
defined by

Fµ(V,Q)(x, u) = H
(
x, u,min{V,Qµ}

)
, (3.49)

where for any Q and µ, we denote by Qµ the function of x defined by

Qµ(x) = Q
(
x, µ(x)

)
, x ∈ X,

and for any two functions V1 and V2, we denote by min{V1, V2} the
function of x given by

min{V1, V2}(x) = min
{
V1(x), V2(x)

}
, x ∈ X.

• MFµ(V,Q) is a function with a component
(
MFµ(V,Q)

)
(x) for each

x, where M is the operator of pointwise minimization over u:

(MQ)(x) = min
u∈U(x)

Q(x, u),

so that (
MFµ(V,Q)

)
(x) = min

u∈U(x)
Fµ(V,Q)(x, u).

Note that under Assumption 3.6.1, M maps real-valued functions
to real-valued functions, since by part (b) of that assumption, U is
assumed finite.

We consider an algorithm that is similar to the asynchronous PI al-
gorithm given in Section 2.6.3 for contractive models. It applies asyn-
chronously the mapping MFµ(V,Q) for local policy improvement and up-
date of V and µ, and the mapping Fµ(V,Q) for local policy evaluation
and update of Q. The algorithm involves a partition of the state space
into sets X1, . . . , Xm, and assignment of each subset Xℓ to a processor
ℓ ∈ {1, . . . ,m}. For each ℓ, there are two infinite disjoint subsets of times
Rℓ,Rℓ ⊂ {0, 1, . . .}, corresponding to policy improvement and policy eval-
uation iterations, respectively. At time t, each processor ℓ operates on
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V t(x), Qt(x, u), and µt(x), only for x in its “local” state space Xℓ. In
particular, at each time t, each processor ℓ does one of the following:

(a) Local policy improvement : If t ∈ Rℓ, processor ℓ sets for all x ∈ Xℓ,

V t+1(x) = min
u∈U(x)

H
(
x, u,min{V t, Qt

µt}
)
=
(
MFµt(V t, Qt)

)
(x),

(3.50)
sets µt+1(x) to a u that attains the minimum, and leaves Q un-
changed, i.e., Qt+1(x, u) = Qt(x, u) for all x ∈ Xℓ and u ∈ U(x).

(b) Local policy evaluation: If t ∈ Rℓ, processor ℓ sets for all x ∈ Xℓ and
u ∈ U(x),

Qt+1(x, u) = H
(
x, u,min{V t, Qt

µt}
)
= Fµt(V t, Qt)(x, u), (3.51)

and leaves V and µ unchanged, i.e., V t+1(x) = V t(x) and µt+1(x) =
µt(x) for all x ∈ Xℓ.

(c) No local change: If t /∈ Rℓ ∪ Rℓ, processor ℓ leaves Q, V , and µ
unchanged, i.e., Qt+1(x, u) = Qt(x, u) for all x ∈ Xℓ and u ∈ U(x),
V t+1(x) = V t(x), and µt+1(x) = µt(x) for all x ∈ Xℓ.

Under Assumption 3.6.1, the algorithm generates real-valued func-
tions if started with real-valued V 0 and Q0. We will prove that it con-
verges to (J*, Q*), where J* is the unique fixed point of T within R(X)
[cf. Assumption 3.6.1(e)], and Q* is defined by

Q*(x, u) = H(x, u, J*), x ∈ X, u ∈ U(x). (3.52)

To this end, we introduce the mapping F defined by

(FQ)(x, u) = H
(
x, u,MQ

)
, x ∈ X, u ∈ U(x), (3.53)

and we show the following proposition.

Proposition 3.6.1: Let Assumption 3.6.1 hold. Then Q* is the
unique fixed point of F within the class of real-valued functions.

Proof: By minimizing over u ∈ U(x) in Eq. (3.52) and noting that J* is a
fixed point of T , we have MQ* = TJ* = J*. Thus, by applying Eq. (3.53)
and then Eq. (3.52), we obtain

(FQ∗)(x, u) = H(x, u, J*) = Q∗(x, u), ∀ x ∈ X, u ∈ U(x).

Thus Q* is a fixed point of F , and it is real-valued since J* is real-valued
and H is real-valued.
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To show uniqueness, let Q′ be any real-valued fixed point of F . Then
Q′(x, u) = H(x, u,MQ′) for all x ∈ X , u ∈ U(x), and by minimization over
u ∈ U(x), we have MQ′ = T (MQ′). Hence MQ′ is equal to the unique
fixed point J* of T , so that the equation Q′ = FQ′ yields Q′(x, u) =
H(x, u,MQ′) = H(x, u, J*), for all (x, u). From the definition (3.52) of
Q*, it then follows that Q′ = Q∗. Q.E.D.

We introduce the µ-dependent mapping

Lµ(V,Q) =
(
MQ,Fµ(V,Q)

)
, (3.54)

where Fµ(V,Q) is given by Eq. (3.49). For this mapping and other re-
lated mappings to be defined shortly, we implicitly assume that it operates
on real-valued functions, so by Assumption 3.6.1(a),(b), it produces real-
valued functions. Note that the policy evaluation part of the algorithm [cf.
Eq. (3.51)] amounts to applying the second component of Lµ, while the
policy improvement part of the algorithm [cf. Eq. (3.50)] amounts to ap-
plying the second component of Lµ, and then applying the first component
of Lµ. The following proposition shows that (J*, Q*) is the common fixed
point of the mappings Lµ, for all µ.

Proposition 3.6.2: Let Assumption 3.6.1 hold. Then for all µ ∈ M,
the mapping Lµ of Eq. (3.54) is monotone, and (J*, Q*) is its unique
fixed point within the class of real-valued functions.

Proof: Monotonicity of Lµ follows from the monotonicity of the operators
M and Fµ. To show that Lµ has (J*, Q*) as its unique fixed point, we first
note that J* = MQ* and Q* = FQ*; cf. Prop. 3.6.1. Then, using also the
definition of Fµ, we have

J* = MQ*, Q* = FQ* = Fµ(J*, Q*),

which shows that (J*, Q*) is a fixed point of Lµ.
To show uniqueness, let (V ′, Q′) be a real-valued fixed point of Lµ,

i.e., V ′ = MQ′ and Q′ = Fµ(V ′, Q′). Then

Q′ = Fµ(V ′, Q′) = FQ′,

where the last equality follows from V ′ = MQ′. Thus Q′ is a fixed point
of F , and since Q* is the unique fixed point of F (cf. Prop. 3.6.1), we have
Q′ = Q*. It follows that V ′ = MQ* = J*, so (J*, Q*) is the unique fixed
point of Lµ within the class of real-valued functions. Q.E.D.

The uniform fixed point property of Lµ just shown is, however, in-
sufficient for the convergence proof of the asynchronous algorithm, in the
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absence of a contraction property. For this reason, we introduce two map-
pings L and L that are associated with the mappings Lµ and satisfy

L(V,Q) ≤ Lµ(V,Q) ≤ L(V,Q), ∀ µ ∈ M. (3.55)

These are the mappings defined by

L(V,Q) =

(
MQ, min

µ∈M
Fµ(V,Q)

)
, L(V,Q) =

(
MQ,max

µ∈M
Fµ(V,Q)

)
,

(3.56)
where the min and max over µ are attained in view of the finiteness of M
[cf. Assumption 3.6.1(b)]. We will show that L and L also have (J*, Q*) as
their unique fixed point. Note that there exists µ̄ that attains the maximum
in Eq. (3.56), uniformly for all V and (x, u), namely a policy µ̄ for which

Q
(
x, µ̄(x)

)
= max

u∈U(x)
Q(x, u), ∀ x ∈ X,

[cf. Eq. (3.49)]. Similarly, there exists µ that attains the minimum in Eq.
(3.56), uniformly for all V and (x, u). Thus for any given (V,Q), we have

L(V,Q) = Lµ(V,Q), L(V,Q) = Lµ̄(V,Q), (3.57)

where µ and µ̄ are some policies. The following proposition shows that
(J*, Q*), the common fixed point of the mappings Lµ, for all µ, is also the
unique fixed point of L and L.

Proposition 3.6.3: Let Assumption 3.6.1 hold. Then the mappings
L and L of Eq. (3.56) are monotone, and have (J*, Q*) as their unique
fixed point within the class of real-valued functions.

Proof: Monotonicity of L and L follows from the monotonicity of the
operators M and Fµ. Since (J*, Q*) is the common fixed point of Lµ for
all µ (cf. Prop. 3.6.2), and there exists µ such that L(J*, Q*) = Lµ(J*, Q*)

[cf. Eq. (3.57)], it follows that (J*, Q*) is a fixed point of L. To show
uniqueness, suppose that (V,Q) is a fixed point, so (V,Q) = L(V,Q). Then
by Eq. (3.57), we have

(V,Q) = L(V,Q) = Lµ(V,Q)

for some µ ∈ M. Since by Prop. 3.6.2, (J*, Q*) is the only fixed point of
Lµ, it follows that (V,Q) = (J*, Q*), so (J*, Q*) is the only fixed point of

L. Similarly, we show that (J*, Q*) is the unique fixed point of L. Q.E.D.
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We are now ready to construct a sequence of sets needed to apply
Prop. 2.6.1 and prove convergence. For a scalar c ≥ 0, we denote

J−
c = J* − c e, Q−

c = Q* − c eQ,

J+
c = J* + c e, Q+

c = Q* + c eQ,

with e and eQ are the unit functions in the spaces of J and Q, respectively.

Proposition 3.6.4: Let Assumption 3.6.1 hold. Then for all c > 0,

Lk(J−
c , Q−

c ) ↑ (J*, Q*), L
k
(J+

c , Q+
c ) ↓ (J*, Q*), (3.58)

where Lk (or L
k
) denotes the k-fold composition of L (or L, respec-

tively).

Proof: For any µ ∈ M, using the assumption (3.48), we have for all (x, u),

Fµ(J
+
c , Q+

c )(x, u) = H
(
x, u,min{J+

c , Q+
c }
)

= H
(
x, u,min{J*, Q*}+ c e

)

≤ H
(
x, u,min{J*, Q*}

)
+ c

= Q*(x, u) + c

= Q+
c (x, u),

and similarly
Q−

c (x, u) ≤ Fµ(J
−
c , Q−

c )(x, u).

We also have MQ+
c = J+

c and MQ−
c = J−

c . From these relations, the
definition of Lµ, and the fact Lµ(J*, Q*) = (J*, Q*) (cf. Prop. 3.6.2), we
have

(J−
c , Q−

c ) ≤ Lµ(J
−
c , Q−

c ) ≤ (J*, Q*) ≤ Lµ(J
+
c , Q+

c ) ≤ (J+
c , Q+

c ).

Using this relation and Eqs. (3.55) and (3.57), we obtain

(J−
c , Q−

c ) ≤ L(J−
c , Q−

c ) ≤ (J*, Q*) ≤ L(J+
c , Q+

c ) ≤ (J+
c , Q+

c ). (3.59)

Denote for k = 0, 1, . . . ,

(V k, Qk) = L
k
(J+

c , Q+
c ), (V k, Qk

) = Lk(J−
c , Q−

c ).

From the monotonicity of L and L and Eq. (3.59), we have that (V k, Qk)
converges monotonically from above to some pair

(V ,Q) ≥ (J*, Q*),
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while (V k, Qk
) converges monotonically from below to some pair

(V ,Q) ≤ (J*, Q*).

By taking the limit in the equation

(V k+1, Qk+1) = L(V k, Qk),

and using the continuity from above and below property of L, implied
by Assumption 3.6.1(c), it follows that (V ,Q) = L(V ,Q), so (V ,Q) must

be equal to (J*, Q*), the unique fixed point of L. Thus, L
k
(J+

c , Q+
c ) ↓

(J*, Q*). Similarly, Lk(J−
c , Q−

c ) ↑ (J*, Q*). Q.E.D.

To show asynchronous convergence of the algorithm (3.50)-(3.51),
consider the sets

S(k) =
{
(V,Q) | Lk(J−

c , Q−
c ) ≤ (V,Q) ≤ L

k
(J+

c , Q+
c )
}
, k = 0, 1, . . . ,

whose intersection is (J*, Q*) [cf. Eq. (3.58)]. By Prop. 3.6.4 and Eq. (3.55),
this set sequence together with the mappings Lµ satisfy the synchronous
convergence and box conditions of the asynchronous convergence theorem
of Prop. 2.6.1 (more precisely, its time-varying version of Exercise 2.2). This
proves the convergence of the algorithm (3.50)-(3.51) for starting points
(V,Q) ∈ S(0). Since c can be chosen arbitrarily large, it follows that the
algorithm is convergent from an arbitrary starting point.

Finally, let us note some variations of the asynchronous PI algorithm.
One such variation is to allow “communication delays” t− τℓj(t). Another
variation, for the case where we want to calculate just J*, is to use a
reduced space implementation similar to the one discussed in Section 2.6.3.
There is also a variant with interpolation, cf. Section 2.6.3.

3.7 NOTES, SOURCES, AND EXERCISES

The semicontractive model framework of this chapter was first given in the
2013 edition of the book, and it was subsequently expanded in a series
of papers and reports by the author: [Ber14], [Ber15], [Ber16a], [BeY16],
[Ber17c], [Ber17d]. The framework is inspired from the analysis of the SSP
problem of Example 1.2.6, which involves finite state and control spaces,
as well as a termination state. In the absence of a termination state, a
key idea has been to generalize the notion of a proper policy from one that
leads to termination with probability 1, to one that is S-regular for an
appropriate set of functions S.

Section 3.1: The counterexample showing that J* may fail to solve Bell-
man’s equation in SSP problems is due to Bertsekas and Yu [BeY16]. The
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blackmailer’s dilemma is a folklore example in the DP literature. The book
by Whittle [Whi82] has a substantial discussion. The set of solutions of
the Riccati equation in continuous-time linear-quadratic optimal control
problems (cf. Section 3.1.4) has been described in the paper by Willems
[Wil71], which stimulated considerable further work on the subject (see
the book by Lancaster and Rodman [LaR95] for an extensive account).
The pathologies of infinite horizon linear-quadratic optimal control prob-
lems can be largely eliminated under some well-studied controllability and
observability conditions (see, e.g., [Ber17a], Section 3.1).

Section 3.2: The PI-based analysis of Section 3.2 was developed in the
author’s paper [Ber15] after the 2013 edition of the book was published.
The author’s joint work with H. Yu [BeY16] was also influential. In partic-
ular, the SSP example of Section 3.1.2 where J* does not satisfy Bellman’s
equation, and the perturbation analysis of Section 3.4 come from the paper
[BeY16]. The same is true for the rate of convergence result of Prop. 3.2.2.
The λ-PI method was introduced by Bertsekas and Ioffe [BeI96] in the con-
text of discounted and SSP problems, and subsequent work was referenced
in Section 2.7. The analysis of λ-PI in Section 3.2.4 is new and is related
to an analysis of a linearized form of the proximal algorithm given in the
author’s papers [Ber16b], [Ber17e].

Section 3.3: The central result of Section 3.3, Prop. 3.3.1, was given in
the 2013 edition of the book. It is patterned after a result of Bertsekas and
Tsitsiklis [BeT91] for SSP problems with finite state space and compact
control constraint sets, which is reproduced in Section 3.5.1. The proof
given there contains an intricate part used to demonstrate a real-valued
lower bound on the cost functions of proper policies (Lemma 3 of [BeT91],
which implies Prop. 3.5.3).

Section 3.4: The perturbation approach of Section 3.4 was introduced in
the 2013 edition of the book. It is given here in somewhat stronger form,
which will also be applied to nonstationary S-regular policies in the next
chapter.

Section 3.5: The SSP problem analysis of Section 3.5.1 for the case of
the strong SSP conditions is due to the paper by Bertsekas and Tsitsiklis
[BeT91]. For the case of the weak SSP conditions it is due to the paper by
Bertsekas and Yu [BeY16]. The perturbation-based PI algorithm was given
in Section 3.3.3 of the 2013 edition of the book. A different PI algorithm
that embodies a mechanism for breaking ties in the policy improvement
step was given by Guillot and Stauffer [GuS17] for the case of finite state
and control spaces.

The affine monotonic model of Section 3.5.2 was first formulated and
analyzed in the 2013 edition of the book, in a more general setting where
the state space can be an infinite set. The analysis of Section 3.5.2 of the
finite-state case comes from the author’s paper [Ber16a], which contains
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more details. The exponentiated cost version of the SSP problem was an-
alyzed in the papers by Denardo and Rothblum [DeR79], and by Patek
[Pat01]. The paper [DeR79] assumes that the state and control spaces are
finite, that there exists at least one contractive policy (a transient policy
in the terminology of [DeR79]), and that every improper policy is noncon-
tractive and has infinite cost from some initial state. These assumptions
bypass the pathologies around infinite control spaces and multiple solu-
tions or no solution of Bellman’s equation. Also the approach of [DeR79]
is based on linear programming (relying on the finite control space), and
is thus quite different from ours. The paper [Pat01] assumes that the state
space is finite, that the control constraint set is compact, and that the ex-
pected one-stage cost is strictly positive for all state-control pairs, which is
much stronger than what we have assumed. Our results of Section 3.5.2,
when specialized to the exponential cost problem, are consistent with and
subsume the results of [DeR79] and Patek [Pat01].

The robust shortest path planning discussion of Section 3.5.3 follows
the author’s paper [Ber14]. This paper contains further analysis and algo-
rithms, including a Dijkstra-like finitely terminating algorithms for prob-
lems with nonnegative arc lengths.

The deterministic optimal control model of Section 3.5.5 is discussed
in more detail in the author’s paper [Ber17b] under Assumption 3.5.9 for the
case where g ≥ 0; see also Section 4.5 and the paper [Ber17c]. The analysis
under the more general assumptions given here is new. Deterministic and
minimax infinite-spaces optimal control problems have also been discussed
by Reissig [Rei16] under different assumptions than ours.

Section 3.6: The asynchronous VI algorithm of Section 3.6.1 was first
given in the author’s paper on distributed DP [Ber82]. It was further
formalized in the paper [Ber83], where the solution of a DP problem was
viewed as a special case of a fixed point problem.

The asynchronous PI algorithm and analysis of Section 3.6.2, parallels
the corresponding algorithm of Section 2.6.3, and is due to joint work of the
author with H. Yu, presented in the papers [BeY12] and [YuB13a]. In par-
ticular, the algorithm of Section 3.6.2 is one of the optimistic PI algorithms
in [YuB13a], which was applied to the SSP problem of Section 3.5.1 under
the strong SSP conditions. We have followed the line of analysis of that pa-
per and the related paper [BeY12], which focuses on discounted problems.
These papers also analyzed asynchronous stochastic iterative versions of PI,
and proved convergence results that parallel those for classical Q-learning
for SSP, given in Tsitsiklis [Tsi94], and Yu and Bertsekas [YuB13b]. An
earlier paper, which deals with a slightly different asynchronous abstract
PI algorithm without a contraction structure, is Bertsekas and Yu [BeY10].

By allowing an infinite state space, the analysis of the present chapter
applies among others to SSP problems with a countable state space. Such
problems often arise in queueing control problems where the termination
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state corresponds to an empty queue. The problem then is to empty the
queue with minimum expected cost. Generalized forms of SSP problems,
which involve an infinite (uncountable) number of states, in addition to
the termination state, were analyzed by Pliska [Pli78], Hernandez-Lerma
et al. [HCP99], and James and Collins [JaC06]. The latter paper allows
improper policies, assumes that g is bounded and J* is bounded below,
and generalizes the results of [BeT91] to infinite (Borel) state spaces, using
a similar line of proof. Infinite spaces SSP problems will also be discussed
in Section 4.6.

An important case of an SSP problem where the state space is infinite
arises under imperfect state information. There the problem is converted
to a perfect state information problem whose states are the belief states,
i.e., the posterior probability distributions of the original state given the
observations thus far. Patek [Pat07] addresses SSP problems with imper-
fect state information and proves results that are similar to the ones for
their perfect state information counterparts. These results can also be de-
rived using the line of analysis of this chapter. In particular, the critical
condition that the cost functions of proper policies are bounded below by
some real-valued function [cf. Assumption 3.3.1(b)] is proved as Lemma
5 in [Pat07], using the fact that the cost functions of the proper policies
are bounded below by the optimal cost function of a corresponding perfect
state information problem.

E X E R C I S E S

3.1 (Conditions for J* to be a Fixed Point of T )

The purpose of this exercise is to show that the optimal cost function J∗ is a fixed
point of T under some assumptions, which among others, are satisfied generically
in deterministic optimal control problems. Let Π̂ be a subset of policies such that:

(1) We have

(µ, π) ∈ Π̂ if and only if µ ∈ M, π ∈ Π̂,

where for µ ∈ M and π = {µ0, µ1, . . .}, we denote by (µ, π) the policy
{µ, µ0, µ1, . . .}. Note: This condition precludes the possibility that Π̂ is
the set of all stationary policies (unless there is only one stationary policy).

(2) For every π = {µ0, µ1, . . .} ∈ Π̂, we have

Jπ = Tµ0Jπ1 ,

where π1 is the policy π1 = {µ1, µ2, . . .}.



Sec. 3.7 Notes, Sources, and Exercises 207

(3) We have
inf

µ∈M, π∈Π̂
TµJπ = inf

µ∈M
TµĴ ,

where the function Ĵ is given by

Ĵ(x) = inf
π∈Π̂

Jπ(x), x ∈ X.

Show that:

(a) Ĵ is a fixed point of T . In particular, if Π̂ = Π, then J∗ is a fixed point of
T .

(b) The assumptions (1)-(3) hold with Π̂ = Π in the case of the deterministic
mapping

H(x, u, J) = g(x, u)+J
(
f(x, u)

)
, x ∈ X, u ∈ u(x), J ∈ E(X). (3.60)

(c) Consider the SSP example of Section 3.1.2, where J∗ is not a fixed point
of T . Which of the conditions (1)-(3) is violated?

Solution: (a) For every x ∈ X, we have

Ĵ(x) = inf
π∈Π̂

Jπ(x) = inf
µ∈M, π∈Π̂

(TµJπ)(x) = inf
µ∈M

(TµĴ)(x) = (T Ĵ)(x),

where the second equality holds by conditions (1) and (2), and the third equality
holds by condition (3).

(b) This is evident in the case of the deterministic mapping (3.60). Notes: (i)
If Π̂ = Π, parts (a) and (b) show that J∗, which is equal to Ĵ , is a fixed point
of T . Moreover, if we choose a set S such that J∗

S can be shown to be equal to
J∗, then Prop. 3.2.1 applies and shows that J∗ is the unique fixed point of T
with the set

{
J ∈ E(X) | J∗

S ≤ J ≤ J̃
}

for some J̃ ∈ S. In addition the VI

sequence {T kJ} converges to J∗ starting from every J within that set. (ii) The
assumptions (1)-(3) of this exercise also hold for other choices of Π̂. For example,
when Π̂ is the set of all eventually stationary policies, i.e., policies of the form
{µ0, . . . , µk, µ, µ, . . .}, where µ0, . . . , µk, µ ∈ M and k is some positive integer.

(c) For the SSP problem of Section 3.1.1, condition (2) of the preceding proposi-
tion need not be satisfied (because the expected value operation need not com-
mute with lim sup).

3.2 (Alternative Semicontractive Conditions I)

This exercise provides a different starting point for the semicontractive analysis of
Section 3.2. In particular, the results of Prop. 3.2.1 are shown without assuming
that J∗

S is a fixed point of T , but by making different assumptions, which include
the existence of an S-regular policy that is optimal. Let S be a given subset of
E(X). Assume that:
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(1) There exists an S-regular policy µ∗ that is optimal, i.e., Jµ∗ = J∗.

(2) The policy µ∗ satisfies Tµ∗J
∗ = TJ∗.

Show that the following hold:

(a) The optimal cost function J∗ is the unique fixed point of T within the set
{J ∈ S | J ≥ J∗}.

(b) We have T kJ → J∗ for every J ∈ S with J ≥ J∗.

(c) An S-regular policy µ that satisfies TµJ
∗ = TJ∗ is optimal. Conversely if

µ is an S-regular optimal policy, it satisfies TµJ
∗ = TJ∗.

Note: Part (a) and the assumptions show that J∗
S is a fixed point of T (as well

as that J∗
S = J∗ ∈ S), so parts (b) and (c) also follow from Prop. 3.2.1.

Solution: (a) We first show that any fixed point J of T that lies in S satisfies
J ≤ J∗. Indeed, if J = TJ , then for the optimal S-regular policy µ∗, we have
J ≤ Tµ∗J , so in view of the monotonicity of Tµ∗ and the S-regularity of µ∗,

J ≤ lim
k→∞

T k
µ∗J = Jµ∗ = J∗.

Thus the only function within {J ∈ S | J ≥ J∗} that can be a fixed point of T is
J∗. Using the optimality and S-regularity of µ∗, and condition (2), we have

J∗ = Jµ∗ = Tµ∗Jµ∗ = Tµ∗J
∗ = TJ∗,

so J∗ is a fixed point of T . Finally, J∗ ∈ S since J∗ = Jµ∗ and µ∗ is S-regular,
so J∗ is the unique fixed point of T within {J ∈ S | J ≥ J∗}.

(b) For the optimal S-regular policy µ∗ and any J ∈ S with J ≥ J∗, we have

T k
µ∗J ≥ T kJ ≥ T kJ∗ = J∗, k = 0, 1, . . . .

Taking the limit as k → ∞, and using the fact limk→∞ T k
µ∗J = Jµ∗ = J∗, which

holds since µ∗ is S-regular and optimal, we see that T kJ → J∗.

(c) If µ satisfies TµJ
∗ = TJ∗, then using part (a), we have TµJ

∗ = J∗ and hence
limk→∞ T k

µJ
∗ = J∗. If µ is in addition S-regular, then Jµ = limk→∞ T k

µJ
∗ = J∗

and µ is optimal. Conversely, if µ is optimal and S-regular, then Jµ = J∗ and
Jµ = TµJµ, which combined with J∗ = TJ∗ [cf. part (a)], yields TµJ

∗ = TJ∗.

3.3 (Alternative Semicontractive Conditions II)

Let S be a given subset of E(X). Show that the assumptions of Exercise 3.2 hold
if and only if J∗ ∈ S, TJ∗ ≤ J∗, and there exists an S-regular policy µ such that
TµJ

∗ = TJ∗.

Solution: Let the conditions (1) and (2) of Exercise 3.2 hold, and let µ∗ be the
S-regular policy that is optimal. Then condition (1) implies that J∗ = Jµ∗ ∈ S
and J∗ = Tµ∗J

∗ ≥ TJ∗, while condition (2) implies that there exists an S-regular
policy µ such that TµJ

∗ = TJ∗.
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Conversely, assume that J∗ ∈ S, TJ∗ ≤ J∗, and there exists an S-regular
policy µ such that TµJ

∗ = TJ∗. Then we have TµJ
∗ = TJ∗ ≤ J∗. Hence

T k
µJ

∗ ≤ J∗ for all k, and by taking the limit as k → ∞, we obtain Jµ ≤ J∗.
Hence the S-regular policy µ is optimal, and the conditions of Exercise 3.2 hold.

3.4 (Alternative Semicontractive Conditions III)

Let S be a given subset of E(X). Assume that:

(1) There exists an optimal S-regular policy.

(2) For every S-irregular policy µ, we have TµJ
∗ ≥ J∗.

Show that the assumptions of Exercise 3.2 hold.

Solution: It will be sufficient to show that conditions (1) and (2) imply that
J∗ = TJ∗. Assume to obtain a contradiction, that J∗ 6= TJ∗. Then J∗ ≥ TJ∗,
as can be seen from the relations

J∗ = Jµ∗ = Tµ∗Jµ∗ ≥ TJµ∗ = TJ∗,

where µ∗ is an optimal S-regular policy. Thus the relation J∗ 6= TJ∗ implies
that there exists µ′ and x ∈ X such that

J∗(x) ≥ (Tµ′J
∗)(x), ∀ x ∈ X,

with strict inequality for some x [note here that we can choose µ(x) = µ∗(x) for
all x such that J∗(x) = (TJ∗)(x), and we can choose µ(x) to satisfy J∗(x) >
(TµJ

∗)(x) for all other x]. If µ were S-regular, we would have

J∗ ≥ TµJ
∗ ≥ lim

k→∞
T k
µJ

∗ = Jµ′ ,

with strict inequality for some x ∈ X, which is impossible. Hence µ′ is S-irregular,
which contradicts condition (2).

3.5 (Restricted Optimization over a Subset of S-Regular
Policies)

This exercise provides a useful extension of Prop. 3.2.1. Given a set S, it may be

more convenient to work with a subset M̂ ⊂ MS . Let Ĵ denote the corresponding
restricted optimal value:

Ĵ(x) = inf
µ∈M̂

Jµ(x),

and assume that Ĵ is a fixed point of T . Show that the following analogs of the
conclusions of Prop. 3.2.1 hold:

(a) (Uniqueness of Fixed Point) If J ′ is a fixed point of T and there exists

J̃ ∈ S such that J ′ ≤ J̃ , then J ′ ≤ Ĵ . In particular, if the set Ŵ given by

Ŵ =
{
J ∈ E(X) | Ĵ ≤ J ≤ J̃ for some J̃ ∈ S

}
,
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is nonempty, then Ĵ is the unique fixed point of T within Ŵ.

(b) (VI Convergence) We have T kJ → Ĵ for every J ∈ Ŵ .

Solution: The proof is nearly identical to the one of Prop. 3.2.1. Let J ∈ Ŵ, so
that

Ĵ ≤ J ≤ J̃

for some J̃ ∈ S. We have for all k ≥ 1 and µ ∈ M̂,

Ĵ = T kĴ ≤ T kJ ≤ T kJ̃ ≤ T k
µ J̃ ,

where the equality follows from the fixed point property of Ĵ , while the inequal-
ities follow by using the monotonicity and the definition of T . The right-hand
side tends to Jµ as k → ∞, since µ is S-regular and J̃ ∈ S. Hence the infimum

over µ ∈ M̂ of the limit of the right-hand side tends to the left-hand side Ĵ . It
follows that T kJ → Ĵ , proving part (b). To prove part (a), let J ′ be a fixed

point of T that belongs to Ŵ. Then J ′ is equal to limk→∞ T kJ ′, which has been
proved to be equal to Ĵ .

3.6 (The Case J∗
S ≤ J̄)

Within the framework of Section 3.2, assume that J∗
S ≤ J̄ . (This occurs in

particular in the monotone decreasing model where J̄ ≥ TµJ̄ for all µ ∈ M; see
Section 4.3.) Show that if J∗

S is a fixed point of T , then we have J∗
S = J∗. Note:

This result manifests itself in the shortest path Example 3.2.1 for the case where
b < 0.

Solution: For all k and policies π = {µ0, µ1, . . .}, we have

J∗
S = lim

k→∞
T kJ∗

S ≤ lim sup
k→∞

T kJ̄ ≤ lim sup
k→∞

Tµ0 · · ·Tµk−1
J̄ = Jπ ,

and by taking the infimum over π ∈ Π, we obtain J∗
S ≤ J∗. Since generically we

have J∗
S ≥ J∗, it follows that J∗

S = J∗.

3.7 (Weakening the Near-Optimal Termination Assumption)

Consider the deterministic optimal control problem of Section 3.5.5. The purpose
of this exercise is to show that the Assumption 3.5.9 is equivalent to a seemingly
weaker assumption where nonstationary policies can be used for termination.
Given a state x ∈ X∗, we say that a (possibly nonstationary) policy π ∈ Π
terminates from x if the sequence {xk}, which is generated starting from x and
using π, reaches X0 in the sense that xk̄ ∈ X0 for some index k̄. Assume that for
every x ∈ X∗, there exists a policy π ∈ Π that terminates from x. Show that:

(a) The set M̂ of terminating stationary policies is nonempty, i.e., there exists
a stationary policy that terminates from every x ∈ X∗.



Sec. 3.7 Notes, Sources, and Exercises 211

(b) Assumption 3.5.9 is satisfied if for every pair (x, ǫ) with x ∈ X∗ and ǫ > 0,
there exists a policy π ∈ Π that terminates from x and satisfies Jπ(x) ≤
J∗(x) + ǫ.

Solution: (a) Consider the sequence of subsets of X defined for k = 0, 1, . . . , by

Xk = {x ∈ X∗ | there exists π ∈ Π that terminates from x in k steps or less},

starting with the stopping set X0. Note that ∪∞
k=0Xk = X∗. Define a stationary

policy µ̄ as follows: For each x ∈ Xk with x /∈ Xk−1, let {µ0, µ1, . . .} be a policy
that terminates from x in the minimum possible number of steps (which is k),
and let µ̄ = µ0. For each x /∈ X∗, let µ̄(x) be an arbitrary control in U(x). It
can be seen that µ̄ is a terminating stationary policy.

(b) Given any state x̄ ∈ X∗ with x̄ /∈ X0, and a nonstationary policy π =
{µ0, µ1, . . .} that terminates from x̄, we construct a stationary policy µ that
terminates from every x ∈ X∗ and generates essentially the same trajectory as
π starting from x̄ (i.e., after cycles are subtracted). To construct such a µ, we
consider the sequence generated by π starting from x̄. If this sequence contains
cycles, we shorten the sequence by eliminating the cycles, and we redefine π so
that starting from x̄ it generates a terminating trajectory without cycles. This
redefined version of π, denoted π′ = {µ′

0, µ
′
1, . . .}, terminates from x̄ and has cost

Jπ′(x̄) ≤ Jπ(x̄) [since all the eliminated transitions that belonged to cycles have
nonnegative cost, in view of the fact J∗(x) > −∞ for all x, which is implied by
Assumption 3.5.9]. We now consider the sequence of subsets of X defined by

Xk = {x ∈ X | π′ terminates from x in k steps or less}, k = 0, 1, . . . ,

where X0 is the stopping set. Let k̄ be the first k ≥ 1 such that x̄ ∈ Xk. Construct
the stationary policy µ as follows: for x ∈ ∪k̄

k=1Xk, let

µ(x) = µ′
k̄−k(x), if x ∈ Xk and x /∈ Xk−1, k = 1, 2, . . . ,

and for x /∈ ∪k̄
k=1Xk, let µ(x) = µ̄(x), where µ̄ is a stationary policy that termi-

nates from every x ∈ X∗ [and was shown to exist in part (a)]. Then it is seen
that µ terminates from every x ∈ X∗, and generates the same sequence as π′

starting from the state x̄, so it satisfies Jµ(x̄) = Jπ′(x̄) ≤ Jπ(x̄).

3.8 (Verifying the Near-Optimal Termination Assumption)

In the context of the deterministic optimal control problem of Section 3.5.5,
assume that X is a normed space with norm denoted ‖ · ‖. We say that π
asymptotically terminates from x if the sequence {xk} generated starting from x
and using π converges to X0 in the sense that

lim
k→∞

dist(xk, X0) = 0,

where dist(x,X0) denotes the minimum distance from x to X0,

dist(x,X0) = inf
y∈X0

‖x− y‖, x ∈ X.
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The purpose of this exercise is to provide a readily verifiable condition that
guarantees Assumption 3.5.9. Assume that

0 ≤ g(x,u), x ∈ X, u ∈ U(x),

and that
J∗(x) > 0, ∀ x /∈ X0.

Assume further the following:

(1) For every x ∈ X∗ =
{
x ∈ X | J∗(x) < ∞

}
and ǫ > 0, there exits a policy

π that asymptotically terminates from x and satisfies Jπ(x) ≤ J∗(x) + ǫ.

(2) For every ǫ > 0, there exists a δǫ > 0 such that for each x ∈ X∗ with

dist(x,X0) ≤ δǫ,

there is a policy π that terminates from x and satisfies Jπ(x) ≤ ǫ.

Then:

(a) Show that Assumption 3.5.9 holds.

(b) Show that condition (1) holds if for each δ > 0 there exists ǫ > 0 such that

inf
u∈U(x)

g(x, u) ≥ ǫ, ∀ x ∈ X such that dist(x,X0) ≥ δ.

Note: For further discussion, analysis, and application to the case of a linear
system, see the author’s paper [Ber17b].

Solution: (a) Fix x ∈ X∗ and ǫ > 0. Let π be a policy that asymptotically
terminates from x, and satisfies Jπ(x) ≤ J∗(x)+ ǫ, as per condition (1). Starting
from x, this policy will generate a sequence {xk} such that for some index k̄ we
have dist(xk̄, X0) ≤ δǫ, so by condition (2), there exists a policy π̄ that terminates
from xk̄ and is such that Jπ̄(xk̄) ≤ ǫ. Consider the policy π′ that follows π up to
index k̄ and follows π̄ afterwards. This policy terminates from x and satisfies

Jπ′(x) = Jπ,k̄(x) + Jπ̄(xk̄) ≤ Jπ(x) + Jπ̄(xk̄) ≤ J∗(x) + 2ǫ,

where Jπ,k̄(x) is the cost incurred by π starting from x up to reaching xk̄. From
Exercise 3.7 it follows that Assumption 3.5.9 holds.

(b) For any x and policy π that does not asymptotically terminate from x, we
will have Jπ(x) = ∞, so that if x ∈ X∗, all policies π with Jπ(x) < ∞ must be
asymptotically terminating from x.

3.9 (Perturbations and S-Regular Policies)

The purpose of this exercise is to illustrate that the set of S-regular policies may
be different in the perturbed and unperturbed problems of Section 3.4. Consider
a single-state problem with J̄ = 0 and two policies µ and µ′, where

TµJ = min{1, J}, Tµ′J = β > 0.
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Let S = ℜ.

(a) Verify that µ is S-irregular and Jµ = J∗ = 0.

(b) Verify that µ′ is S-regular and Jµ′ = J∗
S = β.

(c) For δ > 0 consider the δ-perturbed problem with p(x) = 1, where x is
the only state. Show that both µ and µ′ are S-regular for this problem.
Moreover, we have Ĵδ = min{1, β}+ δ.

(d) Verify that Prop. 3.4.1 applies for M̂ = {µ′} and β ≤ 1, but does not

apply if M̂ = {µ, µ′} or β > 1. Which assumptions of the proposition are
violated in the latter case?

Solution: Parts (a) and (b) are straightforward. It is also straightforward to
verify the definition of S-regularity for both policies in the δ-perturbed problem,
and that Jµ,δ = 1 + δ and Jµ′,δ = β + δ. If β ≤ 1, the policy µ′ is optimal

for the δ-perturbed problem, and Prop. 3.4.1 applies for M̂ = {µ′} because all

its assumptions are satisfied. However, when β > 1 and M̂ = {µ′} there is no

ǫ-optimal policy in M̂ for the δ-perturbed problem (contrary to the assumption

of Prop. 3.4.1), and indeed we have β = J∗
S > limδ↓0 Ĵδ = 1. Also when M̂ =

{µ, µ′}, the policy µ is not S-regular, contrary to the assumption of Prop. 3.4.1.

3.10 (Perturbations in Affine Monotonic Models [Ber16a])

Consider the affine monotonic model of Section 3.5.2, and let Assumptions 3.5.5
and 3.5.6 hold. In a perturbed version of this model we add a constant δ > 0 to all
components of bµ, thus obtaining what we call the δ-perturbed affine monotonic

problem. We denote by Ĵδ and Jµ,δ the corresponding optimal cost function and
policy cost functions, respectively.

(a) Show that for all δ > 0, Ĵδ is the unique solution within ℜn
+ of the equation

J(i) = (TJ)(i) + δ, i = 1, . . . , n.

(b) Show that for all δ > 0, a policy µ is optimal for the δ-perturbed problem
(i.e., Jµ,δ = Ĵδ) if and only if TµĴδ = T Ĵδ. Moreover, for the δ-perturbed
problem, all optimal policies are contractive and there exists at least one
contractive policy that is optimal.

(c) The optimal cost function over contractive policies Ĵ [cf. Eq. (3.37)] satisfies

Ĵ(i) = lim
δ↓0

Ĵδ(i), i = 1, . . . , n.

(d) If the control constraint set U(i) is finite for all states i = 1, . . . , n, there
exists a contractive policy µ̂ that attains the minimum over all contractive
policies, i.e., Jµ̂ = Ĵ .

(e) Show Prop. 3.5.8.
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Solution: (a), (b) By Prop. 3.5.6, we have that Assumption 3.3.1 holds for the
δ-perturbed problem. The results follow by applying Prop. 3.5.7 [the equation of
part (a) is Bellman’s equation for the δ-perturbed problem].

(c) For an optimal contractive policy µ∗
δ of the δ-perturbed problem [cf. part (b)],

we have

Ĵ = inf
µ: contractive

Jµ ≤ Jµ∗
δ
≤ Jµ∗

δ
,δ = Ĵδ ≤ Jµ′,δ, ∀ µ′ : contractive.

Since for every contractive policy µ′, we have limδ↓0 Jµ′,δ = Jµ′ , it follows that

Ĵ ≤ lim
δ↓0

Ĵδ ≤ Jµ′ , ∀ µ′ : contractive.

By taking the infimum over all µ′ that are contractive, the result follows.

(d) Let {δk} be a positive sequence with δk ↓ 0, and consider a corresponding se-
quence {µk} of optimal contractive policies for the δk-perturbed problems. Since
the set of contractive policies is finite [in view of the finiteness of U(i)], some
policy µ̂ will be repeated infinitely often within the sequence {µk}, and since
{J∗

δk
} is monotonically nonincreasing, we will have

Ĵ ≤ Jµ̂ ≤ J∗
δk
,

for all k sufficiently large. Since by part (c), J∗
δk

↓ Ĵ , it follows that Jµ̂ = Ĵ .

(e) For all contractive µ, we have Jµ = TµJµ ≥ TµĴ ≥ T Ĵ. Taking the infimum
over contractive µ, we obtain Ĵ ≥ T Ĵ. Conversely, for all δ > 0 and µ ∈ M, we
have

Ĵδ = T Ĵδ + δe ≤ TµĴδ + δe.

Taking limit as δ ↓ 0, and using part (c), we obtain Ĵ ≤ TµĴ for all µ ∈ M.
Taking infimum over µ ∈ M, it follows that Ĵ ≤ T Ĵ . Thus Ĵ is a fixed point of
T .

For all J ∈ ℜn with J ≥ Ĵ and contractive µ, we have by using the relation
Ĵ = T Ĵ just shown,

Ĵ = lim
k→∞

T kĴ ≤ lim
k→∞

T kJ ≤ lim
k→∞

T k
µJ = Jµ.

Taking the infimum over all contractive µ, we obtain

Ĵ ≤ lim
k→∞

T kJ ≤ Ĵ , ∀ J ≥ Ĵ .

This proves that T kJ → Ĵ . Finally, let J ′ ∈ R(X) be another solution of
Bellman’s equation, and let J ∈ R(X) be such that J ≥ Ĵ and J ≥ J ′. Then
T kJ → Ĵ , while T kJ ≥ T kJ ′ = J ′. It follows that Ĵ ≥ J ′.

To prove Prop. 3.5.8(c) note that if µ is a contractive policy with Jµ = Ĵ ,
we have Ĵ = Jµ = TµJµ = TµĴ , so, using also the relation Ĵ = T Ĵ [cf. part (a)],
we obtain TµĴ = T Ĵ . Conversely, if µ satisfies TµĴ = T Ĵ , then from part (a),
we have TµĴ = Ĵ and hence limk→∞ T k

µ Ĵ = Ĵ . Since µ is contractive, we obtain

Jµ = limk→∞ T k
µ Ĵ , so Jµ = Ĵ .

The proof of Prop. 3.5.8(d) is nearly identical to the one of Prop. 3.5.4(d).


