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Adaptive Aggregation Methods for Infinite Horizon 
Dynamic Programming 

DIMITRI P. BERTSEKAS, FELLOW, IEEE, AND DAVID A. CASTARON, MEMBER, IEEE 

Abstract-We propose a class of iterative aggregation algorithms for 
solving infinite horizon dynamic programming problems. The idea is to 
interject aggregation iterations in the course of the usual successive 
approximation method. An important new feature that sets our method 
apart from earlier proposals is that the aggregate groups of states change 
adaptively from one aggregation iteration to the next, depending on the 
progress of the computation. This allows acceleration of convergence in 
difficult problems involving multiple ergodic classes for which methods 
using fixed groups of aggregate states are ineffective. No knowledge of 
special problem structure is utilized by the algorithms. 

I. INTRODUCTION 

ONSIDER a Markov chain with finite state-space S = { 1 ,  C * .  ., n } .  Let x ( t )  denote the state of the chain at stage t .  
Assume that there is a finite decision space U, and that, for each 
state x ( t )  and decision u ( t )  at stage t ,  the state transition 
probabilities are given and are independent of t .  Let CY E (0, 1)  be 
a discount factor and g ( x ( t ) ,  u ( t ) )  be a given cost function of 
state and decision. Let p:S + U denote a stationary control 
policy. The infinite horizon discounted optimal control problem 
consists of selecting the stationary control policy which mini- 
mizes, for all initial states i ,  the cost 

The optimal cost vector J* of this problem is characterized as the 
unique solution of the dynamic programming equation [ 11 

(2) 

Here the coordinates of J* are J * ( i )  = min, J ( i ) ,  g ,  is the 
vector with coordinates g( i ,  p ( i ) ) ,  P, is the transition probability 
matrix corresponding to p,  and the minimization is considered 
separately for each coordinate. 

One of the principal methods for solving the problem is the 
policy iteration algorithm which iterates between a policy im- 
provement step 

J* = min, { g, + UP,  J* } . 

p"=arg min, (g ,+aP,J"-'}  (3) 

yielding a new policy p",  and a policy evaluation step that finds 
the cost vector J" corresponding to policy p" by solving the 
equation 

(4) J" = g; + aP; J". 
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Equation (4) is a linear n x n system which can be solved by a 
direct method such as Gaussian elimination. In the absence of 
specific structure, the solution requires O ( n 3 )  operations, and is 
impractical for large n. An alternative, suggested in [ 1 11 and [ 121 
and widely regarded as the most computationally efficient 
approach for large problems, is to use an iterative technique for 
the solution of (4), such as the successive approximation method; 
this requires only O(n2) per iteration for dense matrices P (see 
the survey [2]). It appears that the most effective way to operate 
this type of method is not to insist on a very accurate iterative 
solution of (4). Two points relevant to the present paper are as 
follows. 

1) The choice of iterative method for solving approximately (4) 
is open. 

2) For convergence of the overall scheme, it is sufficient to 
terminate the iterative method at a vector J such that a norm of the 
residual vector 

is reduced by a certain factor over the corresponding norm of the 
starting residual 

J"- '  - (g;+CYP;J"-') 

obtained when the policy improvement step of (3) is carried out. 
This paper proposes a new iterative aggregation method for 

solving (4) as per 1) above. Its rate of convergence can be 
superior to that of other competing methods, particularly for 
difficult problems where there are multiple ergodic classes 
corresponding to the transition matrix P". Its convergence is 
assured through the use of safeguards thatpenforce a guaranteed 
reduction of the residual vector norm as per 2) above. We have 
been unable to prove convergence without the use of these 
safeguards. On the other hand, our computational experiments 
indicate that the safeguards are seldom needed, and do not 
contribute appreciable to a deterioration of the rate of conver- 
gence of the method. 

Several authors have proposed the use of aggregation-disaggre- 
gation ideas for accelerating the convergence of iterative methods 
for the solution of (4) (Miranker [4], Chatelin and Miranker [5], 
Schweitzer, Puterman, and Kindle [6], Verkhovsky [7], and 
Mendelshohn [8]). In [5], Chatelin and Miranker described the 
basic aggregation technique and derived a bound for the error 
reduction. However, they did not provide a specific algorithm for 
selecting the directions of aggregation or disaggregation. In [7], 
Verkhovsky proved the convergence of an aggregation method 
which used the current estimate of the solution J as a direction of 
aggregation, and a positive vector as the direction for disaggrega- 
tion. This idea was extended in [6] by selecting fixed segments of 
the current estimate J as directions for aggregation, and certain 
nonnegative vectors as directions for disaggregation. 

There is an important difference between the aggregation 
algorithms described in this paper and those developed by the 
previous authors. In our work, aggregation and disaggregation 
directions are selected adaptively based on the progress of the 
algorithm. In particular, the membership of aparticular state in 
an aggregate group changes dynamically throughout the itera- 
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tions. States with similar magnitude of residual are grouped 
together at each aggregation step and, because the residual 
magnitudes change drastically in the course of the algorithm, the 
group membership of the states can also change accordingly. This 
is in contrast with the approach of [6], for example, where the 
aggregate groups are fixed through all iterations. We show via 
experiments and some analysis that the adaptive aggregate group 
formation feature of our algorithm is essential in order to achieve 
convergence acceleration for difficult problems involving multi- 
ple ergodic classes. For example, when P, is the n x n identity 
matrix no algorithm with fixed aggregate groups can achieve a 
geometric convergence rate better than a. By constrast, our 
algorithm converges at a rate faster than 2a/m where m is the 
number of aggregate groups. We point out, however, that we have 
been unable to establish analytically a superior rate of conver- 
gence for the adaptive aggregation method over fixed aggregate 
group methods. This remains an interesting subject for investiga- 
tion. 

The rest of the paper is organized as follows. In Section II we 
provide some background material on iterative algorithms for the 
solution of (4), including bounds on the solution error. In Section 
111, we derive the equations of aggregation and disaggregation as 
in [5], and obtain a characterization of the error reduction 
produced by an aggregation step. In Section IV, we describe and 
motivate the adaptive procedure used to select the directions of 
aggregation and disaggregation. Section V analyzes in detail the 
error in the aggregation procedure when two aggregate groups are 
used. Throughout the paper we emphasize discounted problems. 
Our aggregation method extends, however, to average cost 
Markovian decision problems and in Section VI we describe the 
extension. In Section VII, we discuss and justify the general 
iterative algorithm combining adaptive aggregation steps with 
successive approximation steps. Section VIII presents experimen- 
tal results. 
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11. SUCCESSIVE APPROXIMATION AND ERROR BOUNDS 

For the sake of simplicity, we will drop the argument p from 
(4), thereby focusing on obtaining an iterative solution to the 
equation 

J= T ( J )  (54 

where the mapping ER" + R" is defined by 

T ( J )  G g+aPJ.  (5b) 

A successive approximation iteration on a vector J simply 
replaces J with T( J ) .  The successive approximation method for 
the solution of (5) starts with an arbitrary vector J ,  and 
sequentially computes T ( J ) ,  T 2 ( J ) ,  - e .  Since P is a stochastic 
matrix (and hence has spectral radius of 1) and a E (0, l), it 
follows that Tis  a sup-norm contraction mapping with modulus a. 
Hence, we have 

lim T k (  J )  = J* 
k - m  

where J* is the solution of (5) and Tk is the composition of the 
mapping T with itself k times. The rate of convergence in (6) is 
geometric at a rate a, which is quite slow when a is close to 1. 

The rate of convergence can often be substantially improved 
using some error bounds due to McQueen [9] and Porteus [3] (see 
[ l ]  for a derivation). These bounds are based on the residual 
difference of T( J )  and J .  Let J (  i ) denote the ith component of a 
vector J .  Let y and @ be defined as 

y = mini [ T( J ) (  i) - J(  i)] 

@ = maxi [ T( J ) (  i) - J(  i ) ]  . 

(74 

(7b) 

Then, the solution J* of (1) satisfies 

"Y 4 T(J)(  i )  + - 5 J*(  i) 5 T( J)(  i )  + - 
1-a 1-a 

for all states i .  Furthermore, the bounds of (8) are monotonic and 
approach each other at a rate equal to the complex norm of the 
subdominant eigenvalue of CUP, as discussed in [2] and shown in 
Section IV of this paper. Hence, the iterations can be stopped 
when the difference between the lower and upper bounds in (8) is 
below a specified tolerance for all states i .  The value of J* in this 
case is approximated by selecting a value between the two bounds. 

There are also several variations of the successive approxima- 
tion method such as Gauss-Seidel iteration, successive over- 
relaxation [lo], and Jacobi iteration [2]. Depending on the 
problem at hand these schemes may converge faster than the 
successive approximation method. However, their rate of geomet- 
ric convergence is often close to a when a is large and P has more 
than one ergodic class, in which case the subdominant eigenvalue 
of P has a norm of unity. 

III. AGGREGATION ERROR ESTIMATES 

The basic principle of aggregation-disaggregation is to approx- 
imate the solution of (5a) by solving a smaller system of equations 
obtained by lumping together the states of the original system into 
a smaller set of aggregate states. We have a vector J and we want 
to make an additive correction to J of the form Wy, where y is an 
m-dimensional vector and W is an n x m matrix, so that 

J+ Wy= J*. (9) 

In addition to W, our method makes use of another matrix Q. We 
will later assume that Q = ( PV W ) - I  FV (superscript T denotes 
transpose), but it is worthwhile to postpone this assumption for 
later so as to develop the following error equations in generality. 
We thus assume the following. 

Assumption I: Q is an m x n matrix, and W is an n x m 
matrix, chosen so that Q(Z - aP) Wis nonsingular, and QW = 
Z where I is the m-dimensional identity. 

From (3, we get 

T ( J ) -  J=(Z-aP)(J*-  J ) .  (10) 

Multiplying this equation on the left by Q yields 

Q( T ( J )  - J )  = Q(Z- &)(.I* - 1). (1 1) 

We want to choosey so that J* - J is approximately equal to Wy 
as in (9). On the basis of (1 l),  we see that a reasonable choice o f y  
is the unique solution of the following m x m system obtained by 
replacing J* - J with Wy in (1 1): 

Q( T ( J )  - J )  = Q(Z- aP) Wy (12) 

or, using the fact Q W = I ,  

Q( T( J )  - J )  = ( I -  (YQP W ) y  . 
Thus, we define 

y = ( I -  (YQP W )  - ' Q( T( J )  - J )  

and consider the vector JI  defined by [cf. (9)] 

J l = J +  Wy=J+ W(Z-aQPW)- 'Q(T(J) -J) .  (13) 

The conversion of (10) to the lower dimensional (12) is known as 
the aggregation step. The disaggregation step is the use of (13) 
to approximate the solution J*.  Note that there is no claim or 
guarantee that JI approximates well J*; this depends on the choice 
of the subspace W which is the key for the success of aggregation 
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First error term 
(I-II)(T(J)-J) Second error term M-J ~ [I-")- ~ 

0 0 Range of W 
Wy - MI - aQFVi$Q(T(J)J) 

Geometric illustration of the two error terms of (18). The matrix n 
projects orthogonally on the range space of W. Note that if the range of W 
is invariant under P ,  the second error term is zero. 

IIlT(J)-J) Range Of w 

Fig. 1 .  

methods. If J - J* lies on the range space of W, then J1 = J*.  
Generally, J1 will be close to J* if (J - J * )  nearly lies on the 
range space of W. 

After obtaining Jl using (13), the aggregation method performs 
a successive approximation iteration on it yielding 

T ( J , ) =  T(J)+aPWy (14) 

[this improves the quality of the solution and is also a necessary 
first step for the subsequent aggregation step as seen from (13)]. 
In some cases it is desirable to perform several successive 
approximation iterations between aggregation steps (see the 
discussion of Section IV). We thus define the iterative aggrega- 
tion method as a sequence of iterations of the form of (13) with 
each pair of consecutive iterations possibly separated by one or 
more successive approximation iterations. Thus, an iteration of 
the iterative aggregation method replaces J b y  T k ( J I ) ,  where J I  is 
given by ( 13), and k is some nonnegative integer. The method for 
choosing W will be discussed in the next section; methods for 
choosing k will be discussed in Section VII. 

To understand the properties of the iterative aggregation 
method it is important to characterize the error T ( J 1 )  - J* in 
terms of the error J - J*. From (14) we get 

T ( J , )  - J* = ( T ( J )  - J )  + (J- J * )  + aPWy (15) 

which, using (10) and (12), yields 

T( J I  ) - J* = CUP { Z - W( Z - Q! Q P  W) - Q( Z - d')} (J- J* ). (1 6) 

Equation (16) is in effect the equation obtained by Chatelin and 
Miranker [SI to characterize the error obtained by additive 
corrections based on Galerkin approximations. It applies to 
general linear equations where the matrix P is not necessarily 
stochastic. In order to better understand this equation, we will 
derive an expression for the residual obtained after an aggrega- 
tion-disaggregation step. Define the matrix 

rI= WQ (17) 

which is a projection on the range space of W. Generally, II is not 
an orthogonal projection but with the choice Q = ( WT W)-I FV 
that will be used later in this paper, II becomes the orthogonal 
projection matrix on the range of W. From (16) and (10) we get 

T(JI) - JI = (I- aP){  Z- W [  Q(Z- UP) W ]  - Q(Z- aP) } (J*  - J) 

= {Z-(Z-&) W[Q(Z-aP) W]-'Q}(Z-CXP)(J*-J) 

= ( I -  U)( T ( J )  - J) + { W[Z- aQPW]  - (I- (YP) W }  

. [ I -  a QPW] - I  Q( T ( J )  - J )  

=(Z-n)(T(J)-J)+a(Z-rI)PW[Z-aQPW]-'Q 

* ( T ( J ) - J )  

= ( I -  rI)( T ( J )  - J )  + a(Z- rI)PWy. (18) 

Equation (18) is the basic error equation which we will be 
working with. There are two error terms on the right side of (18) 
(see Fig. 1). Our subsequent choice of W a n d  Q will be based 

on trying to minimize an  estimate of the first error term on the 
right above. We generally estimate errors using the pseudonorm 

F ( J )  = Maxi (J(i)) - Mini (J(i)). (19) 

Since the scalar F( T ( J )  - J )  is proportional to the difference 
between the upper and lower bounds in (8), we see that reducing 
F( T ( J )  - J )  to 0 is equivalent to having the upper and lower 
bounds converge to each other, thereby obtaining J*. The second 
error term in (18) is a measure of how well the action of the 
stochastic matrix P is represented by the aggregation-disaggrega- 
tion projections based on W. Note that if P maps the range of W 
into itself, the second term is zero since, from (17) and the 
condition Q W  = I of Assumption 1, we have (I - II) W = 0. 
Hence, the second term is small when the range of W is closely 
aligned with an invariant subspace of P. When this is not the case, 
the inverse in this second term introduces a tendency for 
instability. Despite this fact, it will be seen that the effect of this 
term can be adequately dealt with. 

IV. ADAPTNE CHOICE OF THE AGGREGATION MATRICES BASED 
ON RESIDUAL SIZE 

We introduce a specific choice of Q and W .  Partition the state- 
space S = { 1, 2, * * * ,  n} into m disjoint sets G j ,  j = 1, . . * ,  m 
(also called aggregate groups). Define the vectors wj with ith 
coordinates given by 

wj(i)= 1 if i E Gj 

= O  otherwise. (20) 

Let the matrices Wand Q be defined by 

W=[w1, ..., w,] (21) 

Q = (  WTW)-lWT.  (22) 

Note that WT W is a diagonal matrix with i - ith entry equal to 
the number of elements in group Gi. If one of the groups is empty, 
then we can view the inverse above as a pseudoinverse. 

Lemma I: Assume Q and Ware defined by (20)-(22). Then: 
a) Q W  = I; 
b) Pa A QP W is a stochastic matrix; 
c) Q and W satisfy Assumption 1. 
Proof: 

a) Immediate from the definition of (22). 
b) By straightforward calculation we can verify that the 

(i, j )th element of Pa is 

1 
[ ~ a ~ i j = -   km 

I G i l  kEG;mEGj  

where 1 Gi 1 is the number of states in G; .  It follows that [ Pa], L 0 
for all i, j ,  and 

m 
[ P , ] ~ = I ,  f o r a l l i = l ,  ..., m. 

j= I 
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X group 3 I 

Fig. 2. Illustration of the aggregated Markov chain associated with the 
transition matrix Po = QPW. The aggregate groups are G ,  = { 1, 2, 3}, 
G2 = (4, 5 } ,  G, = {6} and they correspond to states of the aggregated 
Markov chain. The transition probability from state G, to state G,,equals the 
sum of all transition probabilities from states in G, to states in G,. An 
aggregation step can be interpreted as a policy evaluation step involving the 
aggregated Markov chain. 

Therefore, P, is a stochastic matrix. 
C) The eigenvalues of Pa lie within the unit disk, so, in 

view of CY < 1, the matrix Z - aPa cannot have a zero eigenvalue 
and must therefore be invertible. This combined with part a) 
shows that Assumption 1 is satisfied. Q.E.D. 

Fig. 2 illustrates the ‘‘aggregated Markov chain” correspond- 
ing to the stochastic matrix Pa and identifies its states with 
aggregate groups. This chain provides an insightful interpretation 
of the aggregated system of (12). By writing this system as 

Q( T ( J )  - J )  = (1- apa)Y  

and by comparing it to the system of (10) we see that y is the cost 
vector corresponding to the aggregated Markov chain, and to a 
cost per stage equal to Q( T ( J )  - J )  the ith component of which 
is the average residual 

over the ith aggregate group of states. Thus, the aggregation 
iteration solves in effect a (lower dimensional) dynamic program- 
ming equation corresponding to the aggregated Markov chain. 

We now describe the method for selecting the aggregate 
groups. We write (18) as 

where 

RI ( J )  = (Z - n)( T( J )  - J )  (244 

R,(J)=cY(I-~)PW(Z-CYQPW)-’Q(T(J)-J). (24b) 

We want to select the partition G j ,  j = 1, * . * , m so that 
F [ R , ( J ) ]  is minimized. For a given value o f F (  T ( J )  - J ) ,  and 
number of aggregate groups m, the following procedure, based on 
residual size, is minimax optimal against the worst possible 
choices of P and J .  The idea is to select Gj so that the variation of 
residuals within each group is relatively small. 

Consider 

y=min; [ T ( J ) ( i ) - J ( i ) ] ;  /3=max; [ T ( J ) ( i ) - J ( i ) ]  

Divide the interval [y, p] into m equal length intervals, of length 
L ,  where 

L = (/3 - y ) / m  = (F( T ( J )  - J)) /m.  (25) 

Then, for j < m ,  we select 

Gj= { I ’ 1 y + ( j -  l ) L  S( T ( J )  - J ) ( i ) < y +  j L } ,  j < m  (26a) 

X 

X 
X 

group 2 

Fig. 3 .  Formation of aggregate groups is based on magnitude of the 
residuals. Here the three aggregate groups are obtained by dividing the 
residual range into three equal portions and grouping together the states 
with residuals in the same portion. 

X 
X . x x  

I I I 1 1  Statei 
X X 

l x  X X 

Fig. 4. Illustration of the first error term R ,  ( J )  for the case of the residuals 
of Fig. 3. R 1 ( J )  is obtained from ( T ( J )  - J )  by subtracting the average 
residual over the group that contains state i .  

and we select 

G, = { i (  y + (m - l ) L  I ( T ( J )  - J ) ( i )  I 0). (26b) 

To understand the idea behind this choice, note that i f j (  i )  is the 
index of the group containing state i and 1 Gj(; ,  I is the number of 
states in Gj(; ) ,  the ith coordinate of a vector IIx = 

W( WT W ) - *  FVx [cf. (15) and (22)] can be calculated to be 

i.e., the average value of IIx over the group G,( i ) .  Therefore, the 
ith coordinate of R , ( J )  = ( I  - II) ( T ( J )  - J )  is the difference 
of the residual of state i and the average residual of the group 
containing state i .  As a result of the choice of (25) and (26), the 
coordinates of R , ( J )  are also relatively small. 

Fig. 3 illustrates the choice of Gj for a typical T ( J )  - J using 
three aggregate groups. In Fig. 4, we display the vector R , ( J ) .  
Note that the spread between the maximum element and the 
minimum element has been reduced significantly. We have the 
following estimate. 

Lemma 2: Let Gj be defined by (25)  and (26). Then, for m > 
1, 

Proof: From (27),  II ( T ( J )  - J )  is the vector of average 
values of residuals within each group G j .  The operation ( I  - II) 
( T ( J )  - J ) ,  as shown in Fig. 4,  subtracts the average value of 
the residuals in each group from the value of the residuals in each 
group. Since all of the residuals in each group belong to the same 
interval in [y, 01, so does the average value, which establishes that 
each coordinate of ( I  - II) ( T ( J )  - J )  lies between - L and L .  
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Therefore, using (25), we have 

F [ ( Z - ~ ) ( T ( J ) - J ) J S ~ L = ~ F ( T ( J ) - - J ) / ~  (29) 

which proves the result. Q.E.D. 
We note that the argument in the proof above can be refined to 

give the improved estimate 

where LxJ denotes the largest integer less than x. For large n ,  the 
improvement is small. Also, the bound above is a worst-case 
estimate. In practice, one usually gets a reduction factor better 
than llm (as opposed to 2 /m) .  This has been verified computa- 
tionally and can also be deduced from the proof of Lemma 2. 

Lemma 2 establishes that with our choice of Wand Q we get a 
substantial reduction in the error term R l ( J ) .  Hence, the 
aggregation step will work best in problems where the second 
term R2(J)  is small. To illustrate this, consider the following 
examples. 

Example 1: P = I, the n x n identity. 
In this case, R 2 ( J )  = 0 because PW = W. Hence, the 

aggregation-disaggregation step reduces the spread between the 
upper and lower bounds in (7) and (8) as 

In this case, the geometric rate of convergence is accelerated by a 
minimum factor of 2/m. 

Example 2: m = 1, W = e where e is the unit vector eT = [l , 
1, . . a ,  I]. 

In this case, we obtain a scheme known as the error sum 
extrapolation [ 2 ] .  Starting from J ,  a successive approximation 
step is used to compute T ( J ) .  Then, an aggregation step is used to 
compute T ( J I )  directly as 

This aggregation step is followed by a sequence of successive 
approximation steps and aggregation steps. The rate of conver- 
gence of this method can be established using (18). The residual 
produced by the second successive approximation step is given by 

T(T(JI ) -JI )=aP(Rl (J )  +R2(J) )  

= aP(Z- n)( T ( J )  - J )  

since R 2 ( J )  vanishes ( P i s  a stochastic matrix and Pe = e ) .  After 
n repetitions of successive approximation and aggregation steps, 
the residual r, will be 

r ,=a"[P(z-n)]n(T(J) -J )  

= a"P(Z- n)Pn-I(  T ( J )  - J )  (32) 

because from (27),  P n  = n which implies that ( I  - n)P(Z - 
n) = (Z - n ) P .  Consider a decomposition of Pn- l (  T ( J )  - J )  
along the invariant subspaces of P .  There is a subspace 
corresponding to a unity eigenvalue that is spanned by e, and the 
component of P - l  ( T ( J )  - J )  along that subspace is annihilated 
by ( I  - n) [cf. (27)] .  Therefore, r, will converge to 0 
geometrically at a rate determined by the largest complex norm of 
eigenvalues of aP in a direction other than e (the subdominant 
eigenvalue norm). 

Example 3: P is block-diagonal and the aggregate groups are 
aligned with the ergodic classes. In this case we assume that P has 
multiple ergodic classes and no transient states. By reordering 

__ 
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states if necessary, we can assume that P has the form 

P =  diag { P ' ,  P2 ,  . . . , P'} .  (33) 

We assume also that each aggregate group G j ,  j = 1, * . * , m 
consists of ergodic classes of states (no two states of the same 
ergodic class can belong to different groups). The matrix W then 
has the form 

and it is easily seen that P W = W. Therefore, the second error 
term R 2 ( J )  vanishes and the favorable rate estimate of (31) again 
holds. Note that it is not necessary that each aggregate group 
contain a single ergodic class. This restriction would be needed 
for fast convergence if the aggregate groups were to remain fixed 
throughout the computation. 

The case of a block-diagonal matrix P is important for several 
reasons. First, block-diagonal matrices P present the most 
difficulties for the successive approximation method, regardless 
of whether the McQueen-Porteus error bounds are employed. 
Second, we can expect that algorithmic behavior on block- 
diagonal matrices will be replicated to a great extent on matrices 
with weakly coupled or sparsely coupled blocks. This conjecture 
is substantiated analytically in the next section and experimentally 
in Section VII. 

The favorable rate of convergence described above is predi- 
cated on the alignment of the ergodic classes and the aggregate 
groups. The issue of effecting this alignment is therefore 
important. We first remark that even if this alignment is not 
achieved perfectly, we have observed experimentally that much of 
the favorable convergence rate can still be salvaged, particularly if 
an aggregation step is followed by several successive approxima- 
tion steps. We provide some related substantiation in the next 
section, but hasten to add that we do not fully understand the 
mechanism of this phenomenon. We next observe that for a block- 
diagonal P ,  the eigenvectors corresponding to the dominant unity 
eigenvalues are of the form 

e,=@ e . .  0 1 a . .  1 0 ... 0 ] T  j = l ,  .- . ,  r 

where the unit entries correspond to the states in the j t h  ergodic 
class. Suppose that we start with some vector J and apply k 
successive approximation steps. The residual thus obtained will be 

(34) 

and for large k, it will be nearly a linear combination of the 
dominant eigenvectors. This means that T k ( J )  - Tk-I(J) is 
nearly constant over each ergodic class. As a result, if aggregate 
groups are formed on the basis of the residual T k ( J )  - Tk-'(J) 
and (25) and (26), they will very likely be aligned with the ergodic 
classes of P .  This fact suggests that several successive approxima- 
tion steps should be used between aggregation steps, and provides 
the motivation for the algorithm to be given in Section VII. 

T k ( J )  - Tk- ( J )  = (aP)k- 1 ( T ( J )  - J )  

V. ADAPTIVE AGGREGATION WITH Two GROUPS 

The preceding section showed that the contribution of the 
second error term R 2 ( J )  of (18) is crucial for the success of our 
aggregation method. The analysis of this contribution seems very 
difficult in general, but the case where m = 2 is tractable and is 
given in this section. Experiment and some analysis show that the 
qualitative conclusions drawn from this case carry over to the 
more general case where m > 2 .  Assume that W, Q have been 
selected according to (20)-(22). By appropriate renumbering of 



594 IEEE TRANSACTIONS O N  AUTOMATIC CONTROL, VOL. 34. NO. 6, JUNE 1989 

the states, assume that W is of the form Similarly, 

(PW- WP,)(i, 2) = - (PW- WP,)(i, 1 ) .  

Thus. from (45) 
~I 

Let k be the number of elements in the first group. Then a 
straightforward calculation shows that R2 ( J )  = aa2F(u2) h 

where 

where h is the vector with coordinates 
(35) 

b-bi 
1 - a + a ( b + c )  

h(i)= if is k 

c - ci 
l - a + a ( b + c )  

if i > k  - - 

(47) 

and F(u2) = 1 + c / b  [cf. (19) and (38)]. From (36), (37), and 
(48) we see that in order for the coordinates of h to be small, the 
probabilities b, and c, should be uniformly close to their averages 
b and c. If this is not so, then at least some coordinates of R 2 ( J )  
will be substantial, and it is interesting to see what happens after a 
successive approximation step is applied to R 2 ( J ) .  The corres- 
ponding residual term is the vector 

(3&) 
1 

n 

(37a) b,= Pu, i = l ,  . . a ,  k 
J=k+l 

k q = aPR, ( J )  . 
c I = c  PIJ, i = k + l ,  ..., n. (37b) From (47) and (48) we see that the ith coordinate of q is 

J =  I 

1 The right eigenvectors and eigenvalues of P, are 
a2a2F(v2) p i j ( b - b j ) +  $ pij(c,-c) . 

u l = [ l  1 I T ;  ~ = [ 1  -c/bIT (38) 4 ( i ) = 1 - a + a ( b + c )  [g j = k + l  

assuming b # 0. If b = 0, then u2 can be chosen as 

and XI = 1 ,  X2 = 1 - c. From (22) and the form of W we obtain 
r 7 

Q = L ' F  l / ( n  - k )  WT. 

We can decompose the term Q ( T ( J )  - J )  of (18) into its 
components along the eigenvectors uI  , u 2 ,  as 

Q( T ( J )  - J )  = al uI + a2u2. (42) 

We have ( I  - aP,)uI = ( 1  - a)uI from which we obtain 

W(Z - a P,) - ' U I = (1 - a) - WU, . 
Hence, 

a ( I  - n) P W( I -  a Pa) - I U I = a ( 1  - a) - ( I  - n) P Wul= 0 

(43) 

and it follows that the only contribution to R 2 ( J )  comes from the 
term a2u2 in (42). Using (35), (38), and (39) we obtain 

(44) ( I -  UP,)- '  ~2 = [ 1 - (11 + a( b + c)] - 'uz .  

Thus, using (24b), we obtain 

R 2 ( J )  = a ( I -  n)PW(Z- aP,)-la2u2 

= ma2 ( P  W -  WP,)[ 1 - a + a ( b  + c)] - I  u2. (45) 

From (34)-(37), we can calculate the ( i ,  1) element of the matrix 
PW - WP, to be 

( P W -  WP,)(i, l ) = b - b i  if i l k  

(46) = - c + c i  if i>k .  

(49) 

Since b and c are the averages of b, and c,, respectively, we see 
that the coordinates of q can be small even if the coordinates of h 
are large. For example, if P has a totally random structure (e.g., 
all elements are drawn independently from a uniform distribu- 
tion), then for large n the coordinates of q will be very small by 
the central limit theorem. There are several other cases where 
either h or q (or both) are small depending on the structure of P .  
Several such examples will now be discussed. All of these 
examples involve P matrices with subdominant eigenvalues close 
to unity for which standard iterative methods will converge very 

Case I :  P has uniformly weakly coupled classes of states which 

The matrix P in this case has the form 

slowly. 

are aligned with the aggregate groups. 

where P' is k x k and the elements of P2 and P3 are small 
relative to the elements of PI and P4.  From (36), (37), (47), and 
(48) we see that if b and c are considerably smaller than (1 - a), 
then R z ( J )  = 0. This will also happen if the terms bi and ci of 
(37) are all nearly equal to their averages b and c, respectively. 
Even if R 2 ( J )  is not near zero, from (49) we see that q = 0 if the 
size of the elements within each row of PI, P2 ,  P 3 ,  and P 4  is 
nearly uniform. 

What happens when the groups identified by the adaptive 
aggregation process are not perfectly aligned with the block 
structure of P? We examine this case next. 

Case 2: P block diagonal with the upper k x k submatrix not 
corresponding to the block structure of P .  

Without loss of generality, assume that i = 1 ,  * e ,  m, 5 k are 
all elements of one group of ergodic classes of P,  while i = m, + 
1, . . . , n, m2 2 k ,  are elements of the complementary group of 
ergodic classes. Note that the states ml I i 3 m2 are not aligned 
with their ergodic classes in the adaptive aggregation process. 



BERTSEKAS AND CASTARON: INFINITE HORIZON DYNAMIC PROGRAMMING 595 

In this case, we have 

m2 
bi= pii i f i s m ,  

j = k + l  

= Pij i f k r i > m ,  (51) 
j = m 2 + 1  

ml 
c i = c  Pij if m 2 r i > k  

j =  I 

= Pij i f m 2 < i s n .  (52) 
j = m l + l  

Suppose 

k-ml=m2-k;  k=nn/2; k-m,  k (53) 

so that the aggregate groups are nearly aligned with the block 
structure of P .  The ergodic classes corresponding to group 1 
consistofthesetofstatesi= l ; . * ,mland i=  k +  1,***,m2, 
while the remaining states correspond to the ergodic classes in 
group 2. From (5 1) we see that bi will tend to be small for i = 1, - e ,  k. Similarly, ci will tend 
tobesmallfori = m2 + 1, * . - ,nand la rge fo r i  = k + 1, - * * ,  

m2. It follows from (48) that 

a ,  m, and large for i = m, + 1, 

h( i )>O 

h (i) < 0 otherwise. (54) 

Hence, R 2 ( J )  is contributing terms of opposite sign to the ergodic 
classes in groups 1 and 2. By following the aggregation step with 
repeated successive approximation iterations, this contribution 
will be smoothed throughout the ergodic classes. Thus, the next 
aggregation step will be able to identify groups which are aligned 
with the block structure of P ,  thereby reducing the error as in 
Case 1. 

if i = l ,  * * e ,  ml or i = k + l ,  e . . ,  m2 

Case 3: P has sparsely-coupled classes of states. 
In this case, P has the general form 

PI P2 
p =  I P3 P4 I (55)  

L _I 

where elements of PI, P 4 ,  P 2 ,  P' are of the same order, and P ' ,  
P 4  are dense while P 2 ,  P 3  are very sparse. Assume that the 
groups are aligned with the block structure of P .  Then we have 

As in Case 1, if bj and ci are small [of the order of (1 - a ) ] ,  or 
vary little from the corresponding averages b and c, then & ( J )  
= 0. If the size of the elements within PI and P 4  is nearly 
uniform, then from (49) we see that q = 0. Furthermore, the 
behavior observed in Case 2 is replicated in this case and, when 
the aggregate groups are not aligned with the block structure of 
the P matrix, the term R 2 ( J )  forces the next aggregation step to 
be better aligned with the block structure of P .  

In conclusion, the cases studied in this section indicate that, for 
classes of problems where there are multiple eigenvalues with 
norm near unity, a combination of several successive approxima- 
tion steps, followed by an aggregation step, will minimize the 

contribution of R 2 ( J )  to the error, and thereby accelerate the 
convergence of the iterative process as in Lemma 2. In Section 
VII, we formalize these ideas in terms of an overall iterative 
algorithm. 

VI. EXTENSION TO THE AVERAGE COST PROBLEM 

The aggregation procedure described in Section 111 can also be 
used in the policy evaluation step of the policy iteration algorithm 
in the average cost case. Here the cost vector for a stationary 
policy p is given by 

As in the discounted cost case, the average cost incurred by policy 
p satisfies the linear equation (see [ 11 for a detailed derivation) 

(59) 

The vector h, is the differential cost incurred by policy p. In what 
follows we drop the subscript p. 

The solution of (59) can be computed under certain conditions 
using the successive approximation method [l]. We fix a state 
which for concreteness is taken to be State 1. Starting with an 
initial guess ha for the differential cost, the successive approxima- 
tion method computes h + I as 

(60) 

J, + h, = g ,  + P,h,. 

hn+  = T( hn)  - eeT T( hn)  

where T ( h )  is defined by 

T(h)  = g + Ph, 

e = [l, 1, - - e ,  1IT and e, = [ l ,  0, - . e ,  OIT is the coordinate 
vector corresponding to the fixed state 1. Equation (60) can be 
written as 

(61) h n + l -  - g A  + PA h 

where 

gA = (I-eeT)g 
PA = ( I -  eeT)P. 

We assume that all eigenvalues of P except for a single unity 
eigenvalue lie strictly within the unit circle (see [ 11 for a method 
that works under the weaker assumption that P has a single 
ergodic class). A straightforward calculation shows that Pf4 = 
PAP from which we obtain P i  = P A P k - ]  for all k > 0. Since 
PA annihilates the eigenvector e corresponding to the unit 
eigenvalue of P ,  it follows that the eigenvalues of PA all lie strictly 
inside the unit circle, guaranteeing the convergence of the 
iteration of (61). Furthermore, the rate of convergence is 
specified by the subdominant eigenvalue of P .  

Note that the iteration in (61) is identical to the discounted cost 
iteration 

h"+l=g+ aPh" 

except that g A  replaces g and PA replaces aP.  Thus, the 
aggregation and error equations of Section 111 can be extended to 
the average cost problem using the above substitutions. The 
following lemma establishes that the choice of the matrices Q and 
W used in Section IV result in a well-posed aggregate problem 
provided the fixed State 1 forms an aggregate group by itself. 

Lemma 3: Assume Q and Ware defined by (20)-(22) with the 
set GI consisting of just State 1, and that all eigenvalues of P 
except for a single unity eigenvalue lie strictly within the unit 
circle. Then the aggregate matrix QPA W has spectral radius less 
than unity. 
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Proof: It is straightforward to verify that 

QPA W =  (1- em e:, , 1 Pa (62) 

where Pa = QP W is the aggregate stochastic matrix defined in 
Lemma lb, e, is the m-dimensional vector of all l’s, and el , ,  is 
the mdimensional vector with first coordinate 1, and all other 
coordinates 0. Therefore, as earlier, we obtain (QPA W ) z  = 
( QPA W ) P a  from which 

(QPA W ) k = ( Q P ~  W ) P f i k - l = ( I - e , e ~ , m ) P ~ ,  for all k>O. 

(63) 

We have Pfi = (QP W )  = QPk W for all k > 0, and from this 
we obtain that Po has all its eigenvalues strictly within the unit 
circle except for a single unity eigenvalue. Using this fact, (63), 
and the fact that (I - erne:,,) annihilates the eigenvector em 
corresponding to the single unity eigenvalue of Po,  we see that 
QPA W must have all its eigenvalues strictly within the unit 
circle. Q.E.D. 

Equation (62) illustrates that the solution to the aggregate linear 
equation is the solution of an aggregate average-cost problem with 
transition probabilities Po. The equations for the aggregation step 
are as follows. 

Using this equation we obtain error equations similar to (23) and 
(24), indicating that the same choice of Q and W will result in 
similar acceleration as in the discounted case. This has been 
verified by the experiments of Section VIII. 

VII. ITERATIVE AGGREGATION ALGORITHMS 

The method for imbedding our aggregation ideas into an 
algorithm is straightforward. Each iteration consists of one or 
more successive approximation steps, followed by an aggregation 
step. The number of successive approximation steps in each 
iteration may depend on the progress of the computation. 

One reason why we want to control the number of successive 
approximation steps per iteration is to guarantee convergence. In 
contrast to a successive approximation step, the aggregation step 
need not improve any measure of convergence. We may wish 
therefore to ensure that sufficient progress has been made via 
successive approximation between aggregation steps to counteract 
any divergence tendencies that may be introduced by aggregation. 
Indeed, we have observed experimentally that the error F( T ( J )  
- J )  often tends to deteriorate immediately following an 
aggregation step due to the contribution of R , ( J ) ,  while unusually 
large improvements are made in the next few successive approxi- 
mation steps. This is consistent with some of the analytical 
conclusions of the previous section. An apparently effective 
scheme is to continue with successive approximation steps as long 
as F( T ( J )  - J )  keeps decreasing by a “substantial” factor. 

One implementation of the algorithm will now be formally 
described. 

Step 0 (Initialization): Choose initially a vector J, and scalars 
E > 0, P I ,  P2 in (0, l), w1 = 00 and w2 = 00. 

Step I (Successive Approximation Step): Compute T( J ) . 
Step 2 (Termination Test): If F( T( J )  - J )  < E ,  stop and 

accept 

T ( J )  + (1/2)(~( 1 - a)- I [maxi( T ( J )  - J ) ( i )  - mini ( T ( J )  - ~ ) ( i ) ]  

as the solution [cf. the bounds in (8)]. Else go to Step 3. 
Step 3 (Test for  an Aggregation Step): If 

and 

set w1 : = PIF( T ( J )  - J )  and go to Step 4. Else, set w2 : = 
P2F(T(J)  - J ) ,  J := T ( J )  and go to Step 1 .  

Step 4 (Aggregation Step): Form the aggregate groups of 
s ta tesG, , j= 1, . - . , m b a s e d o n T ( J )  - Jasin(26).Compute 
T(J, )  using (13) and (14). Set J : = T ( J I ) ,  wz = 03, and go to 
Step 1 .  

The purpose of the test of (65) is to allow the aggregation step 
only when the progress made by the successive approximation 
step is relatively small (a factor no greater than P2) .  The test of 
(64) guarantees convergence of the overall scheme. To see this, 
note that the test of (64) ensures that, before Step 4 is entered, 
F( T ( J )  - J) is reduced to a level below the target wI , and wI 
converges to zero when an infinite number of aggregation steps 
are performed. If only a finite number of aggregation steps are 
performed, the algorithm reduces eventually to the convergent 
successive approximation method. 

An alternative implementation is to eliminate the test of (65) 
and perform an aggregation step if (64) is satisfied and the number 
of consecutive iterations during which an aggregation step was not 
performed exceeds a certain threshold. 

VIII. COMPUTATIONAL RESULTS 

A large number of randomly generated problems with 100 
states or less were solved using the adaptive aggregation methods 
of this paper. The conclusion in summary is that problems that are 
easy for the successive approximation method (single ergodic 
class, dense matrix P) are also easy for the aggregation method; 
but problems that are hard for successive approximation (several 
weakly coupled blocks, sparse structure) are generally easier for 
aggregation and often dramatically so. 

Tables I and I1 summarize representative results relating to 
problems with 75 states grouped in three blocks of 25 each. The 
elements of P are either zero or randomly drawn from a uniform 
distribution. The probability of an element being zero was 
controlled thereby allowing the generation of matrices with 
approximately prescribed degree of density. Table I compares 
various methods on block diagonal problems with and without 
additional transient states, which are full (100 percent) dense, and 
25 percent dense within each block. Table I1 considers the case 
where the blocks are weakly coupled with 2 percent coupling (size 
of elements outside the blocks is on the average 0.02 times the 
average size of the elements inside the blocks), and the case where 
the blocks are 100 percent coupled (all nonzero elements of P 
have nearly the same size). Each entry in the tables is the number 
of steps for the corresponding method to reach a prescribed 
difference ( between the upper and lower bounds of Section 
11. Our accounting assumes that an aggregation step requires 
roughly twice as much computation as a successive approximation 
step which is quite realistic for most problems. Thus, the entries 
for the aggregation methods represent the sum of the number of 
successive approximation and twice the number of aggregation 
steps. In all cases the starting vector was zero, and the 
components of the cost vector g were randomly chosen on the 
basis of a uniform distribution over [0, 11. 

The methods are successive approximation [with the error 
bounds of (8)], and six aggregation methods corresponding to all 
combinations of three and six aggregate groups, and three, five, 
and ten successive approximation steps between aggregation 
steps. Naturally these methods do not utilize any knowledge about 
the block structure of the problem. 

Table I shows the dramatic improvement offered by adaptive 
aggregation as predicted by Example 3 in Section IV. The 
improvement is substantial (although less pronounced) even when 
there are transient states. Generally speaking, the presence of 
transient states has a detrimental effect on the performance of the 



BERTSEKAS AND CASTARON: INFINITE HORIZON DYNAMIC PROGRAMMING 

Successive 3 SA Steps per 3 SA Steps per 5 SA Steps per 5 SA Steps per 

(SA) 3 aggr groups 6 aggr groups 3 aggr groups 6 aggr groups 
Approx aggr step aggr step aggr step aggr step 

100% 
density 

2% 170 17 17 22 22 

25% 
couplmg 

597 

10 SA Steps per 10 SA Steps per 
aggr step aggr step 

3 aggr groups 6 aggr groups 

31 37 

T A B L E  I 
DISCOUNT FACTOR 0.99, BLOCK DIAGONAL P ,  3 BLOCKS, 25 STATES 

EACH, TOLERANCE FOR STOPPING: 1.0 E-6 

density 
2% 

coup 1 in g 
100% 

5 SA Steps per 10 SA Steps per 10 SA Steps pel 
aggr. step aggr step aggr. step 

6 aggr. groups 3 aggr. groups 6 aggr. groups 

167 38 33 36 32 40 40 

density 
100% 

coupling 
3% 

6 7 7 8 7 7 7 

density 
100% 

coupling 
66 56 66 60 64 64 66 

aggregation method when there are multiple ergodic classes. 
Repeated successive approximation steps have the effect of 
making the residuals nearly equal across the ergodic classes; 
however, the residuals of transient states tend to drift at levels 
which are intermediate between the corresponding levels for the 
ergodic classes. As a result, even if the alignment of aggregate 
groups and ergodic classes is perfectly achieved, the aggregate 
groups typically contain a mixture of ergodic classes and transient 
states. This has an adverse effect on both error terms of (18). As 
the results of Table I show, it appears advisable to increase the 
number of aggregate groups m when there are transient states. It 
can be seen also from Table I that the number of successive 
approximation steps performed between aggregation steps influ- 
ences the rate of convergence. Generally speaking, there seems to 
be a problem-dependent optimal value for this number which 
increases as the problem structure deviates from the ideal block 
diagonal structure. For this reason it is probably better to use an 
adaptive scheme to control this number in a general purpose code 
as discussed in Section VIT. 

Table I1 shows that as the coupling between blocks increases 
(and consequently, the modulus of the subdominant eigenvalue of 
P decreases), the performance of both successive approximation 
and adaptive aggregation improves. When there is full coupling 
between the blocks the methods become competitive, but when the 
coupling is weak the aggregation methods hold a substantial edge 
as predicted by our analysis. 

An interesting issue is the choice of the number of aggregate 
groups m. According to Lemma 2, the first error term R I (  J) of 
(24) is reduced by a factor proportional to m at each aggregation 
step. This argues for a large value of m, and indeed we have often 
found that increasing m from two to something like three or four 
leads to a substantial improvement. On the other hand, the benefit 
from reduction of RI  (J) is usually exhausted when m rises above 

T A B L E  111 

25 STATES EACH, STOPPING TOLERANCE 1 .O E-6 
AVERAGE COST INFINITE HORIZON PROBLEMS, COUPLED P, 3 BLOCKS, 

four, since then the effect of the second error term R 2 ( J )  
becomes dominant. Also the aggregation step involves the 
solution of the m-dimensional linear system of (12), so when m is 
large the attendant overhead can become substantial. In the 
extreme case where m = n and each state forms by itself an 
aggregate group, the solution is found in a single aggregation step. 
The corresponding dynamic programming method is then equiva- 
lent to the policy iteration algorithm. 

Table 111 shows the performance of adaptive aggregation 
algorithms for the infinite horizon average cost case. In these 
algorithms, the number of successive approximation steps be- 
tween aggregation steps was determined adaptively as in the 
algorithm of Section VII, by performing aggregation steps 
whenever the rate of error reduction of successive approximation 
steps was slower than 0.9. Table 111 shows that, while the rate of 
convergence of successive approximation methods is very sensi- 
tive to the strength of the coupling between blocks of P, the rate of 
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convergence of the adaptive aggregation methods remains largely 
unaffected. In particular, the results for the adaptive algorithms 
using only two aggregate groups illustrate that major reductions in 
computation time can be achieved even if the number of aggregate 
groups is smaller than the number of strongly-connected compo- 
nents of the stochastic matrix P. 

IX. CONCLUSION 

In this paper, we have developed aggregation techniques for the 
iterative solution of large-scale linear systems of equations arising 
in dynamic programming. The distinguishing feature of our 
method is its adaptive character; the aggregation directions are 
selected on the basis of the residual vector of the iteration, and can 
vary among iterations. Computational results using our method 
show impressive acceleration of the convergence rate over the 
ordinary successive approximation method, particularly for prob- 
lems with weakly-coupled classes of states. This acceleration is 
obtained even when the number of aggregate states used by the 
method is much smaller than the number of weakly-coupled 
classes of states in the original problem. Thus, it is not necessary 
to know a priori the special structure of the problem for the 
method to be effective. 

The intuitive reason for the improved convergence rate is as 
follows: based on monitoring the residuals, the adaptive aggrega- 
tion iteration identifies some of the eigenspaces along which 
convergence is slow. Each aggregation-disaggregation step then 
removes most of the component of the iteration error along these 
eigenspaces. At each iteration, the errors along different slowly- 
converging directions are removed. However, because these 
directions change from one iteration to the next, it is sufficient to 
use a small number of aggregate states. 

Extensions of the adaptive aggregation method to obtain 
iterative solutions of general linear systems of equations are 
straightforward; however, the specific choice of aggregation 
matrix W in this paper is based on the ergodic eigenstructure of 
stochastic matrices, and should be reconsidered for general linear 
equations. Other potential extensions include development of 
higher order adaptive aggregation schemes which use lagged 
values of the residual vectors in order to identify aggregation- 
disaggregation directions, and analysis of the convergence rates of 
these 

r31 

r41 
r51 

aggregation schemes. 
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