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1. INTRODUCTION

A general theory of dynamic programming must deal with the formidable mathematical questions

that arise from the presence of uncountable probability spaces. These questions are explored at

some length by means of a simple example in Section 2. With this example as motivation, the

mathematical preliminaries necessary for the construction of a general finite horizon model are

developed in Section 3. In Section 4, the results of Section 3 are applied to set up the model and

to indicate how a valid dynamic programming algorithm can be defined.

The purpose of the paper is to provide some orientation for the development of a compre-

hensive and mathematically rigorous theory of dynamic programming, as given in the authors’

book “Stochastic Optimal Control: The Discrete-Time Case,” Academic Press, 1978 (republished

by Athena Scientific, 1996). This book contains a detailed analysis of finite and infinite horizon

problems, and provides references to earlier research.

2. A TWO-STAGE EXAMPLE

Suppose that we are given a point (state) x0 on the real line � and a system function f(x0, u0, w0),

where u0 and w0 are also real numbers. Knowing x0, we must choose a control u0 ∈ �, a random

† Adapted from the expository paper “Dynamic Programming in Borel Spaces” by D. P. Bertsekas

and S. E. Shreve, which appeared in the edited volume “Dynamic Programming and its Applications,”

by M. Puterman (Ed.), Academic Press, 1978.
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disturbance w0 is generated according to the probability measure p on the Borel sets of �, and

the new state of the system x1 ∈ � is given by x1 = f(x0, u0, w0). Knowing x1, we must choose a

control u1 ∈ � and then incur cost g(x1, u1), where g is a real-valued function which is bounded

below. Thus a cost is incurred only at termination. A policy π = (µ0, µ1) is a pair of functions

from state to control, i.e., if the policy π is employed and x0 is the initial state, then we choose

u0 to be µ0(x0). If x1 is the subsequent state, we choose u1 to be µ1(x1). The expected cost

corresponding to a policy π = (µ0, µ1) when x0 is the initial state is

Jπ(x0) =
∫

g (f [x0, µ0(x0), w0], µ1(f [x0, µ0(x0), w0])) p(dw0). (1)

We must insure that the integral in (1) is defined. A sufficient condition for this is that f , g and

µ1 are Borel measurable. However, our aim in this example is to point out the type of measure

theoretic framework that must be adopted in order for specific results to hold. We thus leave

unspecified at present the measurability restrictions on f , g, and µ1 but always assume that µ1

will be chosen from an appropriately measurable class of policies for which the cost in (1) is well

defined. The optimal cost is

J∗(x0) = inf
π

Jπ(x0), (2)

where the infimum is over all policies π = (µ0, µ1) such that µ1 is measurable from � to � with

respect to σ-algebras to be specified later. Given ε > 0, a policy π is ε-optimal if

Jπ(x0) ≤ J∗(x0) + ε x0 ∈ �. (3)

A policy π is optimal if (3) holds with ε = 0.

The backward recursion of dynamic programming takes the following form:

J1(x1) = inf
u1∈�

g(x1, u1) x1 ∈ �, (4)

J2(x0) = inf
u0∈�

∫
J1[f(x0, u0, w0)]p(dw0) x0 ∈ �. (5)

The motivation for this algorithm is that under certain conditions J2(x0) = J∗(x0) for every

x0 ∈ �. An informal justification goes this way:

J∗(x0) = inf
π

Jπ(x0)

= inf
µ0

inf
µ1

∫
g(f [x0, µ0(x0), w0], µ1(f [x0, µ0(x0), w0]))p(dw0) (6)

= inf
µ0

∫
inf
µ1

g(f [x0, µ0(x0), w0], µ1(f [x0, µ0(x0), w0]))p(dw0) (6a)

= inf
µ0

∫
J1(f [x0, µ0(x0), w0])p(dw0) (6b)

= J2(x0).
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In order to make this rigorous, the interchange of infimization and integration in (6a) must be

justified. As a part of this, it must be shown that the integral in (6a) is defined, that is, J1 is

sufficiently regular to allow the integral in (6b) to be defined.

Given ε > 0, suppose we can find a function µ̄1 : � → �, which is measurable with respect

to appropriate σ-algebras and is such that

g[x1, µ̄1(x1)] ≤ J1(x1) +
ε

2
x1 ∈ �. (7)

Let µ̄0 : � → � be such that
∫

J1(f [x0, µ̄0(x0), w0])p(dw0) ≤ J2(x0) +
ε

2
x0 ∈ �. (8)

Formally, we have for π̄ = (µ̄0, µ̄1) and x0 ∈ �,

Jπ̄(x0) =
∫

g (f [x0, µ̄0(x0), w0], µ̄1(f [x0, µ̄0(x0), w0])) p(dw0)

≤
∫

J1(f [x0, µ̄0(x0), w0])p(dw0) +
ε

2
≤ J2(x0) + ε

≤ J∗(x0) + ε, (9)

so π̄ is ε-optimal. Furthermore, if an appropriately measurable µ̄1 satisfying (7) exists, then
∫

J1 (f [x0, µ0(x0), w0]) p(dw0) =
∫

inf
µ1

g (f [x0, µ0(x0), w0], µ1(f [x0, µ0(x0), w0])) p(dw0)

≤ inf
µ1

∫
g (f [x0, µ0(x0), w0], µ1(f [x0, µ0(x0, w0])) p(dw0)

≤
∫

g (f [x0, µ0(x0), w0]µ̄1(f [x0, µ0(x0), w0])) p(dw0)

≤
∫

J1 (f [x0, µ0(x0), w0]) p(dw0) +
ε

2
, (10)

so the interchange of integration and infimization in (6a) is valid provided that the integral in

(6b), or equivalently, the integral in (5) is defined.

We observe that if the probability measure p(dw0) has countable support , i.e., is concentrated

on a countable number of points, then the integrals in (1), (5), (6), and (8)-(10) reduce to (possibly

infinite) summations. Thus, all the integrals are defined without the imposition of measurability

restrictions on µ1, f and g, and µ̄1 and µ̄0 satisfying (7), (8) exist since g is bounded below.

If p(dw0) does not have countable support, two approaches have been used. The first is to

expand the notion of integration, and the second is to place appropriate measurability restrictions

on f , g and µ1. Expanding the notion of integration can be done by interpreting the integrals

in (1), (5), (6) and (8)-(10) as outer integrals. Since the outer integral can be defined for any
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function, measurable or not, there is no need to require that f , g, µ0 and µ1 be measurable in any

sense, and the arguments advanced above go through just as in the countable disturbance case.

We do not discuss this approach further except to mention that the Bertsekas and Shreve book

shows that the basic results for finite and infinite horizon problems of perfect state information

carry through within an outer integration framework. However, there are inherent limitations in

this approach centering around the pathologies of outer integration. For example, the value of

the cost function corresponding to a policy may depend on the definition of outer integral, i.e.,

two different (but natural) definitions of outer integration may result in different cost functions.

Difficulties also occur in the treatment of imperfect information problems using sufficient statis-

tics. The other approach was initiated in more general form by Blackwell in 1965. We discuss it

at length in the subsequent sections.

In conclusion, we point out that if the infima in (4) and (5) are attained for every x1 and

x0, respectively, and appropriately measurable µ̄1 : � → � and µ̄0 : � → � can be found such

that (7) and (8) are satisfied with ε = 0, then J2(x0) = J∗(x0) for every x0 ∈ � and π = (µ̄0, µ̄1)

is optimal, provided only that the integral in (5) is defined. This can be seen by setting ε = 0 in

(9) and (10).

3. MEASURABLE SELECTION

The example of the preceding section shows that if measurability restrictions are placed on µ1

and µ0, then measurable selection becomes a crucial part of the analysis. We discuss this in

the framework of Borel spaces. Given a topological space Y , we denote by BY the σ-algebra

generated by the open subsets of Y and refer to the members of BY as the Borel subsets of Y .

A topological space Y is a Borel space if it is homeomorphic to a Borel subset of a complete

separable metric space. The concept of Borel space is quite broad, containing any “reasonable”

subset of n-dimensional Euclidean space. Any Borel subset of a Borel space is again a Borel space,

as is any homeomorphic image of a Borel space and any finite or countable Cartesian product of

Borel spaces. However, even in the unit square, there exist Borel sets whose projections onto an

axis are not Borel subsets of that axis. This leads us to the analytic sets. A subset A of a Borel

space Y is said to be analytic if there exists a Borel space Z and a Borel subset B of Y ×Z such

that A = projY (B), where projY is the projection mapping from Y × Z to Y . It is clear that

every Borel subset of a Borel space Y is also an analytic subset of Y .

We list some of the properties of analytic sets that are relevant to our development. Let Y
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and Z be Borel spaces.

(i) If A ⊂ Y is analytic and h : Y → Z is Borel measurable, then h(A) is analytic. In particular,

if Y is a product of Borel spaces Y1 and Y2 and A ⊂ Y1 × Y2 is analytic, then projY1
(A) is

analytic.

(ii) If A ⊂ Z is analytic and h : Y → Z is Borel measurable, then h−1(A) is analytic.

(iii) If A1, A2, . . . are analytic subsets of Y , then ∪∞
k=1 Ak and ∩∞

k=1 Ak are analytic. It is not

always true, however, that the complement of an analytic set is analytic, so the collection

of analytic subsets of Y need not constitute a σ-algebra.

Let Y be a Borel space and let h : Y → [−∞,∞] be a function. We say that h is lower

semianalytic if {y ∈ Y |h(y) < c} is analytic for every c ∈ �.

Theorem 1: Let Y and Z be Borel spaces, and let h : Y ×Z → [−∞,∞] be lower semianalytic.

Then h∗ : Y → [−∞,∞] defined by

h∗(y) = inf
z∈Z

h(y, z) (11)

is lower semianalytic.

It turns out that if h∗ : Y → [−∞,∞] is a given lower semianalytic function and Z is any

uncountable Borel space, then a Borel measurable function h : Y × Z → [−∞,∞] can be found

for which (11) holds. A comparison of (4) with (11) shows how lower semianalytic functions can

arise in dynamic programming. We give as lemmas two useful properties of these functions.

Lemma 1: Let Y be a Borel space and let h, l : Y → [−∞,∞] be lower semianalytic functions.

Suppose that for every y ∈ Y , the sum h(y) + l(y) is defined, i.e., is not of the form ∞ − ∞.

Then h + l is lower semianalytic.

Lemma 2: Let Y and Z be Borel spaces, h : Y → Z Borel measurable, and l : Z → [−∞,∞]

lower semianalytic. Then the composition l ◦ h is lower semianalytic.

If the function g in (4) is lower semianalytic, then J1 defined by (4) is lower semianalytic

(Theorem 1). If f in (5) is Borel measurable, then for fixed (x0, u0), the function J1[f(x0, u0, w0)]

is lower semianalytic in w0 (Lemma 2). In the example of Section 2, there is no cost g0(x0, u0, w0)

incurred in the first stage of the system operation. When such a cost is incurred and g0 is lower

semianalytic, the integrand in (5) becomes g0(x0, u0, w0) + J1[f(x0, u0, w0)], which is still lower

semianalytic in w0 for fixed (x0, u0) (Lemma 1).

In order to carry out the integration in (5), we must discuss the measurability of lower

semianalytic functions. There are at least three natural σ-algebras in a Borel space Y . The
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first is the Borel σ-algebra BY mentioned earlier. The second is the σ-algebra generated by the

analytic subsets of Y , called the analytic σ-algebra and denoted by Y . The third is the universal

σ-algebra UY , which is the intersection of all completions of BY with respect to all probability

measures. Thus, E ∈ UY if and only if, given any probability measure p on (Y,BY ), there is a

Borel set B and a p-null set N such that E = B ∪ N .

Theorem 2: Let Y be a Borel space. Then

BY ⊂ AY ⊂ UY .

Corresponding to the three σ-algebras in Borel spaces, we have three classes of measurable

functions. Suppose X, Y and Z are Borel spaces and h : Y → Z is given. The function h is said

to be Borel, analytically, or universally measurable if for every B ∈ BZ , the set h−1(B) is Borel,

analytically, or universally measurable respectively. It can be shown that if U ⊂ Z is universally

measurable and h is universally measurable, then h−1(U) is also universally measurable.

As a result, if g : X → Y , h : Y → Z are Borel or universally measurable functions, then the

composition (g ◦h) : X → Z is Borel or universally measurable, respectively. However, if g and h

are analytically measurable, then (g◦h) need not be analytically measurable and this is a primary

source of difficulty in working with analytically measurable policies in dynamic programming. If

h : Y → [−c,∞] is universally measurable, where c ∈ �, and p is a probability measure on

(Y,BY ), then p has a unique extension to a probability measure p̄ and
∫

hdp̄ is defined. We

write simply p instead of p̄ and
∫

hdp in place of
∫

hdp̄. In particular, if h is lower semianalytic,

then
∫

hdp can be defined in this manner. Thus defined, the integral of universally measurable

functions operates linearly and obeys the classical convergence theorems. We understand the

integration in (5) to be defined in this way.

We investigate now the existence of a measurable (in one of the three senses defined above)

function µ̄1 satisfying (7), where we assume that g is lower semianalytic and f is Borel measurable.

This issue is resolved by the following selection theorem. Part (c) of the theorem addresses the

question raised in the last paragraph of Section 2.

Theorem 3: Let Y and Z be Borel spaces and let h : Y ×Z → [−∞,∞] be a lower semianalytic

function. Define h∗ : Y → [−∞,∞] by (11). Let I = {y ∈ Y | there exists a zy ∈ Z for which

h(y, zy) = h∗(y)}, i.e., I is the set of points y for which the infimum in (11) is actually attained.

Choose ε > 0.

(a) For every probability measure p on (Y,BY ), there exists a Borel measurable φp : Y → Z
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such that

h[y, φp(y)] ≤
{

h∗(y) + ε if h∗(y) > −∞,

−1/ε if h∗(y) = −∞,
(12)

for p-almost every y ∈ Y .

(b) There exists an analytically measurable φ : Y → Z such that

h[y, φ(y)] ≤
{

h∗(y) + ε if h∗(y) > −∞,

−1/ε if h∗(y) = −∞,
(13)

for every y ∈ Y .

(c) There exists a universally measurable φ : Y → Y such that (13) holds for every y ∈ Y , and

h[y, φ(y)] = h∗(y) y ∈ I.

There is one additional measure theoretic difficulty, which is encountered in the general

model of Section 4 but not in the simple example of Section 2. It often is the case that the

distribution of the disturbance at the kth stage is parameterized by the kth state and control,

i.e., has the form p(dwk | xk, uk). Equation (5) would then become

J2(x0) = inf
u0∈R

∫
J1[f(x0, u0, w0)]p(dw0 | x0, u0).

The measurability of J2 is of no consequence in the example of Section 2, since the dynamic pro-

gramming algorithm terminates at this stage. If, however, more than two stages are involved,then

J2 would become part of an integrand in the next iteration, and we must check that it, like J1,

is lower semianalytic. In light of Theorem 1, it suffices to verify that
∫

J1[f(x0, u0, w0)]p(dw0 |
x0, u0) is a lower semianalytic function of (x0, u0). The relevant definition and theorem follow.

Let Y and Z be Borel spaces. A stochastic kernel q(dz | y) on Z given Y is a collection

of probability measures on (Z,BZ) parameterized by the elements of Y . If for each Borel set

B ∈ BZ , the function q(B | y) is Borel measurable in y, the stochastic kernel q(dz | y) is said to

be Borel measurable.

Theorem 4: Let Y and Z be Borel spaces, let h : Y × Z → [−∞,∞] be a lower semianalytic

function which is bounded above or bounded below, and let q(dz | y) be a Borel measurable

stochastic kernel on Z given Y . Then the function λ : Y → [−∞,∞] defined by

λ(y) =
∫

Z

h(y, z)q(da | y)

is lower semianalytic.
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4. THE GENERAL FINITE HORIZON MODEL

The general model consists of a Borel state space S, a Borel control space C, a Borel disturbance

space W , a Borel measurable system function f : S ×C ×W → S, a Borel measurable stochastic

disturbance kernel p(dw | x, u) on W given S × C, a lower semianalytic one stage cost function

g : S × C × W → [−∞,∞], and a horizon N , which is a positive integer. We assume that either

g is bounded below (P), or else g is bounded above (N). Thus, there are really two models, and

the symbols (P) and/or (N) will precede a result to indicate that it is valid for the corresponding

model. The boundedness assumption on g is made for convenience. Stronger results as well as

infinite horizon and imperfect state information counterparts are possible. A policy is a sequence

π = (µ0, . . . , µN−1) of measurable mappings, where µk : S ×C × . . .×C × S → S determine the

kth control uk as

uk = µk(x0, u0, . . . , uk−1, xk), k = 0, . . . N − 1.

If for each k, µk has the form uk = µk(x0, xk), the policy π is said to be semi-Markov. If µk

has the form uk = µk(xk), π is said to be Markov. We say that a policy is Borel, analytically,

or universally measurable if each component of the policy is Borel, analytically, or universally

measurable, respectively. We consider only policies that are measurable in one of these senses.

For convenience we admit only nonrandomized policies. Results relating to randomized policies

are also available. The cost corresponding to a policy π at x0 ∈ S is

JN,π(x0) = Eπ,x0

(
N−1∑
k=0

g(xk, uk, wk)

)
, (15)

where the expectation is with respect to the probability measure determined by the disturbance

distributions p(dwk | xk, uk), k = 0, . . . , N − 1, the sytem equation

xk+1 = f(xk, uk, wk), k = 0, . . . , N − 2,

and the policy

uk = µk(x0, u0, . . . , uk−1, xk), k = 0, . . . , N − 1.

The optimal N -stage cost at x0 is

J∗
N (x0) = inf

π
JN,π(x0). (16)

This optimal cost can be shown to be the same regardless of whether the infimum in (16) is over

all universally measurable policies, only the Borel measurable Markov policies, or any collection

8



of policies lying between these two extremes. This follows from the fact that when x0 is fixed

and a universally measurable policy π is given, an “equivalent” Borel measurable policy π̄ exists,

i.e., a policy π̄ for which

JN,π(x0) = JN,π̄(x0).

It is only when properties which hold uniformly in the initial state x0 are considered that the

difference between universally measurable and Borel measurable policies manifests itself. Given

ε > 0 and x0 ∈ S, we say a policy π is ε-optimal at x0 if

JN,π(x0) ≤
{

J∗
N (x0) + ε if J∗

N (x0) > −∞,

−1/ε if J∗
N (x0) = −∞.

We say π is optimal at x0 if

JN,π(x0) = J∗
N (x0).

If p is a probability measure on (X,BS) and π is ε-optimal (optimal) at p-almost every x0, we

say π is p-ε-optimal (p-optimal). If π is ε-optimal (optimal) at every x0, we say π is ε-optimal

(optimal).

The optimal cost functions can be generated by the dynamic programming algorithm in

both models (P) and (N).

Theorem 5: (P, N) For K = 1, . . . , N , J∗
K is lower semianalytic, and

J∗
K(x) = inf

u∈C

∫
W

(
g(x, u, w) + J∗

K−1[f(x, u, w)]
)
p(dw | x, u), (17)

where J∗
0 (x) = 0 for every x ∈ S.

The existence results depend along the lines of Theorem 3 on the type of measurability of

policies allowed.

Theorem 6: Let ε > 0 and a probability measure p on (S,BS) be given.

(P) There exists a Borel measurable p-ε-optimal Markov policy.

(N) There exists a Borel measurable p-ε-optimal semi-Markov policy.

Theorem 7: (P, N) Suppose for K = 1, . . . , N , and for every x ∈ S, the infimum in (17) is

attained, and let p be a probability measure on (S,BS). Then there exists a Borel measurable

p-optimal Markov policy.

If under (N) we have J∗
N (x) > −∞ for all x ∈ S, the policy in Theorem 6 can actually

be taken to be Markov. The dependence on p in Theorem 6 can be eliminated by admitting

analytically measurable policies, but the semi-Markov property under (N) is lost.
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Theorem 8: Let ε > 0 be given.

(P) There exists an analytically measurable ε-optimal Markov policy.

(N) There exists an analytically measurable ε-optimal policy.

There is apparently no stronger version of Theorem 7 for analytically measurable policies.

The fact that the composition of two analytically measurable functions need not be analytically

measurable is the primary source of difficulty here. However, if universally measurable policies

are allowed, both Theorems 7 and 8 can be strengthened.

Theorem 9: Let ε > 0 be given.

(P) There exists a universally measurable ε-optimal Markov policy.

(N) There exists a universally measurable ε-optimal semi-Markov policy.

As in Theorem 6, if under (N) we have J∗
N (x) > −∞ for all x ∈ S, the policy in Theorem

9 can be taken to be Markov.

Theorem 10: (P, N) Suppose for K = 1, . . . , N , and for every x ∈ S, the infimum in (17) is

attained. Then there exists a universally measurable optimal Markov policy π = (µ0, . . . , µN−1),

such that for K = 1, . . . , N , and every x ∈ S, µN−k(x) attains the infimum in (17).

A similar development is possible for infinite horizon dynamic programming models (see the

Bertsekas and Shreve book). Again, the key point in this development is the use of universally

measurable policies. This class of policies is sufficiently rich to ensure the existence of ε-optimal

policies, and to allow the development of a general and comprehensive dynamic programming

theory that is as powerful and easy to use as its deterministic counterpart.
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